1
|
Klein B, Ciesielska A, Losada PM, Sato A, Shah-Morales S, Ford JB, Higashikubo B, Tager D, Urry A, Bombosch J, Chang WC, Andrews-Zwilling Y, Nejadnik B, Warraich Z, Paz JT. Modified human mesenchymal stromal/stem cells restore cortical excitability after focal ischemic stroke in rats. Mol Ther 2025; 33:375-400. [PMID: 39668560 PMCID: PMC11764858 DOI: 10.1016/j.ymthe.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/18/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024] Open
Abstract
Allogeneic modified bone marrow-derived human mesenchymal stromal/stem cells (hMSC-SB623 cells) are in clinical development for the treatment of chronic motor deficits after traumatic brain injury and cerebral ischemic stroke. However, their exact mechanisms of action remain unclear. Here, we investigated the effects of this cell therapy on cortical network excitability, brain tissue, and peripheral blood at a chronic stage after ischemic stroke in a rat model. One month after focal cortical ischemic stroke, hMSC-SB623 cells or the vehicle solution were injected into the peri-stroke cortex. Starting one week after treatment, cortical excitability was assessed ex vivo. hMSC-SB623 cell transplants reduced stroke-induced cortical hyperexcitability, restoring cortical excitability to control levels. The histology of brain tissue revealed an increase of factors relevant to neuroregeneration, and synaptic and cellular plasticity. Whole-blood RNA sequencing and serum protein analyses showed that intra-cortical hMSC-SB623 cell transplantation reversed effects of stroke on peripheral blood factors known to be involved in stroke pathophysiology. Our findings demonstrate that intra-cortical transplants of hMSC-SB623 cells correct stroke-induced circuit disruptions even at the chronic stage, suggesting broad usefulness as a therapeutic for neurological conditions with network hyperexcitability. Additionally, the transplanted cells exert far-reaching immunomodulatory effects whose therapeutic impact remains to be explored.
Collapse
Affiliation(s)
| | - Agnieszka Ciesielska
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA; University of California, San Francisco, Department of Neurology, and the Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA
| | | | | | | | - Jeremy B Ford
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | | | - Dale Tager
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Alexander Urry
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | | | | | | | | | | | - Jeanne T Paz
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA; University of California, San Francisco, Department of Neurology, and the Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA; University of California, San Francisco, Neurosciences Graduate Program, San Francisco, CA, USA.
| |
Collapse
|
2
|
Xu R, Chen H, Zhang H, Meng L, Ming D. Effects of continuous theta burst stimulation on contralateral primary motor cortex: a concurrent TMS-EEG study. J Neurophysiol 2024; 132:1530-1540. [PMID: 39441211 DOI: 10.1152/jn.00320.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
Continuous theta burst stimulation (cTBS) is a noninvasive brain stimulation technique. cTBS modulation is an effective treatment for motor dysfunction rehabilitation in post-stroke patients. However, there's currently a lack of research on the effects of cTBS stimulation on the contralesional hemisphere. To better understand the role of cTBS in motor rehabilitation, we investigated the neuroregulatory mechanisms of cTBS in the contralateral cortex using transcranial magnetic stimulation-evoked electroencephalography (TMS-EEG). In this randomized, sham-controlled, single-blind study, 18 healthy subjects received two separate stimulation conditions: cTBS or sham stimulation applied to the left primary motor cortex (M1). TMS-EEG measurements were taken before and immediately after stimulation. We investigated the TMS-evoked potentials (TEPs), evoked oscillatory responses (EOR), and phase synchronization index (PSI) of TMS-EEG. The effects of cTBS were analyzed using two-way repeated-measures analysis of variance (RMANOVA). There was a significant "cTBS condition × time" interaction effect on the theta and gamma bands of EOR, and on interhemisphere PSI (inter-PSI) and global PSI in both cTBS stimulation conditions. (theta: F = 4.526, P = 0.041; gamma: F = 5.574, P = 0.024; inter-PSI: F = 5.028, P = 0.032; global PSI: F = 5.129, P = 0.030). After real cTBS modulation, the energy in the theta and gamma frequency bands was significantly higher than before (theta: F = 5.747, P = 0.022; gamma: F = 5.545, P = 0.024). The inter-PSI and global PSI significantly increased after real cTBS modulation (inter-PSI: F = 6.209, P = 0.018; global PSI: F = 6.530, P = 0.015). cTBS modulation significantly increased EOR and PSI in contralateral brain regions, thereby enhancing cortical excitability and cortical functional connectivity throughout the brain. This provides a theoretical basis for cTBS neuromodulation in patients with stroke.NEW & NOTEWORTHY In right-handed individuals, the left hemisphere exhibits higher excitability. According to hemispheric competition theory, applying continuous theta burst stimulation (cTBS) to inhibit excitability in the left hemisphere can reduce its inhibitory effect on the right, thereby promoting neural excitability. This study applied cTBS to the left M1 of healthy individuals and, for the first time, recorded transcranial magnetic stimulation-evoked electroencephalography (TMS-EEG) from the right M1 to analyze the effects of cTBS on cortical oscillations and network connectivity in the contralateral cortex.
Collapse
Affiliation(s)
- Rui Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China
| | - Han Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China
| | - Haichao Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China
| | - Lin Meng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
3
|
Mustin M, Hensel L, Fink GR, Grefkes C, Tscherpel C. Individual contralesional recruitment in the context of structural reserve in early motor reorganization after stroke. Neuroimage 2024; 300:120828. [PMID: 39293355 DOI: 10.1016/j.neuroimage.2024.120828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/30/2024] [Accepted: 08/31/2024] [Indexed: 09/20/2024] Open
Abstract
The concept of structural reserve in stroke reorganization assumes that the relevance of the contralesional hemisphere strongly depends on the brain tissue spared by the lesion in the affected hemisphere. Recent studies, however, have indicated that the contralesional hemisphere's impact exhibits region-specific variability with concurrently existing maladaptive and supportive influences. This challenges traditional views, necessitating a nuanced investigation of contralesional motor areas and their interaction with ipsilesional networks. Our study focused on the functional role of contralesional key motor areas and lesion-induced connectome disruption early after stroke. Online TMS data of twenty-five stroke patients was analyzed to disentangle interindividual differences in the functional roles of contralesional primary motor cortex (M1), dorsal premotor cortex (dPMC), and anterior interparietal sulcus (aIPS) for motor function. Connectome-based lesion symptom mapping and corticospinal tract lesion quantification were used to investigate how TMS effects depend on ipsilesional structural network properties. At group and individual levels, TMS interference with contralesional M1 and aIPS but not dPMC led to improved performance early after stroke. At the connectome level, a more disturbing role of contralesional M1 was related to a more severe disruption of the structural integrity of ipsilesional M1 in the affected motor network. In contrast, a detrimental influence of contralesional aIPS was linked to less disruption of the ipsilesional M1 connectivity. Our findings indicate that contralesional areas distinctively interfere with motor performance early after stroke depending on ipsilesional structural integrity, extending the concept of structural reserve to regional specificity in recovery of function.
Collapse
Affiliation(s)
- Maike Mustin
- Medical Faculty, Goethe University Frankfurt, Department of Neurology, Frankfurt University Hospital, Frankfurt am Main, Germany
| | - Lukas Hensel
- Medical Faculty, University of Cologne, Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Gereon R Fink
- Medical Faculty, University of Cologne, Department of Neurology, University Hospital Cologne, Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Christian Grefkes
- Medical Faculty, Goethe University Frankfurt, Department of Neurology, Frankfurt University Hospital, Frankfurt am Main, Germany
| | - Caroline Tscherpel
- Medical Faculty, Goethe University Frankfurt, Department of Neurology, Frankfurt University Hospital, Frankfurt am Main, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
4
|
Li D, Wang D, Zhou Y, Zhang Y, Yang S, Dong X, Cai S, Zhang R. Neural effects of acupuncture on stroke patients with motor dysfunction: an activation likelihood estimation meta-analysis. Front Neurol 2024; 15:1453935. [PMID: 39385820 PMCID: PMC11461336 DOI: 10.3389/fneur.2024.1453935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
Background Functional magnetic resonance imaging has been used in many studies to explore the neural mechanism of acupuncture in patients with post-stroke motor dysfunction. Inconsistent results have been found in these studies, however. This activation likelihood estimation (ALE) meta-analysis was designed to quantitatively integrate changes in brain activity and the neurological effects of acupuncture on patients with motor dysfunction after stroke. Methods We searched PubMed, Embase, Web of Science, the Cochrane Library, China Science and Technology Journal Database, the China Biology Medicine, the China National Knowledge Infrastructure, and Wanfang Data Knowledge Service Platform for literature from the establishment of the database until March 21, 2024. Research papers were selected, data extracted, and quality assessment was done independently by two researchers. The GingerALE software was used for meta-analysis, and Jackknife sensitivity analysis was employed to assess result robustness. Results We ended up analyzing 14 studies that included 235 patients and 100 healthy people. ALE meta-analysis showed that Compared with healthy people, the enhanced brain region in poststroke patients with motor dysfunction was located in the left posterior lobe of the cerebellum, the left inferior frontal gyrus, and the left precuneus (p < 0.001). After acupuncture, the activated regions were mainly located in the left posterior lobe of the cerebellum, the right lentiform nucleus putamen, the right medial frontal gyrus, the right inferior frontal gyrus, the left precuneus, the right middle temporal gyrus, the left claustrum, the left cerebellar tonsil, the right superior marginal gyrus, the inactivated area is located in the right medial frontal gyrus the left precentral gyrus and the right precuneus (p < 0.001). Conclusion Acupuncture can reestablish motor function by causing extensive changes in the brain function of patients with stroke, which may be the neurological effect of acupuncture therapy on stroke patients. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42024526263.
