1
|
Gaweda-Walerych K, Aragona V, Lodato S, Sitek EJ, Narożańska E, Buratti E. Progranulin deficiency in the brain: the interplay between neuronal and non-neuronal cells. Transl Neurodegener 2025; 14:18. [PMID: 40234992 PMCID: PMC12001433 DOI: 10.1186/s40035-025-00475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/21/2025] [Indexed: 04/17/2025] Open
Abstract
Heterozygous mutations in GRN gene lead to insufficient levels of the progranulin (PGRN) protein, resulting in frontotemporal dementia (FTD) with TAR DNA-binding protein 43 (TDP-43) inclusions, classified pathologically as frontotemporal lobar degeneration (FTLD-TDP). Homozygous GRN mutations are exceedingly rare and cause neuronal ceroid lipofuscinosis 11, a lysosomal storage disease with onset in young adulthood, or an FTD syndrome with late-onset manifestations. In this review, we highlight the broad spectrum of clinical phenotypes associated with PGRN deficiency, including primary progressive aphasia and behavioral variant of frontotemporal dementia. We explore these phenotypes alongside relevant rodent and in vitro human models, ranging from the induced pluripotent stem cell-derived neural progenitors, neurons, microglia, and astrocytes to genetically engineered heterotypic organoids containing both neurons and astrocytes. We summarize advantages and limitations of these models in recapitulating the main FTLD-GRN hallmarks, highlighting the role of non-cell-autonomous mechanisms in the formation of TDP-43 pathology, neuroinflammation, and neurodegeneration. Data obtained from patients' brain tissues and biofluids, in parallel with single-cell transcriptomics, demonstrate the complexity of interactions among the highly heterogeneous cellular clusters present in the brain, including neurons, astrocytes, microglia, oligodendroglia, endothelial cells, and pericytes. Emerging evidence has revealed that PGRN deficiency is associated with cell cluster-specific, often conserved, genetic and molecular phenotypes in the central nervous system. In this review, we focus on how these distinct cellular populations and their dysfunctional crosstalk contribute to neurodegeneration and neuroinflammation in FTD-GRN. Specifically, we characterize the phenotypes of lipid droplet-accumulating microglia and alterations of myelin lipid content resulting from lysosomal dysfunction caused by PGRN deficiency. Additionally, we consider how the deregulation of glia-neuron communication affects the exchange of organelles such as mitochondria, and the removal of excess toxic products such as protein aggregates, in PGRN-related neurodegeneration.
Collapse
Affiliation(s)
- Katarzyna Gaweda-Walerych
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| | - Vanessa Aragona
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalicini 4, Pieve Emanuele, 20072, Milan, Italy
- Neurodevelopment Biology Lab, IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089, Milan, Italy
| | - Simona Lodato
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalicini 4, Pieve Emanuele, 20072, Milan, Italy
- Neurodevelopment Biology Lab, IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089, Milan, Italy
| | - Emilia J Sitek
- Division of Neurological and Psychiatric Nursing, Laboratory of Clinical Neuropsychology, Neurolinguistics, and Neuropsychotherapy, Faculty of Health Sciences, Medical University of Gdansk, 80-210, Gdansk, Poland.
- Neurology Department, St. Adalbert Hospital, Copernicus PL, 80-462, Gdansk, Poland.
| | - Ewa Narożańska
- Neurology Department, St. Adalbert Hospital, Copernicus PL, 80-462, Gdansk, Poland
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, 34149, Trieste, Italy
| |
Collapse
|
2
|
Carlos AF, Weigand SD, Pham NTT, Petersen RC, Jack CR, Dickson DW, Whitwell JL, Josephs KA. White matter hyperintensities and TDP-43 pathology in Alzheimer's disease. Alzheimers Dement 2025; 21:ealz14516. [PMID: 39821594 PMCID: PMC11851154 DOI: 10.1002/alz.14516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/06/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025]
Abstract
INTRODUCTION Greater white matter hyperintensities (WMHs) on magnetic resonance imaging (MRI) are seen with transactive response DNA-binding protein 43 (TDP-43) pathology in frontotemporal lobar degeneration (FTLD-TDP). WMH associations with TDP-43 pathology in Alzheimer's disease (AD-TDP) remain unclear. METHODS A total of 157 participants from Mayo Clinic Rochester with autopsy-confirmed AD, known TDP-43 status, and antemortem fluid-attenuated inversion recovery (FLAIR) MRI were included. Vascular risk factors were assessed. A semi-automated WMH segmentation-quantification process produced total and regional WMH volumes. Penalized linear regression models adjusting for age at MRI analyzed TDP-43 associations (status and typing) with WMHs. RESULTS TDP-43-positive status was not associated with WMH burden overall because opposite effects were seen based on AD-TDP typing. Despite similar antemortem vascular risk factors and postmortem vascular pathologies, AD-TDP type-α showed greater total and regional WMH burden (particularly in subcortical frontotemporal and basal ganglia regions) than TDP-43 negatives and AD-TDP type-β. DISCUSSION AD-TDP types may have different WMH pathomechanisms, with type-α having associations more like FTLD-TDP than AD. HIGHLIGHTS In transactive response DNA-binding protein 43 (TDP-43) pathology in Alzheimer's disease (AD-TDP), TDP-43 status alone is not associated with total or regional WMH burden AD-TDP type-α shows greater total, frontotemporal subcortical, and basal ganglia white matter hyperintensities (WMHs) AD-TDP type-β shows less total and subcortical occipital WMHs AD-TDP type-α effect on WMH burden closely mimics the effects of frontotemporal lobar degeneration with TDP-43 (FTLD-TDP) rather than AD Different relationships of AD-TDP types with WMHs suggest different pathomechanisms.
Collapse
Affiliation(s)
| | - Stephen D. Weigand
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | | | | | | | - Dennis W. Dickson
- Department of Neuroscience (Neuropathology)Mayo ClinicJacksonvilleFloridaUSA
| | | | | |
Collapse
|
3
|
VandeBunte AM, Lee H, Paolillo EW, Hsiung GR, Staffaroni AM, Saloner R, Tartaglia C, Yaffe K, Knopman DS, Ramos EM, Rascovsky K, Bozoki AC, Wong B, Domoto‐Reilly K, Snyder A, Pressman P, Mendez MF, Litvan I, Fields JA, Galasko DR, Darby R, Masdeu JC, Pasqual MB, Honig LS, Ghoshal N, Appleby BS, Mackenzie IR, Heuer HW, Kramer JH, Boxer AL, Forsberg LK, Boeve B, Rosen HJ, Casaletto KB. Better cardiovascular health is associated with slowed clinical progression in autosomal dominant frontotemporal lobar degeneration variant carriers. Alzheimers Dement 2024; 20:6820-6833. [PMID: 39240048 PMCID: PMC11485313 DOI: 10.1002/alz.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 09/07/2024]
Abstract
INTRODUCTION Cardiovascular health is important for brain aging, yet its role in the clinical manifestation of autosomal dominant or atypical forms of dementia has not been fully elucidated. We examined relationships between Life's Simple 7 (LS7) and clinical trajectories in individuals with autosomal dominant frontotemporal lobar degeneration (FTLD). METHODS Two hundred forty-seven adults carrying FTLD pathogenic genetic variants (53% asymptomatic) and 189 non-carrier controls completed baseline LS7, and longitudinal neuroimaging and neuropsychological testing. RESULTS Among variant carriers, higher baseline LS7 is associated with slower accumulation of frontal white matter hyperintensities (WMHs), as well as slower memory and language declines. Higher baseline LS7 associated with larger baseline frontotemporal volume, but not frontotemporal volume trajectories. DISCUSSION Better baseline cardiovascular health related to slower cognitive decline and accumulation of frontal WMHs in autosomal dominant FTLD. Optimizing cardiovascular health may be an important modifiable approach to bolster cognitive health and brain integrity in FTLD. HIGHLIGHTS Better cardiovascular health associates with slower cognitive decline in frontotemporal lobar degeneration (FTLD). Lifestyle relates to the accumulation of frontal white matter hyperintensities in FTLD. More optimal cardiovascular health associates with greater baseline frontotemporal lobe volume. Optimized cardiovascular health relates to more favorable outcomes in genetic dementia.
Collapse
Affiliation(s)
- Anna M. VandeBunte
- Department of NeurologyUniversity of California, San Francisco, Memory and Aging CenterSan FranciscoCaliforniaUSA
- Department of PsychologyPalo Alto UniversityPalo AltoCaliforniaUnited States
| | - Hyunwoo Lee
- Division of NeurologyUBC HospitalUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Emily W. Paolillo
- Department of NeurologyUniversity of California, San Francisco, Memory and Aging CenterSan FranciscoCaliforniaUSA
| | - Ging‐Yuek Robin Hsiung
- Division of NeurologyUBC HospitalUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Adam M. Staffaroni
- Department of NeurologyUniversity of California, San Francisco, Memory and Aging CenterSan FranciscoCaliforniaUSA
| | - Rowan Saloner
- Department of NeurologyUniversity of California, San Francisco, Memory and Aging CenterSan FranciscoCaliforniaUSA
| | - Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative DiseasesDivision of NeurologyDepartment of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Kristine Yaffe
- Department of NeurologyUniversity of California, San Francisco, Memory and Aging CenterSan FranciscoCaliforniaUSA
| | | | - Eliana Marisa Ramos
- David Geffen School of Medicine at UCLAUCLA Semel Institute for Neuroscience and Human BehaviorLos AngelesCaliforniaUSA
| | - Katya Rascovsky
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Andrea C. Bozoki
- Department of NeurologyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Bonnie Wong
- Harvard Massachusetts General Hospital Frontotemporal Disorders UnitCharlestownMassachusettsUSA
| | | | - Allison Snyder
- National Institute of Neurological Disorders and StrokeBethesdaMarylandUSA
| | - Peter Pressman
- Department of NeurologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Mario F. Mendez
- David Geffen School of Medicine at UCLAReed Neurological Research CenterLos AngelesCaliforniaUSA
| | - Irene Litvan
- San Diego Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | | | - Douglas R. Galasko
- San Diego Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Ryan Darby
- Department of NeurologyVanderbilt UniversityNashvilleTennesseeUSA
| | | | | | - Lawrence S. Honig
- Department of NeurologyIrving Medical CenterColumbia UniversityNew YorkNew YorkUSA
| | - Nupur Ghoshal
- Department of NeurologySt. Louis School of MedicineWashington UniversitySt. LouisMissouriUSA
| | - Brian S. Appleby
- Department of NeurologyCase Western Reserve UniversityClevelandOhioUSA
| | - Ian R. Mackenzie
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Hilary W. Heuer
- Department of NeurologyUniversity of California, San Francisco, Memory and Aging CenterSan FranciscoCaliforniaUSA
| | - Joel H. Kramer
- Department of NeurologyUniversity of California, San Francisco, Memory and Aging CenterSan FranciscoCaliforniaUSA
| | - Adam L. Boxer
- Department of NeurologyUniversity of California, San Francisco, Memory and Aging CenterSan FranciscoCaliforniaUSA
| | | | - Brad Boeve
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | - Howard J. Rosen
- Department of NeurologyUniversity of California, San Francisco, Memory and Aging CenterSan FranciscoCaliforniaUSA
| | - Kaitlin B. Casaletto
- Department of NeurologyUniversity of California, San Francisco, Memory and Aging CenterSan FranciscoCaliforniaUSA
| | | |
Collapse
|
4
|
Xiao D, Li J, Ren Z, Dai M, Jiang Y, Qiu T, Zhang H, Chen Y, Zhang Y, Zhang Y, Palaniyappan L. Association of cortical morphology, white matter hyperintensity, and glymphatic function in frontotemporal dementia variants. Alzheimers Dement 2024; 20:6045-6059. [PMID: 39129270 PMCID: PMC11497707 DOI: 10.1002/alz.14158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/13/2024] [Accepted: 05/25/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Frontotemporal dementia (FTD) can be phenotypically divided into behavioral variant FTD (bvFTD), nonfluent variant primary progressive aphasia (nfvPPA), and semantic variant PPA (svPPA). However, the neural underpinnings of this phenotypic heterogeneity remain elusive. METHODS Cortical morphology, white matter hyperintensities (WMH), diffusion tensor image analysis along the perivascular space (DTI-ALPS), and their interrelationships were assessed in subtypes of FTD. Neuroimaging-transcriptional analyses on the regional cortical morphological deviances among subtypes were also performed. RESULTS Changes in cortical thickness, surface area, gyrification, WMH, and DTI-ALPS were subtype-specific in FTD. The three morphologic indices are related to whole-brain WMH volume and cognitive performance, while cortical thickness is related to DTI-ALPS. Neuroimaging-transcriptional analyses identified key biological pathways linked to the formation and/or spread of TDP-43/tau pathologies. DISCUSSION We found subtype-specific changes in cortical morphology, WMH, and glymphatic function in FTD. Our findings have the potential to contribute to the development of personalized predictions and treatment strategies for this disorder. HIGHLIGHTS Cortical morphologic changes, white matter hyperintensities (WMH), and glymphatic dysfunction are subtype-specific. Cortical morphologic changes, WMH, and glymphatic dysfunction are inter-correlated. Cortical morphologic changes and WMH burden contribute to cognitive impairments.
Collapse
Affiliation(s)
- Die Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of ChinaChengduP. R. China
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduP. R. China
| | - Jianyu Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of ChinaChengduP. R. China
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduP. R. China
| | - Zhanbing Ren
- College of Physical Education, Shenzhen UniversityShenzhenP. R. China
| | - Minghui Dai
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of ChinaChengduP. R. China
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduP. R. China
| | - Yihan Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of ChinaChengduP. R. China
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduP. R. China
| | - Ting Qiu
- Douglas Mental Health University InstituteMcGill UniversityMontrealCanada
| | - Huixiong Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of ChinaChengduP. R. China
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduP. R. China
| | - Yifan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of ChinaChengduP. R. China
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduP. R. China
| | - Youming Zhang
- Department of RadiologyXiangya HospitalCentral South UniversityChangshaP. R. China
- National Clinical Research Center for Geriatric DiseasesXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Yuanchao Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of ChinaChengduP. R. China
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduP. R. China
| | - Lena Palaniyappan
- Douglas Mental Health University InstituteMcGill UniversityMontrealCanada
| | | |
Collapse
|
5
|
Liu C, Dong L, Wang J, Li J, Huang X, Lei D, Mao C, Chu S, Sha L, Xu Q, Peng B, Cui L, Gao J. GRN mutation spectrum and genotype-phenotype correlation in Chinese dementia patients: data from PUMCH dementia cohort. J Med Genet 2024; 61:543-548. [PMID: 38228392 DOI: 10.1136/jmg-2023-109499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND METHODS: The GRN mutations, especially of the loss of function type, are causative of frontotemporal dementia (FTD). However, several GRN variants can be found in other neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease. So far, there have been over 300 GRN mutations reported globally. However, the genetic spectrum and phenotypic characteristics have not been fully elucidated in Chinese population.The participants were from the dementia cohort of Peking Union Medical College Hospital (n=1945). They received history inquiry, cognitive evaluation, brain imaging and exome sequencing. The dementia subjects carrying the rare variants of the GRN were included in this study. Those with the pathogenic or likely pathogenic variants of other dementia-related genes were excluded. RESULTS 14 subjects carried the rare variants of GRN. They were clinically diagnosed with behavioural variant of FTD (n=2), non-fluent/agrammatic variant primary progressive aphasia (PPA, n=3), semantic variant PPA (n=1), AD (n=6) and mixed dementia (n=2). 13 rare variants of GRN were found, including 6 novel variants (W49X, S226G, M152I, A91E, G79E and A303S). The most prevalent symptom was amnesia (85.7%, 12/14), followed by psychiatric and behavioural disorder (78.6%, 11/14). In terms of lobar atrophy, temporal atrophy/hypometabolism was the most common (85.7%, 12/14), followed by parietal atrophy/hypometabolism (78.6%, 11/14). CONCLUSION The novel GRN variants identified in this study contribute to enrich the GRN mutation repertoire. There is phenotypic similarity and diversity among Chinese patients with the GRN mutations.
Collapse
Affiliation(s)
- Caiyan Liu
- Peking Union Medical College Hospital, Dongcheng-qu, China
| | - Liling Dong
- Department of Neurology, Peking Union Medical College Hospital, Dongcheng-qu, China
| | - Jie Wang
- Department of Neurology, Peking Union Medical College Hospital, Dongcheng-qu, China
| | - Jie Li
- Department of Neurology, Peking Union Medical College Hospital, Dongcheng-qu, China
| | - Xinying Huang
- Department of Neurology, Peking Union Medical College Hospital, Dongcheng-qu, China
| | - Dan Lei
- Department of Neurology, Peking Union Medical College Hospital, Dongcheng-qu, China
| | - Chenhui Mao
- Department of Neurology, Peking Union Medical College Hospital, Dongcheng-qu, China
| | - Shanshan Chu
- Department of Neurology, Peking Union Medical College Hospital, Dongcheng-qu, China
| | - Longze Sha
- Peking Union Medical College, Beijing, China
| | - Qi Xu
- Peking Union Medical College, Beijing, China
| | - Bin Peng
- Department of Neurology, Peking Union Medical College Hospital, Dongcheng-qu, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Dongcheng-qu, China
| | - Jing Gao
- Department of Neurology, Peking Union Medical College Hospital, Dongcheng-qu, China
| |
Collapse
|
6
|
Chu M, Jiang D, Nan H, Wen L, Liu L, Qu M, Wu L. Vascular dysfunction in sporadic bvFTD: white matter hyperintensity and peripheral vascular biomarkers. Alzheimers Res Ther 2024; 16:72. [PMID: 38581060 PMCID: PMC10998369 DOI: 10.1186/s13195-024-01422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/28/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Vascular dysfunction was recently reported to be involved in the pathophysiological process of neurodegenerative diseases, but its role in sporadic behavioral variant frontotemporal dementia (bvFTD) remains unclear. The aim of this study was to systematically explore vascular dysfunction, including changes in white matter hyperintensities (WMHs) and peripheral vascular markers in bvFTD. METHODS Thirty-two patients with bvFTD who with no vascular risk factors were enrolled in this cross-sectional study and assessed using positron emission tomography/magnetic resonance (PET/MRI) imaging, peripheral plasma vascular/inflammation markers, and neuropsychological examinations. Group differences were tested using Student's t-tests and Mann-Whitney U tests. A partial correlation analysis was implemented to explore the association between peripheral vascular markers, neuroimaging, and clinical measures. RESULTS WMH was mainly distributed in anterior brain regions. All peripheral vascular factors including matrix metalloproteinases-1 (MMP-1), MMP-3, osteopontin, and pentraxin-3 were increased in the bvFTD group. WMH was associated with the peripheral vascular factor pentraxin-3. The plasma level of MMP-1 was negatively correlated with the gray matter metabolism of the frontal, temporal, insula, and basal ganglia brain regions. The WMHs in the frontal and limbic lobes were associated with plasma inflammation markers, disease severity, executive function, and behavior abnormality. Peripheral vascular markers were associated with the plasma inflammation markers. CONCLUSIONS WMHs and abnormalities in peripheral vascular markers were found in patients with bvFTD. These were found to be associated with the disease-specific pattern of neurodegeneration, indicating that vascular dysfunction may be involved in the pathogenesis of bvFTD. This warrants further confirmation by postmortem autopsy. Targeting the vascular pathway might be a promising approach for potential therapy.
