1
|
Chan SC, Chiu TL, Ng SH, Kao HW, Tsai ST, Liu SH. 18F-FET PET/CT can aid in diagnosing patients with indeterminate MRI findings for brain tumors: a prospective study. Ann Nucl Med 2025; 39:342-352. [PMID: 39589672 DOI: 10.1007/s12149-024-02005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
OBJECTIVE This prospective study aimed to evaluate the diagnostic value of fluorine-18-labeled fluoroethyltyrosine (18F-FET) positron emission tomography (PET)/computed tomography (CT) in diagnosing brain tumors within an Asian patient population. METHODS Patients suspected of having primary or recurrent brain tumors were prospectively recruited. Each patient underwent 18F-FET and fluorine-18 fluorodeoxyglucose (18F-FDG) PET/CT on separate days within 1 week. We calculated the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy to compare the diagnostic performance of the two PET scans. The standardized uptake value (SUV) and tumor-to-background ratio (TBR) of the lesions were determined using static images. Additionally, time-activity curves (TACs) and time-to-peak (TTP) were generated from the dynamic PET images. RESULTS From September 2019 to December 2023, 33 subjects were enrolled for reasons including suspected brain tumors (n = 20) or suspicious glioma recurrence (n = 8) on magnetic resonance imaging (MRI) and restaging for glioma (n = 5). Among the patients with suspected brain tumors or glioma recurrence on MRI, 25% had false-positive results. 18F-FET PET/CT accurately identified 86% of these false positives. The sensitivity, specificity, PPV, NPV, and accuracy of visual interpretation of 18F-FET PET/CT were 96.2%, 85.7%, 96.2%, 85.7%, and 93.9%, respectively. The corresponding 18F-FDG PET/CT values were 73.1%, 71.4%, 90.5%, 41.7%, and 72.7%. 18F-FET PET/CT demonstrated significantly higher sensitivity and accuracy than 18F-FDG PET (p = 0.031 and p = 0.030, respectively). Using TBRmean as an adjunct reference index enhanced the diagnostic accuracy of 18F-FET PET/CT, achieving a sensitivity and NPV of 100%. Wash-out TAC or TTP < 20 min was associated with a PPV of 100% for brain tumors. CONCLUSIONS 18F-FET PET/CT appears to be a valuable tool for assessing brain tumors with indeterminate MRI findings in this Asian cohort. 18F-FET PET/CT offers benefits over 18F-FDG PET in differentiating brain tumors from nontumor brain lesions, particularly when using semiquantitative analysis with TBR. This study was registered on CinicalTrial.gov (NCT06563024).
Collapse
Affiliation(s)
- Sheng-Chieh Chan
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan.
- Department of Nuclear Medicine, School of Medicine, Tzu Chi University, Hualien, 970423, Taiwan.
| | - Tsung-Lang Chiu
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan
| | - Shu-Hang Ng
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, 333423, Taiwan
| | - Hung-Wen Kao
- Department of Medical Imaging, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan
- Department of Radiology, School of Medicine, Tzu Chi University, Hualien, 970423, Taiwan
| | - Sheng-Tzung Tsai
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan
| | - Shu-Hsin Liu
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan
| |
Collapse
|
2
|
Lohmeier J, Radbruch H, Brenner W, Hamm B, Hansen B, Tietze A, Makowski MR. Detection of recurrent high-grade glioma using microstructure characteristics of distinct metabolic compartments in a multimodal and integrative 18F-FET PET/fast-DKI approach. Eur Radiol 2024; 34:2487-2499. [PMID: 37672058 PMCID: PMC10957712 DOI: 10.1007/s00330-023-10141-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/25/2023] [Accepted: 07/06/2023] [Indexed: 09/07/2023]
Abstract
OBJECTIVES Differentiation between high-grade glioma (HGG) and post-treatment-related effects (PTRE) is challenging, but advanced imaging techniques were shown to provide benefit. We aim to investigate microstructure characteristics of metabolic compartments identified from amino acid PET and to evaluate the diagnostic potential of this multimodal and integrative O-(2-18F-fluoroethyl)-L-tyrosine-(FET)-PET and fast diffusion kurtosis imaging (DKI) approach for the detection of recurrence and IDH genotyping. METHODS Fifty-nine participants with neuropathologically confirmed recurrent HGG (n = 39) or PTRE (n = 20) were investigated using static 18F-FET PET and a fast-DKI variant. PET and advanced diffusion metrics of metabolically defined (80-100% and 60-75% areas of 18F-FET uptake) compartments were assessed. Comparative analysis was performed using Mann-Whitney U tests with Holm-Šídák multiple-comparison test and Wilcoxon signed-rank test. Receiver operating characteristic (ROC) curves, regression, and Spearman's correlation analysis were used for statistical evaluations. RESULTS Compared to PTRE, recurrent HGG presented increased 18F-FET uptake and diffusivity (MD60), but lower (relative) mean kurtosis tensor (rMKT60) and fractional anisotropy (FA60) (respectively p < .05). Diffusion metrics determined from the metabolic periphery showed improved diagnostic performance - most pronounced for FA60 (AUC = 0.86, p < .001), which presented similar benefit to 18F-FET PET (AUC = 0.86, p < .001) and was negatively correlated with amino acid uptake (rs = - 0.46, p < .001). When PET and DKI metrics were evaluated in a multimodal biparametric approach, TBRmax + FA60 showed highest diagnostic accuracy (AUC = 0.93, p < .001), which improved the detection of relapse compared to PET alone (difference in AUC = 0.069, p = .04). FA60 and MD60 distinguished the IDH genotype in the post-treatment setting. CONCLUSION Detection of glioma recurrence benefits from a multimodal and integrative PET/DKI approach, which presented significant diagnostic advantage to the assessment based on PET alone. CLINICAL RELEVANCE STATEMENT A multimodal and integrative 18F-FET PET/fast-DKI approach for the non-invasive microstructural characterization of metabolic compartments provided improved diagnostic capability for differentiation between recurrent glioma and post-treatment-related changes, suggesting a role for the diagnostic workup of patients in post-treatment settings. KEY POINTS • Multimodal PET/MRI with integrative analysis of 18F-FET PET and fast-DKI presents clinical benefit for the assessment of CNS cancer, particularly for the detection of recurrent high-grade glioma. • Microstructure markers of the metabolic periphery yielded biologically pertinent estimates characterising the tumour microenvironment, and, thereby, presented improved diagnostic accuracy with similar accuracy to amino acid PET. • Combined 18F-FET PET/fast-DKI achieved the best diagnostic performance for detection of high-grade glioma relapse with significant benefit to the assessment based on PET alone.
Collapse
Affiliation(s)
- Johannes Lohmeier
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Brian Hansen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Universitetsbyen 3, 8000, Aarhus C, Denmark
| | - Anna Tietze
- Institute of Neuroradiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marcus R Makowski
- Department of Radiology, Technical University Munich, Ismaninger Str. 22, 81675, München, Germany
| |
Collapse
|
3
|
Albert NL, Galldiks N, Ellingson BM, van den Bent MJ, Chang SM, Cicone F, de Groot J, Koh ES, Law I, Le Rhun E, Mair MJ, Minniti G, Rudà R, Scott AM, Short SC, Smits M, Suchorska B, Tolboom N, Traub-Weidinger T, Tonn JC, Verger A, Weller M, Wen PY, Preusser M. PET-based response assessment criteria for diffuse gliomas (PET RANO 1.0): a report of the RANO group. Lancet Oncol 2024; 25:e29-e41. [PMID: 38181810 PMCID: PMC11787868 DOI: 10.1016/s1470-2045(23)00525-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 01/07/2024]
Abstract
Response Assessment in Neuro-Oncology (RANO) response criteria have been established and were updated in 2023 for MRI-based response evaluation of diffuse gliomas in clinical trials. In addition, PET-based imaging with amino acid tracers is increasingly considered for disease monitoring in both clinical practice and clinical trials. So far, a standardised framework defining timepoints for baseline and follow-up investigations and response evaluation criteria for PET imaging of diffuse gliomas has not been established. Therefore, in this Policy Review, we propose a set of criteria for response assessment based on amino acid PET imaging in clinical trials enrolling participants with diffuse gliomas as defined in the 2021 WHO classification of tumours of the central nervous system. These proposed PET RANO criteria provide a conceptual framework that facilitates the structured implementation of PET imaging into clinical research and, ultimately, clinical routine. To this end, the PET RANO 1.0 criteria are intended to encourage specific investigations of amino acid PET imaging of gliomas.
Collapse
Affiliation(s)
- Nathalie L Albert
- Department of Nuclear Medicine, LMU Hospital, LMU Munich, Munich, Germany
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany; Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Susan M Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Francesco Cicone
- Nuclear Medicine Unit, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - John de Groot
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Eng-Siew Koh
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centre, Liverpool, NSW, Australia; South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Emilie Le Rhun
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Maximilian J Mair
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy; IRCCS Neuromed, Pozzilli IS, Italy
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience, University of Turin and City of Health and Science of Turin, Turin, Italy
| | - Andrew M Scott
- Department of Molecular Imaging and Therapy, Austin Health and University of Melbourne, Melbourne, VIC, Australia; Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Susan C Short
- Leeds Institute of Medical Research at St James's, The University of Leeds, Leeds, UK
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC-University Medical Centre Rotterdam, Rotterdam, Netherlands; Brain Tumour Centre, Erasmus MC Cancer Institute, Rotterdam, Netherlands; Medical Delta, Delft, Netherlands
| | - Bogdana Suchorska
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Antoine Verger
- Department of Nuclear Medicine & Nancyclotep Imaging Platform, CHRU Nancy and IADI INSERM UMR 1254, Universitè de Lorraine, Nancy, France
| | - Michael Weller
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland; Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Zhang W, Oh JH, Zhang W, Rathi S, Le J, Talele S, Sarkaria JN, Elmquist WF. How Much is Enough? Impact of Efflux Transporters on Drug delivery Leading to Efficacy in the Treatment of Brain Tumors. Pharm Res 2023; 40:2731-2746. [PMID: 37589827 PMCID: PMC10841221 DOI: 10.1007/s11095-023-03574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
The lack of effective chemotherapeutic agents for the treatment of brain tumors is a serious unmet medical need. This can be attributed, in part, to inadequate delivery through the blood-brain barrier (BBB) and the tumor-cell barrier, both of which have active efflux transporters that can restrict the transport of many potentially effective agents for both primary and metastatic brain tumors. This review briefly summarizes the components and function of the normal BBB with respect to drug penetration into the brain and the alterations in the BBB due to brain tumor that could influence drug delivery. Depending on what is rate-limiting a compound's distribution, the limited permeability across the BBB and the subsequent delivery into the tumor cell can be greatly influenced by efflux transporters and these are discussed in some detail. Given these complexities, it is necessary to quantify the extent of brain distribution of the active (unbound) drug to compare across compounds and to inform potential for use against brain tumors. In this regard, the metric, Kp,uu, a brain-to-plasma unbound partition coefficient, is examined and its current use is discussed. However, the extent of active drug delivery is not the only determinant of effective therapy. In addition to Kp,uu, drug potency is an important parameter that should be considered alongside drug delivery in drug discovery and development processes. In other words, to answer the question - How much is enough? - one must consider how much can be delivered with how much needs to be delivered.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Ju-Hee Oh
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Wenqiu Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Sneha Rathi
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Jiayan Le
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Surabhi Talele
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
5
|
Gutsche R, Lowis C, Ziemons K, Kocher M, Ceccon G, Régio Brambilla C, Shah NJ, Langen KJ, Galldiks N, Isensee F, Lohmann P. Automated Brain Tumor Detection and Segmentation for Treatment Response Assessment Using Amino Acid PET. J Nucl Med 2023; 64:1594-1602. [PMID: 37562802 DOI: 10.2967/jnumed.123.265725] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Indexed: 08/12/2023] Open
Abstract
Evaluation of metabolic tumor volume (MTV) changes using amino acid PET has become an important tool for response assessment in brain tumor patients. MTV is usually determined by manual or semiautomatic delineation, which is laborious and may be prone to intra- and interobserver variability. The goal of our study was to develop a method for automated MTV segmentation and to evaluate its performance for response assessment in patients with gliomas. Methods: In total, 699 amino acid PET scans using the tracer O-(2-[18F]fluoroethyl)-l-tyrosine (18F-FET) from 555 brain tumor patients at initial diagnosis or during follow-up were retrospectively evaluated (mainly glioma patients, 76%). 18F-FET PET MTVs were segmented semiautomatically by experienced readers. An artificial neural network (no new U-Net) was configured on 476 scans from 399 patients, and the network performance was evaluated on a test dataset including 223 scans from 156 patients. Surface and volumetric Dice similarity coefficients (DSCs) were used to evaluate segmentation quality. Finally, the network was applied to a recently published 18F-FET PET study on response assessment in glioblastoma patients treated with adjuvant temozolomide chemotherapy for a fully automated response assessment in comparison to an experienced physician. Results: In the test dataset, 92% of lesions with increased uptake (n = 189) and 85% of lesions with iso- or hypometabolic uptake (n = 33) were correctly identified (F1 score, 92%). Single lesions with a contiguous uptake had the highest DSC, followed by lesions with heterogeneous, noncontiguous uptake and multifocal lesions (surface DSC: 0.96, 0.93, and 0.81 respectively; volume DSC: 0.83, 0.77, and 0.67, respectively). Change in MTV, as detected by the automated segmentation, was a significant determinant of disease-free and overall survival, in agreement with the physician's assessment. Conclusion: Our deep learning-based 18F-FET PET segmentation allows reliable, robust, and fully automated evaluation of MTV in brain tumor patients and demonstrates clinical value for automated response assessment.