Collapse
Affiliation(s)
- Dongxia Li
- The Second Clinical Medical College of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Dongyan Wang
- The Second Clinical Medical College of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yihao Zhou
- The Second Clinical Medical College of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yuan Zhang
- The Second Clinical Medical College of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Siyu Yang
- The Second Clinical Medical College of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xu Dong
- The Second Clinical Medical College of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Shaojie Cai
- The Second Clinical Medical College of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Ruiting Zhang
- The Second Clinical Medical College of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
5
|
Absher J, Goncher S, Newman-Norlund R, Perkins N, Yourganov G, Vargas J, Sivakumar S, Parti N, Sternberg S, Teghipco A, Gibson M, Wilson S, Bonilha L, Rorden C. The stroke outcome optimization project: Acute ischemic strokes from a comprehensive stroke center. Sci Data 2024; 11:839. [PMID: 39095364 PMCID: PMC11297183 DOI: 10.1038/s41597-024-03667-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Stroke is a leading cause of disability, and Magnetic Resonance Imaging (MRI) is routinely acquired for acute stroke management. Publicly sharing these datasets can aid in the development of machine learning algorithms, particularly for lesion identification, brain health quantification, and prognosis. These algorithms thrive on large amounts of information, but require diverse datasets to avoid overfitting to specific populations or acquisitions. While there are many large public MRI datasets, few of these include acute stroke. We describe clinical MRI using diffusion-weighted, fluid-attenuated and T1-weighted modalities for 1715 individuals admitted in the upstate of South Carolina, of whom 1461 have acute ischemic stroke. Demographic and impairment data are provided for 1106 of the stroke survivors from this cohort. Our validation demonstrates that machine learning can leverage the imaging data to predict stroke severity as measured by the NIH Stroke Scale/Score (NIHSS). We share not only the raw data, but also the scripts for replicating our findings. These tools can aid in education, and provide a benchmark for validating improved methods.
Collapse
Affiliation(s)
- John Absher
- University of South Carolina School of Medicine, Greenville, SC, 29605, USA.
- Clemson University School of Health Research, CUSHR, Clemson, SC, 29634, USA.
- Departments of Medicine, Neurosurgery, and Radiology, Prisma Health, Greenville, SC, 29601, USA.
| | - Sarah Goncher
- University of South Carolina School of Medicine, Greenville, SC, 29605, USA
| | - Roger Newman-Norlund
- Department of Psychology, University of South Carolina, Columbia, SC, 29203, USA
| | - Nicholas Perkins
- University of South Carolina School of Medicine, Greenville, SC, 29605, USA
- Clemson University School of Health Research, CUSHR, Clemson, SC, 29634, USA
- Departments of Medicine, Neurosurgery, and Radiology, Prisma Health, Greenville, SC, 29601, USA
| | - Grigori Yourganov
- Partnership for an Advanced Computing Environment, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jan Vargas
- University of South Carolina School of Medicine, Greenville, SC, 29605, USA
- Clemson University School of Health Research, CUSHR, Clemson, SC, 29634, USA
- Departments of Medicine, Neurosurgery, and Radiology, Prisma Health, Greenville, SC, 29601, USA
| | - Sanjeev Sivakumar
- University of South Carolina School of Medicine, Greenville, SC, 29605, USA
- Departments of Medicine, Neurosurgery, and Radiology, Prisma Health, Greenville, SC, 29601, USA
| | - Naveen Parti
- University of South Carolina School of Medicine, Greenville, SC, 29605, USA
- Departments of Medicine, Neurosurgery, and Radiology, Prisma Health, Greenville, SC, 29601, USA
| | - Shannon Sternberg
- Departments of Medicine, Neurosurgery, and Radiology, Prisma Health, Greenville, SC, 29601, USA
| | - Alex Teghipco
- Department of Psychology, University of South Carolina, Columbia, SC, 29203, USA
| | - Makayla Gibson
- Department of Psychology, University of South Carolina, Columbia, SC, 29203, USA
| | - Sarah Wilson
- Linguistics Program, University of South Carolina, Columbia, SC, 29203, USA
| | - Leonardo Bonilha
- Department of Neurology, University of South Carolina, Columbia, SC, 29208, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC, 29203, USA
| |
Collapse
|
6
|
Lee K, Barradas V, Schweighofer N. Self-organizing recruitment of compensatory areas maximizes residual motor performance post-stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601213. [PMID: 39005333 PMCID: PMC11244868 DOI: 10.1101/2024.06.28.601213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Whereas the orderly recruitment of compensatory motor cortical areas after stroke depends on the size of the motor cortex lesion affecting arm and hand movements, the mechanisms underlying this reorganization are unknown. Here, we hypothesized that the recruitment of compensatory areas results from the motor system's goal to optimize performance given the anatomical constraints before and after the lesion. This optimization is achieved through two complementary plastic processes: a homeostatic regulation process, which maximizes information transfer in sensory-motor networks, and a reinforcement learning process, which minimizes movement error and effort. To test this hypothesis, we developed a neuro-musculoskeletal model that controls a 7-muscle planar arm via a cortical network that includes a primary motor cortex and a premotor cortex that directly project to spinal motor neurons, and a contra-lesional primary motor cortex that projects to spinal motor neurons via the reticular formation. Synapses in the cortical areas are updated via reinforcement learning and the activity of spinal motor neurons is adjusted through homeostatic regulation. The model replicated neural, muscular, and behavioral outcomes in both non-lesioned and lesioned brains. With increasing lesion sizes, the model demonstrated systematic recruitment of the remaining primary motor cortex, premotor cortex, and contra-lesional cortex. The premotor cortex acted as a reserve area for fine motor control recovery, while the contra-lesional cortex helped avoid paralysis at the cost of poor joint control. Plasticity in spinal motor neurons enabled force generation after large cortical lesions despite weak corticospinal inputs. Compensatory activity in the premotor and contra-lesional motor cortex was more prominent in the early recovery period, gradually decreasing as the network minimized effort. Thus, the orderly recruitment of compensatory areas following strokes of varying sizes results from biologically plausible local plastic processes that maximize performance, whether the brain is intact or lesioned.
Collapse
Affiliation(s)
- Kevin Lee
- Computer Science, University of Southern California, Los Angeles, USA
| | - Victor Barradas
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Nicolas Schweighofer
- Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, USA
| |
Collapse
|
7
|
Dahms C, Noll A, Wagner F, Schmidt A, Brodoehl S, Klingner CM. Connecting the dots: Motor and default mode network crossroads in post-stroke motor learning deficits. Neuroimage Clin 2024; 42:103601. [PMID: 38579595 PMCID: PMC11004993 DOI: 10.1016/j.nicl.2024.103601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Strokes frequently result in long-term motor deficits, imposing significant personal and economic burdens. However, our understanding of the underlying neural mechanisms governing motor learning in stroke survivors remains limited - a fact that poses significant challenges to the development and optimisation of therapeutic strategies. OBJECTIVE This study investigates the diversity in motor learning aptitude and its associated neurological mechanisms. We hypothesised that stroke patients exhibit compromised overall motor learning capacity, which is associated with altered activity and connectivity patterns in the motor- and default-mode-network in the brain. METHODS We assessed a cohort of 40 chronic-stage, mildly impaired stroke survivors and 39 age-matched healthy controls using functional Magnetic Resonance Imaging (fMRI) and connectivity analyses. We focused on neural activity and connectivity patterns during an unilateral motor sequence learning task performed with the unimpaired or non-dominant hand. Primary outcome measures included task-induced changes in neural activity and network connectivity. RESULTS Compared to controls, stroke patients showed significantly reduced motor learning capacity, associated with diminished cerebral lateralization. Task induced activity modulation was reduced in the motor network but increased in the default mode network. The modulated activation strength was associated with an opposing trend in task-induced functional connectivity, with increased connectivity in the motor network and decreased connectivity in the DMN. CONCLUSIONS Stroke patients demonstrate altered neural activity and connectivity patterns during motor learning with their unaffected hand, potentially contributing to globally impaired motor learning skills. The reduced ability to lateralize cerebral activation, along with the enhanced connectivity between the right and left motor cortices in these patients, may signify maladaptive neural processes that impede motor adaptation, possibly affecting long-term rehabilitation post-stroke. The contrasting pattern of activity modulation and connectivity alteration in the default mode network suggests a nuanced role of this network in post-stroke motor learning. These insights could have significant implications for the development of customised rehabilitation strategies for stroke patients.