Collapse
Affiliation(s)
- Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Haitian Nan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Lulu Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Miao Qu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
7
|
Iandolo R, Avci E, Bommarito G, Sandvig I, Rohweder G, Sandvig A. Characterizing upper extremity fine motor function in the presence of white matter hyperintensities: A 7 T MRI cross-sectional study in older adults. Neuroimage Clin 2024; 41:103569. [PMID: 38281363 PMCID: PMC10839532 DOI: 10.1016/j.nicl.2024.103569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND White matter hyperintensities (WMH) are a prevalent radiographic finding in the aging brain studies. Research on WMH association with motor impairment is mostly focused on the lower-extremity function and further investigation on the upper-extremity is needed. How different degrees of WMH burden impact the network of activation recruited during upper limb motor performance could provide further insight on the complex mechanisms of WMH pathophysiology and its interaction with aging and neurological disease processes. METHODS 40 healthy elderly subjects without a neurological/psychiatric diagnosis were included in the study (16F, mean age 69.3 years). All subjects underwent ultra-high field 7 T MRI including structural and finger tapping task-fMRI. First, we quantified the WMH lesion load and its spatial distribution. Secondly, we performed a data-driven stratification of the subjects according to their periventricular and deep WMH burdens. Thirdly, we investigated the distribution of neural recruitment and the corresponding activity assessed through BOLD signal changes among different brain regions for groups of subjects. We clustered the degree of WMH based on location, numbers, and volume into three categories; ranging from mild, moderate, and severe. Finally, we explored how the spatial distribution of WMH, and activity elicited during task-fMRI relate to motor function, measured with the 9-Hole Peg Test. RESULTS Within our population, we found three subgroups of subjects, partitioned according to their periventricular and deep WMH lesion load. We found decreased activity in several frontal and cingulate cortex areas in subjects with a severe WMH burden. No statistically significant associations were found when performing the brain-behavior statistical analysis for structural or functional data. CONCLUSION WMH burden has an effect on brain activity during fine motor control and the activity changes are associated with varying degrees of the total burden and distributions of WMH lesions. Collectively, our results shed new light on the potential impact of WMH on motor function in the context of aging and neurodegeneration.
Collapse
Affiliation(s)
- Riccardo Iandolo
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Esin Avci
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Giulia Bommarito
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Gitta Rohweder
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Stroke Unit, Department of Medicine, St Olav's University Hospital, Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olav's University Hospital, Trondheim, Norway; Department of Clinical Neurosciences, Division of Neuro, Head and Neck, Umeå University Hospital, Umeå, Sweden; Department of Community Medicine and Rehabilitation, Umeå University Hospital, Umeå, Sweden.
| |
Collapse
|
8
|
Benussi A, Premi E, Grassi M, Alberici A, Cantoni V, Gazzina S, Archetti S, Gasparotti R, Fumagalli GG, Bouzigues A, Russell LL, Samra K, Cash DM, Bocchetta M, Todd EG, Convery RS, Swift I, Sogorb-Esteve A, Heller C, van Swieten JC, Jiskoot LC, Seelaar H, Sanchez-Valle R, Moreno F, Laforce RJ, Graff C, Synofzik M, Galimberti D, Rowe JB, Masellis M, Tartaglia MC, Finger E, Vandenberghe R, Mendonça A, Tiraboschi P, Butler CR, Santana I, Gerhard A, Le Ber I, Pasquier F, Ducharme S, Levin J, Sorbi S, Otto M, Padovani A, Rohrer JD, Borroni B. Diagnostic accuracy of research criteria for prodromal frontotemporal dementia. Alzheimers Res Ther 2024; 16:10. [PMID: 38216961 PMCID: PMC10785469 DOI: 10.1186/s13195-024-01383-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND The Genetic Frontotemporal Initiative Staging Group has proposed clinical criteria for the diagnosis of prodromal frontotemporal dementia (FTD), termed mild cognitive and/or behavioral and/or motor impairment (MCBMI). The objective of the study was to validate the proposed research criteria for MCBMI-FTD in a cohort of genetically confirmed FTD cases against healthy controls. METHODS A total of 398 participants were enrolled, 117 of whom were carriers of an FTD pathogenic variant with mild clinical symptoms, while 281 were non-carrier family members (healthy controls (HC)). A subgroup of patients underwent blood neurofilament light (NfL) levels and anterior cingulate atrophy assessment. RESULTS The core clinical criteria correctly classified MCBMI vs HC with an AUC of 0.79 (p < 0.001), while the addition of either blood NfL or anterior cingulate atrophy significantly increased the AUC to 0.84 and 0.82, respectively (p < 0.001). The addition of both markers further increased the AUC to 0.90 (p < 0.001). CONCLUSIONS The proposed MCBMI criteria showed very good classification accuracy for identifying the prodromal stage of FTD.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, 25123, Brescia, Italy
| | - Enrico Premi
- Vascular Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, 25123, Brescia, Italy
| | - Mario Grassi
- Department of Brain and Behavioral Science, Medical and Genomic Statistics Unit, University of Pavia, 27100, Pavia, Italy
| | - Antonella Alberici
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, 25123, Brescia, Italy
| | - Valentina Cantoni
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Stefano Gazzina
- Department of Neurological and Vision Sciences, Neurophysiology Unit, ASST Spedali Civili di Brescia, 25123, Brescia, Italy
| | - Silvana Archetti
- Biotechnology Laboratory, Department of Diagnostics, ASST Spedali Civili di Brescia, 25123, Brescia, Italy
| | - Roberto Gasparotti
- Department of Medical and Surgical Specialties, Neuroradiology Unit, University of Brescia, 25123, Brescia, Italy
| | - Giorgio G Fumagalli
- Center for Mind/Brain Sciences-CIMeC, University of Trento, 38068, Rovereto, Italy
| | - Arabella Bouzigues
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Lucy L Russell
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Kiran Samra
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - David M Cash
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Martina Bocchetta
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Emily G Todd
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Rhian S Convery
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Imogen Swift
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - Aitana Sogorb-Esteve
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - Carolin Heller
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Centre, Rotterdam, 3015 GD, The Netherlands
| | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, 3015 GD, The Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, 3015 GD, The Netherlands
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, 08036, Barcelona, Spain
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, 20014, San Sebastian, Gipuzkoa, Spain
- Neuroscience Area, Biodonostia Health Research Institute, 20014, San Sebastian, Gipuzkoa, Spain
| | - Robert Jr Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Facultéde Médecine, Université Laval, Quebec City, Québec, G1V 0A6, Canada
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, 141 52, Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, 141 52, Solna, Sweden
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tubingen, 72076, Tubingen, Germany
- Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
| | - Daniela Galimberti
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122, Milan, Italy
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust and Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, ON, M4N 3M5, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5S, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, 3001, Leuven, Belgium
- Neurology Service, University Hospitals Leuven, 3000, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3001, Leuven, Belgium
| | | | - Pietro Tiraboschi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, OX3 9DU, UK
- Department of Brain Sciences, Imperial College London, London, SW7 2BX, UK
| | - Isabel Santana
- Neurology Service, Faculty of Medicine, University Hospital of Coimbra (HUC), University of Coimbra, 3004-561, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, 3004-561, Coimbra, Portugal
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, M20 3LJ, UK
- Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, 47057, Essen, Germany
- Cerebral Function Unit, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, M6 8HD, UK
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, 75013, Paris, France
- Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, 75013, Paris, France
- Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, 75013, Paris, France
| | - Florence Pasquier
- Univ Lille, 59000, Lille, France
- , Inserm 1172, 59000, Lille, France
- CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, 59000, Lille, France
| | - Simon Ducharme
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, H3A 1A1, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, 80539, Munich, Germany
- Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
- Munich Cluster of Systems Neurology, 81377, Munich, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, 50139, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, 50143, Florence, Italy
| | - Markus Otto
- Department of Neurology, University of Ulm, 89081, Ulm, Germany
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, 25123, Brescia, Italy
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy.
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, 25123, Brescia, Italy.
| |
Collapse
|
9
|
Michelutti M, Urso D, Gnoni V, Giugno A, Zecca C, Vilella D, Accadia M, Barone R, Dell'Abate MT, De Blasi R, Manganotti P, Logroscino G. Narcissistic Personality Disorder as Prodromal Feature of Early-Onset, GRN-Positive bvFTD: A Case Report. J Alzheimers Dis 2024; 98:425-432. [PMID: 38393901 DOI: 10.3233/jad-230779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Background Behavioral variant frontotemporal dementia (bvFTD) typically involves subtle changes in personality that can delay a timely diagnosis. Objective Here, we report the case of a patient diagnosed of GRN-positive bvFTD at the age of 52 presenting with a 7-year history of narcissistic personality disorder, accordingly to DSM-5 criteria. Methods The patient was referred to neurological and neuropsychological examination. She underwent 3 Tesla magnetic resonance imaging (MRI) and genetic studies. Results The neuropsychological examination revealed profound deficits in all cognitive domains and 3T brain MRI showed marked fronto-temporal atrophy. A mutation in the GRN gene further confirmed the diagnosis. Conclusions The present case documents an unusual onset of bvFTD and highlights the problematic nature of the differential diagnosis between prodromal psychiatric features of the disease and primary psychiatric disorders. Early recognition and diagnosis of bvFTD can lead to appropriate management and support for patients and their families. This case highlights the importance of considering neurodegenerative diseases, such as bvFTD, in the differential diagnosis of psychiatric disorders, especially when exacerbations of behavioral traits manifest in adults.
Collapse
Affiliation(s)
- Marco Michelutti
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G.Panico", Tricase, Italy
- Department of Medicine, Surgery and Health Sciences, Clinical Unit of Neurology, University Hospital of Trieste, University of Trieste, Trieste, Italy
| | - Daniele Urso
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G.Panico", Tricase, Italy
- Department of Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Valentina Gnoni
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G.Panico", Tricase, Italy
- Department of Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alessia Giugno
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G.Panico", Tricase, Italy
| | - Chiara Zecca
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G.Panico", Tricase, Italy
| | - Davide Vilella
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G.Panico", Tricase, Italy
| | - Maria Accadia
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G.Panico", Tricase, Italy
| | - Roberta Barone
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G.Panico", Tricase, Italy
| | - Maria Teresa Dell'Abate
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G.Panico", Tricase, Italy
| | - Roberto De Blasi
- Department of Diagnostic Imaging, Pia Fondazione di Culto e Religione "Card. G.Panico", Tricase, Italy
| | - Paolo Manganotti
- Department of Medicine, Surgery and Health Sciences, Clinical Unit of Neurology, University Hospital of Trieste, University of Trieste, Trieste, Italy
| | - Giancarlo Logroscino
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G.Panico", Tricase, Italy
| |
Collapse
|
10
|
Weiler M, Stieger KC, Shroff K, Klein JP, Wood WH, Zhang Y, Chandrasekaran P, Lehrmann E, Camandola S, Long JM, Mattson MP, Becker KG, Rapp PR. Transcriptional changes in the rat brain induced by repetitive transcranial magnetic stimulation. Front Hum Neurosci 2023; 17:1215291. [PMID: 38021223 PMCID: PMC10679736 DOI: 10.3389/fnhum.2023.1215291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Transcranial Magnetic Stimulation (TMS) is a noninvasive technique that uses pulsed magnetic fields to affect the physiology of the brain and central nervous system. Repetitive TMS (rTMS) has been used to study and treat several neurological conditions, but its complex molecular basis is largely unexplored. Methods Utilizing three experimental rat models (in vitro, ex vivo, and in vivo) and employing genome-wide microarray analysis, our study reveals the extensive impact of rTMS treatment on gene expression patterns. Results These effects are observed across various stimulation protocols, in diverse tissues, and are influenced by time and age. Notably, rTMS-induced alterations in gene expression span a wide range of biological pathways, such as glutamatergic, GABAergic, and anti-inflammatory pathways, ion channels, myelination, mitochondrial energetics, multiple neuron-and synapse-specific genes. Discussion This comprehensive transcriptional analysis induced by rTMS stimulation serves as a foundational characterization for subsequent experimental investigations and the exploration of potential clinical applications.
Collapse
Affiliation(s)
- Marina Weiler
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Kevin C. Stieger
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Kavisha Shroff
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Jessie P. Klein
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - William H. Wood
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Prabha Chandrasekaran
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Jeffrey M. Long
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Kevin G. Becker
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Peter R. Rapp
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
11
|
Marian OC, Teo JD, Lee JY, Song H, Kwok JB, Landin-Romero R, Halliday G, Don AS. Disrupted myelin lipid metabolism differentiates frontotemporal dementia caused by GRN and C9orf72 gene mutations. Acta Neuropathol Commun 2023; 11:52. [PMID: 36967384 PMCID: PMC10041703 DOI: 10.1186/s40478-023-01544-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 03/29/2023] Open
Abstract
Heterozygous mutations in the GRN gene and hexanucleotide repeat expansions in C9orf72 are the two most common genetic causes of Frontotemporal Dementia (FTD) with TDP-43 protein inclusions. The triggers for neurodegeneration in FTD with GRN (FTD-GRN) or C9orf72 (FTD-C9orf72) gene abnormalities are unknown, although evidence from mouse and cell culture models suggests that GRN mutations disrupt lysosomal lipid catabolism. To determine how brain lipid metabolism is affected in familial FTD with TDP-43 inclusions, and how this is related to myelin and lysosomal markers, we undertook comprehensive lipidomic analysis, enzyme activity assays, and western blotting on grey and white matter samples from the heavily-affected frontal lobe and less-affected parietal lobe of FTD-GRN cases, FTD-C9orf72 cases, and age-matched neurologically-normal controls. Substantial loss of myelin-enriched sphingolipids (sulfatide, galactosylceramide, sphingomyelin) and myelin proteins was observed in frontal white matter of FTD-GRN cases. A less-pronounced, yet statistically significant, loss of sphingolipids was also observed in FTD-C9orf72. FTD-GRN was distinguished from FTD-C9orf72 and control cases by increased acylcarnitines in frontal grey matter and marked accumulation of cholesterol esters in both frontal and parietal white matter, indicative of myelin break-down. Both FTD-GRN and FTD-C9orf72 cases showed significantly increased lysosomal and phagocytic protein markers, however galactocerebrosidase activity, required for lysosomal catabolism of galactosylceramide and sulfatide, was selectively increased in FTD-GRN. We conclude that both C9orf72 and GRN mutations are associated with disrupted lysosomal homeostasis and white matter lipid loss, but GRN mutations cause a more pronounced disruption to myelin lipid metabolism. Our findings support the hypothesis that hyperactive myelin lipid catabolism is a driver of gliosis and neurodegeneration in FTD-GRN. Since FTD-GRN is associated with white matter hyperintensities by MRI, our data provides important biochemical evidence supporting the use of MRI measures of white matter integrity in the diagnosis and management of FTD.
Collapse
Affiliation(s)
- Oana C Marian
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Jonathan D Teo
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Jun Yup Lee
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Huitong Song
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - John B Kwok
- School of Medical Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Ramon Landin-Romero
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Health Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Glenda Halliday
- School of Medical Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Anthony S Don
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
- School of Medical Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
12
|
Abstract
A subset of the neurodegenerative disease frontotemporal lobar degeneration (FTLD) is caused by mutations in the progranulin (GRN) gene. In this issue of the JCI, Marsan and colleagues demonstrate disease-specific transcriptional profiles in multiple glial cell lineages - astrocytes, microglia, and oligodendroglia - that are highly conserved between patients with FTLD-GRN and the widely used Grn-/- mouse model. Additionally, the authors show that Grn-/- astrocytes fail to adequately maintain synapses in both mouse and human models. This study presents a compelling argument for a central role for glia in neurodegeneration and creates a rich resource for extending mechanistic insight into pathophysiology, identifying potential biomarkers, and developing therapeutic approaches.
Collapse
Affiliation(s)
| | - Sami J. Barmada
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Bocchetta M, Todd EG, Bouzigues A, Cash DM, Nicholas JM, Convery RS, Russell LL, Thomas DL, Malone IB, Iglesias JE, van Swieten JC, Jiskoot LC, Seelaar H, Borroni B, Galimberti D, Sanchez-Valle R, Laforce R, Moreno F, Synofzik M, Graff C, Masellis M, Tartaglia MC, Rowe JB, Vandenberghe R, Finger E, Tagliavini F, de Mendonça A, Santana I, Butler CR, Ducharme S, Gerhard A, Danek A, Levin J, Otto M, Sorbi S, Le Ber I, Pasquier F, Rohrer JD. Structural MRI predicts clinical progression in presymptomatic genetic frontotemporal dementia: findings from the GENetic Frontotemporal dementia Initiative cohort. Brain Commun 2023; 5:fcad061. [PMID: 36970046 PMCID: PMC10036293 DOI: 10.1093/braincomms/fcad061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/22/2022] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Biomarkers that can predict disease progression in individuals with genetic frontotemporal dementia are urgently needed. We aimed to identify whether baseline MRI-based grey and white matter abnormalities are associated with different clinical progression profiles in presymptomatic mutation carriers in the GENetic Frontotemporal dementia Initiative. Three hundred eighty-seven mutation carriers were included (160 GRN, 160 C9orf72, 67 MAPT), together with 240 non-carrier cognitively normal controls. Cortical and subcortical grey matter volumes were generated using automated parcellation methods on volumetric 3T T1-weighted MRI scans, while white matter characteristics were estimated using diffusion tensor imaging. Mutation carriers were divided into two disease stages based on their global CDR®+NACC-FTLD score: presymptomatic (0 or 0.5) and fully symptomatic (1 or greater). The w-scores in each grey matter volumes and white matter diffusion measures were computed to quantify the degree of abnormality compared to controls for each presymptomatic carrier, adjusting for their age, sex, total intracranial volume, and scanner type. Presymptomatic carriers were classified as 'normal' or 'abnormal' based on whether their grey matter volume and white matter diffusion measure w-scores were above or below the cut point corresponding to the 10th percentile of the controls. We then compared the change in disease severity between baseline and one year later in both the 'normal' and 'abnormal' groups within each genetic subtype, as measured by the CDR®+NACC-FTLD sum-of-boxes score and revised Cambridge Behavioural Inventory total score. Overall, presymptomatic carriers with normal regional w-scores at baseline did not progress clinically as much as those with abnormal regional w-scores. Having abnormal grey or white matter measures at baseline was associated with a statistically significant increase in the CDR®+NACC-FTLD of up to 4 points in C9orf72 expansion carriers, and 5 points in the GRN group as well as a statistically significant increase in the revised Cambridge Behavioural Inventory of up to 11 points in MAPT, 10 points in GRN, and 8 points in C9orf72 mutation carriers. Baseline regional brain abnormalities on MRI in presymptomatic mutation carriers are associated with different profiles of clinical progression over time. These results may be helpful to inform stratification of participants in future trials.