Collapse
Affiliation(s)
- Robin Gutsche
- Institute of Neuroscience and Medicine, Forschungszentrum Juelich GmbH, Juelich, Germany
- RWTH Aachen University, Aachen, Germany
| | - Carsten Lowis
- Institute of Neuroscience and Medicine, Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Karl Ziemons
- Medical Engineering and Technomathematics, FH Aachen University of Applied Sciences, Juelich, Germany
| | - Martin Kocher
- Institute of Neuroscience and Medicine, Forschungszentrum Juelich GmbH, Juelich, Germany
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Garry Ceccon
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Cláudia Régio Brambilla
- Institute of Neuroscience and Medicine, Forschungszentrum Juelich GmbH, Juelich, Germany
- JARA-BRAIN-Translational Medicine, Aachen, Germany
| | - Nadim J Shah
- Institute of Neuroscience and Medicine, Forschungszentrum Juelich GmbH, Juelich, Germany
- JARA-BRAIN-Translational Medicine, Aachen, Germany
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Forschungszentrum Juelich GmbH, Juelich, Germany
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
- Center for Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine, Forschungszentrum Juelich GmbH, Juelich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany
| | - Fabian Isensee
- Applied Computer Vision Lab, Helmholtz Imaging, Heidelberg, Germany; and
- Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine, Forschungszentrum Juelich GmbH, Juelich, Germany;
| |
Collapse
|
6
|
Djekidel M, Alsadi R, Abi Akl M, Bouhali O, O'Doherty J. Tumor microenvironment and fibroblast activation protein inhibitor (FAPI) PET: developments toward brain imaging. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1183471. [PMID: 39355017 PMCID: PMC11440979 DOI: 10.3389/fnume.2023.1183471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/03/2023] [Indexed: 10/03/2024]
Abstract
Fibroblast activation protein (FAP) is a type-II membrane bound glycoprotein specifically expressed by activated fibroblasts almost exclusively in pathological conditions including arthritis, fibrosis and cancer. FAP is overexpressed in cancer-associated fibroblasts (CAFs) located in tumor stroma, and is known to be involved in a variety of tumor-promoting activities such as angiogenesis, proliferation, resistance to chemotherapy, extracellular matrix remodeling and immunosuppression. In most cancer types, higher FAP expression is associated with worse clinical outcomes, leading to the hypothesis that FAP activity is involved in cancer development, cancer cell migration, and cancer spread. Recently, various high selectivity FAP inhibitors (FAPIs) have been developed and subsequently used for positron emission tomography (PET) imaging of different pathologies. Considering the paucity of widely available and especially mainstream reliable radioligands in brain cancer PET imaging, and the poor survival rates of patients with certain types of brain cancer such as glioblastoma, FAPI-PET represents a major development in enabling the detection of small primary or metastatic lesions in the brain due to its biological characteristics and low background accumulation. In this work, we aim to summarize the potential avenues for use of FAPI-PET, from the basic biological processes to oncologic imaging and with a main focus on brain imaging.
Collapse
Affiliation(s)
- Mehdi Djekidel
- Department of Radiology/Nuclear Medicine, Northwell Health, New York, NY, United States
| | - Rahaf Alsadi
- Division of Arts and Science, Texas A&M University at Qatar, Doha, Qatar
| | - Maya Abi Akl
- Division of Arts and Science, Texas A&M University at Qatar, Doha, Qatar
- Department of Electronics and Information Systems, Medical Image and Signal Processing (MEDISIP), Ghent University, Ghent, Belgium
| | - Othmane Bouhali
- Division of Arts and Science, Texas A&M University at Qatar, Doha, Qatar
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Jim O'Doherty
- Siemens Medical Solutions, Malvern, PA, United States
- Department of Radiology & Radiological Sciences, Medical University of South Carolina, Charleston, SC, United States
- Radiography and Diagnostic Imaging, University College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Galldiks N, Lohmann P, Fink GR, Langen KJ. Amino Acid PET in Neurooncology. J Nucl Med 2023; 64:693-700. [PMID: 37055222 DOI: 10.2967/jnumed.122.264859] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/10/2023] [Indexed: 04/15/2023] Open
Abstract
For decades, several amino acid PET tracers have been used to optimize diagnostics in patients with brain tumors. In clinical routine, the most important clinical indications for amino acid PET in brain tumor patients are differentiation of neoplasm from nonneoplastic etiologies, delineation of tumor extent for further diagnostic and treatment planning (i.e., diagnostic biopsy, resection, or radiotherapy), differentiation of treatment-related changes such as pseudoprogression or radiation necrosis after radiation or chemoradiation from tumor progression at follow-up, and assessment of response to anticancer therapy, including prediction of patient outcome. This continuing education article addresses the diagnostic value of amino acid PET for patients with either glioblastoma or metastatic brain cancer.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany;
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
- Center for Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany; and
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
- Center for Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany; and
- Department of Nuclear Medicine, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
8
|
Matsui JK, Perlow HK, Upadhyay R, McCalla A, Raval RR, Thomas EM, Blakaj DM, Beyer SJ, Palmer JD. Advances in Radiotherapy for Brain Metastases. Surg Oncol Clin N Am 2023; 32:569-586. [PMID: 37182993 DOI: 10.1016/j.soc.2023.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Radiotherapy remains a cornerstone treatment of brain metastases. With new treatment advances, patients with brain metastases are living longer, and finding solutions for mitigating treatment-related neurotoxicity and improving quality of life is important. Historically, whole-brain radiation therapy (WBRT) was widely used but treatment options such as hippocampal sparing WBRT and stereotactic radiosurgery (SRS) have emerged as promising alternatives. Herein, we discuss the recent advances in radiotherapy for brain metastases including the sparing of critical structures that may improve long-term neurocognitive outcomes (eg, hippocampus, fornix) that may improve long-term neurocognitive outcome, evidence supporting preoperative and fractionated-SRS, and treatment strategies for managing radiation necrosis.
Collapse
|
9
|
Xiaoxue T, Yinzhong W, Meng Q, Lu X, Lei J. Diagnostic value of PET with different radiotracers and MRI for recurrent glioma: a Bayesian network meta-analysis. BMJ Open 2023; 13:e062555. [PMID: 36863738 PMCID: PMC9990663 DOI: 10.1136/bmjopen-2022-062555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 01/09/2023] [Indexed: 03/04/2023] Open
Abstract
OBJECTIVE The purpose of this study was to evaluate the diagnostic accuracy of 6 different imaging modalities for differentiating glioma recurrence from postradiotherapy changes by performing a network meta-analysis (NMA) using direct comparison studies with 2 or more imaging techniques. DATA SOURCES PubMed, Scopus, EMBASE, the Web of Science and the Cochrane Library were searched from inception to August 2021. The Confidence In Network Meta-Analysis (CINeMA) tool was used to evaluate the quality of the included studies with the criterion for study inclusion being direct comparison using 2 or more imaging modalities. DATA EXTRACTION AND SYNTHESIS The consistency was evaluated by examining the agreement between direct and indirect effects. NMA was performed and the surface under the the cumulative ranking curve (SUCRA) values was obtained to calculate the probability of each imaging modality being the most effective diagnostic method. The CINeMA tool was used to evaluate the quality of the included studies. MAIN OUTCOMES AND MEASURES Direct comparison, inconsistency test, NMA and SUCRA values. RESULTS A total of 8853 potentially relevant articles were retrieved and 15 articles met the inclusion criteria. 18F-FET showed the highest SUCRA values for sensitivity, specificity, positive predictive value and accuracy, followed by 18F-FDOPA. The quality of the included evidence is classified as moderate. CONCLUSION AND RELEVANCE This review indicates that 18F-FET and 18F-FDOPA may have greater diagnostic value for glioma recurrence relative to other imaging modalities (Grading of Recommendations, Assessment, Development and Evaluations B). PROSPERO REGISTRATION NUMBER CRD42021293075.
Collapse
Affiliation(s)
- Tian Xiaoxue
- Department of Nuclear Medicine, the Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wang Yinzhong
- Department of Radiology, the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Qi Meng
- Department of Radiology, No.2 Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xingru Lu
- Department of Radiology, the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Junqiang Lei
- Department of Radiology, the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
10
|
Wollring MM, Werner JM, Ceccon G, Lohmann P, Filss CP, Fink GR, Langen KJ, Galldiks N. Clinical applications and prospects of PET imaging in patients with IDH-mutant gliomas. J Neurooncol 2022; 162:481-488. [PMID: 36577872 DOI: 10.1007/s11060-022-04218-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
PET imaging using radiolabeled amino acids in addition to MRI has become a valuable diagnostic tool in the clinical management of patients with brain tumors. This review provides a comprehensive overview of PET studies in glioma patients with a mutation in the isocitrate dehydrogenase gene (IDH). A considerable fraction of these tumors typically show no contrast enhancement on MRI, especially when classified as grade 2 according to the World Health Organization classification of Central Nervous System tumors. Major diagnostic challenges in this situation are differential diagnosis, target definition for diagnostic biopsies, delineation of glioma extent for treatment planning, differentiation of treatment-related changes from tumor progression, and the evaluation of response to alkylating agents. The main focus of this review is the role of amino acid PET in this setting. Furthermore, in light of clinical trials using IDH inhibitors targeting the mutated IDH enzyme for treating patients with IDH-mutant gliomas, we also aim to give an outlook on PET probes specifically targeting the IDH mutation, which appear potentially helpful for response assessment.
Collapse
Affiliation(s)
- Michael M Wollring
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425, Juelich, Germany.
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany.
| | - Jan-Michael Werner
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany
| | - Garry Ceccon
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425, Juelich, Germany
| | - Christian P Filss
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425, Juelich, Germany
- Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Gereon R Fink
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425, Juelich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425, Juelich, Germany
- Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425, Juelich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| |
Collapse
|
11
|
Allard B, Dissaux B, Bourhis D, Dissaux G, Schick U, Salaün PY, Abgral R, Querellou S. Hotspot on 18F-FET PET/CT to Predict Aggressive Tumor Areas for Radiotherapy Dose Escalation Guiding in High-Grade Glioma. Cancers (Basel) 2022; 15:cancers15010098. [PMID: 36612093 PMCID: PMC9817533 DOI: 10.3390/cancers15010098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The standard therapy strategy for high-grade glioma (HGG) is based on the maximal surgery followed by radio-chemotherapy (RT-CT) with insufficient control of the disease. Recurrences are mainly localized in the radiation field, suggesting an interest in radiotherapy dose escalation to better control the disease locally. We aimed to identify a similarity between the areas of high uptake on O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) positron emission tomography/computed tomography (PET) before RT-CT, the residual tumor on post-therapy NADIR magnetic resonance imaging (MRI) and the area of recurrence on MRI. This is an ancillary study from the IMAGG prospective trial assessing the interest of FET PET imaging in RT target volume definition of HGG. We included patients with diagnoses of HGG obtained by biopsy or tumor resection. These patients underwent FET PET and brain MRIs, both after diagnosis and before RT-CT. The follow-up consisted of sequential brain MRIs performed every 3 months until recurrence. Tumor delineation on the initial MRI 1 (GTV 1), post-RT-CT NADIR MRI 2 (GTV 2), and progression MRI 3 (GTV 3) were performed semi-automatically and manually adjusted by a neuroradiologist specialist in neuro-oncology. GTV 2 and GTV 3 were then co-registered on FET PET data. Tumor volumes on FET PET (MTV) were delineated using a tumor to background ratio (TBR) ≥ 1.6 and different % SUVmax PET thresholds. Spatial similarity between different volumes was performed using the dice (DICE), Jaccard (JSC), and overlap fraction (OV) indices and compared together in the biopsy or partial surgery group (G1) and the total or subtotal surgery group (G2). Another overlap index (OV') was calculated to determine the threshold with the highest probability of being included in the residual volume after RT-CT on MRI 2 and in MRI 3 (called "hotspot"). A total of 23 patients were included, of whom 22% (n = 5) did not have a NADIR MRI 2 due to a disease progression diagnosed on the first post-RT-CT MRI evaluation. Among the 18 patients who underwent a NADIR MRI 2, the average residual tumor was approximately 71.6% of the GTV 1. A total of 22% of patients (5/23) showed an increase in GTV 2 without diagnosis of true progression by the multidisciplinary team (MDT). Spatial similarity between MTV and GTV 2 and between MTV and GTV 3 were higher using a TBR ≥ 1.6 threshold. These indices were significantly better in the G1 group than the G2 group. In the FET hotspot analysis, the best similarity (good agreement) with GTV 2 was found in the G1 group using a 90% SUVmax delineation method and showed a trend of statistical difference with those (poor agreement) in the G2 group (OV' = 0.67 vs. 0.38, respectively, p = 0.068); whereas the best similarity (good agreement) with GTV 3 was found in the G1 group using a 80% SUVmax delineation method and was significantly higher than those (poor agreement) in the G2 group (OV'= 0.72 vs. 0.35, respectively, p = 0.014). These results showed modest spatial similarity indices between MTV, GTV 2, and GTV 3 of HGG. Nevertheless, the results were significantly improved in patients who underwent only biopsy or partial surgery. TBR ≥ 1.6 and 80-90% SUVmax FET delineation methods showing a good agreement in the hotspot concept for targeting standard dose and radiation boost. These findings need to be tested in a larger randomized prospective study.