Collapse
Affiliation(s)
- Christiane Dahms
- Department of Neurology, Jena University Hospital, Germany; Biomagnetic Center, Jena University Hospital, Germany.
| | - Alexander Noll
- Department of Neurology, Jena University Hospital, Germany; Biomagnetic Center, Jena University Hospital, Germany
| | - Franziska Wagner
- Department of Neurology, Jena University Hospital, Germany; Biomagnetic Center, Jena University Hospital, Germany
| | - Alexander Schmidt
- Department of Neurology, Jena University Hospital, Germany; Biomagnetic Center, Jena University Hospital, Germany
| | - Stefan Brodoehl
- Department of Neurology, Jena University Hospital, Germany; Biomagnetic Center, Jena University Hospital, Germany
| | - Carsten M Klingner
- Department of Neurology, Jena University Hospital, Germany; Biomagnetic Center, Jena University Hospital, Germany
| |
Collapse
|
8
|
Xu R, Zhang H, Liu S, Meng L, Ming D. cTBS over primary motor cortex increased contralateral corticomuscular coupling and interhemispheric functional connection. J Neural Eng 2024; 21:016012. [PMID: 38211343 DOI: 10.1088/1741-2552/ad1dc4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Objective.Transcranial magnetic stimulation is a non-invasive brain stimulation technique that changes the activity of the cerebral cortex. Contralesional continuous theta burst stimulation (cTBS) has been proposed and verified beneficial to stroke motor recovery. However, the underlying mechanism is still unclear.Approach.20 healthy right-handed subjects were recruited in this study, receiving real-cTBS over their left primary motor cortex or sham-cTBS. We designed the finger tapping task (FTT) before and after stimulation and recorded the accuracy and reaction time (RT) of the task. The electroencephalogram and surface electromyogram signals were recorded during the left finger pinching task (FPT) before and after stimulation. We calculated cortico-muscular coherence (CMC) in the contralateral hemisphere and cortico-cortical coherence (CCC) in the bilateral hemisphere. The two-way repeated measures analysis of variance was used to analyze the effect of cTBS.Main results.In the FTT, there was a significant main effect of 'time' on RT (F(1, 38) = 24.739,p< 0.001). In the FPT, the results showed that there was a significant interaction effect on the CMC peak and area in the beta band (peak:F(1, 38) = 8.562,p= 0.006; area:F(1, 38) = 5.273,p= 0.027), on the CCC peak in the alpha band (F(1, 38) = 4.815,p= 0.034) and area in the beta band (F(1, 38) = 4.822,p= 0.034). The post hoc tests showed that the CMC peak (W= 20,p= 0.002), the CMC area (W= 13,p= 0.003) and the CCC peak (t= -2.696,p= 0.014) increased significantly after real-cTBS. However, there was no significant decrease or increase after sham-cTBS.Significance.Our study found that cTBS can improve CMC of contralateral hemisphere and CCC of bilateral hemisphere, indicating that cTBS can strengthen cortico-muscular and cortico-cortical coupling.
Collapse
Affiliation(s)
- Rui Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Haichao Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Shizhong Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Lin Meng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
9
|
Braaß H, Gutgesell L, Backhaus W, Higgen FL, Quandt F, Choe CU, Gerloff C, Schulz R. Early functional connectivity alterations in contralesional motor networks influence outcome after severe stroke: a preliminary analysis. Sci Rep 2023; 13:11010. [PMID: 37419966 PMCID: PMC10328915 DOI: 10.1038/s41598-023-38066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023] Open
Abstract
Connectivity studies have significantly extended the knowledge on motor network alterations after stroke. Compared to interhemispheric or ipsilesional networks, changes in the contralesional hemisphere are poorly understood. Data obtained in the acute stage after stroke and in severely impaired patients are remarkably limited. This exploratory, preliminary study aimed to investigate early functional connectivity changes of the contralesional parieto-frontal motor network and their relevance for the functional outcome after severe motor stroke. Resting-state functional imaging data were acquired in 19 patients within the first 2 weeks after severe stroke. Nineteen healthy participants served as a control group. Functional connectivity was calculated from five key motor areas of the parieto-frontal network on the contralesional hemisphere as seed regions and compared between the groups. Connections exhibiting stroke-related alterations were correlated with clinical follow-up data obtained after 3-6 months. The main finding was an increase in coupling strength between the contralesional supplementary motor area and the sensorimotor cortex. This increase was linked to persistent clinical deficits at follow-up. Thus, an upregulation in contralesional motor network connectivity might be an early pattern in severely impaired stroke patients. It might carry relevant information regarding the outcome which adds to the current concepts of brain network alterations and recovery processes after severe stroke.
Collapse
Affiliation(s)
- Hanna Braaß
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Lily Gutgesell
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Winifried Backhaus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Focko L Higgen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Fanny Quandt
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Chi-Un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Robert Schulz
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
10
|
Lin D, Gao J, Lu M, Han X, Tan Z, Zou Y, Cui F. Scalp acupuncture regulates functional connectivity of cerebral hemispheres in patients with hemiplegia after stroke. Front Neurol 2023; 14:1083066. [PMID: 37305743 PMCID: PMC10248137 DOI: 10.3389/fneur.2023.1083066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Background Stroke is a common cause of acquired disability on a global scale. Patients with motor dysfunction after a stroke have a reduced quality of life and suffer from an economic burden. Scalp acupuncture has been proven to be an effective treatment for motor recovery after a stroke. However, the neural mechanism of scalp acupuncture for motor function recovery remains to be researched. This study aimed to investigate functional connectivity (FC) changes in region of interest (ROI) and other brain regions to interpret the neural mechanism of scalp acupuncture. Methods Twenty-one patients were included and randomly divided into patient control (PCs) and scalp acupuncture (SAs) groups with left hemiplegia due to ischemic stroke, and we also selected 20 matched healthy controls (HCs). The PCs were treated with conventional Western medicine, while the SAs were treated with scalp acupuncture (acupuncture at the right anterior oblique line of vertex temporal). All subjects received whole-brain resting-state functional magnetic resonance imaging (rs-fMRI) scan before treatment, and the patients received a second scan after 14 days of treatment. We use the National Institutes of Health Stroke Scale (NIHSS) scores and the analyses of resting-state functional connectivity (RSFC) as the observational indicators. Results The contralateral and ipsilateral cortex of hemiplegic patients with cerebral infarction were associated with an abnormal increase and decrease in basal internode function. An abnormal increase in functional connectivity mainly exists in the ipsilateral hemisphere between the cortex and basal ganglia and reduces the abnormal functional connectivity in the cortex and contralateral basal ganglia. Increased RSFC was observed in the bilateral BA6 area and bilateral basal ganglia and the connectivity between bilateral basal ganglia nuclei improved. However, the RSFC of the conventional treatment group only improved in the unilateral basal ganglia and contralateral BA6 area. The RSFC in the left middle frontal gyrus, superior temporal gyrus, precuneus, and other healthy brain regions were enhanced in SAs after treatment. Conclusion The changes in functional connectivity between the cerebral cortex and basal ganglia in patients with cerebral infarction showed a weakening of the bilateral hemispheres and the enhancement of the connections between the hemispheres. Scalp acupuncture has the function of bidirectional regulation, which makes the unbalanced abnormal brain function state restore balance.
Collapse
Affiliation(s)
- Dan Lin
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinyang Gao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mengxin Lu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Han
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhongjian Tan
- Department of Radiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yihuai Zou
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fangyuan Cui
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Fouda AY, Ahmed HA, Pillai B, Kozak A, Hardigan T, Ergul A, Fagan SC, Ishrat T. Contralesional angiotensin type 2 receptor activation contributes to recovery in experimental stroke. Neurochem Int 2022; 158:105375. [PMID: 35688299 PMCID: PMC9719365 DOI: 10.1016/j.neuint.2022.105375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/16/2023]
Abstract
We and others have previously shown that angiotensin II receptor type 2 receptor (AT2R) is upregulated in the contralesional hemisphere after stroke in normoglycemic Wistar rats. In this study, we examined the expression of AT2R in type 2 diabetic Goto-Kakizaki (GK) rats and control Wistars after stroke. We also tested the contribution of the contralesional AT2R in recovery after stroke through a specific knockdown of the AT2R in this hemisphere only. Two experiments were conducted. In the first experiment, GK rats were subjected to middle cerebral artery occlusion (MCAO) and treated with the angiotensin II receptor type 1 receptor (AT1R) blocker candesartan or saline at reperfusion. Stroke outcomes, as well as AT2R expression, were examined and compared to control Wistars at 24 h. In the second experiment, localized AT2R knockdown was achieved through intrastriatal injection of short hairpin RNA (shRNA) lentiviral particles or non-targeting control into the left-brain hemisphere of Wistar rats. After 14 days, rats were subjected to right MCAO and treated with the AT2R agonist, Compound 21 (C21), or saline for 7 days. Behavioral outcomes were assessed for up to 10 days. In the first experiment, stroke reduced the expression of AT2R in GK rats. Candesartan treatment failed to improve the neurobehavioral outcomes, preserve vascular integrity or reduce oxidative/nitrative stress or apoptotic markers at 24 h post stroke in these animals. In the second experiment, contralesional AT2R knockdown reduced the C21-mediated functional recovery after stroke. In conclusion, contralesional AT2R upregulation after stroke is blunted in diabetic rats which show reduced sensitivity to post-stroke candesartan treatment. Contralesional AT2R could be involved in C21-mediated functional recovery after stroke.
