1
|
Elkin AM, Robbins S, Barros CS, Bossing T. The Critical Balance Between Quiescence and Reactivation of Neural Stem Cells. Biomolecules 2025; 15:672. [PMID: 40427564 PMCID: PMC12108614 DOI: 10.3390/biom15050672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
Neural stem cells (NSC) are multipotent, self-renewing cells that give rise to all neural cell types within the central nervous system. During adulthood, most NSCs exist in a quiescent state which can be reactivated in response to metabolic and signalling changes, allowing for long-term continuous neurogenesis and response to injury. Ensuring a critical balance between quiescence and reactivation is required to maintain the limited NSC reservoir and neural replenishment throughout lifetime. The precise mechanisms and signalling pathways behind this balance are at the focus of current research. In this review, we highlight and discuss recent studies using Drosophila, mammalian and zebrafish models contributing to the understanding of molecular mechanisms underlying quiescence and reactivation of NSCs.
Collapse
Affiliation(s)
| | | | - Claudia S. Barros
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth PL6 8BU, UK; (A.M.E.); (S.R.)
| | - Torsten Bossing
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth PL6 8BU, UK; (A.M.E.); (S.R.)
| |
Collapse
|
2
|
Lahti L, Volakakis N, Gillberg L, Yaghmaeian Salmani B, Tiklová K, Kee N, Lundén-Miguel H, Werkman M, Piper M, Gronostajski R, Perlmann T. Sox9 and nuclear factor I transcription factors regulate the timing of neurogenesis and ependymal maturation in dopamine progenitors. Development 2025; 152:dev204421. [PMID: 39995267 DOI: 10.1242/dev.204421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
Correct timing of neurogenesis is crucial for generating the correct number and subtypes of glia and neurons in the embryo, and for preventing tumours and stem cell depletion in the adults. Here, we analyse how the midbrain dopamine (mDA) neuron progenitors transition into cell cycle arrest (G0) and begin to mature into ependymal cells. Comparison of mDA progenitors from different embryonic stages revealed upregulation of the genes encoding Sox9 and nuclear factor I transcription factors during development. Their conditional inactivation in the early embryonic midbrain led to delayed G0 entry and ependymal maturation in the entire midbrain ventricular zone, reduced gliogenesis and increased generation of neurons, including mDA neurons. In contrast, their inactivation in late embryogenesis did not result in mitotic re-entry, suggesting that these factors are necessary for G0 induction, but not for its maintenance. Our characterisation of adult ependymal cells by single-cell RNA sequencing and histology show that mDA-progenitor-derived cells retain several progenitor features but also secrete neuropeptides and contact neighbouring cells and blood vessels, indicating that these cells may form part of the circumventricular organ system.
Collapse
Affiliation(s)
- Laura Lahti
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Linda Gillberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Katarína Tiklová
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Nigel Kee
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Maarten Werkman
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Michael Piper
- The School of Biomedical Sciences and The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard Gronostajski
- Genetics, Genomics & Bioinformatics Program, University at Buffalo, Buffalo, NY 14203, USA
| | - Thomas Perlmann
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Ludwig Institute for Cancer Research, 171 77 Stockholm, Sweden
| |
Collapse
|
3
|
Naffaa MM, Yin HH. Lateral Ventricular Neural Stem Cells Provide Negative Feedback to Circuit Activation Through GABAergic Signaling. Cells 2025; 14:426. [PMID: 40136675 PMCID: PMC11940892 DOI: 10.3390/cells14060426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Recent studies have demonstrated that circuit activation in vivo can regulate proliferation of lateral ventricular neural stem cells (LV NSCs), although the underlying molecular and cellular mechanisms are not yet fully understood. Here, we investigated the role of GABAergic signaling in the interaction between LV NSCs and the anterior cingulate cortex-subependymal-choline acetyltransferase+ (ChAT+) neuron (ACC-subep-ChAT+) circuit. We found that monoamine oxidase B (MAOB), a key enzyme involved in gamma-aminobutyric acid (GABA) synthesis, is expressed in LV NSCs, and that activation of the ACC-subep-ChAT+ circuit can modulate MAOB activity. Additionally, LV NSCs express LRRC8D, a core component of volume-regulated anion channels, and GABA transporter-1 (GAT-1, SLC6A1). We show evidence that, through GABA signaling, LRRC8D and GAT-1 can provide a negative feedback signal to ChAT+ neurons, a key component of the ACC-subep-ChAT+ circuit that regulate proliferation of LV NSCs. These findings suggest that MAOB-driven GABA synthesis, LRRC8D-regulated chloride and GABA transport, and GAT-1-facilitated GABA reuptake can regulate neural circuit activation and influence NSC proliferation dynamics in the LV.