Collapse
Affiliation(s)
- Bastien Allard
- Nuclear Medicine Department, University Hospital, 29200 Brest, France
- UFR Médecine, University of Western Brittany (UBO), 29200 Brest, France
| | - Brieg Dissaux
- UFR Médecine, University of Western Brittany (UBO), 29200 Brest, France
- GETBO UMR U_1304, Inserm, University of Western Brittany (UBO), 29200 Brest, France
- Radiology Department, University Hospital, 29200 Brest, France
| | - David Bourhis
- Nuclear Medicine Department, University Hospital, 29200 Brest, France
- UFR Médecine, University of Western Brittany (UBO), 29200 Brest, France
- GETBO UMR U_1304, Inserm, University of Western Brittany (UBO), 29200 Brest, France
| | - Gurvan Dissaux
- UFR Médecine, University of Western Brittany (UBO), 29200 Brest, France
- Radiation Oncology Department, University Hospital, 29200 Brest, France
- LaTIM, INSERM 1101, 29200 Brest, France
| | - Ulrike Schick
- UFR Médecine, University of Western Brittany (UBO), 29200 Brest, France
- Radiation Oncology Department, University Hospital, 29200 Brest, France
- LaTIM, INSERM 1101, 29200 Brest, France
| | - Pierre-Yves Salaün
- Nuclear Medicine Department, University Hospital, 29200 Brest, France
- UFR Médecine, University of Western Brittany (UBO), 29200 Brest, France
- GETBO UMR U_1304, Inserm, University of Western Brittany (UBO), 29200 Brest, France
| | - Ronan Abgral
- Nuclear Medicine Department, University Hospital, 29200 Brest, France
- UFR Médecine, University of Western Brittany (UBO), 29200 Brest, France
- GETBO UMR U_1304, Inserm, University of Western Brittany (UBO), 29200 Brest, France
| | - Solène Querellou
- Nuclear Medicine Department, University Hospital, 29200 Brest, France
- UFR Médecine, University of Western Brittany (UBO), 29200 Brest, France
- GETBO UMR U_1304, Inserm, University of Western Brittany (UBO), 29200 Brest, France
- Correspondence:
| |
Collapse
|
12
|
Filippi L, Spanu A, Bagni O, Schillaci O, Palumbo B. Imaging Findings of 18F-Choline and 18F-DOPA PET/MRI in a Case of Glioblastoma Multiforme Pseudoprogression: Correlation with Clinical Outcome. Nucl Med Mol Imaging 2022; 56:245-251. [PMID: 36310833 PMCID: PMC9508299 DOI: 10.1007/s13139-022-00758-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
We describe the case of 74-year-old-male, previously treated with fronto-parietal craniotomy due to primary glioblastoma multiforme (GBM), followed by concurrent radiation therapy (RT) and temozolomide (TMZ) chemotherapy. Magnetic resonance imaging (MRI) of the brain, at 1 month after completing RT + TMZ, depicted partial response. Three months later, the patient was submitted to a further brain MRI, that resulted doubtful for therapy induced changes (i.e., pseudoprogression). The patient, who had been previously treated with prostatectomy for prostate cancer (PC), underwent a positron emission tomography/computed tomography (PET/CT) scan with 18F-choline for PC biochemical recurrence. 18F-choline whole body PET/CT resulted negative for PC relapse, while segmental brain PET, co-registered with MRI, demonstrated increased tracer uptake corresponding to tumor boundaries. In order to solve differential diagnosis between pseudoprogression and GBM recurrence, brain PET/CT with 18F-L-dihydroxy-phenil-alanine (18F-DOPA) was subsequently performed: fused axial PET/MRI images showed increased 18F-DOPA incorporation in the peri-tumoral edema, but not in tumor boundaries, consistent with the suspicion of GBM pseudoprogression, as then confirmed by clinical and radiological follow-up.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, Via Canova 3, 04100 Latina, Italy
| | - Angela Spanu
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy
| | - Oreste Bagni
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, Via Canova 3, 04100 Latina, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Barbara Palumbo
- Section of Nuclear Medicine and Health Physics, Department of Medicine and Surgery, Università Degli Studi Di Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| |
Collapse
|
13
|
Radiotherapy Target Volume Definition in Newly Diagnosed High-Grade Glioma Using 18F-FET PET Imaging and Multiparametric MRI: An Inter Observer Agreement Study. Tomography 2022; 8:2030-2041. [PMID: 36006068 PMCID: PMC9415495 DOI: 10.3390/tomography8040170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Background: The aim of this prospective monocentric study was to assess the inter-observer agreement for tumor volume delineations by multiparametric MRI and 18-F-FET-PET/CT in newly diagnosed, untreated high-grade glioma (HGG) patients. Methods: Thirty patients HGG underwent O-(2-[18F]-fluoroethyl)-l-tyrosine(18F-FET) positron emission tomography (PET), and multiparametric MRI with computation of rCBV map and K2 map. Three nuclear physicians and three radiologists with different levels of experience delineated the 18-F-FET-PET/CT and 6 MRI sequences, respectively. Spatial similarity (Dice and Jaccard: DSC and JSC) and overlap (Overlap: OV) coefficients were calculated between the readers for each sequence. Results: DSC, JSC, and OV were high for 18F-FET PET/CT, T1-GD, and T2-FLAIR (>0.67). The Spearman correlation coefficient between readers was ≥0.6 for these sequences. Cross-comparison of similarity and overlap parameters showed significant differences for DSC and JSC between 18F-FET PET/CT and T2-FLAIR and for JSC between 18F-FET PET/CT and T1-GD with higher values for 18F-FET PET/CT. No significant difference was found between T1-GD and T2-FLAIR. rCBV, K2, b1000, and ADC showed correlation coefficients between readers <0.6. Conclusion: The interobserver agreements for tumor volume delineations were high for 18-F-FET-PET/CT, T1-GD, and T2-FLAIR. The DWI (b1000, ADC), rCBV, and K2-based sequences, as performed, did not seem sufficiently reproducible to be used in daily practice.
Collapse
|
14
|
Zhu M, Li S, Kuang Y, Hill VB, Heimberger AB, Zhai L, Zhai S. Artificial intelligence in the radiomic analysis of glioblastomas: A review, taxonomy, and perspective. Front Oncol 2022; 12:924245. [PMID: 35982952 PMCID: PMC9379255 DOI: 10.3389/fonc.2022.924245] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Radiological imaging techniques, including magnetic resonance imaging (MRI) and positron emission tomography (PET), are the standard-of-care non-invasive diagnostic approaches widely applied in neuro-oncology. Unfortunately, accurate interpretation of radiological imaging data is constantly challenged by the indistinguishable radiological image features shared by different pathological changes associated with tumor progression and/or various therapeutic interventions. In recent years, machine learning (ML)-based artificial intelligence (AI) technology has been widely applied in medical image processing and bioinformatics due to its advantages in implicit image feature extraction and integrative data analysis. Despite its recent rapid development, ML technology still faces many hurdles for its broader applications in neuro-oncological radiomic analysis, such as lack of large accessible standardized real patient radiomic brain tumor data of all kinds and reliable predictions on tumor response upon various treatments. Therefore, understanding ML-based AI technologies is critically important to help us address the skyrocketing demands of neuro-oncology clinical deployments. Here, we provide an overview on the latest advancements in ML techniques for brain tumor radiomic analysis, emphasizing proprietary and public dataset preparation and state-of-the-art ML models for brain tumor diagnosis, classifications (e.g., primary and secondary tumors), discriminations between treatment effects (pseudoprogression, radiation necrosis) and true progression, survival prediction, inflammation, and identification of brain tumor biomarkers. We also compare the key features of ML models in the realm of neuroradiology with ML models employed in other medical imaging fields and discuss open research challenges and directions for future work in this nascent precision medicine area.
Collapse
Affiliation(s)
- Ming Zhu
- Department of Electrical and Computer Engineering, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Sijia Li
- Kirk Kerkorian School of Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Yu Kuang
- Medical Physics Program, Department of Health Physics, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Virginia B. Hill
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Amy B. Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lijie Zhai
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- *Correspondence: Lijie Zhai, ; Shengjie Zhai,
| | - Shengjie Zhai
- Department of Electrical and Computer Engineering, University of Nevada Las Vegas, Las Vegas, NV, United States
- *Correspondence: Lijie Zhai, ; Shengjie Zhai,
| |
Collapse
|
15
|
Mammadov O, Akkurt BH, Musigmann M, Ari AP, Blömer DA, Kasap DN, Henssen DJ, Nacul NG, Sartoretti E, Sartoretti T, Backhaus P, Thomas C, Stummer W, Heindel W, Mannil M. Radiomics for pseudoprogression prediction in high grade gliomas: added value of MR contrast agent. Heliyon 2022; 8:e10023. [PMID: 35965975 PMCID: PMC9364026 DOI: 10.1016/j.heliyon.2022.e10023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/04/2022] [Accepted: 07/18/2022] [Indexed: 10/31/2022] Open
Abstract
Objective Material & methods Results Conclusion Radiomics allows for prediction of pseudoprogression in high-grade gliomas. Use of contrast media boosts the performance of the Radiomics prediction model.
Collapse
|
16
|
Two Decades of Brain Tumour Imaging with O-(2-[18F]fluoroethyl)-L-tyrosine PET: The Forschungszentrum Jülich Experience. Cancers (Basel) 2022; 14:cancers14143336. [PMID: 35884396 PMCID: PMC9319157 DOI: 10.3390/cancers14143336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary PET using radiolabelled amino acids has become an essential tool for diagnosing brain tumours in addition to MRI. O-(2-[18F]fluoroethyl)-L-tyrosine (FET) is one of the most successful tracers in the field. We analysed our database of 6534 FET PET examinations regarding the diagnostic needs and preferences of the referring physicians for FET PET in the clinical decision-making process. The demand for FET PET increased considerably in the last decade, especially for differentiating tumour progress from treatment-related changes in gliomas. Accordingly, referring physicians rated the diagnostics of recurrent glioma and recurrent brain metastases as the most relevant indication for FET PET. The analysis and survey results confirm the high relevance of FET PET in the clinical diagnosis of brain tumours and support the need for approval for routine use. Abstract O-(2-[18F]fluoroethyl)-L-tyrosine (FET) is a widely used amino acid tracer for positron emission tomography (PET) imaging of brain tumours. This retrospective study and survey aimed to analyse our extensive database regarding the development of FET PET investigations, indications, and the referring physicians’ rating concerning the role of FET PET in the clinical decision-making process. Between 2006 and 2019, we performed 6534 FET PET scans on 3928 different patients against a backdrop of growing demand for FET PET. In 2019, indications for the use of FET PET were as follows: suspected recurrent glioma (46%), unclear brain lesions (20%), treatment monitoring (19%), and suspected recurrent brain metastasis (13%). The referring physicians were neurosurgeons (60%), neurologists (19%), radiation oncologists (11%), general oncologists (3%), and other physicians (7%). Most patients travelled 50 to 75 km, but 9% travelled more than 200 km. The role of FET PET in decision-making in clinical practice was evaluated by a questionnaire consisting of 30 questions, which was filled out by 23 referring physicians with long experience in FET PET. Fifty to seventy per cent rated FET PET as being important for different aspects of the assessment of newly diagnosed gliomas, including differential diagnosis, delineation of tumour extent for biopsy guidance, and treatment planning such as surgery or radiotherapy, 95% for the diagnosis of recurrent glioma, and 68% for the diagnosis of recurrent brain metastases. Approximately 50% of the referring physicians rated FET PET as necessary for treatment monitoring in patients with glioma or brain metastases. All referring physicians stated that the availability of FET PET is essential and that it should be approved for routine use. Although the present analysis is limited by the fact that only physicians who frequently referred patients for FET PET participated in the survey, the results confirm the high relevance of FET PET in the clinical diagnosis of brain tumours and support the need for its approval for routine use.
Collapse
|
17
|
The Use of 18F-FET-PET-MRI in Neuro-Oncology: The Best of Both Worlds—A Narrative Review. Diagnostics (Basel) 2022; 12:diagnostics12051202. [PMID: 35626357 PMCID: PMC9140561 DOI: 10.3390/diagnostics12051202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Gliomas are the most frequent primary tumors of the brain. They can be divided into grade II-IV astrocytomas and grade II-III oligodendrogliomas, based on their histomolecular profile. The prognosis and treatment is highly dependent on grade and well-identified prognostic and/or predictive molecular markers. Multi-parametric MRI, including diffusion weighted imaging, perfusion, and MR spectroscopy, showed increasing value in the non-invasive characterization of specific molecular subsets of gliomas. Radiolabeled amino-acid analogues, such as 18F-FET, have also been proven valuable in glioma imaging. These tracers not only contribute in the diagnostic process by detecting areas of dedifferentiation in diffuse gliomas, but this technique is also valuable in the follow-up of gliomas, as it can differentiate pseudo-progression from real tumor progression. Since multi-parametric MRI and 18F-FET PET are complementary imaging techniques, there may be a synergistic role for PET-MRI imaging in the neuro-oncological imaging of primary brain tumors. This could be of value for both primary staging, as well as during treatment and follow-up.
Collapse
|
18
|
Barajas RF, Ambady P, Link J, Krohn KA, Raslan A, Mallak N, Woltjer R, Muldoon L, Neuwelt EA. [ 18F]-fluoromisonidazole (FMISO) PET/MRI hypoxic fraction distinguishes neuroinflammatory pseudoprogression from recurrent glioblastoma in patients treated with pembrolizumab. Neurooncol Pract 2022; 9:246-250. [PMID: 35601969 PMCID: PMC9113243 DOI: 10.1093/nop/npac021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Response assessment after immunotherapy remains a major challenge in glioblastoma due to an expected increased incidence of pseudoprogression. Gadolinium-enhanced magnetic resonance imaging (MRI) is the standard for monitoring therapeutic response, however, is markedly limited in characterizing pseudoprogression. Given that hypoxia is an important defining feature of glioblastoma regrowth, we hypothesized that [18F]-fluoromisonidazole (FMISO) positron emission tomography (PET) could provide an additional physiological measure for the diagnosis of immunotherapeutic failure. Six patients with newly diagnosed glioblastoma who had previously received maximal safe resection followed by Stupp protocol CRT concurrent with pembrolizumab immunotherapy were recruited for FMISO PET and Gd-MRI at the time of presumed progression. The hypoxic fraction was defined as the ratio of hypoxic volume to T1-weighted gadolinium-enhancing volume. Four patients diagnosed with pseudoprogression demonstrated a mean hypoxic fraction of 9.8 ± 10%. Two with recurrent tumor demonstrated a mean hypoxic fraction of 131 ± 66%. Our results, supported by histopathology, suggest that the noninvasive assessment of hypoxic fraction by FMISO PET/MRI is clinically feasible and may serve as a biologically specific metric of therapeutic failure.
Collapse
Affiliation(s)
- Ramon F Barajas
- Department of Radiology, Neuroradiology Section, Oregon Health & Science University, Portland Oregon, USA
- Knight Cancer Institute Translational Oncology Program, Oregon Health & Science University, Portland, Oregon, USA
| | - Prakash Ambady
- Neuro-Oncology and Blood-Brain Barrier Program, Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeanne Link
- Center for Radiochemistry Research, Oregon Health & Science University, Portland, Oregon, USA
| | - Kenneth A Krohn
- Center for Radiochemistry Research, Oregon Health & Science University, Portland, Oregon, USA
| | - Ahmed Raslan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Nadine Mallak
- Advanced Imaging Research Center, Oregon Health & Science University, Portland Oregon, USA
| | - Randy Woltjer
- Department of Pathology, Oregon Health & Science University, Portland, Oregon, USA
| | - Leslie Muldoon
- Neuro-Oncology and Blood-Brain Barrier Program, Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Edward A Neuwelt
- Neuro-Oncology and Blood-Brain Barrier Program, Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
- Office of Research and Development, Portland Veterans Affairs Medical Center, Portland, Oregon, USA
| |
Collapse
|
19
|
Djekidel M, Alsadi R, Bouhali O, Maaz AUR. Amino Acid PET Imaging with 18F-DOPA in the evaluation of Pediatric Brain Tumors. J Nucl Med Technol 2022; 50:jnmt.121.263050. [PMID: 35440479 DOI: 10.2967/jnmt.121.263050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Although MRI is the workhorse of brain tumor initial evaluation and follow-up, there is a growing amount of data recommending the incorporation of amino-acid PET imaging at different stages of the management of these patients. Recent nuclear medicine and neuro-oncology clinical practice recommendations support the use of amino-acid imaging in brain tumor imaging. Considering 18F-DOPA is FDA approved for the evaluation of parkinsonian syndromes, it could be used clinically for other valuable clinical indications such as brain tumor evaluations. This value seems to be well established in adults and has growing evidence for its use in pediatrics as well. We offer to present four pediatric brain tumor cases imaged with 18F-DOPA and review the literature.