Collapse
Affiliation(s)
- Abdelrahman Y. Fouda
- University of Arkansas for Medical Sciences, Little Rock, AR, USA,Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt,Corresponding author. University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology, Little Rock, AR, USA. (A.Y. Fouda)
| | - Heba A. Ahmed
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bindu Pillai
- Charlie Norwood VA Medical Center, Augusta, GA, USA,Center for Pharmacy and Experimental Therapeutics, University of Georgia, College of Pharmacy, Augusta, GA, USA
| | - Anna Kozak
- Charlie Norwood VA Medical Center, Augusta, GA, USA,Center for Pharmacy and Experimental Therapeutics, University of Georgia, College of Pharmacy, Augusta, GA, USA
| | - Trevor Hardigan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Adviye Ergul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA,Ralph H. Jackson VA Medical Center, Charleston, SC, USA
| | - Susan C. Fagan
- Charlie Norwood VA Medical Center, Augusta, GA, USA,Center for Pharmacy and Experimental Therapeutics, University of Georgia, College of Pharmacy, Augusta, GA, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA,Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA,Corresponding author. University of Tennessee Health Science Center, College of Medicine, Department of Anatomy and Neurobiology, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA. (T. Ishrat)
| |
Collapse
|
12
|
Varied Response of EEG Rhythm to Different tDCS Protocols and Lesion Hemispheres in Stroke Subjects with Upper Limb Dysfunction. Neural Plast 2022; 2022:7790730. [PMID: 35941932 PMCID: PMC9356883 DOI: 10.1155/2022/7790730] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) provides a way to modulate the cortical activity and promote motor rehabilitation following stroke. However, evidence indicates that the response to tDCS is highly variable. This study was aimed at exploring rhythmic response of Electroencephalography (EEG) to three tDCS protocols in stroke subjects. We hypothesize that tDCS protocols may interact with stoke characteristics, and electrode placement may affect cortical activity which could be reflected by the EEG rhythm. 32 subjects with unilateral stroke were recruited to a single-blinded, randomized, and controlled crossover experiment. All of the subjects underwent four tDCS protocols (anodal (atDCS), cathodal (ctDCS), and bilateral tDCS (bi-tDCS) and sham) with an interval of at least 1 week. Resting-state EEG was acquired before and after the stimulation. We tested the change of EEG spectral power after tDCS and the difference of change among four protocols using the paired-sample t-test and repeated measures analysis of variance. Then, we investigated the clinical factors affecting the above changes using the linear and quadratic regression model. According to the results, EEG responded to atDCS and bi-tDCS protocols on alpha and beta rhythm and subjects with a left lesion had higher response than those with the right lesion. Besides that, the change of alpha and beta power after atDCS and of beta power after bi-tDCS showed association with clinical characteristics only in subjects with the left lesion. In conclusion, the study found varied EEG response with different protocols, lesion hemispheres, and other clinical characteristics supporting the individualized cortical oscillatory effect induced by tDCS.
Collapse
|
13
|
Le Franc S, Herrera Altamira G, Guillen M, Butet S, Fleck S, Lécuyer A, Bougrain L, Bonan I. Toward an Adapted Neurofeedback for Post-stroke Motor Rehabilitation: State of the Art and Perspectives. Front Hum Neurosci 2022; 16:917909. [PMID: 35911589 PMCID: PMC9332194 DOI: 10.3389/fnhum.2022.917909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
Stroke is a severe health issue, and motor recovery after stroke remains an important challenge in the rehabilitation field. Neurofeedback (NFB), as part of a brain–computer interface, is a technique for modulating brain activity using on-line feedback that has proved to be useful in motor rehabilitation for the chronic stroke population in addition to traditional therapies. Nevertheless, its use and applications in the field still leave unresolved questions. The brain pathophysiological mechanisms after stroke remain partly unknown, and the possibilities for intervention on these mechanisms to promote cerebral plasticity are limited in clinical practice. In NFB motor rehabilitation, the aim is to adapt the therapy to the patient’s clinical context using brain imaging, considering the time after stroke, the localization of brain lesions, and their clinical impact, while taking into account currently used biomarkers and technical limitations. These modern techniques also allow a better understanding of the physiopathology and neuroplasticity of the brain after stroke. We conducted a narrative literature review of studies using NFB for post-stroke motor rehabilitation. The main goal was to decompose all the elements that can be modified in NFB therapies, which can lead to their adaptation according to the patient’s context and according to the current technological limits. Adaptation and individualization of care could derive from this analysis to better meet the patients’ needs. We focused on and highlighted the various clinical and technological components considering the most recent experiments. The second goal was to propose general recommendations and enhance the limits and perspectives to improve our general knowledge in the field and allow clinical applications. We highlighted the multidisciplinary approach of this work by combining engineering abilities and medical experience. Engineering development is essential for the available technological tools and aims to increase neuroscience knowledge in the NFB topic. This technological development was born out of the real clinical need to provide complementary therapeutic solutions to a public health problem, considering the actual clinical context of the post-stroke patient and the practical limits resulting from it.
Collapse
Affiliation(s)
- Salomé Le Franc
- Rehabilitation Medicine Unit, University Hospital of Rennes, Rennes, France
- Hybrid Team, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
- *Correspondence: Salomé Le Franc,
| | | | - Maud Guillen
- Hybrid Team, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
- Neurology Unit, University Hospital of Rennes, Rennes, France
| | - Simon Butet
- Rehabilitation Medicine Unit, University Hospital of Rennes, Rennes, France
- Empenn Unit U1228, Inserm, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
| | - Stéphanie Fleck
- Université de Lorraine, CNRS, LORIA, Nancy, France
- EA7312 Laboratoire de Psychologie Ergonomique et Sociale pour l’Expérience Utilisateurs (PERSEUS), Metz, France
| | - Anatole Lécuyer
- Hybrid Team, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
| | | | - Isabelle Bonan
- Rehabilitation Medicine Unit, University Hospital of Rennes, Rennes, France
- Empenn Unit U1228, Inserm, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
| |
Collapse
|
14
|
Revill KP, Barany DA, Vernon I, Rellick S, Caliban A, Tran J, Belagaje SR, Nahab F, Haut MW, Buetefisch CM. Evaluating the Abnormality of Bilateral Motor Cortex Activity in Subacute Stroke Patients Executing a Unimanual Motor Task With Increasing Demand on Precision. Front Neurol 2022; 13:836716. [PMID: 35693005 PMCID: PMC9174784 DOI: 10.3389/fneur.2022.836716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/22/2022] [Indexed: 12/02/2022] Open
Abstract
Abnormal contralesional M1 activity is consistently reported in patients with compromised upper limb and hand function after stroke. The underlying mechanisms and functional implications of this activity are not clear, which hampers the development of treatment strategies targeting this brain area. The goal of the present study was to determine the extent to which contralesional M1 activity can be explained by the demand of a motor task, given recent evidence for increasing ipsilateral M1 activity with increasing demand in healthy age-matched controls. We hypothesized that higher activity in contralesional M1 is related to greater demand on precision in a hand motor task. fMRI data were collected from 19 patients with ischemic stroke affecting hand function in the subacute recovery phase and 31 healthy, right-handed, age-matched controls. The hand motor task was designed to parametrically modulate the demand on movement precision. Electromyography data confirmed strictly unilateral task performance by all participants. Patients showed significant impairment relative to controls in their ability to perform the task in the fMRI scanner. However, patients and controls responded similarly to an increase in demand for precision, with better performance for larger targets and poorer performance for smaller targets. Patients did not show evidence of elevated ipsilesional or contralesional M1 blood oxygenation level-dependent (BOLD) activation relative to healthy controls and mean BOLD activation levels were not elevated for patients with poorer performance relative to patients with better task performance. While both patients and healthy controls showed demand-dependent increases in BOLD activation in both ipsilesional/contralateral and contralesional/ipsilateral hemispheres, patients with stroke were less likely to show evidence of a linear relationship between the demand on precision and BOLD activation in contralesional M1 than healthy controls. Taken together, the findings suggest that task demand affects the BOLD response in contralesional M1 in patients with stroke, though perhaps less strongly than in healthy controls. This has implications for the interpretation of reported abnormal bilateral M1 activation in patients with stroke because in addition to contralesional M1 reorganization processes it could be partially related to a response to the relatively higher demand of a motor task when completed by patients rather than by healthy controls.
Collapse
Affiliation(s)
- Kate Pirog Revill
- Department of Psychology, Emory University, Atlanta, GA, United States
| | - Deborah A. Barany
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Isabelle Vernon
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Stephanie Rellick
- Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Alexandra Caliban
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Julie Tran
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Samir R. Belagaje
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Fadi Nahab
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Marc W. Haut
- Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
- Department of Neurology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
- Department of Radiology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Cathrin M. Buetefisch
- Department of Neurology, Emory University, Atlanta, GA, United States
- Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
- Department of Radiology, Emory University, Atlanta, GA, United States
- *Correspondence: Cathrin M. Buetefisch
| |
Collapse
|
15
|
Hensel L, Lange F, Tscherpel C, Viswanathan S, Freytag J, Volz LJ, Eickhoff SB, Fink GR, Grefkes C. Recovered grasping performance after stroke depends on interhemispheric frontoparietal connectivity. Brain 2022; 146:1006-1020. [PMID: 35485480 PMCID: PMC9976969 DOI: 10.1093/brain/awac157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 01/11/2023] Open
Abstract
Activity changes in the ipsi- and contralesional parietal cortex and abnormal interhemispheric connectivity between these regions are commonly observed after stroke, however, their significance for motor recovery remains poorly understood. We here assessed the contribution of ipsilesional and contralesional anterior intraparietal cortex (aIPS) for hand motor function in 18 recovered chronic stroke patients and 18 healthy control subjects using a multimodal assessment consisting of resting-state functional MRI, motor task functional MRI, online-repetitive transcranial magnetic stimulation (rTMS) interference, and 3D movement kinematics. Effects were compared against two control stimulation sites, i.e. contralesional M1 and a sham stimulation condition. We found that patients with good motor outcome compared to patients with more substantial residual deficits featured increased resting-state connectivity between ipsilesional aIPS and contralesional aIPS as well as between ipsilesional aIPS and dorsal premotor cortex. Moreover, interhemispheric connectivity between ipsilesional M1 and contralesional M1 as well as ipsilesional aIPS and contralesional M1 correlated with better motor performance across tasks. TMS interference at individual aIPS and M1 coordinates led to differential effects depending on the motor task that was tested, i.e. index finger-tapping, rapid pointing movements, or a reach-grasp-lift task. Interfering with contralesional aIPS deteriorated the accuracy of grasping, especially in patients featuring higher connectivity between ipsi- and contralesional aIPS. In contrast, interference with the contralesional M1 led to impaired grasping speed in patients featuring higher connectivity between bilateral M1. These findings suggest differential roles of contralesional M1 and aIPS for distinct aspects of recovered hand motor function, depending on the reorganization of interhemispheric connectivity.