Collapse
Affiliation(s)
- Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Centre for Cognitive and Clinical Neuroscience, Division of Psychology, Department of Life Sciences, Medicine and Life Sciences, College of Health, Brunel University London, London, United Kingdom
| | - Emily G Todd
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Arabella Bouzigues
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Jennifer M Nicholas
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Rhian S Convery
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - David L Thomas
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Ian B Malone
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Juan Eugenio Iglesias
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John C van Swieten
- Department of Neurology and Alzheimer center, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Lize C Jiskoot
- Department of Neurology and Alzheimer center, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Harro Seelaar
- Department of Neurology and Alzheimer center, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Raquel Sanchez-Valle
- Neurology Department, Hospital Clinic, Institut d’Investigacions Biomèdiques, Barcelona, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, Faculté de Médecine, Université Laval, Quebec City, QC, Canada
| | - Fermin Moreno
- Hospital Universitario Donostia, San Sebastian, Spain
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Caroline Graff
- Department NVS, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
- Unit for Hereditary Dementia, Theme Aging, Karolinska University Hospital-Solna Stockholm, Stockholm, Sweden
| | - Mario Masellis
- Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maria Carmela Tartaglia
- Toronto Western Hospital, Tanz Centre for Research in Neurodegenerative Disease, Toronto, ON, Canada
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust and Medical Research Council Cognition and brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Fabrizio Tagliavini
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Chris R Butler
- Department of Clinical Neurology, University of Oxford, Oxford, United Kingdom
| | - Simon Ducharme
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom
- Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Essen, Germany
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Germany
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Germany
- German Center for Neurodegenerative Diseases (DZNE), Germany
- Munich Cluster of Systems Neurology, Munich, Germany
| | - Markus Otto
- Department of Neurology, University Hospital Ulm, Ulm, Germany
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute—Institut du Cerveau– ICM, Inserm U1127, CNRS UMR 7225, AP-HP—Hôpital Pitié-Salpêtrière, Paris, France
- Centre deréférence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP—Hôpital Pitié-Salpêtrière, Paris, France
- Département de Neurologie, AP-HP—Hôpital Pitié-Salpêtrière, Paris, France
| | - Florence Pasquier
- University Lille, Lille, France
- Inserm 1172, Lille, France
- CHU, CNR-MAJ, Labex Distalz, LiCENDLille, Lille, France
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
14
|
Vítor J, Saracino D, Ströer S, Camuzat A, Dorgham K, Clot F, Martin-Hardy P, Pasquier F, Le Ber I. Atypical White Matter Hyperintensities Markedly Impact Plasma Neurofilament Light Chain Variability in GRN Patients. J Alzheimers Dis 2023; 94:1351-1360. [PMID: 37393503 DOI: 10.3233/jad-230315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
GRN mutations, causing frontotemporal dementia, can be associated with atypical white matter hyperintensities (WMH). We hypothesized that the presence of WMH may impact neurofilament light chain (NfL) levels, markers of neuroaxonal damage. We analyzed plasma NfL in 20 GRN patients and studied their association to visually-scored WMH burden. The 12 patients displaying atypical WMH had significantly higher NfL levels (98.4±34.9 pg/mL) than those without WMH (47.2±29.4 pg/mL, p = 0.003), independently from age, disease duration and Fazekas-Schmidt grade. NfL correlated with WMH burden (rho = 0.55, p = 0.01). This study prompts considering WMH burden as a variability factor when evaluating NfL levels in GRN patients.
Collapse
Affiliation(s)
- Joana Vítor
- Sorbonne Université, Paris Brain Institute, Institut du Cerveau, ICM, Inserm U1127, CNRS UMR 7225, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Dario Saracino
- Sorbonne Université, Paris Brain Institute, Institut du Cerveau, ICM, Inserm U1127, CNRS UMR 7225, APHP, Hôpital Pitié-Salpêtrière, Paris, France
- AP-HP, Reference Centre for Rare or Early onset Dementias, IM2A, Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Sebastian Ströer
- Department of Neuroradiology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Agnès Camuzat
- Sorbonne Université, Paris Brain Institute, Institut du Cerveau, ICM, Inserm U1127, CNRS UMR 7225, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Karim Dorgham
- Sorbonne Université, INSERM, Centred'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), Paris, France
| | - Fabienne Clot
- AP-HP.Sorbonne Université, Department of Genetics, UF of Molecular and Cellular Neurogenetics, Hôpital Pitié-Salpêtrière, Paris, France
| | - Philippe Martin-Hardy
- Sorbonne Université, Paris Brain Institute, Institut du Cerveau, ICM, Inserm U1127, CNRS UMR 7225, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Florence Pasquier
- Univ Lille, Inserm 1172 LilNCOG, CHU Lille, CNR-MAJ, DistAlz, LiCEND Lille, France
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute, Institut du Cerveau, ICM, Inserm U1127, CNRS UMR 7225, APHP, Hôpital Pitié-Salpêtrière, Paris, France
- AP-HP, Reference Centre for Rare or Early onset Dementias, IM2A, Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
15
|
Zetterberg H, Teunissen C, van Swieten J, Kuhle J, Boxer A, Rohrer JD, Mitic L, Nicholson AM, Pearlman R, McCaughey SM, Tatton N. The role of neurofilament light in genetic frontotemporal lobar degeneration. Brain Commun 2023; 5:fcac310. [PMID: 36694576 PMCID: PMC9866262 DOI: 10.1093/braincomms/fcac310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/26/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Genetic frontotemporal lobar degeneration caused by autosomal dominant gene mutations provides an opportunity for targeted drug development in a highly complex and clinically heterogeneous dementia. These neurodegenerative disorders can affect adults in their middle years, progress quickly relative to other dementias, are uniformly fatal and have no approved disease-modifying treatments. Frontotemporal dementia, caused by mutations in the GRN gene which encodes the protein progranulin, is an active area of interventional drug trials that are testing multiple strategies to restore progranulin protein deficiency. These and other trials are also examining neurofilament light as a potential biomarker of disease activity and disease progression and as a therapeutic endpoint based on the assumption that cerebrospinal fluid and blood neurofilament light levels are a surrogate for neuroaxonal damage. Reports from genetic frontotemporal dementia longitudinal studies indicate that elevated concentrations of blood neurofilament light reflect disease severity and are associated with faster brain atrophy. To better inform patient stratification and treatment response in current and upcoming clinical trials, a more nuanced interpretation of neurofilament light as a biomarker of neurodegeneration is now required, one that takes into account its relationship to other pathophysiological and topographic biomarkers of disease progression from early presymptomatic to later clinically symptomatic stages.
Collapse
Affiliation(s)
- Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden.,Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.,Dementia Research Institute, University College London, London, UK.,DRI Fluid Biomarker Laboratory, Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Charlotte Teunissen
- Department of Clinical Chemistry, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - John van Swieten
- Department of Neurology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jens Kuhle
- Department of Clinical Research, Department of Neurology, Department of Biomedicine, Multiple Sclerosis Centre, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Adam Boxer
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Jonathan D Rohrer
- Queen Square UCL Institute of Neurology, Dementia Research Centre, UK Dementia Research Institute, University College London, London, UK
| | - Laura Mitic
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA.,The Bluefield Project to Cure FTD, San Francisco, CA, USA
| | - Alexandra M Nicholson
- The Bluefield Project to Cure FTD, San Francisco, CA, USA.,Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | | | | | - Nadine Tatton
- Medical Affairs, Alector, Inc., South San Francisco, CA, USA
| |
Collapse
|
16
|
Lee H, Mackenzie IRA, Beg MF, Popuri K, Rademakers R, Wittenberg D, Hsiung GYR. White-matter abnormalities in presymptomatic GRN and C9orf72 mutation carriers. Brain Commun 2022; 5:fcac333. [PMID: 36632182 PMCID: PMC9825756 DOI: 10.1093/braincomms/fcac333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/26/2022] [Accepted: 12/18/2022] [Indexed: 12/23/2022] Open
Abstract
A large proportion of familial frontotemporal dementia is caused by TAR DNA-binding protein 43 (transactive response DNA-binding protein 43 kDa) proteinopathies. Accordingly, carriers of autosomal dominant mutations in the genes associated with TAR DNA-binding protein 43 aggregation, such as Chromosome 9 open reading frame 72 (C9orf72) or progranulin (GRN), are at risk of later developing frontotemporal dementia. Brain imaging abnormalities that develop before dementia onset in mutation carriers may serve as proxies for the presymptomatic stages of familial frontotemporal dementia due to a genetic cause. Our study objective was to investigate brain MRI-based white-matter changes in predementia participants carrying mutations in C9orf72 or GRN genes. We analysed mutation carriers and their family member controls (noncarriers) from the University of British Columbia familial frontotemporal dementia study. First, a total of 42 participants (8 GRN carriers; 11 C9orf72 carriers; 23 noncarriers) had longitudinal T1-weighted MRI over ∼2 years. White-matter signal hypointensities were segmented and volumes were calculated for each participant. General linear models were applied to compare the baseline burden and the annualized rate of accumulation of signal abnormalities among mutation carriers and noncarriers. Second, a total of 60 participants (9 GRN carriers; 17 C9orf72 carriers; 34 noncarriers) had cross-sectional diffusion tensor MRI available. For each participant, we calculated the average fractional anisotropy and mean, radial and axial diffusivity parameter values within the normal-appearing white-matter tissues. General linear models were applied to compare whether mutation carriers and noncarriers had different trends in diffusion tensor imaging parameter values as they neared the expected age of onset. Baseline volumes of white-matter signal abnormalities were not significantly different among mutation carriers and noncarriers. Longitudinally, GRN carriers had significantly higher annualized rates of accumulation (estimated mean: 15.87%/year) compared with C9orf72 carriers (3.69%/year) or noncarriers (2.64%/year). A significant relationship between diffusion tensor imaging parameter values and increasing expected age of onset was found in the periventricular normal-appearing white-matter region. Specifically, GRN carriers had a tendency of a faster increase of mean and radial diffusivity values and C9orf72 carriers had a tendency of a faster decline of fractional anisotropy values as they reached closer to the expected age of dementia onset. These findings suggest that white-matter changes may represent early markers of familial frontotemporal dementia due to genetic causes. However, GRN and C9orf72 mutation carriers may have different mechanisms leading to tissue abnormalities.
Collapse
Affiliation(s)
- Hyunwoo Lee
- Correspondence to: Hyunwoo Lee S154-2211 Wesbrook Mall Vancouver, B.C., Canada V6T 2B5 E-mail:
| | - Ian R A Mackenzie
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver V6T2B5, Canada
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby V5A1S6, Canada
| | - Karteek Popuri
- Department of Computer Science, Memorial University of Newfoundland, St John’s A1B3X5, Canada
| | - Rosa Rademakers
- Applied and Translational Neurogenomics, VIB Center for Molecular Neurology, VIB, Antwerp 2610, Belgium,Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium,Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dana Wittenberg
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver V6T2B5, Canada
| | - Ging-Yuek Robin Hsiung
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver V6T2B5, Canada
| |
Collapse
|
17
|
Woollacott IOC, Swift IJ, Sogorb‐Esteve A, Heller C, Knowles K, Bouzigues A, Russell LL, Peakman G, Greaves CV, Convery R, Heslegrave A, Rowe JB, Borroni B, Galimberti D, Tiraboschi P, Masellis M, Tartaglia MC, Finger E, van Swieten JC, Seelaar H, Jiskoot L, Sorbi S, Butler CR, Graff C, Gerhard A, Laforce R, Sanchez‐Valle R, de Mendonça A, Moreno F, Synofzik M, Vandenberghe R, Ducharme S, Ber IL, Levin J, Otto M, Pasquier F, Santana I, Zetterberg H, Rohrer JD. CSF glial markers are elevated in a subset of patients with genetic frontotemporal dementia. Ann Clin Transl Neurol 2022; 9:1764-1777. [PMID: 36245297 PMCID: PMC9639635 DOI: 10.1002/acn3.51672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Neuroinflammation has been shown to be an important pathophysiological disease mechanism in frontotemporal dementia (FTD). This includes activation of microglia, a process that can be measured in life through assaying different glia-derived biomarkers in cerebrospinal fluid. However, only a few studies so far have taken place in FTD, and even fewer focusing on the genetic forms of FTD. METHODS We investigated the cerebrospinal fluid concentrations of TREM2, YKL-40 and chitotriosidase using immunoassays in 183 participants from the Genetic FTD Initiative (GENFI) study: 49 C9orf72 (36 presymptomatic, 13 symptomatic), 49 GRN (37 presymptomatic, 12 symptomatic) and 23 MAPT (16 presymptomatic, 7 symptomatic) mutation carriers and 62 mutation-negative controls. Concentrations were compared between groups using a linear regression model adjusting for age and sex, with 95% bias-corrected bootstrapped confidence intervals. Concentrations in each group were correlated with the Mini-Mental State Examination (MMSE) score using non-parametric partial correlations adjusting for age. Age-adjusted z-scores were also created for the concentration of markers in each participant, investigating how many had a value above the 95th percentile of controls. RESULTS Only chitotriosidase in symptomatic GRN mutation carriers had a concentration significantly higher than controls. No group had higher TREM2 or YKL-40 concentrations than controls after adjusting for age and sex. There was a significant negative correlation of chitotriosidase concentration with MMSE in presymptomatic GRN mutation carriers. In the symptomatic groups, for TREM2 31% of C9orf72, 25% of GRN, and 14% of MAPT mutation carriers had a concentration above the 95th percentile of controls. For YKL-40 this was 8% C9orf72, 8% GRN and 0% MAPT mutation carriers, whilst for chitotriosidase it was 23% C9orf72, 50% GRN, and 29% MAPT mutation carriers. CONCLUSIONS Although chitotriosidase concentrations in GRN mutation carriers were the only significantly raised glia-derived biomarker as a group, a subset of mutation carriers in all three groups, particularly for chitotriosidase and TREM2, had elevated concentrations. Further work is required to understand the variability in concentrations and the extent of neuroinflammation across the genetic forms of FTD. However, the current findings suggest limited utility of these measures in forthcoming trials.
Collapse
Affiliation(s)
- Ione O. C. Woollacott
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
| | - Imogen J. Swift
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | - Aitana Sogorb‐Esteve
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | - Carolin Heller
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | - Kathryn Knowles
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | - Arabella Bouzigues
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
| | - Lucy L. Russell
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
| | - Georgia Peakman
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
| | - Caroline V. Greaves
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
| | - Rhian Convery
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
| | | | - James B. Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust and Medical Research Council Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUnited Kingdom
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanMilanItaly
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore PoliclinicoMilanItaly
| | | | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research InstituteUniversity of TorontoTorontoCanada
| | | | - Elizabeth Finger
- Department of Clinical Neurological SciencesUniversity of Western OntarioLondonOntarioCanada
| | | | - Harro Seelaar
- Department of NeurologyErasmus Medical CentreRotterdamThe Netherlands
| | - Lize Jiskoot
- Department of NeurologyErasmus Medical CentreRotterdamThe Netherlands
| | - Sandro Sorbi
- Department of NeurofarbaUniversity of FlorenceFlorenceItaly
- IRCCS Fondazione Don Carlo GnocchiFlorenceItaly
| | - Chris R. Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences DivisionUniversity of OxfordOxfordUnited Kingdom
- Department of Brain SciencesImperial College LondonUnited Kingdom
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of NeurobiologyCare Sciences and Society, Bioclinicum, Karolinska InstitutetSolnaSweden
- Unit for Hereditary Dementias, Theme AgingKarolinska University HospitalSolnaSweden
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging CentreUniversity of ManchesterManchesterUnited Kingdom
- Departments of Geriatric Medicine and Nuclear MedicineUniversity of Duisburg‐EssenEssenGermany
- Cerebral Function Unit, Manchester Centre for Clinical NeurosciencesSalford Royal NHS Foundation TrustSalfordUnited Kingdom
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de MédecineUniversité LavalQuébecCanada
| | - Raquel Sanchez‐Valle
- Alzheimer's disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I SunyerUniversity of BarcelonaBarcelonaSpain
| | | | - Fermin Moreno
- Cognitive Disorders Unit, Department of NeurologyDonostia University HospitalSan SebastianGipuzkoaSpain
- Neuroscience AreaBiodonostia Health Research InstituteSan SebastianGipuzkoaSpain
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie‐Institute for Clinical Brain Research and Center of NeurologyUniversity of TübingenTübingenGermany
- Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Neurology ServiceUniversity Hospitals LeuvenLeuvenBelgium
- Leuven Brain Institute, KU LeuvenLeuvenBelgium
| | - Simon Ducharme
- Douglas Mental Health University Institute, Department of PsychiatryMcGill UniversityMontrealCanada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Department of Neurology & NeurosurgeryMcGill UniversityMontrealCanada
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute – Institut du Cerveau – ICM, Inserm U1127, CNRS UMR 7225, AP‐HP ‐ Hôpital Pitié‐SalpêtrièreParisFrance
- Centre de référence des démences rares ou précoces, IM2A, Département de NeurologieAP‐HP ‐ Hôpital Pitié‐SalpêtrièreParisFrance
- Département de NeurologieAP‐HP ‐ Hôpital Pitié‐SalpêtrièreParisFrance
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig‐Maximilians‐UniversitätMunichGermany
- Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Munich Cluster of Systems NeurologyMunichGermany
| | - Markus Otto
- Department of NeurologyUniversity of UlmUlmGermany
| | - Florence Pasquier
- Univ LilleLilleFrance
- Inserm 1172LilleFrance
- CHU, CNR‐MAJ, Labex Distalz, LiCEND LilleLilleFrance
| | - Isabel Santana
- Neurology Service, Faculty of MedicineUniversity Hospital of Coimbra (HUC), University of CoimbraCoimbraPortugal
- Center for Neuroscience and Cell Biology, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
| | - Henrik Zetterberg
- UK Dementia Research Institute at UCLLondonUnited Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Hong Kong Center for Neurodegenerative DiseasesClear Water Bay, Hong KongChina
| | - Jonathan D. Rohrer
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of Neurology, Queen SquareLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | | |
Collapse
|
18
|
Li P, Quan W, Wang Z, Liu Y, Cai H, Chen Y, Wang Y, Zhang M, Tian Z, Zhang H, Zhou Y. Early-stage differentiation between Alzheimer's disease and frontotemporal lobe degeneration: Clinical, neuropsychology, and neuroimaging features. Front Aging Neurosci 2022; 14:981451. [PMID: 36389060 PMCID: PMC9659748 DOI: 10.3389/fnagi.2022.981451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) are the two most common forms of neurodegenerative dementia. Although both of them have well-established diagnostic criteria, achieving early diagnosis remains challenging. Here, we aimed to make the differential diagnosis of AD and FTLD from clinical, neuropsychological, and neuroimaging features. MATERIALS AND METHODS In this retrospective study, we selected 95 patients with PET-CT defined AD and 106 patients with PET-CT/biomarker-defined FTLD. We performed structured chart examination to collect clinical data and ascertain clinical features. A series of neuropsychological scales were used to assess the neuropsychological characteristics of patients. Automatic tissue segmentation of brain by Dr. Brain tool was used to collect multi-parameter volumetric measurements from different brain areas. All patients' structural neuroimage data were analyzed to obtain brain structure and white matter hyperintensities (WMH) quantitative data. RESULTS The prevalence of vascular disease associated factors was higher in AD patients than that in FTLD group. 56.84% of patients with AD carried at least one APOE ε4 allele, which is much high than that in FTLD patients. The first symptoms of AD patients were mostly cognitive impairment rather than behavioral abnormalities. In contrast, behavioral abnormalities were the prominent early manifestations of FTLD, and few patients may be accompanied by memory impairment and motor symptoms. In direct comparison, patients with AD had slightly more posterior lesions and less frontal atrophy, whereas patients with FTLD had more frontotemporal atrophy and less posterior lesions. The WMH burden of AD was significantly higher, especially in cortical areas, while the WMH burden of FTLD was higher in periventricular areas. CONCLUSION These results indicate that dynamic evaluation of cognitive function, behavioral and psychological symptoms, and multimodal neuroimaging are helpful for the early diagnosis and differentiation between AD and FTLD.