Collapse
Affiliation(s)
- Mehdi Djekidel
- Department of Diagnostic Imaging, Division of Nuclear Medicine and Molecular Imaging, Sidra Medicine, Qatar
| | - Rahaf Alsadi
- Department of Science, Texas A&M University at Qatar
| | | | - Ata Ur Rehman Maaz
- Department of Pediatrics, Division of Hematology Oncology, Sidra Medicine, Qatar
| |
Collapse
|
20
|
Pseudoprogression prediction in high grade primary CNS tumors by use of radiomics. Sci Rep 2022; 12:5915. [PMID: 35396525 PMCID: PMC8993885 DOI: 10.1038/s41598-022-09945-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/24/2022] [Indexed: 11/09/2022] Open
Abstract
Our aim is to define the capabilities of radiomics and machine learning in predicting pseudoprogression development from pre-treatment MR images in a patient cohort diagnosed with high grade gliomas. In this retrospective analysis, we analysed 131 patients with high grade gliomas. Segmentation of the contrast enhancing parts of the tumor before administration of radio-chemotherapy was semi-automatically performed using the 3D Slicer open-source software platform (version 4.10) on T1 post contrast MR images. Imaging data was split into training data, test data and an independent validation sample at random. We extracted a total of 107 radiomic features by hand-delineated regions of interest (ROI). Feature selection and model construction were performed using Generalized Boosted Regression Models (GBM). 131 patients were included, of which 64 patients had a histopathologically proven progressive disease and 67 were diagnosed with mixed or pure pseudoprogression after initial treatment. Our Radiomics approach is able to predict the occurrence of pseudoprogression with an AUC, mean sensitivity, mean specificity and mean accuracy of 91.49% [86.27%, 95.89%], 79.92% [73.08%, 87.55%], 88.61% [85.19%, 94.44%] and 84.35% [80.19%, 90.57%] in the full development group, 78.51% [75.27%, 82.46%], 66.26% [57.95%, 73.02%], 78.31% [70.48%, 84.19%] and 72.40% [68.06%, 76.85%] in the testing group and finally 72.87% [70.18%, 76.28%], 71.75% [62.29%, 75.00%], 80.00% [69.23%, 84.62%] and 76.04% [69.90%, 80.00%] in the independent validation sample, respectively. Our results indicate that radiomics is a promising tool to predict pseudo-progression, thus potentially allowing to reduce the use of biopsies and invasive histopathology.
Collapse
|
21
|
Efficient Radiomics-Based Classification of Multi-Parametric MR Images to Identify Volumetric Habitats and Signatures in Glioblastoma: A Machine Learning Approach. Cancers (Basel) 2022; 14:cancers14061475. [PMID: 35326626 PMCID: PMC8945893 DOI: 10.3390/cancers14061475] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Glioblastomas carry a poor prognosis and usually presents with heterogeneous regions in the brain tumor. Multi-parametric MR images can show morphological characteristics. Radiomics features refer to the extraction of a large number of quantitative measurements that describe the geometry, intensity, and texture which were extracted from contrast-enhanced T1-weighted images from anatomical MRI and metabolic features from PET. It also provides a qualitative image interpretation as well as cellular, molecular, and tumor properties. Thus, it derives additional information about the entire tumor volume which is generally of irregular shape and size from routinely evaluated “non-invasive” imaging biomarkers techniques. We demonstrated volumetric habitats and signatures in necrosis, solid tumor, peritumoral tissue, and edema with key biological processes and phenotype features. This provides physicians with key information on how the disease is progressing in the brain and can also give an indication of how well treatment is working. Abstract Glioblastoma (GBM) is a fast-growing and aggressive brain tumor of the central nervous system. It encroaches on brain tissue with heterogeneous regions of a necrotic core, solid part, peritumoral tissue, and edema. This study provided qualitative image interpretation in GBM subregions and radiomics features in quantitative usage of image analysis, as well as ratios of these tumor components. The aim of this study was to assess the potential of multi-parametric MR fingerprinting with volumetric tumor phenotype and radiomic features to underlie biological process and prognostic status of patients with cerebral gliomas. Based on efficiently classified and retrieved cerebral multi-parametric MRI, all data were analyzed to derive volume-based data of the entire tumor from local cohorts and The Cancer Imaging Archive (TCIA) cohorts with GBM. Edema was mainly enriched for homeostasis whereas necrosis was associated with texture features. The proportional volume size of the edema was about 1.5 times larger than the size of the solid part tumor. The volume size of the solid part was approximately 0.7 times in the necrosis area. Therefore, the multi-parametric MRI-based radiomics model reveals efficiently classified tumor subregions of GBM and suggests that prognostic radiomic features from routine MRI examination may also be significantly associated with key biological processes as a practical imaging biomarker.
Collapse
|
22
|
Chao MN, Chezal JM, Debiton E, Canitrot D, Witkowski T, Levesque S, Degoul F, Tarrit S, Wenzel B, Miot-Noirault E, Serre A, Maisonial-Besset A. A Convenient Route to New (Radio)Fluorinated and (Radio)Iodinated Cyclic Tyrosine Analogs. Pharmaceuticals (Basel) 2022; 15:ph15020162. [PMID: 35215275 PMCID: PMC8877694 DOI: 10.3390/ph15020162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
The use of radiolabeled non-natural amino acids can provide high contrast SPECT/PET metabolic imaging of solid tumors. Among them, radiohalogenated tyrosine analogs (i.e., [123I]IMT, [18F]FET, [18F]FDOPA, [123I]8-iodo-L-TIC(OH), etc.) are of particular interest. While radioiodinated derivatives, such as [123I]IMT, are easily available via electrophilic aromatic substitutions, the production of radiofluorinated aryl tyrosine analogs was a long-standing challenge for radiochemists before the development of innovative radiofluorination processes using arylboronate, arylstannane or iodoniums salts as precursors. Surprisingly, despite these methodological advances, no radiofluorinated analogs have been reported for [123I]8-iodo-L-TIC(OH), a very promising radiotracer for SPECT imaging of prostatic tumors. This work describes a convenient synthetic pathway to obtain new radioiodinated and radiofluorinated derivatives of TIC(OH), as well as their non-radiolabeled counterparts. Using organotin compounds as key intermediates, [125I]5-iodo-L-TIC(OH), [125I]6-iodo-L-TIC(OH) and [125I]8-iodo-L-TIC(OH) were efficiently prepared with good radiochemical yield (RCY, 51–78%), high radiochemical purity (RCP, >98%), molar activity (Am, >1.5–2.9 GBq/µmol) and enantiomeric excess (e.e. >99%). The corresponding [18F]fluoro-L-TIC(OH) derivatives were also successfully obtained by radiofluorination of the organotin precursors in the presence of tetrakis(pyridine)copper(II) triflate and nucleophilic [18F]F− with 19–28% RCY d.c., high RCP (>98.9%), Am (20–107 GBq/µmol) and e.e. (>99%).
Collapse
Affiliation(s)
- Maria Noelia Chao
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Jean-Michel Chezal
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Eric Debiton
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Damien Canitrot
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Tiffany Witkowski
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Sophie Levesque
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
- Department of Nuclear Medicine, Jean Perrin Comprehensive Cancer Centre, F-63000 Clermont-Ferrand, France
| | - Françoise Degoul
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Sébastien Tarrit
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Barbara Wenzel
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Institute of Radiopharmaceutical Cancer Research, 04318 Leipzig, Germany;
| | - Elisabeth Miot-Noirault
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Audrey Serre
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
| | - Aurélie Maisonial-Besset
- Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (M.N.C.); (J.-M.C.); (E.D.); (D.C.); (T.W.); (S.L.); (F.D.); (S.T.); (E.M.-N.); (A.S.)
- Correspondence:
| |
Collapse
|
23
|
Deshmukh R, Allega MF, Tardito S. A map of the altered glioma metabolism. Trends Mol Med 2021; 27:1045-1059. [PMID: 34489164 DOI: 10.1016/j.molmed.2021.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
The frequent occurrence of neomorphic isocitrate dehydrogenase 1 (IDH1) mutations in low-grade glioma led to an IDH-centric classification of these tumors. However, exploiting metabolic alterations of glioma for diagnostic imaging and treatment has marginally improved patients' prognosis. Here we discuss the nutritional microenvironment of glioma, shaped by the distinctive dependence of the brain on glucose and ketone bodies for energy, and on amino acids for neurotransmission. We highlight the progress in metabolic applications for glioma diagnosis and therapy, and present a map that streamlines the rewired glioma metabolism. The map illustrates the altered reactions in central carbon and nitrogen metabolism that drive glioma biology, and represent metabolic vulnerabilities with translational potential.
Collapse
Affiliation(s)
- Ruhi Deshmukh
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Maria Francesca Allega
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Saverio Tardito
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
24
|
Moon H, Byun BH, Lim I, Kim BI, Choi CW, Rhee CH, Lee KC, Woo SK, Park C, Kil HS, Chi DY, Youn SM, Lim SM. A Phase 0 Microdosing PET/CT Study Using O-[18F]Fluoromethyl-d-Tyrosine in Normal Human Brain and Brain Tumor. Clin Nucl Med 2021; 46:717-722. [PMID: 34034333 DOI: 10.1097/rlu.0000000000003735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of the present study was to obtain information about distribution, radiation dosimetry, toxicity, and pharmacokinetics of O-[18F]fluoromethyl-d-tyrosine (d-18F-FMT), an amino acid PET tracer, in patients with brain tumors. PATIENTS AND METHODS A total of 6 healthy controls (age = 19-25 years, 3 males and 3 females) with brain PET images and radiation dosimetry and 12 patients (median age = 60 years, 6 males and 6 females) with primary (n = 5) or metastatic brain tumor (n = 7) were enrolled. We acquired 60-minute dynamic brain PET images after injecting 370 MBq of d-18F-FMT. Time-activity curves of d-18F-FMT uptake in normal brain versus brain tumors and tumor-to-background ratio were analyzed for each PET data set. RESULTS Normal cerebral uptake of d-18F-FMT decreased from 0 to 5 minutes after injection, but gradually increased from 10 to 60 minutes. Tumoral uptake of d-18F-FMT reached a peak before 30 minutes. Tumor-to-background ratio peaked at less than 15 minutes for 8 patients and more than 15 minutes for 4 patients. The mean effective dose was calculated to be 13.2 μSv/MBq. CONCLUSIONS Using d-18F-FMT as a PET radiotracer is safe. It can distinguish brain tumor from surrounding normal brain tissues with a high contrast. Early-time PET images of brain tumors should be acquired because the tumor-to-background ratio tended to reach a peak within 15 minutes after injection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kyo Chul Lee
- Division of RI Convergence, Korea Institute of Radiological and Medical Sciences
| | - Sang-Keun Woo
- Division of RI Convergence, Korea Institute of Radiological and Medical Sciences
| | | | | | | | | | | |
Collapse
|
25
|
Hughes KL, O'Neal CM, Andrews BJ, Westrup AM, Battiste JD, Glenn CA. A systematic review of the utility of amino acid PET in assessing treatment response to bevacizumab in recurrent high-grade glioma. Neurooncol Adv 2021; 3:vdab003. [PMID: 34409294 PMCID: PMC8369430 DOI: 10.1093/noajnl/vdab003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background. Currently, bevacizumab (BEV), an antiangiogenic agent, is used as an adjunctive therapy to re-irradiation and surgery in patients with recurrent high-grade gliomas (rHGG). BEV has shown to decrease enhancement on MRI, but it is often unclear if these changes are due to tumor response to BEV or treatment-induced changes in the blood brain barrier. Preliminary studies show that amino acid PET can aid in distinguishing these changes on MRI. Methods. The authors performed a systematic review of PubMed and Embase through July 2020 with the search terms ‘bevacizumab’ or ‘Avastin’ and ‘recurrent glioma’ and ‘PET,’ yielding 38 papers, with 14 meeting inclusion criteria. Results. Thirteen out of fourteen studies included in this review used static PET and three studies used dynamic PET to evaluate the use of BEV in rHGG. Six studies used the amino acid tracer [18F]FET, four studies used [11C]MET, and four studies used [18F]FDOPA. Conclusion. [18F]FET, [11C]MET, and [18F]FDOPA PET in combination with MRI have shown promising results for improving accuracy in diagnosing tumor recurrence, detecting early treatment failure, and distinguishing between tumor progression and treatment-induced changes in patients with rHGG treated with BEV.
Collapse
Affiliation(s)
- Kendall L Hughes
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Christen M O'Neal
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bethany J Andrews
- Department of Neurosurgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alison M Westrup
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - James D Battiste
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Chad A Glenn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
26
|
Naga Srinivasu P, Balas VE. Self-Learning Network-based segmentation for real-time brain M.R. images through HARIS. PeerJ Comput Sci 2021; 7:e654. [PMID: 34435099 PMCID: PMC8356652 DOI: 10.7717/peerj-cs.654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 07/09/2021] [Indexed: 02/05/2023]
Abstract
In recent years in medical imaging technology, the advancement for medical diagnosis, the initial assessment of the ailment, and the abnormality have become challenging for radiologists. Magnetic resonance imaging is one such predominant technology used extensively for the initial evaluation of ailments. The primary goal is to mechanizean approach that can accurately assess the damaged region of the human brain throughan automated segmentation process that requires minimal training and can learn by itself from the previous experimental outcomes. It is computationally more efficient than other supervised learning strategies such as CNN deep learning models. As a result, the process of investigation and statistical analysis of the abnormality would be made much more comfortable and convenient. The proposed approach's performance seems to be much better compared to its counterparts, with an accuracy of 77% with minimal training of the model. Furthermore, the performance of the proposed training model is evaluated through various performance evaluation metrics like sensitivity, specificity, the Jaccard Similarity Index, and the Matthews correlation coefficient, where the proposed model is productive with minimal training.