Collapse
Affiliation(s)
- Lukas Hensel
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Fabian Lange
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Caroline Tscherpel
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Shivakumar Viswanathan
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Jana Freytag
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Lukas J Volz
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Gereon R Fink
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Christian Grefkes
- Correspondence to: Christian Grefkes Institute of Neuroscience and Medicine - Cognitive Neuroscience (INM-3) Research Centre Juelich, Juelich, Germany E-mail:
| |
Collapse
|
16
|
Hildesheim FE, Silver AN, Dominguez-Vargas AU, Andrushko JW, Edwards JD, Dancause N, Thiel A. Predicting Individual Treatment Response to rTMS for Motor Recovery After Stroke: A Review and the CanStim Perspective. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:795335. [PMID: 36188894 PMCID: PMC9397689 DOI: 10.3389/fresc.2022.795335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022]
Abstract
Background Rehabilitation is critical for reducing stroke-related disability and improving quality-of-life post-stroke. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive neuromodulation technique used as stand-alone or adjunct treatment to physiotherapy, may be of benefit for motor recovery in subgroups of stroke patients. The Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim) seeks to advance the use of these techniques to improve post-stroke recovery through clinical trials and pre-clinical studies using standardized research protocols. Here, we review existing clinical trials for demographic, clinical, and neurobiological factors which may predict treatment response to identify knowledge gaps which need to be addressed before implementing these parameters for patient stratification in clinical trial protocols. Objective To provide a review of clinical rTMS trials of stroke recovery identifying factors associated with rTMS response in stroke patients with motor deficits and develop research perspectives for pre-clinical and clinical studies. Methods A literature search was performed in PubMed, using the Boolean search terms stroke AND repetitive transcranial magnetic stimulation OR rTMS AND motor for studies investigating the use of rTMS for motor recovery in stroke patients at any recovery phase. A total of 1,676 articles were screened by two blinded raters, with 26 papers identified for inclusion in this review. Results Multiple possible factors associated with rTMS response were identified, including stroke location, cortical thickness, brain-derived neurotrophic factor (BDNF) genotype, initial stroke severity, and several imaging and clinical factors associated with a relatively preserved functional motor network of the ipsilesional hemisphere. Age, sex, and time post-stroke were generally not related to rTMS response. Factors associated with greater response were identified in studies of both excitatory ipsilesional and inhibitory contralesional rTMS. Heterogeneous study designs and contradictory data exemplify the need for greater protocol standardization and high-quality controlled trials. Conclusion Clinical, brain structural and neurobiological factors have been identified as potential predictors for rTMS response in stroke patients with motor impairment. These factors can inform the design of future clinical trials, before being considered for optimization of individual rehabilitation therapy for stroke patients. Pre-clinical models for stroke recovery, specifically developed in a clinical context, may accelerate this process.
Collapse
Affiliation(s)
- Franziska E. Hildesheim
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Alexander N. Silver
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Adan-Ulises Dominguez-Vargas
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Justin W. Andrushko
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jodi D. Edwards
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Numa Dancause
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Alexander Thiel
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- *Correspondence: Alexander Thiel
| |
Collapse
|
17
|
Conti E, Scaglione A, de Vito G, Calugi F, Pasquini M, Pizzorusso T, Micera S, Allegra Mascaro AL, Pavone FS. Combining Optogenetic Stimulation and Motor Training Improves Functional Recovery and Perilesional Cortical Activity. Neurorehabil Neural Repair 2021; 36:107-118. [PMID: 34761714 DOI: 10.1177/15459683211056656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. An ischemic stroke is followed by the remapping of motor representation and extensive changes in cortical excitability involving both hemispheres. Although stimulation of the ipsilesional motor cortex, especially when paired with motor training, facilitates plasticity and functional restoration, the remapping of motor representation of the single and combined treatments is largely unexplored. Objective. We investigated if spatio-temporal features of motor-related cortical activity and the new motor representations are related to the rehabilitative treatment or if they can be specifically associated to functional recovery. Methods. We designed a novel rehabilitative treatment that combines neuro-plasticizing intervention with motor training. In detail, optogenetic stimulation of peri-infarct excitatory neurons expressing Channelrhodopsin 2 was associated with daily motor training on a robotic device. The effectiveness of the combined therapy was compared with spontaneous recovery and with the single treatments (ie optogenetic stimulation or motor training). Results. We found that the extension and localization of the new motor representations are specific to the treatment, where most treatments promote segregation of the motor representation to the peri-infarct region. Interestingly, only the combined therapy promotes both the recovery of forelimb functionality and the rescue of spatio-temporal features of motor-related activity. Functional recovery results from a new excitatory/inhibitory balance between hemispheres as revealed by the augmented motor response flanked by the increased expression of parvalbumin positive neurons in the peri-infarct area. Conclusions. Our findings highlight that functional recovery and restoration of motor-related neuronal activity are not necessarily coupled during post-stroke recovery. Indeed the reestablishment of cortical activation features of calcium transient is distinctive of the most effective therapeutic approach, the combined therapy.
Collapse
Affiliation(s)
- Emilia Conti
- Neuroscience Institute, 9327National Research Council, Pisa, Italy.,226476European Laboratory for Non-linear Spectroscopy University of Florence, Florence, Italy.,Department of Physics and Astronomy, 9300University of Florence, Florence, Italy
| | - Alessandro Scaglione
- 226476European Laboratory for Non-linear Spectroscopy University of Florence, Florence, Italy.,Department of Physics and Astronomy, 9300University of Florence, Florence, Italy
| | - Giuseppe de Vito
- 226476European Laboratory for Non-linear Spectroscopy University of Florence, Florence, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health, 9300University of Florence, Florence, Italy
| | - Francesco Calugi
- Neuroscience Institute, 9327National Research Council, Pisa, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health, 9300University of Florence, Florence, Italy
| | - Maria Pasquini
- The BioRobotics Institute and Department of Excellence in Robotics and AI, 19005Scuola Superiore Sant'Anna, Pisa, Italy.,Center for Neuroprosthetics and Institute of Bioengineering, 454629Bertarelli Foundation Chair in Translational NeuroEngineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tommaso Pizzorusso
- Neuroscience Institute, 9327National Research Council, Pisa, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health, 9300University of Florence, Florence, Italy
| | - Silvestro Micera
- The BioRobotics Institute and Department of Excellence in Robotics and AI, 19005Scuola Superiore Sant'Anna, Pisa, Italy.,Center for Neuroprosthetics and Institute of Bioengineering, 454629Bertarelli Foundation Chair in Translational NeuroEngineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anna Letizia Allegra Mascaro
- Neuroscience Institute, 9327National Research Council, Pisa, Italy.,226476European Laboratory for Non-linear Spectroscopy University of Florence, Florence, Italy
| | - Francesco Saverio Pavone
- 226476European Laboratory for Non-linear Spectroscopy University of Florence, Florence, Italy.,Department of Physics and Astronomy, 9300University of Florence, Florence, Italy.,National Institute of Optics, 9327National Research Council, Florence, Italy
| |
Collapse
|
18
|
Paul T, Hensel L, Rehme AK, Tscherpel C, Eickhoff SB, Fink GR, Grefkes C, Volz LJ. Early motor network connectivity after stroke: An interplay of general reorganization and state-specific compensation. Hum Brain Mapp 2021; 42:5230-5243. [PMID: 34346531 PMCID: PMC8519876 DOI: 10.1002/hbm.25612] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 02/04/2023] Open
Abstract
Motor recovery after stroke relies on functional reorganization of the motor network, which is commonly assessed via functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (rsFC) or task-related effective connectivity (trEC). Measures of either connectivity mode have been shown to successfully explain motor impairment post-stroke, posing the question whether motor impairment is more closely reflected by rsFC or trEC. Moreover, highly similar changes in ipsilesional and interhemispheric motor network connectivity have been reported for both rsFC and trEC after stroke, suggesting that altered rsFC and trEC may capture similar aspects of information integration in the motor network reflecting principle, state-independent mechanisms of network reorganization rather than state-specific compensation strategies. To address this question, we conducted the first direct comparison of rsFC and trEC in a sample of early subacute stroke patients (n = 26, included on average 7.3 days post-stroke). We found that both rsFC and trEC explained motor impairment across patients, stressing the clinical potential of fMRI-based connectivity. Importantly, intrahemispheric connectivity between ipsilesional M1 and premotor areas depended on the activation state, whereas interhemispheric connectivity between homologs was state-independent. From a mechanistic perspective, our results may thus arise from two distinct aspects of motor network plasticity: task-specific compensation within the ipsilesional hemisphere and a more fundamental form of reorganization between hemispheres.