Collapse
Affiliation(s)
- Pan Li
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Wei Quan
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Zengguang Wang
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Ying Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Hao Cai
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Yuan Chen
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Yan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Miao Zhang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhiyan Tian
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Huihong Zhang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
19
|
McKenna MC, Lope J, Tan EL, Bede P. Pre-symptomatic radiological changes in frontotemporal dementia: propagation characteristics, predictive value and implications for clinical trials. Brain Imaging Behav 2022; 16:2755-2767. [PMID: 35920960 DOI: 10.1007/s11682-022-00711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
Abstract
Computational imaging and quantitative biomarkers offer invaluable insights in the pre-symptomatic phase of neurodegenerative conditions several years before clinical manifestation. In recent years, there has been a focused effort to characterize pre-symptomatic cerebral changes in familial frontotemporal dementias using computational imaging. Accordingly, a systematic literature review was conducted of original articles investigating pre-symptomatic imaging changes in frontotemporal dementia focusing on study design, imaging modalities, data interpretation, control cohorts and key findings. The review is limited to the most common genotypes: chromosome 9 open reading frame 72 (C9orf72), progranulin (GRN), or microtubule-associated protein tau (MAPT) genotypes. Sixty-eight studies were identified with a median sample size of 15 (3-141) per genotype. Only a minority of studies were longitudinal (28%; 19/68) with a median follow-up of 2 (1-8) years. MRI (97%; 66/68) was the most common imaging modality, and primarily grey matter analyses were conducted (75%; 19/68). Some studies used multimodal analyses 44% (30/68). Genotype-associated imaging signatures are presented, innovative study designs are highlighted, common methodological shortcomings are discussed and lessons for future studies are outlined. Emerging academic observations have potential clinical implications for expediting the diagnosis, tracking disease progression and optimising the timing of pharmaceutical trials.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Ireland. .,Department of Neurology, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
20
|
Toller G, Cobigo Y, Ljubenkov PA, Appleby BS, Dickerson BC, Domoto-Reilly K, Fong JC, Forsberg LK, Gavrilova RH, Ghoshal N, Heuer HW, Knopman DS, Kornak J, Lapid MI, Litvan I, Lucente DE, Mackenzie IR, McGinnis SM, Miller BL, Pedraza O, Rojas JC, Staffaroni AM, Wong B, Wszolek ZK, Boeve BF, Boxer AL, Rosen HJ, Rankin KP. Sensitivity of the Social Behavior Observer Checklist to Early Symptoms of Patients With Frontotemporal Dementia. Neurology 2022; 99:e488-e499. [PMID: 35584922 PMCID: PMC9421596 DOI: 10.1212/wnl.0000000000200582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 03/08/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Changes in social behavior are common symptoms of frontotemporal lobar degeneration (FTLD) and Alzheimer disease syndromes. For early identification of individual patients and differential diagnosis, sensitive clinical measures are required that are able to assess patterns of behaviors and detect syndromic differences in both asymptomatic and symptomatic stages. We investigated whether the examiner-based Social Behavior Observer Checklist (SBOCL) is sensitive to early behavior changes and reflects disease severity within and between neurodegenerative syndromes. METHODS Asymptomatic individuals and patients with neurodegenerative disease were selected from the multisite ALLFTD cohort study. In a sample of participants with at least 1 time point of SBOCL data, we investigated whether the Disorganized, Reactive, and Insensitive subscales of the SBOCL change as a function of disease stage within and between these syndromes. In a longitudinal subsample with both SBOCL and neuroimaging data, we examined whether change over time on each subscale corresponds to progressive gray matter atrophy. RESULTS A total of 1,082 FTLD pathogenic variant carriers and noncarriers were enrolled (282 asymptomatic, 341 behavioral variant frontotemporal dementia, 114 semantic and 95 nonfluent variant primary progressive aphasia, 137 progressive supranuclear palsy, and 113 Alzheimer disease syndrome). The Disorganized score increased between asymptomatic to very mild (p = 0.016, estimate = -1.10, 95% CI = -1.99 to -0.22), very mild to mild (p = 0.013, estimate = -1.17, 95% CI = -2.08 to -0.26), and mild to moderate/severe (p < 0.001, estimate = -2.00, 95% CI = -2.55 to -1.45) disease stages in behavioral variant frontotemporal dementia regardless of pathogenic variant status. Asymptomatic GRN pathogenic gene variant carriers showed more reactive behaviors (preoccupation with time: p = 0.001, estimate = 1.11, 95% CI = 1.06 to 1.16; self-consciousness: p = 0.003, estimate = 1.77, 95% CI = 1.52 to 2.01) than asymptomatic noncarriers (estimate = 1.01, 95% CI = 0.98 to 1.03; estimate = 1.31, 95% CI = 1.20 to 1.41). The Insensitive score increased to a clinically abnormal level in advanced stages of behavioral variant frontotemporal dementia (p = 0.003, estimate = -0.73, 95% CI = -1.18 to -0.29). Higher scores on each subscale corresponded with higher caregiver burden (p < 0.001). Greater change over time corresponded to greater fronto-subcortical atrophy in the semantic-appraisal and fronto-parietal intrinsically connected networks. DISCUSSION The SBOCL is sensitive to early symptoms and reflects disease severity, with some evidence for progression across asymptomatic and symptomatic stages of FTLD syndromes; thus, it may hold promise for early measurement and monitoring of behavioral symptoms in clinical practice and treatment trials. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that the SBOCL is sensitive to early behavioral changes in FTLD pathogenic variants and early symptomatic individuals in a highly educated patient cohort.
Collapse
Affiliation(s)
- Gianina Toller
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL.
| | - Yann Cobigo
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Peter A Ljubenkov
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Brian S Appleby
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Bradford C Dickerson
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Kimiko Domoto-Reilly
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Jamie C Fong
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Leah K Forsberg
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Ralitza H Gavrilova
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Nupur Ghoshal
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Hilary W Heuer
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - David S Knopman
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - John Kornak
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Maria I Lapid
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Irene Litvan
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Diane E Lucente
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Ian R Mackenzie
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Scott M McGinnis
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Bruce L Miller
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Otto Pedraza
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Julio C Rojas
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Adam M Staffaroni
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Bonnie Wong
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Zbigniew K Wszolek
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Brad F Boeve
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Adam L Boxer
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Howard J Rosen
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| | - Katherine P Rankin
- From the Department of Neurology (G.T., Y.C., P.A.L., J.C.F., H.W.H., B.L.M., J.C.R., A.M.S., A.L.B., H.J.R., K.P.R.), Memory and Aging Center, University of California, San Francisco; Department of Neurology (B.S.A.), Case Western Reserve University, Cleveland, OH; Frontotemporal Disorders Unit (B.C.D., D.E.L., S.M.M., B.W.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (K.D.-R.), University of Washington, Seattle; Department of Neurology (L.K.F., R.H.G., D.S.K., B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (N.G.), Washington University, St. Louis, MO; Department of Epidemiology and Biostatistics (J.K.), University of California, San Francisco; Department of Psychiatry and Psychology (M.I.L.), Mayo Clinic, Rochester, MN; Department of Neurology (I.L.), Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Departments of Psychiatry and Psychology (O.P.), and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL
| |
Collapse
|
21
|
Bruffaerts R, Gors D, Bárcenas Gallardo A, Vandenbulcke M, Van Damme P, Suetens P, van Swieten JC, Borroni B, Sanchez-Valle R, Moreno F, Laforce R, Graff C, Synofzik M, Galimberti D, Rowe JB, Masellis M, Tartaglia MC, Finger E, de Mendonça A, Tagliavini F, Butler CR, Santana I, Gerhard A, Ducharme S, Levin J, Danek A, Otto M, Rohrer JD, Dupont P, Claes P, Vandenberghe R. Hierarchical spectral clustering reveals brain size and shape changes in asymptomatic carriers of C9orf72. Brain Commun 2022; 4:fcac182. [PMID: 35898720 PMCID: PMC9311825 DOI: 10.1093/braincomms/fcac182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 03/17/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional methods for detecting asymptomatic brain changes in neurodegenerative diseases such as Alzheimer's disease or frontotemporal degeneration typically evaluate changes in volume at a predefined level of granularity, e.g. voxel-wise or in a priori defined cortical volumes of interest. Here, we apply a method based on hierarchical spectral clustering, a graph-based partitioning technique. Our method uses multiple levels of segmentation for detecting changes in a data-driven, unbiased, comprehensive manner within a standard statistical framework. Furthermore, spectral clustering allows for detection of changes in shape along with changes in size. We performed tensor-based morphometry to detect changes in the Genetic Frontotemporal dementia Initiative asymptomatic and symptomatic frontotemporal degeneration mutation carriers using hierarchical spectral clustering and compared the outcome to that obtained with a more conventional voxel-wise tensor- and voxel-based morphometric analysis. In the symptomatic groups, the hierarchical spectral clustering-based method yielded results that were largely in line with those obtained with the voxel-wise approach. In asymptomatic C9orf72 expansion carriers, spectral clustering detected changes in size in medial temporal cortex that voxel-wise methods could only detect in the symptomatic phase. Furthermore, in the asymptomatic and the symptomatic phases, the spectral clustering approach detected changes in shape in the premotor cortex in C9orf72. In summary, the present study shows the merit of hierarchical spectral clustering for data-driven segmentation and detection of structural changes in the symptomatic and asymptomatic stages of monogenic frontotemporal degeneration.
Collapse
Affiliation(s)
- Rose Bruffaerts
- Laboratory for Cognitive Neurology, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
- Computational Neurology, Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
- Biomedical Research Institute, Hasselt University, Hasselt 3590, Belgium
| | - Dorothy Gors
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven 3000, Belgium
- Medical Imaging Research Center, KU Leuven, Leuven 3000, Belgium
| | | | | | - Philip Van Damme
- Department of Neurosciences, KU Leuven—University of Leuven, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Paul Suetens
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven 3000, Belgium
- Medical Imaging Research Center, KU Leuven, Leuven 3000, Belgium
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Centre, Rotterdam 3015, Netherlands
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25121, Italy
| | - Raquel Sanchez-Valle
- Alzheimer’s disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Institut d’Investigacions Biomediques August Pi I Sunyer, University of Barcelona, Barcelona 08036, Spain
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa 20014, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, QC G1Z 1J4, Canada
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna 17176, Sweden
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen 72076, Germany
| | - Daniela Galimberti
- Fondazione IRCCS Ospedale Policlinico, Neurodegenerative Diseases Unit, Milan 20122, Italy
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, University of Milan, Milan 20122, Italy
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto M4N 3M5, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto M4N 3M5, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | | | - Fabrizio Tagliavini
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Neurodegenerative Diseases Unit, Milano 20133, Italy
| | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK
| | - Isabel Santana
- University Hospital of Coimbra (HUC), Neurology Service, Faculty of Medicine, University of Coimbra, Coimbra 3004, Portugal
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester M20 3LJ, UK
- Department of Geriatric Medicine, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen 45147, Germany
- Department of Nuclear Medicine, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen 45147, Germany
| | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Quebec 3801, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montreal 3801, Canada
| | - Johannes Levin
- Neurologische Klinik, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Adrian Danek
- Neurologische Klinik, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm 89081, Germany
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Peter Claes
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven 3000, Belgium
- Medical Imaging Research Center, KU Leuven, Leuven 3000, Belgium
- Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
- Department of Paediatrics, Murdoch Children’s Research Institute, Melbourne, Victoria 3052, Australia
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
- Neurology Department, University Hospitals Leuven, Leuven 3000, Belgium
| |
Collapse
|
22
|
Swanson RL, Acharya NK, Cifu DX. Cerebral Microvascular Pathology Is a Common Endophenotype Between Traumatic Brain Injury, Cardiovascular Disease, and Dementia: A Hypothesis and Review. Cureus 2022; 14:e25318. [PMID: 35774720 PMCID: PMC9236636 DOI: 10.7759/cureus.25318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/05/2022] Open
Abstract
Traumatic brain injury (TBI) exposure has been associated with an increased risk of age-related cognitive decline or dementia in multiple epidemiological studies. Current therapeutic interventions in the field of Brain Injury Medicine focus largely on episodic symptom management during the chronic phase of TBI recovery, rather than targeting specific underlying pathological processes. This approach may be especially problematic for secondary age-related cognitive decline or dementia following TBI exposure. Although there are likely multiple pathophysiological mechanisms involved, a growing body of literature demonstrates that cerebral microvascular pathology is a common endophenotype across the spectrum of TBI severity. Similarly, a combination of pre-clinical and clinical research over the past two decades has implicated cerebral microvascular pathology in the initiation and progression of multiple neurodegenerative diseases, including Alzheimer’s disease and other dementias. We hypothesize that cerebral microvascular pathology is a common endophenotype between TBI, cardiovascular disease (CVD), and dementia, which can be targeted through modifiable cardiovascular risk factor reductions during the chronic phase of TBI recovery. We posit that our hypothesis is supported by the currently available scientific literature, as detailed in our review.
Collapse
|
23
|
Shafiei G, Bazinet V, Dadar M, Manera AL, Collins DL, Dagher A, Borroni B, Sanchez-Valle R, Moreno F, Laforce R, Graff C, Synofzik M, Galimberti D, Rowe JB, Masellis M, Tartaglia MC, Finger E, Vandenberghe R, de Mendonça A, Tagliavini F, Santana I, Butler C, Gerhard A, Danek A, Levin J, Otto M, Sorbi S, Jiskoot LC, Seelaar H, van Swieten JC, Rohrer JD, Misic B, Ducharme S. Network structure and transcriptomic vulnerability shape atrophy in frontotemporal dementia. Brain 2022; 146:321-336. [PMID: 35188955 PMCID: PMC9825569 DOI: 10.1093/brain/awac069] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/14/2021] [Accepted: 01/30/2022] [Indexed: 01/13/2023] Open
Abstract
Connections among brain regions allow pathological perturbations to spread from a single source region to multiple regions. Patterns of neurodegeneration in multiple diseases, including behavioural variant of frontotemporal dementia (bvFTD), resemble the large-scale functional systems, but how bvFTD-related atrophy patterns relate to structural network organization remains unknown. Here we investigate whether neurodegeneration patterns in sporadic and genetic bvFTD are conditioned by connectome architecture. Regional atrophy patterns were estimated in both genetic bvFTD (75 patients, 247 controls) and sporadic bvFTD (70 patients, 123 controls). First, we identified distributed atrophy patterns in bvFTD, mainly targeting areas associated with the limbic intrinsic network and insular cytoarchitectonic class. Regional atrophy was significantly correlated with atrophy of structurally- and functionally-connected neighbours, demonstrating that network structure shapes atrophy patterns. The anterior insula was identified as the predominant group epicentre of brain atrophy using data-driven and simulation-based methods, with some secondary regions in frontal ventromedial and antero-medial temporal areas. We found that FTD-related genes, namely C9orf72 and TARDBP, confer local transcriptomic vulnerability to the disease, modulating the propagation of pathology through the connectome. Collectively, our results demonstrate that atrophy patterns in sporadic and genetic bvFTD are jointly shaped by global connectome architecture and local transcriptomic vulnerability, providing an explanation as to how heterogenous pathological entities can lead to the same clinical syndrome.
Collapse
Affiliation(s)
| | | | - Mahsa Dadar
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada,Radiology and Nuclear Medicine, Laval University, Quebec City, QC, Canada
| | - Ana L Manera
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - D Louis Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Raquel Sanchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d’Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa, Spain,Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Caroline Graff
- Department of Geriatric Medicine, Karolinska University Hospital-Huddinge, Stockholm, Sweden,Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany,Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Daniela Galimberti
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Dino Ferrari Center, Milan, Italy
| | - James B Rowe
- University of Cambridge, Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, and MRC Cognition and Brain Sciences Unit, Cambridge, UK
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Maria Carmela Tartaglia
- Toronto Western Hospital, Tanz Centre for Research in Neurodegenerative Disease, Toronto, ON, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium,Neurology Service, University Hospitals Leuven, Leuven, Belgium,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | - Fabrizio Tagliavini
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal,Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Chris Butler
- Department of Clinical Neurology, University of Oxford, Oxford, UK,Department of Brain Sciences, Imperial College London, London, UK
| | - Alex Gerhard
- Division of Neuroscience and Experimental Psychology, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK,Department of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Duisburg and Essen, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany,Clinical Research Unit, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Markus Otto
- Department of Neurology, University Hospital Ulm, Ulm, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Florence, Italy,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Lize C Jiskoot
- Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - John C van Swieten
- Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Bratislav Misic
- Correspondence to: Bratislav Misic 3801 Rue University Webster 211, Montreal QC H3A 2B4, Canada E-mail:
| | | | | | | |
Collapse
|
24
|
Li JY, Cai ZY, Sun XH, Shen DC, Yang XZ, Liu MS, Cui LY. Blood-brain barrier dysfunction and myelin basic protein in survival of amyotrophic lateral sclerosis with or without frontotemporal dementia. Neurol Sci 2021; 43:3201-3210. [PMID: 34826032 DOI: 10.1007/s10072-021-05731-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We aim to investigate blood-brain barrier (BBB) dysfunction and myelin basic protein (MBP) in amyotrophic lateral sclerosis (ALS) with or without frontotemporal dementia (FTD) and further determine the effect of these factors on the survival of ALS. METHODS This was a retrospective study of 113 ALS patients, 12 ALS-FTD patients, and 40 disease controls hospitalized between September 2013 and October 2020. CSF parameters including total protein (TP), albumin (Alb), immunoglobulin-G (IgG), and MBP were collected and compared between groups. The CSF-TP, CSF-Alb, CSF-IgG, and CSF/serum quotients of Alb and IgG (QAlb, QIgG) were used to reflect the BBB status. Patients were followed up until December 2020. Cox regression and Kaplan-Meier method were used for survival analysis. RESULTS The CSF-TP, CSF-Alb, and CSF-IgG concentrations were significantly higher in patients than controls (p < 0.01). Increased CSF-TP and CSF-IgG was found in 45 (39.8%) and 27 (23.9%) ALS patients, while in 7 (58.3%) and 5 (41.7%) ALS-FTD patients. The level of CSF-Alb, CSF-IgG, and CSF-MBP were significantly higher in patients with ALS-FTD than ALS. MBP showed a moderate accuracy in the distinction between ALS-FTD and ALS (AUC = 0.715 ± 0.101). No difference in MBP was found between patients and controls. Kaplan-Meier analysis indicated that a higher CSF-TP, CSF-IgG, QIgG, or QAlb was significantly associated with shorter survival. Cox regression model showed that CSF-TP, CSF-IgG, and QIgG were independent predictors of survival. CONCLUSION Our findings suggested that BBB dysfunction was more prominent in ALS-FTD than ALS and associated with a worse prognosis. Further studies are needed to determine the role of CSF-MBP as a biomarker in ALS.