Collapse
Affiliation(s)
- Parvathaneni Naga Srinivasu
- Department of Computer Science and Engineering, GITAM Institute of Technology, GITAM Deemed to be University, Visakhapatnam, Andhra Pradesh, India
| | - Valentina Emilia Balas
- Department of Automation and Applied Informatics, Aurel Vlaicu University of Arad, Arad, Romania
| |
Collapse
|
27
|
Li C, Yi C, Chen Y, Xi S, Guo C, Yang Q, Wang J, Sai K, Zhang J, Ke C, Chen F, Lv Y, Zhang X, Chen Z. Identify glioma recurrence and treatment effects with triple-tracer PET/CT. BMC Med Imaging 2021; 21:92. [PMID: 34059015 PMCID: PMC8165792 DOI: 10.1186/s12880-021-00624-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/24/2021] [Indexed: 02/16/2023] Open
Abstract
Background Differential diagnosis of tumour recurrence (TuR) from treatment effects (TrE), mostly induced by radiotherapy and chemotherapy, is still difficult by using conventional computed tomography (CT) or magnetic resonance (MR) imaging. We have investigated the diagnostic performance of PET/CT with 3 tracers, 13N-NH3, 18F-FDOPA, and 18F-FDG, to identify TuR and TrE in glioma patients following treatment. Methods Forty-three patients with MR-suspected recurrent glioma were included. The maximum and mean standardized uptake values (SUVmax and SUVmean) of the lesion and the lesion-to-normal grey-matter cortex uptake (L/G) ratio were obtained from each tracer PET/CT. TuR or TrE was determined by histopathology or clinical MR follow-up for at least 6 months. Results In this cohort, 34 patients were confirmed to have TuR, and 9 patients met the diagnostic standard of TrE. The SUVmax and SUVmean of 13N-NH3 and 18F-FDOPA PET/CT at TuR lesions were significantly higher compared with normal brain tissue (13N-NH3 0.696 ± 0.558, 0.625 ± 0.507 vs 0.486 ± 0.413; 18F-FDOPA 0.455 ± 0.518, 0.415 ± 0.477 vs 0.194 ± 0.203; both P < 0.01), but there was no significant difference in 18F-FDG (6.918 ± 3.190, 6.016 ± 2.807 vs 6.356 ± 3.104, P = 0.290 and 0.493). L/G ratios of 13N-NH3 and 18F-FDOPA were significantly higher in TuR than in TrE group (13N-NH3, 1.573 ± 0.099 vs 1.025 ± 0.128, P = 0.008; 18F-FDOPA, 2.729 ± 0.131 vs 1.514 ± 0.141, P < 0.001). The sensitivity, specificity and AUC (area under the curve) by ROC (receiver operating characteristic) analysis were 57.7%, 100% and 0.803, for 13N-NH3; 84.6%, 100% and 0.938, for 18F-FDOPA; and 80.8%, 100%, and 0.952, for the combination, respectively. Conclusion Our results suggest that although multiple tracer PET/CT may improve differential diagnosis efficacy, for glioma TuR from TrE, 18F-FDOPA PET-CT is the most reliable. The combination of 18F-FDOPA and 13N-NH3 does not increase the diagnostic efficiency, while 18F-FDG is not worthy for differential diagnosis of glioma TuR and TrE.
Collapse
Affiliation(s)
- Cong Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Chang Yi
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yingshen Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Shaoyan Xi
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Chengcheng Guo
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Qunying Yang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Jian Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Ke Sai
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Ji Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Chao Ke
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Fanfan Chen
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Yanchun Lv
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Xiangsong Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Zhongping Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| |
Collapse
|
28
|
Johannessen K, Berntsen EM, Johansen H, Solheim TS, Karlberg A, Eikenes L. 18F-FACBC PET/MRI in the evaluation of human brain metastases: a case report. Eur J Hybrid Imaging 2021; 5:7. [PMID: 34181107 PMCID: PMC8218039 DOI: 10.1186/s41824-021-00101-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/28/2021] [Indexed: 12/31/2022] Open
Abstract
Background Patients with metastatic cancer to the brain have a poor prognosis. In clinical practice, MRI is used to delineate, diagnose and plan treatment of brain metastases. However, MRI alone is limited in detecting micro-metastases, delineating lesions and discriminating progression from pseudo-progression. Combined PET/MRI utilises superior soft tissue images from MRI and metabolic data from PET to evaluate tumour structure and function. The amino acid PET tracer 18F-FACBC has shown promising results in discriminating high- and low-grade gliomas, but there are currently no reports on its use on brain metastases. This is the first study to evaluate the use of 18F-FACBC on brain metastases. Case presentation A middle-aged female patient with brain metastases was evaluated using hybrid PET/MRI with 18F-FACBC before and after stereotactic radiotherapy, and at suspicion of recurrence. Static/dynamic PET and contrast-enhanced T1 MRI data were acquired and analysed. This case report includes the analysis of four 18F-FACBC PET/MRI examinations, investigating their utility in evaluating functional and structural metastasis properties. Conclusion Analysis showed high tumour-to-background ratios in brain metastases compared to other amino acid PET tracers, including high uptake in a very small cerebellar metastasis, suggesting that 18F-FACBC PET can provide early detection of otherwise overlooked metastases. Further studies to determine a threshold for 18F-FACBC brain tumour boundaries and explore its utility in clinical practice should be performed.
Collapse
Affiliation(s)
- Knut Johannessen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Postboks 8905, 7491, Trondheim, Norway
| | - Erik Magnus Berntsen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Postboks 8905, 7491, Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Håkon Johansen
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Tora S Solheim
- Cancer Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anna Karlberg
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Postboks 8905, 7491, Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Postboks 8905, 7491, Trondheim, Norway.
| |
Collapse
|
29
|
Chuntova P, Chow F, Watchmaker PB, Galvez M, Heimberger AB, Newell EW, Diaz A, DePinho RA, Li MO, Wherry EJ, Mitchell D, Terabe M, Wainwright DA, Berzofsky JA, Herold-Mende C, Heath JR, Lim M, Margolin KA, Chiocca EA, Kasahara N, Ellingson BM, Brown CE, Chen Y, Fecci PE, Reardon DA, Dunn GP, Liau LM, Costello JF, Wick W, Cloughesy T, Timmer WC, Wen PY, Prins RM, Platten M, Okada H. Unique challenges for glioblastoma immunotherapy-discussions across neuro-oncology and non-neuro-oncology experts in cancer immunology. Meeting Report from the 2019 SNO Immuno-Oncology Think Tank. Neuro Oncol 2021; 23:356-375. [PMID: 33367885 PMCID: PMC7992879 DOI: 10.1093/neuonc/noaa277] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy has made remarkable advances with over 50 separate Food and Drug Administration (FDA) approvals as first- or second-line indications since 2015. These include immune checkpoint blocking antibodies, chimeric antigen receptor-transduced T cells, and bispecific T-cell-engaging antibodies. While multiple cancer types now benefit from these immunotherapies, notable exceptions thus far include brain tumors, such as glioblastoma. As such, it seems critical to gain a better understanding of unique mechanistic challenges underlying the resistance of malignant gliomas to immunotherapy, as well as to acquire insights into the development of future strategies. An Immuno-Oncology Think Tank Meeting was held during the 2019 Annual Society for Neuro-Oncology Scientific Conference. Discussants in the fields of neuro-oncology, neurosurgery, neuro-imaging, medical oncology, and cancer immunology participated in the meeting. Sessions focused on topics such as the tumor microenvironment, myeloid cells, T-cell dysfunction, cellular engineering, and translational aspects that are critical and unique challenges inherent with primary brain tumors. In this review, we summarize the discussions and the key messages from the meeting, which may potentially serve as a basis for advancing the field of immune neuro-oncology in a collaborative manner.
Collapse
Affiliation(s)
- Pavlina Chuntova
- Department of Neurological Surgery, UCSF, San Francisco, California
| | - Frances Chow
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | - Mildred Galvez
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, Los Angeles, California
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Aaron Diaz
- Department of Neurological Surgery, UCSF, San Francisco, California
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - E John Wherry
- Department of Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Duane Mitchell
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, Florida
| | - Masaki Terabe
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Derek A Wainwright
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jay A Berzofsky
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | | | | | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kim A Margolin
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts
| | | | - Benjamin M Ellingson
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Christine E Brown
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Yvonne Chen
- Department of Microbiology, Immunology & Molecular Genetics, UCLA, Los Angeles, California
| | - Peter E Fecci
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina
| | - David A Reardon
- Department of Medicine/Medical Oncology, Harvard Medical School, Boston, Massachusetts
| | - Gavin P Dunn
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | - Wolfgang Wick
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Timothy Cloughesy
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - William C Timmer
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Robert M Prins
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, MCTN, University of Heidelberg, Mannheim, Germany.,DKTK CCU Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hideho Okada
- Department of Neurological Surgery, UCSF, San Francisco, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| |
Collapse
|
30
|
Bolcaen J, Descamps B, Deblaere K, De Vos F, Boterberg T, Hallaert G, Van den Broecke C, Vanhove C, Goethals I. Assessment of the effect of therapy in a rat model of glioblastoma using [18F]FDG and [18F]FCho PET compared to contrast-enhanced MRI. PLoS One 2021; 16:e0248193. [PMID: 33667282 PMCID: PMC7935304 DOI: 10.1371/journal.pone.0248193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/19/2021] [Indexed: 12/31/2022] Open
Abstract
Objective We investigated the potential of [18F]fluorodeoxyglucose ([18F]FDG) and [18F]Fluoromethylcholine ([18F]FCho) PET, compared to contrast-enhanced MRI, for the early detection of treatment response in F98 glioblastoma (GB) rats. Methods When GB was confirmed on T2- and contrast-enhanced T1-weighted MRI, animals were randomized into a treatment group (n = 5) receiving MRI-guided 3D conformal arc micro-irradiation (20 Gy) with concomitant temozolomide, and a sham group (n = 5). Effect of treatment was evaluated by MRI and [18F]FDG PET on day 2, 5, 9 and 12 post-treatment and [18F]FCho PET on day 1, 6, 8 and 13 post-treatment. The metabolic tumor volume (MTV) was calculated using a semi-automatic thresholding method and the average tracer uptake within the MTV was converted to a standard uptake value (SUV). Results To detect treatment response, we found that for [18F]FDG PET (SUVmean x MTV) is superior to MTV only. Using (SUVmean x MTV), [18F]FDG PET detects treatment effect starting as soon as day 5 post-therapy, comparable to contrast-enhanced MRI. Importantly, [18F]FDG PET at delayed time intervals (240 min p.i.) was able to detect the treatment effect earlier, starting at day 2 post-irradiation. No significant differences were found at any time point for both the MTV and (SUVmean x MTV) of [18F]FCho PET. Conclusions Both MRI and particularly delayed [18F]FDG PET were able to detect early treatment responses in GB rats, whereas, in this study this was not possible using [18F]FCho PET. Further comparative studies should corroborate these results and should also include (different) amino acid PET tracers.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiation Biophysics Division, Department of Nuclear Medicine, National Research Foundation iThemba LABS, Faure, South Africa
- * E-mail:
| | - Benedicte Descamps
- Department of Electronics and Information Systems, IBiTech-MEDISIP, Ghent University, Ghent, Belgium
| | - Karel Deblaere
- Department of Radiology, Ghent University Hospital, Ghent, Belgium
| | - Filip De Vos
- Department of Radiopharmacy, Ghent University, Ghent, Belgium
| | - Tom Boterberg
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Giorgio Hallaert
- Department of Neurosurgery, Ghent University Hospital, Ghent, Belgium
| | | | - Christian Vanhove
- Department of Electronics and Information Systems, IBiTech-MEDISIP, Ghent University, Ghent, Belgium
| | - Ingeborg Goethals
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
31
|
Overcast WB, Davis KM, Ho CY, Hutchins GD, Green MA, Graner BD, Veronesi MC. Advanced imaging techniques for neuro-oncologic tumor diagnosis, with an emphasis on PET-MRI imaging of malignant brain tumors. Curr Oncol Rep 2021; 23:34. [PMID: 33599882 PMCID: PMC7892735 DOI: 10.1007/s11912-021-01020-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW This review will explore the latest in advanced imaging techniques, with a focus on the complementary nature of multiparametric, multimodality imaging using magnetic resonance imaging (MRI) and positron emission tomography (PET). RECENT FINDINGS Advanced MRI techniques including perfusion-weighted imaging (PWI), MR spectroscopy (MRS), diffusion-weighted imaging (DWI), and MR chemical exchange saturation transfer (CEST) offer significant advantages over conventional MR imaging when evaluating tumor extent, predicting grade, and assessing treatment response. PET performed in addition to advanced MRI provides complementary information regarding tumor metabolic properties, particularly when performed simultaneously. 18F-fluoroethyltyrosine (FET) PET improves the specificity of tumor diagnosis and evaluation of post-treatment changes. Incorporation of radiogenomics and machine learning methods further improve advanced imaging. The complementary nature of combining advanced imaging techniques across modalities for brain tumor imaging and incorporating technologies such as radiogenomics has the potential to reshape the landscape in neuro-oncology.
Collapse
Affiliation(s)
- Wynton B. Overcast
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N University Blvd. Room 0663, Indianapolis, IN 46202 USA
| | - Korbin M. Davis
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N University Blvd. Room 0663, Indianapolis, IN 46202 USA
| | - Chang Y. Ho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Goodman Hall, 355 West 16th Street, Suite 4100, Indianapolis, IN 46202 USA
| | - Gary D. Hutchins
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Research 2 Building (R2), Room E124, 920 W. Walnut Street, Indianapolis, IN 46202-5181 USA
| | - Mark A. Green
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Research 2 Building (R2), Room E124, 920 W. Walnut Street, Indianapolis, IN 46202-5181 USA
| | - Brian D. Graner
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Goodman Hall, 355 West 16th Street, Suite 4100, Indianapolis, IN 46202 USA
| | - Michael C. Veronesi
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Research 2 Building (R2), Room E174, 920 W. Walnut Street, Indianapolis, IN 46202-5181 USA
| |
Collapse
|
32
|
Le Fèvre C, Constans JM, Chambrelant I, Antoni D, Bund C, Leroy-Freschini B, Schott R, Cebula H, Noël G. Pseudoprogression versus true progression in glioblastoma patients: A multiapproach literature review. Part 2 - Radiological features and metric markers. Crit Rev Oncol Hematol 2021; 159:103230. [PMID: 33515701 DOI: 10.1016/j.critrevonc.2021.103230] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/10/2021] [Accepted: 01/16/2021] [Indexed: 12/28/2022] Open
Abstract
After chemoradiotherapy for glioblastoma, pseudoprogression can occur and must be distinguished from true progression to correctly manage glioblastoma treatment and follow-up. Conventional treatment response assessment is evaluated via conventional MRI (contrast-enhanced T1-weighted and T2/FLAIR), which is unreliable. The emergence of advanced MRI techniques, MR spectroscopy, and PET tracers has improved pseudoprogression diagnostic accuracy. This review presents a literature review of the different imaging techniques and potential imaging biomarkers to differentiate pseudoprogression from true progression.
Collapse
Affiliation(s)
- Clara Le Fèvre
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Jean-Marc Constans
- Department of Radiology, Amiens-Picardie University Hospital, 1 rond-point du Professeur Christian Cabrol, 80054, Amiens Cedex 1, France.
| | - Isabelle Chambrelant
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Delphine Antoni
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Caroline Bund
- Department of Nuclear Medicine, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Benjamin Leroy-Freschini
- Department of Nuclear Medicine, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Roland Schott
- Departement of Medical Oncology, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Hélène Cebula
- Departement of Neurosurgery, Hautepierre University Hospital, 1, avenue Molière, 67200, Strasbourg, France.
| | - Georges Noël
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| |
Collapse
|
33
|
Reuter G, Moïse M, Roll W, Martin D, Lombard A, Scholtes F, Stummer W, Suero Molina E. Conventional and advanced imaging throughout the cycle of care of gliomas. Neurosurg Rev 2021; 44:2493-2509. [PMID: 33411093 DOI: 10.1007/s10143-020-01448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
Although imaging of gliomas has evolved tremendously over the last decades, published techniques and protocols are not always implemented into clinical practice. Furthermore, most of the published literature focuses on specific timepoints in glioma management. This article reviews the current literature on conventional and advanced imaging techniques and chronologically outlines their practical relevance for the clinical management of gliomas throughout the cycle of care. Relevant articles were located through the Pubmed/Medline database and included in this review. Interpretation of conventional and advanced imaging techniques is crucial along the entire process of glioma care, from diagnosis to follow-up. In addition to the described currently existing techniques, we expect deep learning or machine learning approaches to assist each step of glioma management through tumor segmentation, radiogenomics, prognostication, and characterization of pseudoprogression. Thorough knowledge of the specific performance, possibilities, and limitations of each imaging modality is key for their adequate use in glioma management.