Collapse
Affiliation(s)
- Theresa Paul
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Lukas Hensel
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Anne K Rehme
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | | | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Juelich, Juelich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Gereon R Fink
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Research Centre Juelich, Juelich, Germany
| | - Christian Grefkes
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Research Centre Juelich, Juelich, Germany
| | - Lukas J Volz
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM-3), Research Centre Juelich, Juelich, Germany
| |
Collapse
|
19
|
Rolle CE, Baumer FM, Jordan JT, Berry K, Garcia M, Monusko K, Trivedi H, Wu W, Toll R, Buckwalter MS, Lansberg M, Etkin A. Mapping causal circuit dynamics in stroke using simultaneous electroencephalography and transcranial magnetic stimulation. BMC Neurol 2021; 21:280. [PMID: 34271872 PMCID: PMC8283835 DOI: 10.1186/s12883-021-02319-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/16/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Motor impairment after stroke is due not only to direct tissue loss but also to disrupted connectivity within the motor network. Mixed results from studies attempting to enhance motor recovery with Transcranial Magnetic Stimulation (TMS) highlight the need for a better understanding of both connectivity after stroke and the impact of TMS on this connectivity. This study used TMS-EEG to map the causal information flow in the motor network of healthy adult subjects and define how stroke alters these circuits. METHODS Fourteen stroke patients and 12 controls received TMS to two sites (bilateral primary motor cortices) during two motor tasks (paretic/dominant hand movement vs. rest) while EEG measured the cortical response to TMS pulses. TMS-EEG based connectivity measurements were derived for each hemisphere and the change in connectivity (ΔC) between the two motor tasks was calculated. We analyzed if ΔC for each hemisphere differed between the stroke and control groups or across TMS sites, and whether ΔC correlated with arm function in stroke patients. RESULTS Right hand movement increased connectivity in the left compared to the right hemisphere in controls, while hand movement did not significantly change connectivity in either hemisphere in stroke. Stroke patients with the largest increase in healthy hemisphere connectivity during paretic hand movement had the best arm function. CONCLUSIONS TMS-EEG measurements are sensitive to movement-induced changes in brain connectivity. These measurements may characterize clinically meaningful changes in circuit dynamics after stroke, thus providing specific targets for trials of TMS in post-stroke rehabilitation.
Collapse
Affiliation(s)
- Camarin E Rolle
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, MC: 5797, Stanford, CA, 94305-5797, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Sierra-Pacific Mental Illness Research, Education, and Clinical Centers (MIRECC), Palo Alto Veterans Health Care Administration, Palo Alto, CA, USA
| | - Fiona M Baumer
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua T Jordan
- Department of Psychiatry, University of California At San Francisco, San Francisco, CA, USA
| | - Ketura Berry
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Madelleine Garcia
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Karen Monusko
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, MC: 5797, Stanford, CA, 94305-5797, USA
| | - Hersh Trivedi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, MC: 5797, Stanford, CA, 94305-5797, USA
| | - Wei Wu
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, MC: 5797, Stanford, CA, 94305-5797, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Sierra-Pacific Mental Illness Research, Education, and Clinical Centers (MIRECC), Palo Alto Veterans Health Care Administration, Palo Alto, CA, USA
| | - Russell Toll
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, MC: 5797, Stanford, CA, 94305-5797, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Sierra-Pacific Mental Illness Research, Education, and Clinical Centers (MIRECC), Palo Alto Veterans Health Care Administration, Palo Alto, CA, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Maarten Lansberg
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, MC: 5797, Stanford, CA, 94305-5797, USA. .,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA. .,Sierra-Pacific Mental Illness Research, Education, and Clinical Centers (MIRECC), Palo Alto Veterans Health Care Administration, Palo Alto, CA, USA.
| |
Collapse
|
20
|
Lv Q, Xu G, Pan Y, Liu T, Liu X, Miao L, Chen X, Jiang L, Chen J, He Y, Zhang R, Zou Y. Effect of Acupuncture on Neuroplasticity of Stroke Patients with Motor Dysfunction: A Meta-Analysis of fMRI Studies. Neural Plast 2021; 2021:8841720. [PMID: 34188677 PMCID: PMC8192216 DOI: 10.1155/2021/8841720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 03/17/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022] Open
Abstract
Objective To analyze the pattern of intrinsic brain activity variability that is altered by acupuncture compared with conventional treatment in stroke patients with motor dysfunction, thus providing the mechanism of stroke treatment by acupuncture. Methods Chinese and English articles published up to May 2020 were searched in the PubMed, Web of Science, EMBASE, and Cochrane Library databases, China National Knowledge Infrastructure, Chongqing VIP, and Wanfang Database. We only included randomized controlled trials (RCTs) using resting-state fMRI to observe the effect of acupuncture on stroke patients with motor dysfunction. R software was used to analyze the continuous variables, and Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) was used to perform an analysis of fMRI data. Findings. A total of 7 studies comprising 143 patients in the treatment group and 138 in the control group were included in the meta-analysis. The results suggest that acupuncture treatment helps the healing process of motor dysfunction in stroke patients and exhibits hyperactivation in the bilateral basal ganglia and insula and hypoactivation in motor-related areas (especially bilateral BA6 and left BA4). Conclusion Acupuncture plays a role in promoting neuroplasticity in subcortical regions that are commonly affected by stroke and cortical motor areas that may compensate for motor deficits, which may provide a possible mechanism underlying the therapeutic effect of acupuncture.
Collapse
Affiliation(s)
- Qiuyi Lv
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Guixing Xu
- The Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxin Pan
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaodong Liu
- Beijing University of Chinese Medicine, Beijing, China
| | | | - Xing Chen
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Lan Jiang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jie Chen
- School of Life Science, Peking University, Beijing, China
| | - Yingjia He
- Beijing University of Chinese Medicine, Beijing, China
| | - Rong Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Yihuai Zou
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
21
|
Chen JL, Schipani A, Schuch CP, Lam H, Swardfager W, Thiel A, Edwards JD. Does Cathodal vs. Sham Transcranial Direct Current Stimulation Over Contralesional Motor Cortex Enhance Upper Limb Motor Recovery Post-stroke? A Systematic Review and Meta-analysis. Front Neurol 2021; 12:626021. [PMID: 33935936 PMCID: PMC8083132 DOI: 10.3389/fneur.2021.626021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/03/2021] [Indexed: 11/17/2022] Open
Abstract
Background: During recovery from stroke, the contralesional motor cortex (M1) may undergo maladaptive changes that contribute to impaired interhemispheric inhibition (IHI). Transcranial direct current stimulation (tDCS) with the cathode over contralesional M1 may inhibit this maladaptive plasticity, normalize IHI, and enhance motor recovery. Objective: The objective of this systematic review and meta-analysis was to evaluate available evidence to determine whether cathodal tDCS on contralesional M1 enhances motor re-learning or recovery post-stroke more than sham tDCS. Methods: We searched OVID Medline, Embase, and the Cochrane Central Register of Controlled Trials for participants with stroke (>1 week post-onset) with motor impairment and who received cathodal or sham tDCS to contralesional M1 for one or more sessions. The outcomes included a change in any clinically validated assessment of physical function, activity, or participation, or a change in a movement performance variable (e.g., time, accuracy). A meta-analysis was performed by pooling five randomized controlled trials (RCTs) and comparing the change in Fugl–Meyer upper extremity scores between cathodal and sham tDCS groups. Results: Eleven studies met the inclusion criteria. Qualitatively, four out of five cross-over design studies and three out of six RCTs reported a significant effect of cathodal vs. sham tDCS. In the quantitative synthesis, cathodal tDCS (n = 65) did not significantly reduce motor impairment compared to sham tDCS (n = 67; standardized mean difference = 0.33, z = 1.79, p = 0.07) with a little observed heterogeneity (I2 = 5%). Conclusions: The effects of cathodal tDCS to contralesional M1 on motor recovery are small and consistent. There may be sub-populations that may respond to this approach; however, further research with larger cohorts is required.