Collapse
Affiliation(s)
- Moawiah M. Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Henry H. Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
4
|
Duart-Abadia P, García-Bolufer P, Blasco-Chamarro L, Viuda T, Morante-Redolat JM, Belenguer G. Flow Cytometry-Based Protocols for the Mouse Subependymal Neurogenic Niche Phenotyping. Methods Mol Biol 2025; 2899:1-19. [PMID: 40067613 DOI: 10.1007/978-1-0716-4386-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
The cellular compartment of the adult rodent subependymal zone (SEZ)-neurogenic niche is the most active regenerative area of the brain and of great interest to the regenerative medicine field. It is complex and highly heterogeneous, including neural stem cells (NSCs) in different states of activation, rapid-amplifying progenitors, immature neuroblasts (NBs), mature neurons and other non-neurogenic populations. This chapter provides a step-by-step overview of a versatile flow cytometry-based protocol, which has been molecularly and functionally validated to classify and isolate the complete neurogenic lineage, including three NSC fractions (quiescent, primed, and activated), without the need for reporter mice. The panel is adaptable to diverse fluorescence needs and different cell targets, including niche differentiated cells such as endothelial cells, oligodendrocytes, or microglia, enabling the identification and isolation of the vast majority of cell types present in the SEZ. Additionally, it allows the study of cell cycling dynamics by means of 5-ethynyl-20-deoxyuridine (EdU) incorporation. The method enables the isolation of the different SEZ fractions and the functional assay of their cycling heterogeneity, including quiescence-activation transitions of NSC.
Collapse
Affiliation(s)
- Pere Duart-Abadia
- Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Valencia, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, Valencia, Spain
| | - Pau García-Bolufer
- Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Valencia, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, Valencia, Spain
| | - Laura Blasco-Chamarro
- Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Valencia, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, Valencia, Spain
| | - Tomás Viuda
- Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Valencia, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, Valencia, Spain
| | - Jose Manuel Morante-Redolat
- Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Valencia, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, Valencia, Spain
| | - Germán Belenguer
- Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Valencia, Spain.
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, Valencia, Spain.
| |
Collapse
|
5
|
Albericio G, Higuera M, Araque P, Sánchez C, Herrero D, García-Brenes MA, Formentini L, Torán JL, Mora C, Bernad A. Development of a Bmi1+ Cardiac Mouse Progenitor Immortalized Model to Unravel the Relationship with Its Protective Vascular Endothelial Niche. Int J Mol Sci 2024; 25:8815. [PMID: 39201501 PMCID: PMC11354400 DOI: 10.3390/ijms25168815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
The adult mammalian heart has been demonstrated to be endowed with low but real turnover capacity, especially for cardiomyocytes, the key functional cell type. The source, however, of that turnover capacity remains controversial. In this regard, we have defined and characterized a resident multipotent cardiac mouse progenitor population, Bmi1+DR (for Bmi1+ Damage-Responsive cells). Bmi1+DR is one of the cell types with the lowest ROS (Reactive Oxygen Species) levels in the adult heart, being particularly characterized by their close relationship with cardiac vessels, most probably involved in the regulation of proliferation/maintenance of Bmi1+DR. This was proposed to work as their endothelial niche. Due to the scarcity of Bmi1+DR cells in the adult mouse heart, we have generated an immortalization/dis-immortalization model using Simian Vacuolating Virus 40-Large Antigen T (SV40-T) to facilitate their in vitro characterization. We have obtained a heterogeneous population of immortalized Bmi1+DR cells (Bmi1+DRIMM) that was validated attending to different criteria, also showing a comparable sensitivity to strong oxidative damage. Then, we concluded that the Bmi1-DRIMM population is an appropriate model for primary Bmi1+DR in vitro studies. The co-culture of Bmi1+DRIMM cells with endothelial cells protects them against oxidative damage, showing a moderate depletion in non-canonical autophagy and also contributing with a modest metabolic regulation.
Collapse
Affiliation(s)
- Guillermo Albericio
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
- Molecular Biology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Marina Higuera
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| | - Paula Araque
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| | - Cristina Sánchez
- Molecular Biology Department, Molecular Biology Center Severo Ochoa (CBMSO), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Diego Herrero
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| | - Miguel A. García-Brenes
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| | - Laura Formentini
- Molecular Biology Department, Molecular Biology Center Severo Ochoa (CBMSO), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Luis Torán
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| | - Carmen Mora
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| | - Antonio Bernad
- Cardiac Stem Cells Lab, Immunology and Oncology Department, National Center for Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain; (G.A.); (M.H.); (P.A.); (J.L.T.)
| |
Collapse
|
6
|
Zhao T, Hong Y, Yan B, Huang S, Ming GL, Song H. Epigenetic maintenance of adult neural stem cell quiescence in the mouse hippocampus via Setd1a. Nat Commun 2024; 15:5674. [PMID: 38971831 PMCID: PMC11227589 DOI: 10.1038/s41467-024-50010-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024] Open
Abstract
Quiescence, a hallmark of adult neural stem cells (NSCs), is required for maintaining the NSC pool to support life-long continuous neurogenesis in the adult dentate gyrus (DG). Whether long-lasting epigenetic modifications maintain NSC quiescence over the long term in the adult DG is not well-understood. Here we show that mice with haploinsufficiency of Setd1a, a schizophrenia risk gene encoding a histone H3K4 methyltransferase, develop an enlarged DG with more dentate granule cells after young adulthood. Deletion of Setd1a specifically in quiescent NSCs in the adult DG promotes their activation and neurogenesis, which is countered by inhibition of the histone demethylase LSD1. Mechanistically, RNA-sequencing and CUT & RUN analyses of cultured quiescent adult NSCs reveal Setd1a deletion-induced transcriptional changes and many Setd1a targets, among which down-regulation of Bhlhe40 promotes quiescent NSC activation in the adult DG in vivo. Together, our study reveals a Setd1a-dependent epigenetic mechanism that sustains NSC quiescence in the adult DG.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA
| | - Yan Hong
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA
| | - Bowen Yan
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Suming Huang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|