Collapse
Affiliation(s)
- Gilles Reuter
- Department of Neurosurgery, University Hospital of Liège, Liège, Belgium. .,GIGA-CRC In-vivo Imaging Center, ULiege, Liège, Belgium.
| | - Martin Moïse
- Department of Radiology, University Hospital of Liège, Liège, Belgium
| | - Wolfgang Roll
- Department of Nuclear Medicine, University Hospital of Münster, Münster, Germany
| | - Didier Martin
- Department of Neurosurgery, University Hospital of Liège, Liège, Belgium
| | - Arnaud Lombard
- Department of Neurosurgery, University Hospital of Liège, Liège, Belgium
| | - Félix Scholtes
- Department of Neurosurgery, University Hospital of Liège, Liège, Belgium.,Department of Neuroanatomy, University of Liège, Liège, Belgium
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| | - Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| |
Collapse
|
34
|
Hua T, Zhou W, Zhou Z, Guan Y, Li M. Heterogeneous parameters based on 18F-FET PET imaging can non-invasively predict tumor grade and isocitrate dehydrogenase gene 1 mutation in untreated gliomas. Quant Imaging Med Surg 2021; 11:317-327. [PMID: 33392031 DOI: 10.21037/qims-20-723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background The present study aimed to explore the efficacy of easily obtained intratumoral heterogeneous parameters, other than regular semi-quantitative parameters, based on static O-(2-[18F]fluoroethyl)-l-tyrosine (18F-FET) positron emission tomography (PET) imaging in glioma grade and isocitrate dehydrogenase (IDH) gene 1 mutation prediction. Methods Fifty-eight adult patients with untreated glioma (grades II-IV) who underwent preoperative 18F-FET PET/computed tomography (CT) imaging were enrolled in the present study. Eight semi-automatically obtained static PET imaging parameters after lesion delineation were chosen for analysis. These were: maximal tumor-to-background ratio (TBRmax), peak tumor-to-background ratio (TBRpeak), mean tumor-to-background ratio (TBRmean), coefficient of variation (COV), heterogeneity index (HI), the standard deviation of lesion standardized uptake value (SUVsd), metabolic tumor volume (MTV), and total lesion tracer standardized uptake (TLU). Pathological and immunohistochemical results were used as a reference. The receiver-operating characteristic analysis was used to investigate the predictive efficacy of these parameters in glioma grade and IDH1 mutation status. Results TLU [area under the curve (AUC): 0.841, P<0.0001], TBRpeak (AUC: 0.832, P<0.0001), and HI (AUC: 0.826, P<0.0001) had the top 3 single-parameter predictive performance between grade II or III and grade IV glioma patients. Combinations of TBRmax, SUVsd, and TBRmean (AUC: 0.850, P<0.0001); HI, SUVsd, and MTV (AUC: 0.848, P<0.0001); and HI, SUVsd, and TLU (AUC: 0.848, P<0.0001) had the top 3 multiple-parameter predictive performance. SUVsd (AUC: 0.710, P=0.0028), TLU (AUC: 0.698, P=0.0074), and HI (AUC: 0.676, P=0.0159) had the top 3 single-parameter predictive performance in the IDH1 genotype. Combinations of TBRmax, SUVsd, and TBRmean (AUC: 0.821, P<0.0001); SUVsd and TBRmean (AUC: 0.804, P<0.0001); and SUVsd, HI, and TBRmean (AUC: 0.799, P<0.0001) had the top 3 multiple-parameter predictive performance. Conclusions These easily obtained and highly repetitive heterogeneous parameters based on static 18F-FET PET/CT imaging can non-invasively predict glioma grade and IDH1 mutation, crucial in treatment planning, and prognostic evaluation.
Collapse
Affiliation(s)
- Tao Hua
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiyan Zhou
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhirui Zhou
- Department of Radiotherapy, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming Li
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Le Fèvre C, Lhermitte B, Ahle G, Chambrelant I, Cebula H, Antoni D, Keller A, Schott R, Thiery A, Constans JM, Noël G. Pseudoprogression versus true progression in glioblastoma patients: A multiapproach literature review: Part 1 - Molecular, morphological and clinical features. Crit Rev Oncol Hematol 2020; 157:103188. [PMID: 33307200 DOI: 10.1016/j.critrevonc.2020.103188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 01/04/2023] Open
Abstract
With new therapeutic protocols, more patients treated for glioblastoma have experienced a suspicious radiologic image of progression (pseudoprogression) during follow-up. Pseudoprogression should be differentiated from true progression because the disease management is completely different. In the case of pseudoprogression, the follow-up continues, and the patient is considered stable. In the case of true progression, a treatment adjustment is necessary. Presently, a pseudoprogression diagnosis certainly needs to be pathologically confirmed. Some important efforts in the radiological, histopathological, and genomic fields have been made to differentiate pseudoprogression from true progression, and the assessment of response criteria exists but remains limited. The aim of this paper is to highlight clinical and pathological markers to differentiate pseudoprogression from true progression through a literature review.
Collapse
Affiliation(s)
- Clara Le Fèvre
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Benoît Lhermitte
- Département of Pathology, Hautepierre University Hospital, 1, Avenue Molière, 67200, Strasbourg, France
| | - Guido Ahle
- Departement of Neurology, Hôpitaux Civils de Colmar, 39 Avenue de la Liberté, 68024, Colmar, France
| | - Isabelle Chambrelant
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Hélène Cebula
- Departement of Neurosurgery, Hautepierre University Hospital, 1, Avenue Molière, 67200, Strasbourg, France
| | - Delphine Antoni
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Audrey Keller
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Roland Schott
- Departement of Medical Oncology, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Alicia Thiery
- Department of Public Health, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France
| | - Jean-Marc Constans
- Department of Radiology, Amiens-Pïcardie University Hospital, 1 rond point du Professeur Christian Cabrol, 80054 Amiens Cedex 1, France
| | - Georges Noël
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200, Strasbourg Cedex, France.
| |
Collapse
|
36
|
Parent EE, Patel D, Nye JA, Li Z, Olson JJ, Schuster DM, Goodman MM. [ 18F]-Fluciclovine PET discrimination of recurrent intracranial metastatic disease from radiation necrosis. EJNMMI Res 2020; 10:148. [PMID: 33284388 PMCID: PMC7721921 DOI: 10.1186/s13550-020-00739-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Stereotactic radiosurgery (SRS) is often the primary treatment modality for patients with intracranial metastatic disease. Despite advances in magnetic resonance imaging, including use of perfusion and diffusion sequences and molecular imaging, distinguishing radiation necrosis from progressive tumor remains a diagnostic and clinical challenge. We investigated the sensitivity and specificity of 18F-fluciclovine PET to accurately distinguish radiation necrosis from recurrent intracranial metastatic disease in patients who had previously undergone SRS. METHODS Fluciclovine PET imaging was performed in 8 patients with a total of 15 lesions that had previously undergone SRS and had subsequent MRI and clinical features suspicious for recurrent disease. The SUVmax of each lesion and the contralateral normal brain parenchyma were summated and evaluated at four different time points (5 min, 10 min, 30 min, and 55 min). Lesions were characterized as either recurrent disease (11 of 15 lesions) or radiation necrosis (4 of 15 lesions) and confirmed with histopathological correlation (7 lesions) or through serial MRI studies (8 lesions). RESULTS Time activity curve analysis found statistically greater radiotracer accumulation for all lesions, including radiation necrosis, when compared to contralateral normal brain. While the mean and median SUVmax for recurrent disease were statistically greater than those of radiation necrosis at all time points, the difference was more significant at the earlier time points (p = 0.004 at 5 min-0.025 at 55 min). Using a SUVmax threshold of ≥ 1.3, fluciclovine PET demonstrated a 100% accuracy in distinguishing recurrent disease from radiation necrosis up to 30 min after injection and an accuracy of 87% (sensitivity = 0.91, specificity = 0.75) at the last time point of 55 min. However, tumor-to-background ratios (TBRmax) were not significantly different between recurrent disease and radiation necrosis at any time point due to variable levels of fluciclovine uptake in the background brain parenchyma. CONCLUSIONS Fluciclovine PET may play an important role in distinguishing active intracranial metastatic lesions from radiation necrosis in patients previously treated with SRS but needs to be validated in larger studies.
Collapse
Affiliation(s)
| | - Dhruv Patel
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Rd. NE, 2nd Floor, Atlanta, GA, 30329, USA
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Rd. NE, 2nd Floor, Atlanta, GA, 30329, USA
| | - Zhuo Li
- Department of Statistics, Mayo Clinic, Jacksonville, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - David M Schuster
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Rd. NE, 2nd Floor, Atlanta, GA, 30329, USA
| | - Mark M Goodman
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Rd. NE, 2nd Floor, Atlanta, GA, 30329, USA.
| |
Collapse
|
37
|
Advanced magnetic resonance imaging to support clinical drug development for malignant glioma. Drug Discov Today 2020; 26:429-441. [PMID: 33249294 DOI: 10.1016/j.drudis.2020.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/23/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022]
Abstract
Even though the treatment options and survival of patients with glioblastoma multiforme (GBM), the most common type of malignant glioma, have improved over the past decade, there is still a high unmet medical need to develop novel therapies. Complexity in pathology and therapy require biomarkers to characterize tumors, to define malignant and active areas, to assess disease prognosis, and to quantify and monitor therapy response. While conventional magnetic resonance imaging (MRI) techniques have improved these assessments, limitations remain. In this review, we evaluate the role of various non-invasive biomarkers based on advanced structural and functional MRI techniques in the context of GBM drug development over the past 5 years.
Collapse
|
38
|
Shankar A, Bomanji J, Hyare H. Hybrid PET-MRI Imaging in Paediatric and TYA Brain Tumours: Clinical Applications and Challenges. J Pers Med 2020; 10:jpm10040218. [PMID: 33182433 PMCID: PMC7711629 DOI: 10.3390/jpm10040218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Standard magnetic resonance imaging (MRI) remains the gold standard for brain tumour imaging in paediatric and teenage and young adult (TYA) patients. Combining positron emission tomography (PET) with MRI offers an opportunity to improve diagnostic accuracy. (2) Method: Our single-centre experience of 18F-fluorocholine (FCho) and 18fluoro-L-phenylalanine (FDOPA) PET–MRI in paediatric/TYA neuro-oncology patients is presented. (3) Results: Hybrid PET–MRI shows promise in the evaluation of gliomas and germ cell tumours in (i) assessing early treatment response and (ii) discriminating tumour from treatment-related changes. (4) Conclusions: Combined PET–MRI shows promise for improved diagnostic and therapeutic assessment in paediatric and TYA brain tumours.
Collapse
Affiliation(s)
- Ananth Shankar
- Children and Young People’s Cancer Services, University College London hospitals NHS Foundation Trust, London NW1 2PG, UK
- Correspondence: ; Tel.: +44-20-3447-9950
| | - Jamshed Bomanji
- Department of Nuclear Medicine, University College London hospitals NHS Foundation Trust, London NW1 2PG, UK;
| | - Harpreet Hyare
- Department of Radiology, University College London Hospitals NHS Foundation Trust, London NW1 2PG, UK;
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
39
|
Booth TC, Luis A, Brazil L, Thompson G, Daniel RA, Shuaib H, Ashkan K, Pandey A. Glioblastoma post-operative imaging in neuro-oncology: current UK practice (GIN CUP study). Eur Radiol 2020; 31:2933-2943. [PMID: 33151394 PMCID: PMC8043861 DOI: 10.1007/s00330-020-07387-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/13/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES MRI remains the preferred imaging investigation for glioblastoma. Appropriate and timely neuroimaging in the follow-up period is considered to be important in making management decisions. There is a paucity of evidence-based information in current UK, European and international guidelines regarding the optimal timing and type of neuroimaging following initial neurosurgical treatment. This study assessed the current imaging practices amongst UK neuro-oncology centres, thus providing baseline data and informing future practice. METHODS The lead neuro-oncologist, neuroradiologist and neurosurgeon from every UK neuro-oncology centre were invited to complete an online survey. Participants were asked about current and ideal imaging practices following initial treatment. RESULTS Ninety-two participants from all 31 neuro-oncology centres completed the survey (100% response rate). Most centres routinely performed an early post-operative MRI (87%, 27/31), whereas only a third performed a pre-radiotherapy MRI (32%, 10/31). The number and timing of scans routinely performed during adjuvant TMZ treatment varied widely between centres. At the end of the adjuvant period, most centres performed an MRI (71%, 22/31), followed by monitoring scans at 3 monthly intervals (81%, 25/31). Additional short-interval imaging was carried out in cases of possible pseudoprogression in most centres (71%, 22/31). Routine use of advanced imaging was infrequent; however, the addition of advanced sequences was the most popular suggestion for ideal imaging practice, followed by changes in the timing of EPMRI. CONCLUSION Variations in neuroimaging practices exist after initial glioblastoma treatment within the UK. Multicentre, longitudinal, prospective trials are needed to define the optimal imaging schedule for assessment. KEY POINTS • Variations in imaging practices exist in the frequency, timing and type of interval neuroimaging after initial treatment of glioblastoma within the UK. • Large, multicentre, longitudinal, prospective trials are needed to define the optimal imaging schedule for assessment.