Collapse
Affiliation(s)
- Joyce L Chen
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Ashley Schipani
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Henry Lam
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Walter Swardfager
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Alexander Thiel
- Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jodi D Edwards
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
22
|
Edwards JD, Black SE, Boe S, Boyd L, Chaves A, Chen R, Dukelow S, Fung J, Kirton A, Meltzer J, Moussavi Z, Neva J, Paquette C, Ploughman M, Pooyania S, Rajji TK, Roig M, Tremblay F, Thiel A. Canadian Platform for Trials in Noninvasive Brain Stimulation (CanStim) Consensus Recommendations for Repetitive Transcranial Magnetic Stimulation in Upper Extremity Motor Stroke Rehabilitation Trials. Neurorehabil Neural Repair 2021; 35:103-116. [PMID: 33410386 DOI: 10.1177/1545968320981960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective. To develop consensus recommendations for the use of repetitive transcranial magnetic stimulation (rTMS) as an adjunct intervention for upper extremity motor recovery in stroke rehabilitation clinical trials. Participants. The Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim) convened a multidisciplinary team of clinicians and researchers from institutions across Canada to form the CanStim Consensus Expert Working Group. Consensus Process. Four consensus themes were identified: (1) patient population, (2) rehabilitation interventions, (3) outcome measures, and (4) stimulation parameters. Theme leaders conducted comprehensive evidence reviews for each theme, and during a 2-day Consensus Meeting, the Expert Working Group used a weighted dot-voting consensus procedure to achieve consensus on recommendations for the use of rTMS as an adjunct intervention in motor stroke recovery rehabilitation clinical trials. Results. Based on best available evidence, consensus was achieved for recommendations identifying the target poststroke population, rehabilitation intervention, objective and subjective outcomes, and specific rTMS parameters for rehabilitation trials evaluating the efficacy of rTMS as an adjunct therapy for upper extremity motor stroke recovery. Conclusions. The establishment of the CanStim platform and development of these consensus recommendations is a first step toward the translation of noninvasive brain stimulation technologies from the laboratory to clinic to enhance stroke recovery.
Collapse
Affiliation(s)
- Jodi D Edwards
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,University of Ottawa, Ottawa, Ontario, Canada
| | - Sandra E Black
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada
| | - Shaun Boe
- Dalhousie University, Halifax, Nova Scotia, Canada
| | - Lara Boyd
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Arthur Chaves
- Memorial University, St John's, Newfoundland, Canada
| | - Robert Chen
- Toronto Western Hospital, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada
| | | | - Joyce Fung
- McGill University, Montreal, Quebec, Canada
| | - Adam Kirton
- University of Calgary, Calgary, Alberta, Canada
| | | | | | - Jason Neva
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | - Tarek K Rajji
- University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Marc Roig
- McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
23
|
Hartwigsen G, Volz LJ. Probing rapid network reorganization of motor and language functions via neuromodulation and neuroimaging. Neuroimage 2020; 224:117449. [PMID: 33059054 DOI: 10.1016/j.neuroimage.2020.117449] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/17/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Motor and cognitive functions are organized in large-scale networks in the human brain that interact to enable flexible adaptation of information exchange to ever-changing environmental conditions. In this review, we discuss the unique potential of the consecutive combination of repetitive transcranial magnetic stimulation (rTMS) and functional neuroimaging to probe network organization and reorganization in the healthy and lesioned brain. First, we summarize findings highlighting the flexible (re-)distribution and short-term reorganization in motor and cognitive networks in the healthy brain. Plastic after-effects of rTMS result in large-scale changes on the network level affecting both local and remote activity within the stimulated network as well as interactions between the stimulated and distinct functional networks. While the number of combined rTMS-fMRI studies in patients with brain lesions remains scarce, preliminary evidence suggests that the lesioned brain flexibly (re-)distributes its computational capacities to functionally reorganize impaired brain functions, using a similar set of mechanisms to achieve adaptive network plasticity compared to short-term reorganization observed in the healthy brain after rTMS. In general, both short-term reorganization in the healthy brain and stroke-induced reorganization seem to rely on three general mechanisms of adaptive network plasticity that allow to maintain and recover function: i) interhemispheric changes, including increased contribution of homologous regions in the contralateral hemisphere and increased interhemispheric connectivity, ii) increased interactions between differentially specialized networks and iii) increased contributions of domain-general networks after disruption of more specific functions. These mechanisms may allow for computational flexibility of large-scale neural networks underlying motor and cognitive functions. Future studies should use complementary approaches to address the functional relevance of adaptive network plasticity and further delineate how these general mechanisms interact to enable network flexibility. Besides furthering our neurophysiological insights into brain network interactions, identifying approaches to support and enhance adaptive network plasticity may result in clinically relevant diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Lise Meitner Research Group "Cognition and Plasticity", Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, D-04103 Leipzig, Germany.
| | - Lukas J Volz
- Department of Neurology, University of Cologne, Kerpener Str. 62, D-50937 Cologne, Germany.
| |
Collapse
|
24
|
Hensel L, Tscherpel C, Freytag J, Ritter S, Rehme AK, Volz LJ, Eickhoff SB, Fink GR, Grefkes C. Connectivity-Related Roles of Contralesional Brain Regions for Motor Performance Early after Stroke. Cereb Cortex 2020; 31:993-1007. [DOI: 10.1093/cercor/bhaa270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Abstract
Hemiparesis after stroke is associated with increased neural activity not only in the lesioned but also in the contralesional hemisphere. While most studies have focused on the role of contralesional primary motor cortex (M1) activity for motor performance, data on other areas within the unaffected hemisphere are scarce, especially early after stroke. We here combined functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) to elucidate the contribution of contralesional M1, dorsal premotor cortex (dPMC), and anterior intraparietal sulcus (aIPS) for the stroke-affected hand within the first 10 days after stroke. We used “online” TMS to interfere with neural activity at subject-specific fMRI coordinates while recording 3D movement kinematics. Interfering with aIPS activity improved tapping performance in patients, but not healthy controls, suggesting a maladaptive role of this region early poststroke. Analyzing effective connectivity parameters using a Lasso prediction model revealed that behavioral TMS effects were predicted by the coupling of the stimulated aIPS with dPMC and ipsilesional M1. In conclusion, we found a strong link between patterns of frontoparietal connectivity and TMS effects, indicating a detrimental influence of the contralesional aIPS on motor performance early after stroke.
Collapse
Affiliation(s)
- Lukas Hensel
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
| | - Caroline Tscherpel
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52428 Jülich, Germany
| | - Jana Freytag
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
| | - Stella Ritter
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
| | - Anne K Rehme
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
| | - Lukas J Volz
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
| | - Simon B Eickhoff
- Medical Faculty, Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Brain and Behaviour, Institute of Neuroscience and Medicine, (INM-7), Research Centre Jülich, 52428 Jülich, Germany
| | - Gereon R Fink
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52428 Jülich, Germany
| | - Christian Grefkes
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52428 Jülich, Germany
| |
Collapse
|
25
|
Di Pino G, Di Lazzaro V. The balance recovery bimodal model in stroke patients between evidence and speculation: Do recent studies support it? Clin Neurophysiol 2020; 131:2488-2490. [PMID: 32747189 DOI: 10.1016/j.clinph.2020.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Giovanni Di Pino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico di Roma, Rome, Italy.
| | - Vincenzo Di Lazzaro
- Research Unit of Neurology, Neurophysiology, Neurobiology, Università Campus Bio-Medico di Roma, Rome, Italy.
| |
Collapse
|
26
|
Human brain connectivity: Clinical applications for clinical neurophysiology. Clin Neurophysiol 2020; 131:1621-1651. [DOI: 10.1016/j.clinph.2020.03.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
|
27
|
Grefkes C, Fink GR. Recovery from stroke: current concepts and future perspectives. Neurol Res Pract 2020; 2:17. [PMID: 33324923 PMCID: PMC7650109 DOI: 10.1186/s42466-020-00060-6] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/22/2020] [Indexed: 12/31/2022] Open
Abstract
Stroke is a leading cause of acquired, permanent disability worldwide. Although the treatment of acute stroke has been improved considerably, the majority of patients to date are left disabled with a considerable impact on functional independence and quality of life. As the absolute number of stroke survivors is likely to further increase due to the demographic changes in our aging societies, new strategies are needed in order to improve neurorehabilitation. The most critical driver of functional recovery post-stroke is neural reorganization. For developing novel, neurobiologically informed strategies to promote recovery of function, an improved understanding of the mechanisms enabling plasticity and recovery is mandatory. This review provides a comprehensive survey of recent developments in the field of stroke recovery using neuroimaging and non-invasive brain stimulation. We discuss current concepts of how the brain reorganizes its functional architecture to overcome stroke-induced deficits, and also present evidence for maladaptive effects interfering with recovery. We demonstrate that the combination of neuroimaging and neurostimulation techniques allows a better understanding of how brain plasticity can be modulated to promote the reorganization of neural networks. Finally, neurotechnology-based treatment strategies allowing patient-tailored interventions to achieve enhanced treatment responses are discussed. The review also highlights important limitations of current models, and finally closes with possible solutions and future directions.