Collapse
Affiliation(s)
- Jin-Yue Li
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Zheng-Yi Cai
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xiao-Han Sun
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Dong-Chao Shen
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xun-Zhe Yang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Ming-Sheng Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Li-Ying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
25
|
Dominguez J, Ng A, Yu J, Guevarra AC, Daroy ML, Alfon A, Catindig JA, Dizon M, Santiago J, Del Moral MC, Yu J, Jamerlan A, Ligsay A, Bagyinszky E, An SS, Kim S. Autosomal Dominant Frontotemporal Lobar Degeneration in a Filipino Family with Progranulin Mutation. Dement Geriatr Cogn Disord 2021; 49:557-564. [PMID: 33486486 DOI: 10.1159/000510106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/10/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Compared to Western populations, familial frontotemporal lobar degeneration (FTLD) is rare among Asians. Progranulin (GRN) gene mutation, which is a major cause of FTLD, is likewise rare. We present a family with FTLD from the Philippines with an autosomal dominant pattern of inheritance and GRN mutation and briefly review reports of GRN mutations in Asia. CASE PRESENTATION The proband is 66 years old with progressive nonfluent aphasia (PNFA)-corticobasal syndrome . We assessed 3 generations of her pedigree and found 11 affected relatives with heterogenous phenotypes, usually behavioral variant frontotemporal dementia (FTD) and PNFA. Neuroimaging showed atrophy and hypometabolism consistent with FTD syndromes. White matter hyperintensities were seen in affected members even in the absence of vascular risk factors. A GRN mutation R110X was found in 6 members, 3 with symptoms and 3 were asymptomatic. Plasma GRN was low (<112 ng/mL) in all mutation carriers. No mutations were found in microtubule-associated protein tau, APP, PSEN1, and PSEN2 genes, and all were APOE3. CONCLUSION This is the first Filipino family with autosomal dominant FTD documented with GRN mutation. Identifying families and cohorts would contribute to therapeutic developments in an area with FTD-GRN.
Collapse
Affiliation(s)
- Jacqueline Dominguez
- Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines,
| | - Arlene Ng
- Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines
| | - Jeryl Yu
- Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines
| | - Anne Cristine Guevarra
- Research and Biotechnology Division, St. Luke's Medical Center, Quezon City, Philippines
| | - Maria Luisa Daroy
- Research and Biotechnology Division, St. Luke's Medical Center, Quezon City, Philippines
| | - Alicia Alfon
- Research and Biotechnology Division, St. Luke's Medical Center, Quezon City, Philippines
| | - Joseree-Ann Catindig
- Memory Center-Institute for Neurosciences, St. Luke's Medical Center, Taguig City, Philippines
| | - Mercedes Dizon
- Institute of Radiology, St. Luke's Medical Center, Quezon City, Philippines
| | - Jonas Santiago
- PET Center, St. Luke's Medical Center, Quezon City, Philippines
| | | | - Justine Yu
- Memory Center-Institute for Neurosciences, St. Luke's Medical Center, Taguig City, Philippines
| | - Angelo Jamerlan
- Department of Bionano Technology, Gachon University, Seongnam, Republic of Korea
| | - Antonio Ligsay
- Section of Clinical Research, St. Luke's Medical Center - College of Medicine, Quezon City, Philippines
| | - Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Gachon University, Seongnam, Republic of Korea
| | - Seong Soo An
- Department of Bionano Technology, Gachon University, Seongnam, Republic of Korea
| | - Sangyun Kim
- Department of Neurology, Seoul National University College of Medicine & Neurocognitive Behavior Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
26
|
Anastassiadis C, Vasilevskaya A, Gumus M, Santos A, Tartaglia MC. Fluid biomarkers of white matter hyperintensities in cerebrovascular disease and neurodegeneration: a systematic review protocol. JBI Evid Synth 2021; 19:2464-2473. [PMID: 33993148 DOI: 10.11124/jbies-20-00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The goal of this systematic review is to evaluate the association between fluid biomarkers and white matter hyperintensities (WMH) in cerebrovascular disease and neurodegenerative disorders. While previous research has examined the etiology of WMH in specific diseases, we propose a comprehensive framework encompassing WMH of both vascular and non-vascular origin. INTRODUCTION Although WMH have been mostly described in aging populations with cerebrovascular disease, extensive lesions also occur in non-vascular diseases. Such lesions are traditionally treated as a separate pathological entity from vascular ones, but recent work has challenged the appropriateness of that framework when probing WMH etiology. Comparing biomarkers associated with WMH across various pathologies may improve our understanding of their etiology. INCLUSION CRITERIA The review will focus on cerebrovascular disease and neurodegenerative disorders and exclude infectious, metabolic, drug-induced, or radiation-induced white matter diseases. Original, peer-reviewed research on the relationship of WMH on magnetic resonance imaging with blood/cerebrospinal fluid biomarkers will be considered for inclusion. Postmortem studies will guide the selection of biomarkers of interest and the interpretation of our findings. Genomic markers will be excluded. METHODS The review will be conducted in accordance with PRISMA and JBI guidelines. English articles of interest published between 2000 and 2020 will be identified in MEDLINE and Embase. Two reviewers will perform abstract and full-text screening, standardized data extraction, and quality assessments of the selected studies. The relationship between each biomarker and WMH burden will be meta-analyzed, if possible, with subgroup or meta-regression analyses to assess differences between diseases. SYSTEMATIC REVIEW REGISTRATION NUMBER PROSPERO CRD42020218298.
Collapse
Affiliation(s)
- Chloe Anastassiadis
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Tanz Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Anna Vasilevskaya
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Tanz Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Memory Clinic, Division of Neurology, University Health Network (UHN), Toronto, ON, Canada
| | - Melisa Gumus
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Tanz Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Alexandra Santos
- Tanz Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Maria Carmela Tartaglia
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Tanz Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Memory Clinic, Division of Neurology, University Health Network (UHN), Toronto, ON, Canada.,Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, UHN, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Wu Y, Shao W, Todd TW, Tong J, Yue M, Koga S, Castanedes-Casey M, Librero AL, Lee CW, Mackenzie IR, Dickson DW, Zhang YJ, Petrucelli L, Prudencio M. Microglial lysosome dysfunction contributes to white matter pathology and TDP-43 proteinopathy in GRN-associated FTD. Cell Rep 2021; 36:109581. [PMID: 34433069 PMCID: PMC8491969 DOI: 10.1016/j.celrep.2021.109581] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/07/2021] [Accepted: 07/29/2021] [Indexed: 11/04/2022] Open
Abstract
Loss-of-function mutations in the progranulin gene (GRN), which encodes progranulin (PGRN), are a major cause of frontotemporal dementia (FTD). GRN-associated FTD is characterized by TDP-43 inclusions and neuroinflammation, but how PGRN loss causes disease remains elusive. We show that Grn knockout (KO) mice have increased microgliosis in white matter and an accumulation of myelin debris in microglial lysosomes in the same regions. Accumulation of myelin debris is also observed in white matter of patients with GRN-associated FTD. In addition, our findings also suggest that PGRN insufficiency in microglia leads to impaired lysosomal-mediated clearance of myelin debris. Finally, Grn KO mice that are deficient in cathepsin D (Ctsd), a key lysosomal enzyme, have augmented myelin debris and increased neuronal TDP-43 pathology. Together, our data strongly imply that PGRN loss affects microglial activation and lysosomal function, resulting in the accumulation of myelin debris and contributing to TDP-43 pathology. Wu et al. show increased microgliosis in white matter of Grn knockout mice. Microglial lysosomes accumulate myelin debris in both Grn knockout mice and patients with GRN-associated FTD, and reducing cathespin D levels exacerbates both myelin debris accumulation and pTdp-43 aggregation. Thus, lysosomal dysfunction affects these pathologies in GRN-related FTD.
Collapse
Affiliation(s)
- Yanwei Wu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wei Shao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tiffany W Todd
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jimei Tong
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Mei Yue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Ariston L Librero
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Chris W Lee
- Atlantic Health System, Morristown, NJ 07960, USA; Biomedical Research Institute of New Jersey, Cedar Knolls, NJ 07927, USA
| | - Ian R Mackenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55902, USA.
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55902, USA.
| |
Collapse
|
28
|
White matter hyperintensities in autopsy-confirmed frontotemporal lobar degeneration and Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2021; 13:129. [PMID: 34256835 PMCID: PMC8278704 DOI: 10.1186/s13195-021-00869-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/23/2021] [Indexed: 01/22/2023]
Abstract
Background We aimed to systematically describe the burden and distribution of white matter hyperintensities (WMH) and investigate correlations with neuropsychiatric symptoms in pathologically proven Alzheimer’s disease (AD) and frontotemporal lobar degeneration (FTLD). Methods Autopsy-confirmed cases were identified from the Sunnybrook Dementia Study, including 15 cases of AD and 58 cases of FTLD (22 FTLD-TDP cases; 10 FTLD-Tau [Pick’s] cases; 11 FTLD-Tau Corticobasal Degeneration cases; and 15 FTLD-Tau Progressive Supranuclear Palsy cases). Healthy matched controls (n = 35) were included for comparison purposes. Data analyses included ANCOVA to compare the burden of WMH on antemortem brain MRI between groups, adjusted linear regression models to identify associations between WMH burden and neuropsychiatric symptoms, and image-guided pathology review of selected areas of WMH from each pathologic group. Results Burden and regional distribution of WMH differed significantly between neuropathological groups (F5,77 = 2.67, P’ = 0.029), with the FTLD-TDP group having the highest mean volume globally (8032 ± 8889 mm3) and in frontal regions (4897 ± 6163 mm3). The AD group had the highest mean volume in occipital regions (468 ± 420 mm3). Total score on the Neuropsychiatric Inventory correlated with bilateral frontal WMH volume (β = 0.330, P = 0.006), depression correlated with bilateral occipital WMH volume (β = 0.401, P < 0.001), and apathy correlated with bilateral frontal WMH volume (β = 0.311, P = 0.009), all corrected for the false discovery rate. Image-guided neuropathological assessment of selected cases with the highest burden of WMH in each pathologic group revealed presence of severe gliosis, myelin pallor, and axonal loss, but with no distinguishing features indicative of the underlying proteinopathy. Conclusions These findings suggest that WMH are associated with neuropsychiatric manifestations in AD and FTLD and that WMH burden and regional distribution in neurodegenerative disorders differ according to the underlying neuropathological processes. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00869-6.
Collapse
|
29
|
Dadar M, Potvin O, Camicioli R, Duchesne S. Beware of white matter hyperintensities causing systematic errors in FreeSurfer gray matter segmentations! Hum Brain Mapp 2021; 42:2734-2745. [PMID: 33783933 PMCID: PMC8127151 DOI: 10.1002/hbm.25398] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Volumetric estimates of subcortical and cortical structures, extracted from T1-weighted MRIs, are widely used in many clinical and research applications. Here, we investigate the impact of the presence of white matter hyperintensities (WMHs) on FreeSurfer gray matter (GM) structure volumes and its possible bias on functional relationships. T1-weighted images from 1,077 participants (4,321 timepoints) from the Alzheimer's Disease Neuroimaging Initiative were processed with FreeSurfer version 6.0.0. WMHs were segmented using a previously validated algorithm on either T2-weighted or Fluid-attenuated inversion recovery images. Mixed-effects models were used to assess the relationships between overlapping WMHs and GM structure volumes and overall WMH burden, as well as to investigate whether such overlaps impact associations with age, diagnosis, and cognitive performance. Participants with higher WMH volumes had higher overlaps with GM volumes of bilateral caudate, cerebral cortex, putamen, thalamus, pallidum, and accumbens areas (p < .0001). When not corrected for WMHs, caudate volumes increased with age (p < .0001) and were not different between cognitively healthy individuals and age-matched probable Alzheimer's disease patients. After correcting for WMHs, caudate volumes decreased with age (p < .0001), and Alzheimer's disease patients had lower caudate volumes than cognitively healthy individuals (p < .01). Uncorrected caudate volume was not associated with ADAS13 scores, whereas corrected lower caudate volumes were significantly associated with poorer cognitive performance (p < .0001). Presence of WMHs leads to systematic inaccuracies in GM segmentations, particularly for the caudate, which can also change clinical associations. While specifically measured for the Freesurfer toolkit, this problem likely affects other algorithms.
Collapse
Affiliation(s)
- Mahsa Dadar
- CERVO Brain Research CenterCentre intégré universitaire santé et services sociaux de la Capitale NationaleQuébecQuebecCanada
| | - Olivier Potvin
- CERVO Brain Research CenterCentre intégré universitaire santé et services sociaux de la Capitale NationaleQuébecQuebecCanada
| | - Richard Camicioli
- Department of Medicine, Division of NeurologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Simon Duchesne
- CERVO Brain Research CenterCentre intégré universitaire santé et services sociaux de la Capitale NationaleQuébecQuebecCanada
- Department of Radiology and Nuclear Medicine, Faculty of MedicineUniversité LavalQuébecQuebecCanada
| | | |
Collapse
|
30
|
Samanci B, Bilgiç B, Gelişin Ö, Tepgeç F, Guven G, Tüfekçioğlu Z, Alaylıoğlu M, Hanagasi HA, Gürvit H, Guerreiro R, Hardy J, Emre M. TREM2 variants as a possible cause of frontotemporal dementia with distinct neuroimaging features. Eur J Neurol 2021; 28:2603-2613. [PMID: 33969597 DOI: 10.1111/ene.14908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Nasu-Hakola disease (NHD) is a rare, autosomal recessive disorder characterized by skeletal and neurological symptoms. Behavioral symptoms with cognitive impairment may mimic the behavioral variant of frontotemporal dementia (bvFTD) and other early-onset dementias. Our patients were analyzed and the literature was reviewed to delineate neurological and neuroimaging findings suggestive of NHD. METHOD Fourteen patients carrying a pathogenic mutation in the TREM2 gene were found in our database. Demographic, clinical, laboratory and radiological data were retrieved and analyzed. RESULTS The presenting clinical picture was behavioral changes with cognitive decline resembling bvFTD in all patients. The mean age was 37.1 ± 4.97 years and the mean duration of the disease was 8.9 ± 3.51 years. Only two patients had typical bone cysts. Seven patients had bilateral calcification of the basal ganglia in computed tomography of the brain. Magnetic resonance imaging of the brain revealed severe atrophy of the corpus callosum, enlargement of the ventricles, atrophy of the caudate nuclei and periventricular white matter changes in all patients. Symmetrical global atrophy of the brain mainly affecting frontoparietal and lateral temporal regions were observed in all cases, and 13 patients had atrophy of the hippocampus. Cerebrospinal fluid examination of 10 patients showed elevated protein levels in six and the presence of oligoclonal bands in four patients. CONCLUSION A combination of white matter changes, enlarged ventricles, atrophy of the caudate nuclei and thinning of the corpus callosum in magnetic resonance imaging strongly suggests NHD in patients with FTD syndrome. Molecular genetic analysis should be performed in suspected cases, and families should receive genetic counseling.
Collapse
Affiliation(s)
- Bedia Samanci
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Başar Bilgiç
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Özlem Gelişin
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Fatih Tepgeç
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Gamze Guven
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Zeynep Tüfekçioğlu
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Merve Alaylıoğlu
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hasmet A Hanagasi
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hakan Gürvit
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Rita Guerreiro
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - John Hardy
- Department of Neurodegenerative Disorders, Institute of Neurology, University College London, London, UK
| | - Murat Emre
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
31
|
Panman JL, Venkatraghavan V, van der Ende EL, Steketee RME, Jiskoot LC, Poos JM, Dopper EGP, Meeter LHH, Donker Kaat L, Rombouts SARB, Vernooij MW, Kievit AJA, Premi E, Cosseddu M, Bonomi E, Olives J, Rohrer JD, Sánchez-Valle R, Borroni B, Bron EE, Van Swieten JC, Papma JM, Klein S. Modelling the cascade of biomarker changes in GRN-related frontotemporal dementia. J Neurol Neurosurg Psychiatry 2021; 92:494-501. [PMID: 33452053 PMCID: PMC8053353 DOI: 10.1136/jnnp-2020-323541] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/19/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Progranulin-related frontotemporal dementia (FTD-GRN) is a fast progressive disease. Modelling the cascade of multimodal biomarker changes aids in understanding the aetiology of this disease and enables monitoring of individual mutation carriers. In this cross-sectional study, we estimated the temporal cascade of biomarker changes for FTD-GRN, in a data-driven way. METHODS We included 56 presymptomatic and 35 symptomatic GRN mutation carriers, and 35 healthy non-carriers. Selected biomarkers were neurofilament light chain (NfL), grey matter volume, white matter microstructure and cognitive domains. We used discriminative event-based modelling to infer the cascade of biomarker changes in FTD-GRN and estimated individual disease severity through cross-validation. We derived the biomarker cascades in non-fluent variant primary progressive aphasia (nfvPPA) and behavioural variant FTD (bvFTD) to understand the differences between these phenotypes. RESULTS Language functioning and NfL were the earliest abnormal biomarkers in FTD-GRN. White matter tracts were affected before grey matter volume, and the left hemisphere degenerated before the right. Based on individual disease severities, presymptomatic carriers could be delineated from symptomatic carriers with a sensitivity of 100% and specificity of 96.1%. The estimated disease severity strongly correlated with functional severity in nfvPPA, but not in bvFTD. In addition, the biomarker cascade in bvFTD showed more uncertainty than nfvPPA. CONCLUSION Degeneration of axons and language deficits are indicated to be the earliest biomarkers in FTD-GRN, with bvFTD being more heterogeneous in disease progression than nfvPPA. Our data-driven model could help identify presymptomatic GRN mutation carriers at risk of conversion to the clinical stage.