Collapse
Affiliation(s)
- Thomas C Booth
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK. .,Department of Neuroradiology Ruskin Wing, King's College Hospital NHS Foundation Trust, London, SE5 9RS, UK.
| | - Aysha Luis
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK.,Department of Neuroradiology, National Hospital For Neurology and Neurosrgery, London, WC1N 3BG, UK
| | - Lucy Brazil
- Department of Oncology, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Gerry Thompson
- Centre for Clinical Brain Sciences, Edinburgh, EH16 4SB, UK
| | - Rachel A Daniel
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Haris Shuaib
- Department of Medical Physics, Guy's & St. Thomas' NHS Foundation Trust, London, SE1 7EH, UK.,Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, SE5 9RS, UK
| | - Anmol Pandey
- Faculty of Life Sciences and Medicine, King's College London Strand, London, WC2R 2LS, UK
| |
Collapse
|
40
|
Scarpelli ML, Healey DR, Mehta S, Kodibagkar VD, Quarles CC. A practical method for multimodal registration and assessment of whole-brain disease burden using PET, MRI, and optical imaging. Sci Rep 2020; 10:17324. [PMID: 33057180 PMCID: PMC7560610 DOI: 10.1038/s41598-020-74459-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
Many neurological diseases present with substantial genetic and phenotypic heterogeneity, making assessment of these diseases challenging. This has led to ineffective treatments, significant morbidity, and high mortality rates for patients with neurological diseases, including brain cancers and neurodegenerative disorders. Improved understanding of this heterogeneity is necessary if more effective treatments are to be developed. We describe a new method to measure phenotypic heterogeneity across the whole rodent brain at multiple spatial scales. The method involves co-registration and localized comparison of in vivo radiologic images (e.g. MRI, PET) with ex vivo optical reporter images (e.g. labeled cells, molecular targets, microvasculature) of optically cleared tissue slices. Ex vivo fluorescent images of optically cleared pathology slices are acquired with a preclinical in vivo optical imaging system across the entire rodent brain in under five minutes, making this methodology practical and feasible for most preclinical imaging labs. The methodology is applied in various examples demonstrating how it might be used to cross-validate and compare in vivo radiologic imaging with ex vivo optical imaging techniques for assessing hypoxia, microvasculature, and tumor growth.
Collapse
Affiliation(s)
- Matthew L Scarpelli
- Department of Neuroimaging, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Debbie R Healey
- Department of Neuroimaging, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Shwetal Mehta
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Vikram D Kodibagkar
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Christopher C Quarles
- Department of Neuroimaging, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA.
| |
Collapse
|
41
|
Galldiks N, Langen KJ, Albert NL, Chamberlain M, Soffietti R, Kim MM, Law I, Le Rhun E, Chang S, Schwarting J, Combs SE, Preusser M, Forsyth P, Pope W, Weller M, Tonn JC. PET imaging in patients with brain metastasis-report of the RANO/PET group. Neuro Oncol 2020; 21:585-595. [PMID: 30615138 DOI: 10.1093/neuonc/noz003] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/11/2018] [Accepted: 01/03/2019] [Indexed: 12/23/2022] Open
Abstract
Brain metastases (BM) from extracranial cancer are associated with significant morbidity and mortality. Effective local treatment options are stereotactic radiotherapy, including radiosurgery or fractionated external beam radiotherapy, and surgical resection. The use of systemic treatment for intracranial disease control also is improving. BM diagnosis, treatment planning, and follow-up is most often based on contrast-enhanced magnetic resonance imaging (MRI). However, anatomic imaging modalities including standard MRI have limitations in accurately characterizing posttherapeutic reactive changes and treatment response. Molecular imaging techniques such as positron emission tomography (PET) characterize specific metabolic and cellular features of metastases, potentially providing clinically relevant information supplementing anatomic MRI. Here, the Response Assessment in Neuro-Oncology working group provides recommendations for the use of PET imaging in the clinical management of patients with BM based on evidence from studies validated by histology and/or clinical outcome.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine 3, 4, Research Center Juelich, Juelich, Germany.,Center of Integrated Oncology, Universities of Cologne and Bonn, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine 3, 4, Research Center Juelich, Juelich, Germany.,Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Marc Chamberlain
- Departments of Neurology and Neurological Surgery, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, USA
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Denmark
| | - Emilie Le Rhun
- Department of Neurosurgery, University Hospital Lille, Lille, France
| | - Susan Chang
- Department of Neurosurgery, University of California, San Francisco, California, USA
| | - Julian Schwarting
- Department of Neurosurgery, Ludwig Maximilians-University of Munich, Munich, Germany.,German Cancer Consortium, Partner Site Munich, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University Munich, Munich, Germany
| | - Matthias Preusser
- Department of Medicine I and Comprehensive Cancer Centre CNS Tumours Unit, Medical University of Vienna, Vienna, Austria
| | - Peter Forsyth
- Moffitt Cancer Center, University of South Florida, Tampa, Florida, USA
| | - Whitney Pope
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California , USA
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Jörg C Tonn
- Department of Neurosurgery, Ludwig Maximilians-University of Munich, Munich, Germany.,German Cancer Consortium, Partner Site Munich, Germany
| |
Collapse
|
42
|
Choi CH, Stegmayr C, Shymanskaya A, Worthoff WA, da Silva NA, Felder J, Langen KJ, Shah NJ. An in vivo multimodal feasibility study in a rat brain tumour model using flexible multinuclear MR and PET systems. EJNMMI Phys 2020; 7:50. [PMID: 32728773 PMCID: PMC7391464 DOI: 10.1186/s40658-020-00319-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/12/2020] [Indexed: 11/16/2022] Open
Abstract
Background In addition to the structural information afforded by 1H MRI, the use of X-nuclei, such as sodium-23 (23Na) or phosphorus-31 (31P), offers important complementary information concerning physiological and biochemical parameters. By then combining this technique with PET, which provides valuable insight into a wide range of metabolic and molecular processes by using of a variety of radioactive tracers, the scope of medical imaging and diagnostics can be significantly increased. While the use of multimodal imaging is undoubtedly advantageous, identifying the optimal combination of these parameters to diagnose a specific dysfunction is very important and is advanced by the use of sophisticated imaging techniques in specific animal models. Methods In this pilot study, rats with intracerebral 9L gliosarcomas were used to explore a combination of sequential multinuclear MRI using a sophisticated switchable coil set in a small animal 9.4 T MRI scanner and, subsequently, a small animal PET with the tumour tracer O-(2-[18F]-fluoroethyl)-L-tyrosine ([18F]FET). This made it possible for in vivo multinuclear MR-PET experiments to be conducted without compromising the performance of either multinuclear MR or PET. Results High-quality in vivo images and spectra including high-resolution 1H imaging, 23Na-weighted imaging, detection of 31P metabolites and [18F]FET uptake were obtained, allowing the characterisation of tumour tissues in comparison to a healthy brain. It has been reported in the literature that these parameters are useful in the identification of the genetic profile of gliomas, particularly concerning the mutation of the isocitrate hydrogenase gene, which is highly relevant for treatment strategy. Conclusions The combination of multinuclear MR and PET in, for example, brain tumour models with specific genetic mutations will enable the physiological background of signal alterations to be explored and the identification of the optimal combination of imaging parameters for the non-invasive characterisation of the molecular profile of tumours.
Collapse
Affiliation(s)
- Chang-Hoon Choi
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | - Carina Stegmayr
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | | | - Wieland A Worthoff
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | - Nuno A da Silva
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | - Jörg Felder
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany.,Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany.,Jülich-Aachen Research Alliance (JARA)-Section JARA-BRAIN, Aachen, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany. .,Institute of Neuroscience and Medicine-11, INM-11, JARA, Forschungszentrum Jülich, Germany. .,JARA-BRAIN-Translational Medicine, Aachen, Germany. .,Department of Neurology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
43
|
Abdalla G, Hammam A, Anjari M, D'Arco DF, Bisdas DS. Glioma surveillance imaging: current strategies, shortcomings, challenges and outlook. BJR Open 2020; 2:20200009. [PMID: 33178973 PMCID: PMC7594888 DOI: 10.1259/bjro.20200009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/11/2023] Open
Abstract
Inaccurate assessment of surveillance imaging to assess response to glioma therapy may have life-changing consequences. Varied management plans including chemotherapy, radiotherapy or immunotherapy may all contribute to heterogeneous post-treatment appearances and the overlap between the morphological features of pseudoprogression, pseudoresponse and radiation necrosis can make their discrimination very challenging. Therefore, there has been a drive to develop objective strategies for post-treatment assessment of brain gliomas. This review discusses the most important of these approaches such as the RANO "Response Assessment in Neuro-Oncology", iRANO "Immunotherapy Response Assessment in Neuro-Oncology" and RAPNO "Response Assessment in Paediatric Neuro-Oncology" models. In addition to these systematic approaches for glioma surveillance, the relatively limited information provided by conventional imaging modalities alone has motivated the development of novel advanced magnetic resonance (MR) and metabolic imaging methods for further discrimination between viable tumour and treatment induced changes. Multiple clinical trials and meta-analyses have investigated the diagnostic performance of these novel techniques in the follow up of brain gliomas, including both single modality descriptive studies and comparative imaging assessment. In this manuscript, we review the literature and discuss the promises and pitfalls of frequently studied modalities in glioma surveillance imaging, including MR perfusion, MR diffusion and MR spectroscopy. In addition, we evaluate other promising MR techniques such as chemical exchange saturation transfer as well as fludeoxyglucose and non-FDG positron emission tomography techniques.
Collapse
Affiliation(s)
- Gehad Abdalla
- Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | - Ahmed Hammam
- Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | - Mustafa Anjari
- Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | - Dr. Felice D'Arco
- Department of Neuroradiology, Great Ormond Street Hospital for Children, London, UK
| | | |
Collapse
|
44
|
Michaud L, Beattie BJ, Akhurst T, Dunphy M, Zanzonico P, Finn R, Mauguen A, Schöder H, Weber WA, Lassman AB, Blasberg R. 18F-Fluciclovine ( 18F-FACBC) PET imaging of recurrent brain tumors. Eur J Nucl Med Mol Imaging 2020; 47:1353-1367. [PMID: 31418054 PMCID: PMC7188736 DOI: 10.1007/s00259-019-04433-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/09/2019] [Indexed: 11/07/2022]
Abstract
PURPOSE The aim of our study was to investigate the efficacy of 18F-Fluciclovine brain PET imaging in recurrent gliomas, and to compare the utility of these images to that of contrast enhanced magnetic resonance imaging (MRI) and to [11C-methyl]-L-methionine (11C-Methionine) PET imaging. We also sought to gain insight into the factors affecting the uptake of 18F-FACBC in both tumors and normal brain, and specifically to evaluate how the uptake in these tissues varied over an extended period of time post injection. METHODS Twenty-seven patients with recurrent or progressive primary brain tumor (based on clinical and MRI/CT data) were studied using dynamic 18F-Fluciclovine brain imaging for up to 4 h. Of these, 16 patients also had 11C-Methionine brain scans. Visual findings, semi-quantitative analyses and pharmacokinetic modeling of a subset of the 18F-Fluciclovine images was conducted. The information derived from these analyses were compared to data from 11C-Methionine and to contrast-enhanced MRI. RESULTS 18F-Fluciclovine was positive for all 27 patients, whereas contrast MRI was indeterminate for three patients. Tumor 18F-Fluciclovine SUVmax ranged from 1.5 to 10.5 (average: 4.5 ± 2.3), while 11C-Methionine's tumor SUVmax ranged from 2.2 to 10.2 (average: 5.0 ± 2.2). Image contrast was higher with 18F-Fluciclovine compared to 11C-Methionine (p < 0.0001). This was due to 18F-Fluciclovine's lower background in normal brain tissue (0.5 ± 0.2 compared to 1.3 ± 0.4 for 11C-Methionine). 18F-Fluciclovine uptake in both normal brain and tumors was well described by a simple one-compartment (three-parameter: Vb,k1,k2) model. Normal brain was found to approach transient equilibrium with a half-time that varied greatly, ranging from 1.5 to 8.3 h (mean 2.7 ± 2.3 h), and achieving a consistent final distribution volume averaging 1.4 ± 0.2 ml/cc. Tumors equilibrated more rapidly (t1/2ranging from 4 to 148 min, average 57 ± 51 min), with an average distribution volume of 3.2 ± 1.1 ml/cc. A qualitative comparison showed that the rate of normal brain uptake of 11C-Methionine was much faster than that of 18F-Fluciclovine. CONCLUSION Tumor uptake of 18F-Fluciclovine correlated well with the established brain tumor imaging agent 11C-Methionine but provided significantly higher image contrast. 18F-Fluciclovine may be particularly useful when the contrast MRI is non-diagnostic. Based on the data gathered, we were unable to determine whether Fluciclovine uptake was due solely to recurrent tumor or if inflammation or other processes also contributed.
Collapse
Affiliation(s)
- Laure Michaud
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 77, New York, NY, 10065, USA.
| | - B J Beattie
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - T Akhurst
- Peter MacCallum Cancer Centre, Victoria, Australia
| | - M Dunphy
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 77, New York, NY, 10065, USA
| | - P Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - R Finn
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 77, New York, NY, 10065, USA
| | - A Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - H Schöder
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 77, New York, NY, 10065, USA
| | - W A Weber
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 77, New York, NY, 10065, USA
- Department of Nuclear Medicine, Technical University, Munich, Germany
| | - A B Lassman
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Neurology & Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - R Blasberg
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
45
|
Kunz M, Albert NL, Unterrainer M, la Fougere C, Egensperger R, Schüller U, Lutz J, Kreth S, Tonn JC, Kreth FW, Thon N. Dynamic 18F-FET PET is a powerful imaging biomarker in gadolinium-negative gliomas. Neuro Oncol 2020; 21:274-284. [PMID: 29893965 DOI: 10.1093/neuonc/noy098] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND We aimed to elucidate the place of dynamic O-(2-[18F]-fluoroethyl)-L-tyrosine (18F-FET) PET in prognostic models of gadolinium (Gd)-negative gliomas. METHODS In 98 patients with Gd-negative gliomas undergoing 18F-FET PET guided biopsy, time activity curves (TACs) of each tumor were qualitatively categorized as either increasing or decreasing. Additionally, post-hoc quantitative analyses were done using minimal time-to-peak (TTPmin) measurements. Prognostic factors were obtained from multivariate hazards models. The fit of the biospecimen- and imaging-derived models was compared. RESULTS A homogeneous increasing, mixed, and homogeneous decreasing TAC pattern was seen in 51, 19, and 28 tumors, respectively. Mixed TAC tumors exhibited both increasing and decreasing TACs. Corresponding adjusted 5-year survival was 85%, 47%, and 19%, respectively (P < 0.001). Qualitative and quantitative TAC measurements were highly intercorrelated (P < 0.0001). TTPmin was longest (shortest) in the homogeneous increasing (decreasing) TAC group and in between in the mixed TAC group. TTPmin was longer in isocitrate dehydrogenase (IDH)-mutant tumors (P < 0.001). Outcome was similarly precisely predicted by biospecimen- and imaging-derived models. In the biospecimen model, World Health Organization (WHO) grade (P < 0.0001) and IDH status (P < 0.001) were predictors for survival. Outcome of homogeneous increasing (homogeneous decreasing) TAC tumors was nearly identical, with both TTPmin > 25 min (TTPmin ≤ 12.5 min) tumors and IDH-mutant grade II (IDH-wildtype) gliomas. Outcome of mixed TAC tumors matched that of both intermediate TTPmin (>12.5 min and ≤25 min) and IDH-mutant, grade III gliomas. Each of the 3 prognostic clusters differed significantly from the other ones of the respective models (P < 0.001). CONCLUSION TAC measurements constitute a powerful biomarker independent from tumor grade and IDH status.