Collapse
Affiliation(s)
- Jessica L Panman
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands .,Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vikram Venkatraghavan
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Rebecca M E Steketee
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jackie M Poos
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Elise G P Dopper
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lieke H H Meeter
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Laura Donker Kaat
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Serge A R B Rombouts
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Institute for Psychology, Leiden University, Leiden, The Netherlands
| | - Meike W Vernooij
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Anneke J A Kievit
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Enrico Premi
- Centre for Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - Maura Cosseddu
- Centre for Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - Elisa Bonomi
- Centre for Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - Jaume Olives
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - Esther E Bron
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - John C Van Swieten
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Janne M Papma
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Stefan Klein
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
32
|
The Role of White Matter Dysfunction and Leukoencephalopathy/Leukodystrophy Genes in the Aetiology of Frontotemporal Dementias: Implications for Novel Approaches to Therapeutics. Int J Mol Sci 2021; 22:ijms22052541. [PMID: 33802612 PMCID: PMC7961524 DOI: 10.3390/ijms22052541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 01/01/2023] Open
Abstract
Frontotemporal dementia (FTD) is a common cause of presenile dementia and is characterized by behavioural and/or language changes and progressive cognitive deficits. Genetics is an important component in the aetiology of FTD, with positive family history of dementia reported for 40% of cases. This review synthesizes current knowledge of the known major FTD genes, including C9orf72 (chromosome 9 open reading frame 72), MAPT (microtubule-associated protein tau) and GRN (granulin), and their impact on neuronal and glial pathology. Further, evidence for white matter dysfunction in the aetiology of FTD and the clinical, neuroimaging and genetic overlap between FTD and leukodystrophy/leukoencephalopathy are discussed. The review highlights the role of common variants and mutations in genes such as CSF1R (colony-stimulating factor 1 receptor), CYP27A1 (cytochrome P450 family 27 subfamily A member 1), TREM2 (triggering receptor expressed on myeloid cells 2) and TMEM106B (transmembrane protein 106B) that play an integral role in microglia and oligodendrocyte function. Finally, pharmacological and non-pharmacological approaches for enhancing remyelination are discussed in terms of future treatments of FTD.
Collapse
|
33
|
Huynh K, Piguet O, Kwok J, Dobson-Stone C, Halliday GM, Hodges JR, Landin-Romero R. Clinical and Biological Correlates of White Matter Hyperintensities in Patients With Behavioral-Variant Frontotemporal Dementia and Alzheimer Disease. Neurology 2021; 96:e1743-e1754. [PMID: 33597290 DOI: 10.1212/wnl.0000000000011638] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 12/18/2020] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To test the hypothesis that white matter hyperintensities (WMH) in behavioral-variant frontotemporal dementia (bvFTD) and Alzheimer disease (AD) are associated with disease variables such as disease severity, cortical atrophy, and cognition, we conducted a cross-sectional brain MRI study with volumetric and voxel-wise analyses. METHODS A total of 129 patients (64 bvFTD, 65 AD) and 66 controls underwent high-resolution brain MRI and clinical and neuropsychological examination. Genetic screening was conducted in 124 cases (54 bvFTD, 44 AD, 26 controls) and postmortem pathology was available in 18 cases (13 bvFTD, 5 AD). WMH were extracted using an automated segmentation algorithm and analyses of total volumes and spatial distribution were conducted. Group differences in total WMH volume and associations with vascular risk and disease severity were examined. Syndrome-specific voxel-wise associations between WMH, cortical atrophy, and performance across different cognitive domains were assessed. RESULTS Total WMH volumes were larger in patients with bvFTD than patients with AD and controls. In bvFTD, WMH volumes were associated with disease severity but not vascular risk. Patients with bvFTD and patients with AD showed distinct spatial patterns of WMH that mirrored characteristic patterns of cortical atrophy. Regional WMH load correlated with worse cognitive performance in discrete cognitive domains. WMH-related cognitive impairments were shared between syndromes, with additional associations found in bvFTD. CONCLUSION Increased WMH are common in patients with bvFTD and patients with AD. Our findings suggest that WMH are partly independent of vascular pathology and associated with the neurodegenerative process. WMH occur in processes independent of and related to cortical atrophy. Furthermore, increased WMH in different regions contributes to cognitive deficits.
Collapse
Affiliation(s)
- Katharine Huynh
- From the School of Psychology (K.H., O.P., R.L.-R.), Brain and Mind Centre (K.H., O.P., J.K., C.D.-S., G.M.H., J.R.H., R.L.-R.), Central Clinical School (J.K., C.D.-S., G.M.H., J.R.H.), The University of Sydney; and the School of Medical Sciences (J.K., C.D.-S., G.M.H., J.R.H.), University of New South Wales, Sydney, Australia
| | - Olivier Piguet
- From the School of Psychology (K.H., O.P., R.L.-R.), Brain and Mind Centre (K.H., O.P., J.K., C.D.-S., G.M.H., J.R.H., R.L.-R.), Central Clinical School (J.K., C.D.-S., G.M.H., J.R.H.), The University of Sydney; and the School of Medical Sciences (J.K., C.D.-S., G.M.H., J.R.H.), University of New South Wales, Sydney, Australia
| | - John Kwok
- From the School of Psychology (K.H., O.P., R.L.-R.), Brain and Mind Centre (K.H., O.P., J.K., C.D.-S., G.M.H., J.R.H., R.L.-R.), Central Clinical School (J.K., C.D.-S., G.M.H., J.R.H.), The University of Sydney; and the School of Medical Sciences (J.K., C.D.-S., G.M.H., J.R.H.), University of New South Wales, Sydney, Australia
| | - Carol Dobson-Stone
- From the School of Psychology (K.H., O.P., R.L.-R.), Brain and Mind Centre (K.H., O.P., J.K., C.D.-S., G.M.H., J.R.H., R.L.-R.), Central Clinical School (J.K., C.D.-S., G.M.H., J.R.H.), The University of Sydney; and the School of Medical Sciences (J.K., C.D.-S., G.M.H., J.R.H.), University of New South Wales, Sydney, Australia
| | - Glenda M Halliday
- From the School of Psychology (K.H., O.P., R.L.-R.), Brain and Mind Centre (K.H., O.P., J.K., C.D.-S., G.M.H., J.R.H., R.L.-R.), Central Clinical School (J.K., C.D.-S., G.M.H., J.R.H.), The University of Sydney; and the School of Medical Sciences (J.K., C.D.-S., G.M.H., J.R.H.), University of New South Wales, Sydney, Australia
| | - John R Hodges
- From the School of Psychology (K.H., O.P., R.L.-R.), Brain and Mind Centre (K.H., O.P., J.K., C.D.-S., G.M.H., J.R.H., R.L.-R.), Central Clinical School (J.K., C.D.-S., G.M.H., J.R.H.), The University of Sydney; and the School of Medical Sciences (J.K., C.D.-S., G.M.H., J.R.H.), University of New South Wales, Sydney, Australia
| | - Ramón Landin-Romero
- From the School of Psychology (K.H., O.P., R.L.-R.), Brain and Mind Centre (K.H., O.P., J.K., C.D.-S., G.M.H., J.R.H., R.L.-R.), Central Clinical School (J.K., C.D.-S., G.M.H., J.R.H.), The University of Sydney; and the School of Medical Sciences (J.K., C.D.-S., G.M.H., J.R.H.), University of New South Wales, Sydney, Australia.
| |
Collapse
|
34
|
Boeve BF, Rosen H. Clinical and Neuroimaging Aspects of Familial Frontotemporal Lobar Degeneration Associated with MAPT and GRN Mutations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:77-92. [PMID: 33433870 DOI: 10.1007/978-3-030-51140-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Numerous kindreds with familial frontotemporal lobar degeneration have been linked to mutations in microtubule-associated protein tau (MAPT) or progranulin (GRN) genes. While there are many similarities in the clinical manifestations and associated neuroimaging findings, there are also distinct differences. In this review, we compare and contrast the demographic/inheritance characteristics, histopathology, pathophysiology, clinical aspects, and key neuroimaging findings between those with MAPT and GRN mutations.
Collapse
Affiliation(s)
| | - Howard Rosen
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
35
|
Li Hi Shing S, McKenna MC, Siah WF, Chipika RH, Hardiman O, Bede P. The imaging signature of C9orf72 hexanucleotide repeat expansions: implications for clinical trials and therapy development. Brain Imaging Behav 2021; 15:2693-2719. [PMID: 33398779 DOI: 10.1007/s11682-020-00429-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 01/14/2023]
Abstract
While C9orf72-specific imaging signatures have been proposed by both ALS and FTD research groups and considerable presymptomatic alterations have also been confirmed in young mutation carriers, considerable inconsistencies exist in the literature. Accordingly, a systematic review of C9orf72-imaging studies has been performed to identify consensus findings, stereotyped shortcomings, and unique contributions to outline future directions. A formal literature review was conducted according to the STROBE guidelines. All identified papers were individually reviewed for sample size, choice of controls, study design, imaging modalities, statistical models, clinical profiling, and identified genotype-associated pathological patterns. A total of 74 imaging papers were systematically reviewed. ALS patients with GGGGCC repeat expansions exhibit relatively limited motor cortex involvement and widespread extra-motor pathology. C9orf72 positive FTD patients often show preferential posterior involvement. Reports of thalamic involvement are relatively consistent across the various phenotypes. Asymptomatic hexanucleotide repeat carriers often exhibit structural and functional changes decades prior to symptom onset. Common shortcomings included sample size limitations, lack of disease-controls, limited clinical profiling, lack of genetic testing in healthy controls, and absence of post mortem validation. There is a striking paucity of longitudinal studies and existing presymptomatic studies have not evaluated the predictive value of radiological changes with regard to age of onset and phenoconversion. With the advent of antisense oligonucleotide therapies, the meticulous characterisation of C9orf72-associated changes has gained practical relevance. Neuroimaging offers non-invasive biomarkers for future clinical trials, presymptomatic ascertainment, diagnostic and prognostic applications.
Collapse
Affiliation(s)
- Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mary Clare McKenna
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - We Fong Siah
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
36
|
Ho WM, Wu YY, Chen YC. Genetic Variants behind Cardiovascular Diseases and Dementia. Genes (Basel) 2020; 11:genes11121514. [PMID: 33352859 PMCID: PMC7766236 DOI: 10.3390/genes11121514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases (CVDs) and dementia are the leading causes of disability and mortality. Genetic connections between cardiovascular risk factors and dementia have not been elucidated. We conducted a scoping review and pathway analysis to reveal the genetic associations underlying both CVDs and dementia. In the PubMed database, literature was searched using keywords associated with diabetes mellitus, hypertension, dyslipidemia, white matter hyperintensities, cerebral microbleeds, and covert infarctions. Gene lists were extracted from these publications to identify shared genes and pathways for each group. This included high penetrance genes and single nucleotide polymorphisms (SNPs) identified through genome wide association studies. Most risk SNPs to both diabetes and dementia participate in the phospholipase C enzyme system and the downstream nositol 1,4,5-trisphosphate and diacylglycerol activities. Interestingly, AP-2 (TFAP2) transcription factor family and metabolism of vitamins and cofactors were associated with genetic variants that were shared by white matter hyperintensities and dementia, and by microbleeds and dementia. Variants shared by covert infarctions and dementia were related to VEGF ligand-receptor interactions and anti-inflammatory cytokine pathways. Our review sheds light on future investigations into the causative relationships behind CVDs and dementia, and can be a paradigm of the identification of dementia treatments.
Collapse
Affiliation(s)
- Wei-Min Ho
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan; (W.-M.H.); (Y.-Y.W.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yah-Yuan Wu
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan; (W.-M.H.); (Y.-Y.W.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Chun Chen
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan; (W.-M.H.); (Y.-Y.W.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-3281200 (ext. 8433)
| |
Collapse
|
37
|
Chipika RH, Siah WF, McKenna MC, Li Hi Shing S, Hardiman O, Bede P. The presymptomatic phase of amyotrophic lateral sclerosis: are we merely scratching the surface? J Neurol 2020; 268:4607-4629. [PMID: 33130950 DOI: 10.1007/s00415-020-10289-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Presymptomatic studies in ALS have consistently captured considerable disease burden long before symptom manifestation and contributed important academic insights. With the emergence of genotype-specific therapies, however, there is a pressing need to address practical objectives such as the estimation of age of symptom onset, phenotypic prediction, informing the optimal timing of pharmacological intervention, and identifying a core panel of biomarkers which may detect response to therapy. Existing presymptomatic studies in ALS have adopted striking different study designs, relied on a variety of control groups, used divergent imaging and electrophysiology methods, and focused on different genotypes and demographic groups. We have performed a systematic review of existing presymptomatic studies in ALS to identify common themes, stereotyped shortcomings, and key learning points for future studies. Existing presymptomatic studies in ALS often suffer from sample size limitations, lack of disease controls and rarely follow their cohort until symptom manifestation. As the characterisation of presymptomatic processes in ALS serves a multitude of academic and clinical purposes, the careful review of existing studies offers important lessons for future initiatives.
Collapse
Affiliation(s)
- Rangariroyashe H Chipika
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland
| | - We Fong Siah
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland
| | - Mary Clare McKenna
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland.
| |
Collapse
|
38
|
Häkkinen S, Chu SA, Lee SE. Neuroimaging in genetic frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2020; 145:105063. [PMID: 32890771 DOI: 10.1016/j.nbd.2020.105063] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) have a strong clinical, genetic and pathological overlap. This review focuses on the current understanding of structural, functional and molecular neuroimaging signatures of genetic FTD and ALS. We overview quantitative neuroimaging studies on the most common genes associated with FTD (MAPT, GRN), ALS (SOD1), and both (C9orf72), and summarize visual observations of images reported in the rarer genes (CHMP2B, TARDBP, FUS, OPTN, VCP, UBQLN2, SQSTM1, TREM2, CHCHD10, TBK1).
Collapse
Affiliation(s)
- Suvi Häkkinen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie A Chu
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
39
|
Woollacott IOC, Toomey CE, Strand C, Courtney R, Benson BC, Rohrer JD, Lashley T. Microglial burden, activation and dystrophy patterns in frontotemporal lobar degeneration. J Neuroinflammation 2020; 17:234. [PMID: 32778130 PMCID: PMC7418403 DOI: 10.1186/s12974-020-01907-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background Microglial dysfunction is implicated in frontotemporal lobar degeneration (FTLD). Although studies have reported excessive microglial activation or senescence (dystrophy) in Alzheimer’s disease (AD), few have explored this in FTLD. We examined regional patterns of microglial burden, activation and dystrophy in sporadic and genetic FTLD, sporadic AD and controls. Methods Immunohistochemistry was performed in frontal and temporal grey and white matter from 50 pathologically confirmed FTLD cases (31 sporadic, 19 genetic: 20 FTLD-tau, 26 FTLD-TDP, four FTLD-FUS), five AD cases and five controls, using markers to detect phagocytic (CD68-positive) and antigen-presenting (CR3/43-positive) microglia, and microglia in general (Iba1-positive). Microglial burden and activation (morphology) were assessed quantitatively for each microglial phenotype. Iba1-positive microglia were assessed semi-quantitatively for dystrophy severity and qualitatively for rod-shaped and hypertrophic morphology. Microglia were compared in each region between FTLD, AD and controls, and between different pathological subtypes of FTLD, including its main subtypes (FTLD-tau, FTLD-TDP, FTLD-FUS), and subtypes of FTLD-tau, FTLD-TDP and genetic FTLD. Microglia were also compared between grey and white matter within each lobe for each group. Results There was a higher burden of phagocytic and antigen-presenting microglia in FTLD and AD cases than controls, but activation was often not increased. Burden was generally higher in white matter than grey matter, but activation was greater in grey matter. However, microglia varied regionally according to FTLD subtype and disease mechanism. Dystrophy was more severe in FTLD and AD than controls, and more severe in white than grey matter, but this also varied regionally and was particularly extensive in FTLD due to progranulin (GRN) mutations. Presence of rod-shaped and hypertrophic microglia also varied by FTLD subtype. Conclusions This study demonstrates regionally variable microglial involvement in FTLD and links this to underlying disease mechanisms. This supports investigation of microglial dysfunction in disease models and consideration of anti-senescence therapies in clinical trials.
Collapse
Affiliation(s)
- Ione O C Woollacott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Christina E Toomey
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Catherine Strand
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Robert Courtney
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Bridget C Benson
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK. .,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
40
|
Guerreiro R, Gibbons E, Tábuas-Pereira M, Kun-Rodrigues C, Santo GC, Bras J. Genetic architecture of common non-Alzheimer's disease dementias. Neurobiol Dis 2020; 142:104946. [PMID: 32439597 PMCID: PMC8207829 DOI: 10.1016/j.nbd.2020.104946] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Frontotemporal dementia (FTD), dementia with Lewy bodies (DLB) and vascular dementia (VaD) are the most common forms of dementia after Alzheimer's disease (AD). The heterogeneity of these disorders and/or the clinical overlap with other diseases hinder the study of their genetic components. Even though Mendelian dementias are rare, the study of these forms of disease can have a significant impact in the lives of patients and families and have successfully brought to the fore many of the genes currently known to be involved in FTD and VaD, starting to give us a glimpse of the molecular mechanisms underlying these phenotypes. More recently, genome-wide association studies have also pointed to disease risk-associated loci. This has been particularly important for DLB where familial forms of disease are very rarely described. In this review we systematically describe the Mendelian and risk genes involved in these non-AD dementias in an effort to contribute to a better understanding of their genetic architecture, find differences and commonalities between different dementia phenotypes, and uncover areas that would benefit from more intense research endeavors.