Collapse
Affiliation(s)
- Mathias Kunz
- Department of Neurosurgery, University of Munich, Munich, Germany.,German Cancer Consortium, partner site Munich, Germany
| | - Nathalie Lisa Albert
- Department of Nuclear Medicine, University of Munich, Munich, Germany.,German Cancer Consortium, partner site Munich, Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University of Munich, Munich, Germany.,German Cancer Consortium, partner site Munich, Germany
| | - Christian la Fougere
- Department of Nuclear Medicine, University of Munich, Munich, Germany.,Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Tübingen, Tübingen, Germany
| | - Rupert Egensperger
- Center for Neuropathology, University of Munich, Munich, Germany.,German Cancer Consortium, partner site Munich, Germany
| | - Ulrich Schüller
- Center for Neuropathology, University of Munich, Munich, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Juergen Lutz
- Department of Clinical Radiology, University of Munich, Munich, Germany
| | - Simone Kreth
- Department of Anaesthesiology, University of Munich, Munich, Germany
| | - Jörg-Christian Tonn
- Department of Neurosurgery, University of Munich, Munich, Germany.,German Cancer Consortium, partner site Munich, Germany
| | - Friedrich-Wilhelm Kreth
- Department of Neurosurgery, University of Munich, Munich, Germany.,German Cancer Consortium, partner site Munich, Germany
| | - Niklas Thon
- Department of Neurosurgery, University of Munich, Munich, Germany.,German Cancer Consortium, partner site Munich, Germany
| |
Collapse
|
46
|
Baguet T, Verhoeven J, Pauwelyn G, Hu J, Lambe P, De Lombaerde S, Piron S, Donche S, Descamps B, Goethals I, Vanhove C, De Vos F, Beyzavi MH. Radiosynthesis, in vitro and preliminary in vivo evaluation of the novel glutamine derived PET tracers [ 18F]fluorophenylglutamine and [ 18F]fluorobiphenylglutamine. Nucl Med Biol 2020; 86-87:20-29. [PMID: 32447069 DOI: 10.1016/j.nucmedbio.2020.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/13/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Glucose has been deemed the driving force of tumor growth for decades. However, research has shown that several tumors metabolically shift towards glutaminolysis. The development of radiolabeled glutamine derivatives could be a useful molecular imaging tool for visualizing these tumors. We elaborated on the glutamine-derived PET tracers by developing two novel probes, namely [18F]fluorophenylglutamine and [18F]fluorobiphenylglutamine. MATERIALS AND METHODS Both tracers were labelled with fluorine-18 using our recently reported ruthenium-based direct aromatic fluorination method. Their affinity was evaluated with a [3H]glutamine inhibition experiment in a human PC-3 and a rat F98 cell line. The imaging potential of [18F]fluorophenylglutamine and [18F]fluorobiphenylglutamine was tested using a mouse PC-3 and a rat F98 tumor model. RESULTS The radiosynthesis of both tracers was successful with overall non-decay corrected yields of 18.46 ± 4.18% (n = 10) ([18F]fluorophenylglutamine) and 8.05 ± 3.25% (n = 5) ([18F]fluorobiphenylglutamine). In vitro inhibition experiments showed a moderate and low affinity of fluorophenylglutamine and fluorobiphenylglutamine, respectively, towards the human ASCT-2 transporter. Both compounds had a low affinity towards the rat ASCT-2 transporter. These results were endorsed by the in vivo experiments with low uptake of both tracers in the F98 rat xenograft, low uptake of [18F]FBPG in the mice PC-3 xenograft and a moderate uptake of [18F]FPG in the PC-3 tumors. CONCLUSION We investigated the imaging potential of two novel PET radiotracers [18F]FPG and [18F]FBPG. [18F]FPG is the first example of a glutamine radiotracer derivatized with a phenyl group which enables the exploration of further derivatization of the phenyl group to increase the affinity and imaging qualities. We hypothesize that increasing the affinity of [18F]FPG by optimizing the substituents of the arene ring can result in a high-quality glutamine-based PET radiotracer. Advances in Knowledge and Implications for patient care: We hereby report novel glutamine-based PET-tracers. These tracers are tagged on the arene group with fluorine-18, hereby preventing in vivo defluorination, which can occur with alkyl labelled tracers (e.g. (2S,4R)4-[18F]fluoroglutamine). [18F]FPG shows clear tumor uptake in vivo, has no in vivo defluorination and has a straightforward production. We believe this tracer is a good starting point for the development of a high-quality tracer which is useful for the clinical visualization of the glutamine transport.
Collapse
Affiliation(s)
- Tristan Baguet
- Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium.
| | | | - Glenn Pauwelyn
- Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium
| | - Jiyun Hu
- Department of Chemistry and Biochemistry, University of Arkansas, AR, USA
| | - Patricia Lambe
- Department of Chemistry and Biochemistry, University of Arkansas, AR, USA
| | | | - Sarah Piron
- Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium
| | - Sam Donche
- Ghent University Hospital, Department of Nuclear Medicine, Ghent, Belgium
| | - Benedicte Descamps
- IBiTech-MEDISIP Ghent University, Department of Electronics and Information Systems, Ghent, Belgium
| | - Ingeborg Goethals
- Ghent University Hospital, Department of Nuclear Medicine, Ghent, Belgium
| | - Christian Vanhove
- IBiTech-MEDISIP Ghent University, Department of Electronics and Information Systems, Ghent, Belgium
| | - Filip De Vos
- Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium
| | - M Hassan Beyzavi
- Department of Chemistry and Biochemistry, University of Arkansas, AR, USA.
| |
Collapse
|
47
|
Werner JM, Lohmann P, Fink GR, Langen KJ, Galldiks N. Current Landscape and Emerging Fields of PET Imaging in Patients with Brain Tumors. Molecules 2020; 25:E1471. [PMID: 32213992 PMCID: PMC7146177 DOI: 10.3390/molecules25061471] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
The number of positron-emission tomography (PET) tracers used to evaluate patients with brain tumors has increased substantially over the last years. For the management of patients with brain tumors, the most important indications are the delineation of tumor extent (e.g., for planning of resection or radiotherapy), the assessment of treatment response to systemic treatment options such as alkylating chemotherapy, and the differentiation of treatment-related changes (e.g., pseudoprogression or radiation necrosis) from tumor progression. Furthermore, newer PET imaging approaches aim to address the need for noninvasive assessment of tumoral immune cell infiltration and response to immunotherapies (e.g., T-cell imaging). This review summarizes the clinical value of the landscape of tracers that have been used in recent years for the above-mentioned indications and also provides an overview of promising newer tracers for this group of patients.
Collapse
Affiliation(s)
- Jan-Michael Werner
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937 Cologne, Germany; (J.-M.W.); (G.R.F.)
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425 Juelich, Germany; (P.L.); (K.-J.L.)
| | - Gereon R. Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937 Cologne, Germany; (J.-M.W.); (G.R.F.)
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425 Juelich, Germany; (P.L.); (K.-J.L.)
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425 Juelich, Germany; (P.L.); (K.-J.L.)
- Department of Nuclear Medicine, University Hospital Aachen, 52074 Aachen, Germany
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937 Cologne, Germany; (J.-M.W.); (G.R.F.)
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425 Juelich, Germany; (P.L.); (K.-J.L.)
| |
Collapse
|
48
|
Ding H, Huang Y, Li Z, Li S, Chen Q, Xie C, Zhong Y. Prediction of IDH Status Through MRI Features and Enlightened Reflection on the Delineation of Target Volume in Low-Grade Gliomas. Technol Cancer Res Treat 2020; 18:1533033819877167. [PMID: 31564237 PMCID: PMC6767744 DOI: 10.1177/1533033819877167] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Isocitrate dehydrogenase mutational status defines distinct biologic behavior and
clinical outcomes in low-grade gliomas. We sought to determine magnetic resonance imaging
characteristics associated with isocitrate dehydrogenase mutational status to evaluate the
predictive roles of magnetic resonance imaging features in isocitrate dehydrogenase
mutational status and therefore their potential impact on the determination of clinical
target volume in radiotherapy. Forty-eight isocitrate dehydrogenase-mutant and 28
isocitrate dehydrogenase–wild-type low-grade gliomas were studied. Isocitrate
dehydrogenase mutation was related to more frequency of cortical involvement compared to
isocitrate dehydrogenase–wild-type group (34/46 vs 6/24, P = .0001).
Peritumoral edema was less frequent in isocitrate dehydrogenase–mutant tumors (32.6% vs
58.3% for isocitrate dehydrogenase–wild-type tumors, P = .0381).
Isocitrate dehydrogenase–wild-type tumors were more likely to have a nondefinable border,
while isocitrate dehydrogenase–mutant tumors had well-defined borders (66.7% vs 39.1%,
P = .0287). Only 8 (17.4%) of 46 of the isocitrate dehydrogenase–mutant
tumors demonstrated marked enhancement, while this was 66.7% in isocitrate–wild-type
tumors (P < .0001). Choline–creatinine ratio for isocitrate
dehydrogenase–wild-type tumors was significantly higher than that for isocitrate
dehydrogenase–mutant tumors. In conclusion, frontal location, well-defined border,
cortical involvement, less peritumoral edema, lack of enhancement, and low
choline–creatinine ratio were predictive for the definition of isocitrate
dehydrogenase–mutant low-grade gliomas. Magnetic resonance imaging can provide an
advantage in the detection of isocitrate dehydrogenase status indirectly and indicate the
need to explore new design for treatment planning in gliomas. Choline–creatinine ratio in
magnetic resonance spectroscopy could be a potential more reasonable reference for the new
design of delineation of target volume in low-grade gliomas.
Collapse
Affiliation(s)
- Haixia Ding
- Department of Chemotherapy and Radiation Therapy, Zhongnan Hospital, Wuhan University, Wuchang District, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuchang District, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Yong Huang
- Department of Chemotherapy and Radiation Therapy, Zhongnan Hospital, Wuhan University, Wuchang District, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuchang District, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Zhiqiang Li
- Department of Neurologic Surgery, Zhongnan Hospital, Wuhan University, Wuchang District, Wuhan, China
| | - Sirui Li
- Department of Radiology, Zhongnan Hospital, Wuhan University, Wuchang District, Wuhan, China
| | - Qiongrong Chen
- Department of Pathology, Zhongnan Hospital, Wuhan University, Wuchang District, Wuhan, China
| | - Conghua Xie
- Department of Chemotherapy and Radiation Therapy, Zhongnan Hospital, Wuhan University, Wuchang District, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuchang District, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Yahua Zhong
- Department of Chemotherapy and Radiation Therapy, Zhongnan Hospital, Wuhan University, Wuchang District, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuchang District, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| |
Collapse
|
49
|
Antal I, Strbak O, Khmara I, Koneracka M, Kubovcikova M, Zavisova V, Kmetova M, Baranovicova E, Dobrota D. MRI Relaxivity Changes of the Magnetic Nanoparticles Induced by Different Amino Acid Coatings. NANOMATERIALS 2020; 10:nano10020394. [PMID: 32102280 PMCID: PMC7075310 DOI: 10.3390/nano10020394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022]
Abstract
In this study, we analysed the physico-chemical properties of positively charged magnetic fluids consisting of magnetic nanoparticles (MNPs) functionalised by different amino acids (AAs): glycine (Gly), lysine (Lys) and tryptophan (Trp), and the influence of AA-MNP complexes on the MRI relaxivity. We found that the AA coating affects the size of dispersed particles and isoelectric point, as well as the zeta potential of AA-MNPs differently, depending on the AA selected. Moreover, we showed that a change in hydrodynamic diameter results in a change to the relaxivity of AA-MNP complexes. On the one hand, we observed a decrease in the relaxivity values, r1 and r2, with an increase in hydrodynamic diameter (the relaxivity of r1 and r2 were comparable with commercially available contrast agents); on the other hand, we observed an increase in r2* value with an increase in hydrodynamic size. These findings provide an interesting preliminary look at the impact of AA coating on the relaxivity properties of AA-MNP complexes, with a specific application in molecular contrast imaging originating from magnetic nanoparticles and magnetic resonance techniques.
Collapse
Affiliation(s)
- Iryna Antal
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia; (I.A.); (I.K.); (M.K.); (M.K.); (V.Z.)
| | - Oliver Strbak
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
- Correspondence: ; Tel.: +421-43-2633448
| | - Iryna Khmara
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia; (I.A.); (I.K.); (M.K.); (M.K.); (V.Z.)
| | - Martina Koneracka
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia; (I.A.); (I.K.); (M.K.); (M.K.); (V.Z.)
| | - Martina Kubovcikova
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia; (I.A.); (I.K.); (M.K.); (M.K.); (V.Z.)
| | - Vlasta Zavisova
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia; (I.A.); (I.K.); (M.K.); (M.K.); (V.Z.)
| | - Martina Kmetova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (M.K.); (D.D.)
| | - Eva Baranovicova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
| | - Dusan Dobrota
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (M.K.); (D.D.)
| |
Collapse
|
50
|
Abrantes AM, Pires AS, Monteiro L, Teixo R, Neves AR, Tavares NT, Marques IA, Botelho MF. Tumour functional imaging by PET. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165717. [PMID: 32035103 DOI: 10.1016/j.bbadis.2020.165717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/15/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
Abstract
Carcinogenesis is a complex multistep process, characterized by changes at different levels, both genetic and epigenetic, which alter cell metabolism. Positron emission tomography (PET) is a very sensitive image modality that allows to evaluate oncometabolism. PET functionalities are immense, since by labelling a molecule that specifically intervenes in a biochemical regulatory pathway of interest with a positron-emitting radionuclide, we can easily image that pathway. Thus, PET makes possible imaging several metabolic processes and assessing risk prediction, screening, diagnosis, response to therapy, metastization and recurrence. In this paper, we provide an overview of different radiopharmaceuticals developed for PET use in oncology, with a focus on brain tumours, breast cancer, hepatocellular carcinoma, neuroendocrine tumours, bladder cancer and prostate cancer because for these cancer types PET has been shown to be valuable. Most of the described tracers are just used in the research environment, with the aim to assess if these tracers could be able to offer an improvement concerning staging/restaging, characterization and stratification of different types of cancer, as well as therapeutic response assessment. In pursuit of personalized therapy, we briefly discuss the more established metabolic tracers and describe recent work on the development of new radiopharmaceuticals, aware that there will continue to exist diagnostic challenges to face modern cancer medicine.
Collapse
Affiliation(s)
- Ana Margarida Abrantes
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Ana Salomé Pires
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Lúcia Monteiro
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ricardo Teixo
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Rita Neves
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Project Development Office, Department of Mathematics and Computer Science, Eindhoven University of Technology (TU/e), NL-5612 AE Eindhoven, the Netherlands
| | - Nuno Tiago Tavares
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Inês Alexandra Marques
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Filomena Botelho
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|