Collapse
Affiliation(s)
- Rita Guerreiro
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA; Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA.
| | - Elizabeth Gibbons
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Miguel Tábuas-Pereira
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Celia Kun-Rodrigues
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Gustavo C Santo
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Jose Bras
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA; Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| |
Collapse
|
41
|
Yliranta A, Jehkonen M. Limb and face apraxias in frontotemporal dementia: A systematic scoping review. Cortex 2020; 129:529-547. [PMID: 32418629 DOI: 10.1016/j.cortex.2020.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/12/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate the literature for frequencies, profiles and neural correlates of limb and face apraxias in frontotemporal dementia (FTD). METHOD The search conducted in Ovid Medline, PsycINFO and Scopus yielded 487 non-duplicate records, and 43 were included in the final analysis. RESULTS Apraxias are evident in diverse forms in all clinical variants of FTD within the first four years of the disease. Face apraxia and productive limb apraxia co-occur in the behavioural and nonfluent variants. The logopenic variant resembles Alzheimer's disease in terms of pronounced parietal limb apraxia and absence of face apraxia. The semantic variant exhibits conceptual praxis deficits together with relatively preserved imitation skills. Concerning the genetic variants of FTD, productive limb apraxia is common among carriers of the progranulin gene mutation, and subtle gestural alterations have been documented among carriers of the chromosome 9 open reading frame 72 gene mutation before the expected disease onset. The data on neural correlations suggest that the breakdown of praxis results from bilateral cortical and subcortical damage in FTD and that Alzheimer-type pathology of the cerebrospinal fluid increases the severity of limb apraxia in all of the variants. Face apraxia correlates with degeneration of the medial and superior frontal cortices. CONCLUSIONS Each of the clinical variants of FTD exhibits a characteristic profile of apraxias that may support early differentiation between the variants and from Alzheimer's disease. However, the screening procedures developed for stroke populations seem insufficient, and a multifaceted assessment tool is needed. Although valid and practical tests already exist for dementia populations, a concise selection of test items that covers all of the critical domains is called for.
Collapse
Affiliation(s)
- Aino Yliranta
- Neurology Clinic, Lapland Central Hospital, Rovaniemi, Finland; Faculty of Social Sciences, Tampere University, Tampere, Finland.
| | - Mervi Jehkonen
- Faculty of Social Sciences, Tampere University, Tampere, Finland.
| |
Collapse
|
42
|
Heller C, Foiani MS, Moore K, Convery R, Bocchetta M, Neason M, Cash DM, Thomas D, Greaves CV, Woollacott IO, Shafei R, Van Swieten JC, Moreno F, Sanchez-Valle R, Borroni B, Laforce R, Masellis M, Tartaglia MC, Graff C, Galimberti D, Rowe JB, Finger E, Synofzik M, Vandenberghe R, de Mendonca A, Tagliavini F, Santana I, Ducharme S, Butler CR, Gerhard A, Levin J, Danek A, Frisoni G, Sorbi S, Otto M, Heslegrave AJ, Zetterberg H, Rohrer JD. Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia. J Neurol Neurosurg Psychiatry 2020; 91:263-270. [PMID: 31937580 DOI: 10.1136/jnnp-2019-321954] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND There are few validated fluid biomarkers in frontotemporal dementia (FTD). Glial fibrillary acidic protein (GFAP) is a measure of astrogliosis, a known pathological process of FTD, but has yet to be explored as potential biomarker. METHODS Plasma GFAP and neurofilament light chain (NfL) concentration were measured in 469 individuals enrolled in the Genetic FTD Initiative: 114 C9orf72 expansion carriers (74 presymptomatic, 40 symptomatic), 119 GRN mutation carriers (88 presymptomatic, 31 symptomatic), 53 MAPT mutation carriers (34 presymptomatic, 19 symptomatic) and 183 non-carrier controls. Biomarker measures were compared between groups using linear regression models adjusted for age and sex with family membership included as random effect. Participants underwent standardised clinical assessments including the Mini-Mental State Examination (MMSE), Frontotemporal Lobar Degeneration-Clinical Dementia Rating scale and MRI. Spearman's correlation coefficient was used to investigate the relationship of plasma GFAP to clinical and imaging measures. RESULTS Plasma GFAP concentration was significantly increased in symptomatic GRN mutation carriers (adjusted mean difference from controls 192.3 pg/mL, 95% CI 126.5 to 445.6), but not in those with C9orf72 expansions (9.0, -61.3 to 54.6), MAPT mutations (12.7, -33.3 to 90.4) or the presymptomatic groups. GFAP concentration was significantly positively correlated with age in both controls and the majority of the disease groups, as well as with NfL concentration. In the presymptomatic period, higher GFAP concentrations were correlated with a lower cognitive score (MMSE) and lower brain volume, while in the symptomatic period, higher concentrations were associated with faster rates of atrophy in the temporal lobe. CONCLUSIONS Raised GFAP concentrations appear to be unique to GRN-related FTD, with levels potentially increasing just prior to symptom onset, suggesting that GFAP may be an important marker of proximity to onset, and helpful for forthcoming therapeutic prevention trials.
Collapse
Affiliation(s)
- Carolin Heller
- UK Dementia Research Institute, Department of Neurodegenerative Disease, University College London, London, UK
| | - Martha S Foiani
- UK Dementia Research Institute, Department of Neurodegenerative Disease, University College London, London, UK
| | - Katrina Moore
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Rhian Convery
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Martina Bocchetta
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Mollie Neason
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - David M Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK.,Centre for Medical Image Computing, University College London, London, UK
| | - David Thomas
- Neuradiological Academic Unit, UCL Queen Square Institute of Neurology, London, UK
| | - Caroline V Greaves
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Ione Oc Woollacott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Rachelle Shafei
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - John C Van Swieten
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, País Vasco, Spain
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Barcelona, Spain
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire du CHU de Québec, Département des Sciences Neurologiques, Université Laval, Québec, Québec, Canada
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
| | - Caroline Graff
- Department of Geriatric Medicine, Karolinska University Hospital-Huddinge, Stockholm, Sweden
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Centro Dino Ferrari, Milan, Italy.,Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Fabrizio Tagliavini
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Neurologico Carlo Besta, Milan, Italy
| | - Isabel Santana
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Simon Ducharme
- Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada
| | | | - Alex Gerhard
- Faculty of Medical and Human Sciences, Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Neurology, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | | | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research, and Child Health, University of Florence, Florence, Italy
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Amanda J Heslegrave
- UK Dementia Research Institute, Department of Neurodegenerative Disease, University College London, London, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute, Department of Neurodegenerative Disease, University College London, London, UK.,Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | | |
Collapse
|
43
|
Poos JM, Jiskoot LC, Leijdesdorff SMJ, Seelaar H, Panman JL, van der Ende EL, Mol MO, Meeter LHH, Pijnenburg YAL, Donker Kaat L, de Jong FJ, van Swieten JC, Papma JM, van den Berg E. Cognitive profiles discriminate between genetic variants of behavioral frontotemporal dementia. J Neurol 2020; 267:1603-1612. [PMID: 32052166 PMCID: PMC7293665 DOI: 10.1007/s00415-020-09738-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/12/2022]
Abstract
Introduction Trials to test disease-modifying treatments for frontotemporal dementia are eagerly awaited and sensitive instruments to assess potential treatment effects are increasingly urgent, yet lacking thus far. We aimed to identify gene-specific instruments assessing clinical onset and disease progression by comparing cognitive functioning between bvFTD patients across genetic mutations. Methods We examined differences in 7 cognitive domains between bvFTD patients with GRN (n = 20), MAPT (n = 29) or C9orf72 (n = 31) mutations, and non-carriers (n = 24), and described longitudinal (M = 22.6 months, SD = 16.6) data in a subsample (n = 27). Results Patients showed overall cognitive impairment, except memory recall, working memory and visuoconstruction. GRN patients performed lower on executive function (mean difference − 2.1; 95%CI − 4.1 to − 0.5) compared to MAPT and lower on attention compared to MAPT (mean difference − 2.5; 95%CI − 4.7 to − 0.3) and C9orf72 (mean difference − 2.4; 95%CI − 4.5 to − 0.3). Only MAPT patients were impaired on delayed recall (mean difference − 1.4; 95%CI − 2.1 to − 0.7). GRN patients declined rapidly on attention and memory, MAPT declined in confrontation naming, whereas C9orf72 patients were globally impaired but remained relatively stable over time on all cognitive domains. Discussion This study shows gene-specific cognitive profiles in bvFTD, which underlines the value of neuropsychological tests as outcome measures in upcoming trials for genetic bvFTD. Electronic supplementary material The online version of this article (10.1007/s00415-020-09738-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J M Poos
- Department of Neurology, Alzheimer Center, Erasmus MC University Medical Center, Dr. Molewaterplein 40, 3000 CA, Rotterdam, The Netherlands. .,Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - L C Jiskoot
- Department of Neurology, Alzheimer Center, Erasmus MC University Medical Center, Dr. Molewaterplein 40, 3000 CA, Rotterdam, The Netherlands.,Dementia Research Center, University College London, London, UK
| | - S M J Leijdesdorff
- Department of Psychiatry and Psychology, Maastricht University, Maastricht, The Netherlands
| | - H Seelaar
- Department of Neurology, Alzheimer Center, Erasmus MC University Medical Center, Dr. Molewaterplein 40, 3000 CA, Rotterdam, The Netherlands
| | - J L Panman
- Department of Neurology, Alzheimer Center, Erasmus MC University Medical Center, Dr. Molewaterplein 40, 3000 CA, Rotterdam, The Netherlands.,Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - E L van der Ende
- Department of Neurology, Alzheimer Center, Erasmus MC University Medical Center, Dr. Molewaterplein 40, 3000 CA, Rotterdam, The Netherlands
| | - M O Mol
- Department of Neurology, Alzheimer Center, Erasmus MC University Medical Center, Dr. Molewaterplein 40, 3000 CA, Rotterdam, The Netherlands
| | - L H H Meeter
- Department of Neurology, Alzheimer Center, Erasmus MC University Medical Center, Dr. Molewaterplein 40, 3000 CA, Rotterdam, The Netherlands
| | - Y A L Pijnenburg
- Department of Neurology, Alzheimer Center, Location VU University Medical CenterAmsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - L Donker Kaat
- Department of Neurology, Alzheimer Center, Erasmus MC University Medical Center, Dr. Molewaterplein 40, 3000 CA, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - F J de Jong
- Department of Neurology, Alzheimer Center, Erasmus MC University Medical Center, Dr. Molewaterplein 40, 3000 CA, Rotterdam, The Netherlands
| | - J C van Swieten
- Department of Neurology, Alzheimer Center, Erasmus MC University Medical Center, Dr. Molewaterplein 40, 3000 CA, Rotterdam, The Netherlands
| | - J M Papma
- Department of Neurology, Alzheimer Center, Erasmus MC University Medical Center, Dr. Molewaterplein 40, 3000 CA, Rotterdam, The Netherlands
| | - E van den Berg
- Department of Neurology, Alzheimer Center, Erasmus MC University Medical Center, Dr. Molewaterplein 40, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
44
|
Domínguez-Vivero C, Wu L, Lee S, Manoochehri M, Cines S, Brickman AM, Rizvi B, Chesebro A, Gazes Y, Fallon E, Lynch T, Heidebrink JL, Paulson H, Goldman JS, Huey E, Cosentino S. Structural Brain Changes in Pre-Clinical FTD MAPT Mutation Carriers. J Alzheimers Dis 2020; 75:595-606. [PMID: 32310161 PMCID: PMC11270907 DOI: 10.3233/jad-190820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Frontotemporal dementia (FTD) is the second most common cause of early-onset neurodegenerative dementia. Several studies have focused on early imaging changes in FTD patients, but once subjects meet full criteria for FTD diagnosis, structural changes are generally widespread. OBJECTIVE This study aims to determine the earliest structural brain changes in asymptomatic MAPT MUTATION carriers. METHODS This is a cross-sectional multicenter study comparing global and regional brain volume and white matter integrity in a group of MAPT mutation preclinical carriers and controls. Participants belong to multiple generations of six families with five MAPT mutations. All participants underwent a medical examination, neuropsychological tests, genetic analysis, and a magnetic resonance scan (3T, scout, T1-weighted image followed by EPI (BOLD), MPRAGE, DTI, FLAIR, and ASL sequences). RESULTS Volumes of five cortical and subcortical areas were strongly correlated with mutation status: temporal lobe (left amygdala, left temporal pole), cingulate cortex (left rostral anterior cingulate gyrus, right posterior cingulate), and the lingual gyrus in the occipital lobe. We did not find significant differences in whole brain volume, white matter hyperintensities volume, and white matter integrity using DTI analysis. CONCLUSION Temporal lobe, cingulate cortex and the lingual gyrus seem to be early targets of the disease and may serve as biomarkers for FTD prior to overt symptom onset.
Collapse
Affiliation(s)
- Clara Domínguez-Vivero
- Department of Neurology, Columbia University, Cognitive Neuroscience Division of the Taub Institute, G.H. Sergievsky Center, New York, NY, USA
| | - Liwen Wu
- Department of Biostatistics, Columbia University, Mailman School of Public Health, New York, NY, USA
| | - Seonjoo Lee
- Department of Biostatistics, Columbia University, Mailman School of Public Health, New York, NY, USA
| | - Masood Manoochehri
- Department of Neurology, Columbia University, Cognitive Neuroscience Division of the Taub Institute, G.H. Sergievsky Center, New York, NY, USA
| | - Sarah Cines
- Department of Neurology, Columbia University, Cognitive Neuroscience Division of the Taub Institute, G.H. Sergievsky Center, New York, NY, USA
- Fairleigh Dickinson University, Teaneck, NJ, USA
| | - Adam M. Brickman
- Department of Neurology, Columbia University, Cognitive Neuroscience Division of the Taub Institute, G.H. Sergievsky Center, New York, NY, USA
| | - Batool Rizvi
- Department of Neurology, Columbia University, Cognitive Neuroscience Division of the Taub Institute, G.H. Sergievsky Center, New York, NY, USA
| | - Anthony Chesebro
- Department of Neurology, Columbia University, Cognitive Neuroscience Division of the Taub Institute, G.H. Sergievsky Center, New York, NY, USA
| | - Yunglin Gazes
- Department of Neurology, Columbia University, Cognitive Neuroscience Division of the Taub Institute, G.H. Sergievsky Center, New York, NY, USA
| | - Emer Fallon
- Dublin Neurological Institute, Dublin, Ireland
| | | | | | - Henry Paulson
- Department of Neurology, The University of Michigan, Ann Arbor, MI, USA
| | - Jill S. Goldman
- Department of Neurology, Columbia University, Cognitive Neuroscience Division of the Taub Institute, G.H. Sergievsky Center, New York, NY, USA
| | - Edward Huey
- Department of Neurology, Columbia University, Cognitive Neuroscience Division of the Taub Institute, G.H. Sergievsky Center, New York, NY, USA
- Department of Psychiatry & New York State Psychiatric Institute, Columbia University, New York, NY, USA
| | - Stephanie Cosentino
- Department of Neurology, Columbia University, Cognitive Neuroscience Division of the Taub Institute, G.H. Sergievsky Center, New York, NY, USA
| |
Collapse
|
45
|
Alexander C, Pisner D, Jacova C. Predementia Brain Changes in Progranulin Mutation: A Systematic Review of Neuroimaging Evidence. Dement Geriatr Cogn Disord 2019; 47:1-18. [PMID: 30630176 DOI: 10.1159/000494968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Mutations in the progranulin (GRN) gene are a major cause of familial frontotemporal dementia. They result in a loss of progranulin levels and in GRN-related brain degenerative changes that unfold over years if not decades. The aim of our review was to summarize the evidence on emerging functional and structural brain abnormalities in carriers of GRN mutations. SUMMARY We performed a systematic search for studies that used at least one modality (structural MRI, fMRI, fluorodeoxyglucose positron emission tomography, diffusion tensor imaging) to compare mutation carriers to non-carrier controls. Our search produced 13 studies published between 2008 and 2017, the majority cross-sectional, with carrier sample sizes ranging from 5 to 65. Key Messages: The aggregate findings suggest that (1) measurable brain changes are detectable in at least some mutation carriers 20-25 years prior to disease onset; (2) functional/metabolic changes progress more consistently over time than structural changes; (3) the topographic pattern is anterior to posterior, not always asymmetric, and maps onto known functional networks.
Collapse
Affiliation(s)
| | - Derek Pisner
- Department of Psychology, University of Texas, Austin, Texas, USA
| | - Claudia Jacova
- School of Graduate Psychology, Pacific University, Hillsboro, Oregon, USA,
| |
Collapse
|
46
|
van der Ende EL, Meeter LH, Poos JM, Panman JL, Jiskoot LC, Dopper EGP, Papma JM, de Jong FJ, Verberk IMW, Teunissen C, Rizopoulos D, Heller C, Convery RS, Moore KM, Bocchetta M, Neason M, Cash DM, Borroni B, Galimberti D, Sanchez-Valle R, Laforce R, Moreno F, Synofzik M, Graff C, Masellis M, Carmela Tartaglia M, Rowe JB, Vandenberghe R, Finger E, Tagliavini F, de Mendonça A, Santana I, Butler C, Ducharme S, Gerhard A, Danek A, Levin J, Otto M, Frisoni GB, Cappa S, Pijnenburg YAL, Rohrer JD, van Swieten JC, Warren JD, Fox NC, Woollacott IO, Shafei R, Greaves C, Guerreiro R, Bras J, Thomas DL, Nicholas J, Mead S, van Minkelen R, Barandiaran M, Indakoetxea B, Gabilondo A, Tainta M, de Arriba M, Gorostidi A, Zulaica M, Villanua J, Diaz Z, Borrego-Ecija S, Olives J, Lladó A, Balasa M, Antonell A, Bargallo N, Premi E, Cosseddu M, Gazzina S, Padovani A, Gasparotti R, Archetti S, Black S, Mitchell S, Rogaeva E, Freedman M, Keren R, Tang-Wai D, Öijerstedt L, Andersson C, Jelic V, Thonberg H, Arighi A, Fenoglio C, Scarpini E, Fumagalli G, Cope T, Timberlake C, Rittman T, Shoesmith C, Bartha R, Rademakers R, Wilke C, Karnath HO, Bender B, Bruffaerts R, Vandamme P, et alvan der Ende EL, Meeter LH, Poos JM, Panman JL, Jiskoot LC, Dopper EGP, Papma JM, de Jong FJ, Verberk IMW, Teunissen C, Rizopoulos D, Heller C, Convery RS, Moore KM, Bocchetta M, Neason M, Cash DM, Borroni B, Galimberti D, Sanchez-Valle R, Laforce R, Moreno F, Synofzik M, Graff C, Masellis M, Carmela Tartaglia M, Rowe JB, Vandenberghe R, Finger E, Tagliavini F, de Mendonça A, Santana I, Butler C, Ducharme S, Gerhard A, Danek A, Levin J, Otto M, Frisoni GB, Cappa S, Pijnenburg YAL, Rohrer JD, van Swieten JC, Warren JD, Fox NC, Woollacott IO, Shafei R, Greaves C, Guerreiro R, Bras J, Thomas DL, Nicholas J, Mead S, van Minkelen R, Barandiaran M, Indakoetxea B, Gabilondo A, Tainta M, de Arriba M, Gorostidi A, Zulaica M, Villanua J, Diaz Z, Borrego-Ecija S, Olives J, Lladó A, Balasa M, Antonell A, Bargallo N, Premi E, Cosseddu M, Gazzina S, Padovani A, Gasparotti R, Archetti S, Black S, Mitchell S, Rogaeva E, Freedman M, Keren R, Tang-Wai D, Öijerstedt L, Andersson C, Jelic V, Thonberg H, Arighi A, Fenoglio C, Scarpini E, Fumagalli G, Cope T, Timberlake C, Rittman T, Shoesmith C, Bartha R, Rademakers R, Wilke C, Karnath HO, Bender B, Bruffaerts R, Vandamme P, Vandenbulcke M, Ferreira CB, Miltenberger G, Maruta C, Verdelho A, Afonso S, Taipa R, Caroppo P, Di Fede G, Giaccone G, Prioni S, Redaelli V, Rossi G, Tiraboschi P, Duro D, Rosario Almeida M, Castelo-Branco M, João Leitão M, Tabuas-Pereira M, Santiago B, Gauthier S, Schonecker S, Semler E, Anderl-Straub S, Benussi L, Binetti G, Ghidoni R, Pievani M, Lombardi G, Nacmias B, Ferrari C, Bessi V. Serum neurofilament light chain in genetic frontotemporal dementia: a longitudinal, multicentre cohort study. Lancet Neurol 2019; 18:1103-1111. [PMID: 31701893 DOI: 10.1016/s1474-4422(19)30354-0] [Show More Authors] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neurofilament light chain (NfL) is a promising blood biomarker in genetic frontotemporal dementia, with elevated concentrations in symptomatic carriers of mutations in GRN, C9orf72, and MAPT. A better understanding of NfL dynamics is essential for upcoming therapeutic trials. We aimed to study longitudinal NfL trajectories in people with presymptomatic and symptomatic genetic frontotemporal dementia. METHODS We recruited participants from 14 centres collaborating in the Genetic Frontotemporal Dementia Initiative (GENFI), which is a multicentre cohort study of families with genetic frontotemporal dementia done across Europe and Canada. Eligible participants (aged ≥18 years) either had frontotemporal dementia due to a pathogenic mutation in GRN, C9orf72, or MAPT (symptomatic mutation carriers) or were healthy at-risk first-degree relatives (either presymptomatic mutation carriers or non-carriers), and had at least two serum samples with a time interval of 6 months or more. Participants were excluded if they had neurological comorbidities that were likely to affect NfL, including cerebrovascular events. We measured NfL longitudinally in serum samples collected between June 8, 2012, and Dec 8, 2017, through follow-up visits annually or every 2 years, which also included MRI and neuropsychological assessments. Using mixed-effects models, we analysed NfL changes over time and correlated them with longitudinal imaging and clinical parameters, controlling for age, sex, and study site. The primary outcome was the course of NfL over time in the various stages of genetic frontotemporal dementia. FINDINGS We included 59 symptomatic carriers and 149 presymptomatic carriers of a mutation in GRN, C9orf72, or MAPT, and 127 non-carriers. Nine presymptomatic carriers became symptomatic during follow-up (so-called converters). Baseline NfL was elevated in symptomatic carriers (median 52 pg/mL [IQR 24-69]) compared with presymptomatic carriers (9 pg/mL [6-13]; p<0·0001) and non-carriers (8 pg/mL [6-11]; p<0·0001), and was higher in converters than in non-converting carriers (19 pg/mL [17-28] vs 8 pg/mL [6-11]; p=0·0007; adjusted for age). During follow-up, NfL increased in converters (b=0·097 [SE 0·018]; p<0·0001). In symptomatic mutation carriers overall, NfL did not change during follow-up (b=0·017 [SE 0·010]; p=0·101) and remained elevated. Rates of NfL change over time were associated with rate of decline in Mini Mental State Examination (b=-94·7 [SE 33·9]; p=0·003) and atrophy rate in several grey matter regions, but not with change in Frontotemporal Lobar Degeneration-Clinical Dementia Rating scale score (b=-3·46 [SE 46·3]; p=0·941). INTERPRETATION Our findings show the value of blood NfL as a disease progression biomarker in genetic frontotemporal dementia and suggest that longitudinal NfL measurements could identify mutation carriers approaching symptom onset and capture rates of brain atrophy. The characterisation of NfL over the course of disease provides valuable information for its use as a treatment effect marker. FUNDING ZonMw and the Bluefield project.
Collapse
Affiliation(s)
- Emma L van der Ende
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lieke H Meeter
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jackie M Poos
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jessica L Panman
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Lize C Jiskoot
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands; Dementia Research Institute, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Elise G P Dopper
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Janne M Papma
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Frank Jan de Jong
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Inge M W Verberk
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Charlotte Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Dimitris Rizopoulos
- Department of Biostatistics, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Carolin Heller
- Dementia Research Institute, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Rhian S Convery
- Dementia Research Institute, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Katrina M Moore
- Dementia Research Institute, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Martina Bocchetta
- Dementia Research Institute, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Mollie Neason
- Dementia Research Institute, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - David M Cash
- Dementia Research Institute, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Neurology unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Galimberti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy; University of Milan, Centro Dino Ferrari, Milan, Italy
| | - Raquel Sanchez-Valle
- Hospital Clinic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | - Fermin Moreno
- Department of Neurology, Hospital Universitario Donostia, Gipuzkoa, Spain
| | - Matthis Synofzik
- Hertie-Institute for Clinical Brain Research Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE) Tübingen, Tübingen, Germany
| | - Caroline Graff
- Karolinska Institutet, Dept NVS, Division of Neurogeriatrics, Stockholm, Sweden; Unit of Hereditary Dementia, Theme Aging, Karolinska University Hospital-Solna, Stockholm, Sweden
| | | | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | | | | | - Isabel Santana
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Chris Butler
- Department of Clinical Neurology, University of Oxford, Oxford, UK
| | - Simon Ducharme
- Montreal Neurological Institute and McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Alex Gerhard
- Faculty of Medical and Human Sciences, Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Neurodegenerative Diseases, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Markus Otto
- Department of Neurology, Universität Ulm, Ulm, Germany
| | - Giovanni B Frisoni
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Stefano Cappa
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam and Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, location VU University Medical Center, Amsterdam, Netherlands
| | - Jonathan D Rohrer
- Dementia Research Institute, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - John C van Swieten
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sudre CH, Bocchetta M, Heller C, Convery R, Neason M, Moore KM, Cash DM, Thomas DL, Woollacott IOC, Foiani M, Heslegrave A, Shafei R, Greaves C, van Swieten J, Moreno F, Sanchez-Valle R, Borroni B, Laforce R, Masellis M, Tartaglia MC, Graff C, Galimberti D, Rowe JB, Finger E, Synofzik M, Vandenberghe R, de Mendonça A, Tagliavini F, Santana I, Ducharme S, Butler C, Gerhard A, Levin J, Danek A, Frisoni GB, Sorbi S, Otto M, Zetterberg H, Ourselin S, Cardoso MJ, Rohrer JD. White matter hyperintensities in progranulin-associated frontotemporal dementia: A longitudinal GENFI study. NEUROIMAGE-CLINICAL 2019; 24:102077. [PMID: 31835286 PMCID: PMC6911860 DOI: 10.1016/j.nicl.2019.102077] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/03/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023]
Abstract
Frontotemporal dementia (FTD) is a heterogeneous group of neurodegenerative disorders with both sporadic and genetic forms. Mutations in the progranulin gene (GRN) are a common cause of genetic FTD, causing either a behavioural presentation or, less commonly, language impairment. Presence on T2-weighted images of white matter hyperintensities (WMH) has been previously shown to be more commonly associated with GRN mutations rather than other forms of FTD. The aim of the current study was to investigate the longitudinal change in WMH and the associations of WMH burden with grey matter (GM) loss, markers of neurodegeneration and cognitive function in GRN mutation carriers. 336 participants in the Genetic FTD Initiative (GENFI) study were included in the analysis: 101 presymptomatic and 32 symptomatic GRN mutation carriers, as well as 203 mutation-negative controls. 39 presymptomatic and 12 symptomatic carriers, and 73 controls also had longitudinal data available. Participants underwent MR imaging acquisition including isotropic 1 mm T1-weighted and T2-weighted sequences. WMH were automatically segmented and locally subdivided to enable a more detailed representation of the pathology distribution. Log-transformed WMH volumes were investigated in terms of their global and regional associations with imaging measures (grey matter volumes), biomarker concentrations (plasma neurofilament light chain, NfL, and glial fibrillary acidic protein, GFAP), genetic status (TMEM106B risk genotype) and cognition (tests of executive function). Analyses revealed that WMH load was higher in both symptomatic and presymptomatic groups compared with controls and this load increased over time. In particular, lesions were seen periventricularly in frontal and occipital lobes, progressing to medial layers over time. However, there was variability in the WMH load across GRN mutation carriers – in the symptomatic group 25.0% had none/mild load, 37.5% had medium and 37.5% had a severe load – a difference not fully explained by disease duration. GM atrophy was strongly associated with WMH load both globally and in separate lobes, and increased WMH burden in the frontal, periventricular and medial regions was associated with worse executive function. Furthermore, plasma NfL and to a lesser extent GFAP concentrations were seen to be associated with increased lesion burden. Lastly, the presence of the homozygous TMEM106B rs1990622 TT risk genotypic status was associated with an increased accrual of WMH per year. In summary, WMH occur in GRN mutation carriers and accumulate over time, but are variable in their severity. They are associated with increased GM atrophy and executive dysfunction. Furthermore, their presence is associated with markers of WM damage (NfL) and astrocytosis (GFAP), whilst their accrual is modified by TMEM106B genetic status. WMH load may represent a target marker for trials of disease modifying therapies in individual patients but the variability across the GRN population would prevent use of such markers as a global outcome measure across all participants in a trial.
Collapse
Affiliation(s)
- Carole H Sudre
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK; Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Centre for Medical Image Computing, University College London, UK
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Carolin Heller
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Rhian Convery
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mollie Neason
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Katrina M Moore
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Centre for Medical Image Computing, University College London, UK
| | - David L Thomas
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Ione O C Woollacott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Martha Foiani
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Amanda Heslegrave
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Rachelle Shafei
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK
| | - Caroline Greaves
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - John van Swieten
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa, Spain
| | - Raquel Sanchez-Valle
- Alzheimer's disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques Université Laval Québec, Québec, Canada
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Caroline Graff
- Department of Geriatric Medicine, Karolinska University Hospital-Huddinge, Stockholm, Sweden
| | - Daniela Galimberti
- University of Milan, Centro Dino Ferrari, Milan, Italy; Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Neurodegenerative Diseases Unit, Milan, Italy
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario Canada
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Fabrizio Tagliavini
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologica Carlo Besta, Milano, Italy
| | - Isabel Santana
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Québec, Canada
| | - Chris Butler
- Department of Clinical Neurology, University of Oxford, Oxford, UK
| | - Alex Gerhard
- Faculty of Medical and Human Sciences, Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Giovanni B Frisoni
- Instituto di Recovero e Cura a Carattere Scientifico Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research, and Child Health, University of Florence, Florence, Italy
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Henrik Zetterberg
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK
| | - M Jorge Cardoso
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK; Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Centre for Medical Image Computing, University College London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.
| | | |
Collapse
|
48
|
Ljubenkov PA, Miller Z, Mumford P, Zhang J, Allen IE, Mitic L, Staffaroni A, Heuer H, Rojas JC, Cobigo Y, Karydas A, Pearlman R, Miller B, Kramer JH, McGrath MS, Rosen HJ, Boxer AL. Peripheral Innate Immune Activation Correlates With Disease Severity in GRN Haploinsufficiency. Front Neurol 2019; 10:1004. [PMID: 31620075 PMCID: PMC6759464 DOI: 10.3389/fneur.2019.01004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/03/2019] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate associations between peripheral innate immune activation and frontotemporal lobar degeneration (FTLD) in progranulin gene (GRN) haploinsufficiency. Methods: In this cross-sectional study, ELISA was used to measure six markers of innate immunity (sCD163, CCL18, LBP, sCD14, IL-18, and CRP) in plasma from 30 GRN mutation carriers (17 asymptomatic, 13 symptomatic) and 29 controls. Voxel based morphometry was used to model associations between marker levels and brain atrophy in mutation carriers relative to controls. Linear regression was used to model relationships between plasma marker levels with mean frontal white matter integrity [fractional anisotropy (FA)] and the FTLD modified Clinical Dementia Rating Scale sum of boxes score (FTLD-CDR SB). Results: Plasma sCD163 was higher in symptomatic GRN carriers [mean 321 ng/ml (SD 125)] compared to controls [mean 248 ng/ml (SD 58); p < 0.05]. Plasma CCL18 was higher in symptomatic GRN carriers [mean 56.9 pg/ml (SD 19)] compared to controls [mean 40.5 pg/ml (SD 14); p < 0.05]. Elevation of plasma LBP was associated with white matter atrophy in the right frontal pole and left inferior frontal gyrus (p FWE corrected <0.05) in all mutation carriers relative to controls. Plasma LBP levels inversely correlated with bilateral frontal white matter FA (R2 = 0.59, p = 0.009) in mutation carriers. Elevation in plasma was positively correlated with CDR-FTLD SB (b = 2.27 CDR units/μg LBP/ml plasma, R2 = 0.76, p = 0.003) in symptomatic carriers. Conclusion: FTLD-GRN is associated with elevations in peripheral biomarkers of macrophage-mediated innate immunity, including sCD163 and CCL18. Clinical disease severity and white matter integrity are correlated with blood LBP, suggesting a role for peripheral immune activation in FTLD-GRN.
Collapse
Affiliation(s)
- Peter A. Ljubenkov
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Zachary Miller
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Paige Mumford
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Jane Zhang
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Isabel Elaine Allen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Laura Mitic
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
- The Bluefield Project to Cure Frontotemporal Dementia, San Francisco, CA, United States
| | - Adam Staffaroni
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Hilary Heuer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Julio C. Rojas
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Yann Cobigo
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Anna Karydas
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Rodney Pearlman
- The Bluefield Project to Cure Frontotemporal Dementia, San Francisco, CA, United States
| | - Bruce Miller
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Joel H. Kramer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Michael S. McGrath
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Howard J. Rosen
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Adam L. Boxer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
49
|
Müller HP, Brenner D, Roselli F, Wiesner D, Abaei A, Gorges M, Danzer KM, Ludolph AC, Tsao W, Wong PC, Rasche V, Weishaupt JH, Kassubek J. Longitudinal diffusion tensor magnetic resonance imaging analysis at the cohort level reveals disturbed cortical and callosal microstructure with spared corticospinal tract in the TDP-43 G298S ALS mouse model. Transl Neurodegener 2019; 8:27. [PMID: 31485326 PMCID: PMC6716821 DOI: 10.1186/s40035-019-0163-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
Background In vivo diffusion tensor imaging (DTI) of the mouse brain was used to identify TDP-43 associated alterations in a mouse model for amyotrophic lateral sclerosis (ALS). Methods Ten mice with TDP-43 G298S overexpression under control of the Thy1.2 promoter and 10 wild type (wt) underwent longitudinal DTI scans at 11.7 T, including one baseline and one follow-up scan with an interval of about 5 months. Whole brain-based spatial statistics (WBSS) of DTI-based parameter maps was used to identify longitudinal alterations of TDP-43 G298S mice compared to wt at the cohort level. Results were supplemented by tractwise fractional anisotropy statistics (TFAS) and histological evaluation of motor cortex for signs of neuronal loss. Results Alterations at the cohort level in TDP-43 G298S mice were observed cross-sectionally and longitudinally in motor areas M1/M2 and in transcallosal fibers but not in the corticospinal tract. Neuronal loss in layer V of motor cortex was detected in TDP-43 G298S at the later (but not at the earlier) timepoint compared to wt. Conclusion DTI mapping of TDP-43 G298S mice demonstrated progression in motor areas M1/M2. WBSS and TFAS are useful techniques to localize TDP-43 G298S associated alterations over time in this ALS mouse model, as a biological marker.
Collapse
Affiliation(s)
- Hans-Peter Müller
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany
| | - David Brenner
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany
| | - Francesco Roselli
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany.,2German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Diana Wiesner
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany
| | - Alireza Abaei
- 3Core Facility Small Animal MRI, University of Ulm, Ulm, Germany
| | - Martin Gorges
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany
| | - Karin M Danzer
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany
| | - Albert C Ludolph
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany
| | - William Tsao
- 4Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Philip C Wong
- 4Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Volker Rasche
- 3Core Facility Small Animal MRI, University of Ulm, Ulm, Germany
| | - Jochen H Weishaupt
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany
| | - Jan Kassubek
- 1Department of Neurology, University of Ulm, Oberer Eselsberg 45, RKU, D-89081 Ulm, Germany
| |
Collapse
|
50
|
Van Mossevelde S, Engelborghs S, van der Zee J, Van Broeckhoven C. Genotype-phenotype links in frontotemporal lobar degeneration. Nat Rev Neurol 2019; 14:363-378. [PMID: 29777184 DOI: 10.1038/s41582-018-0009-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) represents a group of neurodegenerative brain diseases with highly heterogeneous clinical, neuropathological and genetic characteristics. This high degree of heterogeneity results from the presence of several different underlying molecular disease processes; consequently, it is unlikely that all patients with FTLD will benefit from a single therapy. Therapeutic strategies for FTLD are currently being explored, and tools are urgently needed that enable the selection of patients who are the most likely to benefit from a particular therapy. Definition of the phenotypic characteristics in patients with different FTLD subtypes that share the same underlying disease processes would assist in the stratification of patients into homogeneous groups. The most common subtype of FTLD is characterized by TAR DNA-binding protein 43 (TDP43) pathology (FTLD-TDP). In this group, pathogenic mutations have been identified in four genes: C9orf72, GRN, TBK1 and VCP. Here, we provide a comprehensive overview of the phenotypic characteristics of patients with FTLD-TDP, highlighting shared features and differences among groups of patients who have a pathogenic mutation in one of these four genes.
Collapse
Affiliation(s)
- Sara Van Mossevelde
- Neurodegenerative Brain Diseases Group, VIB-UAntwerp Center for Molecular Neurology, Antwerp, Belgium.,Institute Born-Bunge, UAntwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp, Middelheim and Hoge Beuken, Antwerp, Belgium.,Department of Neurology and Memory Clinic, University Hospital Antwerp, Edegem, Belgium
| | - Sebastiaan Engelborghs
- Institute Born-Bunge, UAntwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp, Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Julie van der Zee
- Neurodegenerative Brain Diseases Group, VIB-UAntwerp Center for Molecular Neurology, Antwerp, Belgium.,Institute Born-Bunge, UAntwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB-UAntwerp Center for Molecular Neurology, Antwerp, Belgium. .,Institute Born-Bunge, UAntwerp, Antwerp, Belgium.
| |
Collapse
|