Collapse
Affiliation(s)
- Christian Grefkes
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52425 Jülich, Germany
- Medical Faculty, University of Cologne & Department of Neurology, University Hospital Cologne, 50924 Cologne, Germany
| | - Gereon R. Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52425 Jülich, Germany
- Medical Faculty, University of Cologne & Department of Neurology, University Hospital Cologne, 50924 Cologne, Germany
| |
Collapse
|
28
|
Tscherpel C, Hensel L, Lemberg K, Vollmer M, Volz LJ, Fink GR, Grefkes C. The differential roles of contralesional frontoparietal areas in cortical reorganization after stroke. Brain Stimul 2020; 13:614-624. [PMID: 32289686 DOI: 10.1016/j.brs.2020.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 01/10/2020] [Accepted: 01/28/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Studies examining the contribution of contralesional brain regions to motor recovery after stroke have revealed conflicting results comprising both supporting and disturbing influences. Especially the relevance of contralesional brain regions beyond primary motor cortex (M1) has rarely been studied, particularly concerning the temporal dynamics post-stroke. METHODS We, therefore, used online transcranial magnetic stimulation (TMS) interference to longitudinally assess the role of contralesional (right) frontoparietal areas for recovery of hand motor function after left hemispheric stroke: contralesional M1, contralesional dorsal premotor cortex (dPMC), and contralesional anterior intraparietal sulcus (IPS). Fourteen stroke patients and sixteen age-matched healthy subjects performed motor tasks of varying complexity with their (paretic) right hand. Motor performance was quantified using three-dimensional kinematic data. All patients were assessed twice, (i) in the first week, and (ii) after more than three months post-stroke. RESULTS While we did not observe a significant effect of TMS interference on movement kinematics following the stimulation of contralesional M1 and dPMC in the first week post-stroke, we found improvements of motor performance upon interference with contralesional IPS across motor tasks early after stroke, an effect that persisted into the later phase. By contrast, for dPMC, TMS-induced deterioration of motor performance was only evident three months post-stroke, suggesting that a supportive role of contralesional premotor cortex might evolve with reorganization. CONCLUSION We here highlight time-sensitive and region-specific effects of contralesional frontoparietal areas after left hemisphere stroke, which may influence on neuromodulation regimes aiming at supporting recovery of motor function post-stroke.
Collapse
Affiliation(s)
- Caroline Tscherpel
- Department of Neurology, University Hospital Cologne, Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Lukas Hensel
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Katharina Lemberg
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Mattias Vollmer
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Lukas J Volz
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Gereon R Fink
- Department of Neurology, University Hospital Cologne, Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Christian Grefkes
- Department of Neurology, University Hospital Cologne, Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
29
|
Li W, Li C, Xiang Y, Ji L, Hu H, Liu Y. Study of the activation in sensorimotor cortex and topological properties of functional brain network following focal vibration on healthy subjects and subacute stroke patients: An EEG study. Brain Res 2019; 1722:146338. [PMID: 31323197 DOI: 10.1016/j.brainres.2019.146338] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022]
Abstract
Modulation on cerebral cortex and cerebral networks can induce reorganization of the brain, which contributes to rehabilitation. Previous studies have proved that focal vibration (FV) on limb muscles can modulate the activities of sensorimotor cortex in healthy subjects (HS). The objective of this paper is to study the modulatory effects of FV on the sensorimotor cortex and cerebral network in HS and subacute stroke patients (SP). An experiment was designed and conducted, during which FV of 75 Hz was applied over biceps muscle of right limb of 10 HS and 10 SP with right hemiplegia. Electroencephalography (EEG) was recorded in the following phases: before FV, control condition and three sessions of FV. EEG analysis showed a significant decrease in motor-related power desynchronization (MRPD) of contralesional primary sensorimotor cortex (contralesional S1-M1) in the beta2 band (18-21 Hz) for SP during FV sessions, as well as in MRPD of bilateral S1-M1 in the beta1 (13-18 Hz) and the beta2 band for HS. Moreover, MRPD of contralesional S1-M1 was significantly lower than MRPD of ipsilesional S1-M1 during FV. Besides, a significant increase of global efficiency (E) and decrease of characteristic path length (L) were identified in the beta1 band for SP, whereas a significant increase of L was identified for HS. The results indicated that FV could enhance the excitability of contralesional S1-M1 and alter topological properties of functional brain network for SP, which was different in HS. This indication can contribute to understanding the modulatory effects of FV on cerebral cortex and cerebral network.
Collapse
Affiliation(s)
- Wei Li
- Division of Intelligent and Biomechanical System, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Haidian, Beijing, China.
| | - Chong Li
- Division of Intelligent and Biomechanical System, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Haidian, Beijing, China.
| | - Yun Xiang
- Department of Rehabilitation Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, China
| | - Linhong Ji
- Division of Intelligent and Biomechanical System, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Haidian, Beijing, China.
| | - Hui Hu
- Department of Rehabilitation Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, China
| | - Yali Liu
- Department of Mechanical and Electrical Engineering, Beijing Institute of Technology, Haidian, Beijing, China
| |
Collapse
|
30
|
Bundy DT, Leuthardt EC. The Cortical Physiology of Ipsilateral Limb Movements. Trends Neurosci 2019; 42:825-839. [PMID: 31514976 PMCID: PMC6825896 DOI: 10.1016/j.tins.2019.08.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/25/2019] [Accepted: 08/16/2019] [Indexed: 12/19/2022]
Abstract
Whereas voluntary movements have long been understood to derive primarily from the cortical hemisphere contralateral to a moving limb, substantial cortical activations also occur in the same-sided, or ipsilateral, cortical hemisphere. These ipsilateral motor activations have recently been shown to be useful to decode specific movement features. Furthermore, in contrast to the classical understanding that unilateral limb movements are solely driven by the contralateral hemisphere, it appears that the ipsilateral hemisphere plays an active and specific role in the planning and execution of voluntary movements. Here we review the movement-related activations observed in the ipsilateral cortical hemisphere, interpret this evidence in light of the potential roles of the ipsilateral hemisphere in the planning and execution of movements, and describe the implications for clinical populations.
Collapse
Affiliation(s)
- David T Bundy
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, KS, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Eric C Leuthardt
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA; Department of Neurological Surgery, Washington University, St. Louis, MO, USA; Center of Innovation in Neuroscience and Technology, Washington University, St. Louis, MO, USA.
| |
Collapse
|
31
|
Tscherpel C, Hensel L, Lemberg K, Freytag J, Michely J, Volz LJ, Fink GR, Grefkes C. Age affects the contribution of ipsilateral brain regions to movement kinematics. Hum Brain Mapp 2019; 41:640-655. [PMID: 31617272 PMCID: PMC7268044 DOI: 10.1002/hbm.24829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022] Open
Abstract
Healthy aging is accompanied by changes in brain activation patterns in the motor system. In older subjects, unilateral hand movements typically rely on increased recruitment of ipsilateral frontoparietal areas. While the two central concepts of aging‐related brain activity changes, “Hemispheric Asymmetry Reduction in Older Adults” (HAROLD), and “Posterior to Anterior Shift in Aging” (PASA), have initially been suggested in the context of cognitive tasks and were attributed to compensation, current knowledge regarding the functional significance of increased motor system activity remains scarce. We, therefore, used online interference transcranial magnetic stimulation in young and older subjects to investigate the role of key regions of the ipsilateral frontoparietal cortex, that is, (a) primary motor cortex (M1), (b) dorsal premotor cortex (dPMC), and (c) anterior intraparietal sulcus (IPS) in the control of hand movements of different motor demands. Our data suggest a change of the functional roles of ipsilateral brain areas in healthy age with a reduced relevance of ipsilateral M1 and a shift of importance toward dPMC for repetitive high‐frequency movements. These results support the notion that mechanisms conceptualized in the models of “PASA” and “HAROLD” also apply to the motor system.
Collapse
Affiliation(s)
- Caroline Tscherpel
- Medical Faculty, University of Cologne and Department of Neurology, University Hospital Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Lukas Hensel
- Medical Faculty, University of Cologne and Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Katharina Lemberg
- Medical Faculty, University of Cologne and Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Jana Freytag
- Medical Faculty, University of Cologne and Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Jochen Michely
- Medical Faculty, University of Cologne and Department of Neurology, University Hospital Cologne, Cologne, Germany.,Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| | - Lukas J Volz
- Medical Faculty, University of Cologne and Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Gereon R Fink
- Medical Faculty, University of Cologne and Department of Neurology, University Hospital Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Christian Grefkes
- Medical Faculty, University of Cologne and Department of Neurology, University Hospital Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
32
|
Guggisberg AG, Koch PJ, Hummel FC, Buetefisch CM. Brain networks and their relevance for stroke rehabilitation. Clin Neurophysiol 2019; 130:1098-1124. [PMID: 31082786 DOI: 10.1016/j.clinph.2019.04.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/04/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
Abstract
Stroke has long been regarded as focal disease with circumscribed damage leading to neurological deficits. However, advances in methods for assessing the human brain and in statistics have enabled new tools for the examination of the consequences of stroke on brain structure and function. Thereby, it has become evident that stroke has impact on the entire brain and its network properties and can therefore be considered as a network disease. The present review first gives an overview of current methodological opportunities and pitfalls for assessing stroke-induced changes and reorganization in the human brain. We then summarize principles of plasticity after stroke that have emerged from the assessment of networks. Thereby, it is shown that neurological deficits do not only arise from focal tissue damage but also from local and remote changes in white-matter tracts and in neural interactions among wide-spread networks. Similarly, plasticity and clinical improvements are associated with specific compensatory structural and functional patterns of neural network interactions. Innovative treatment approaches have started to target such network patterns to enhance recovery. Network assessments to predict treatment response and to individualize rehabilitation is a promising way to enhance specific treatment effects and overall outcome after stroke.
Collapse
Affiliation(s)
- Adrian G Guggisberg
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital Geneva, Switzerland.
| | - Philipp J Koch
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology Valais (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology Valais (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland; Department of Clinical Neuroscience, University Hospital Geneva, 1202 Geneva, Switzerland
| | - Cathrin M Buetefisch
- Depts of Neurology, Rehabilitation Medicine, Radiology, Emory University, Atlanta, GA, USA
| |
Collapse
|
33
|
Larsen LH, Zibrandtsen IC, Wienecke T, Kjaer TW, Langberg H, Nielsen JB, Christensen MS. Modulation of task-related cortical connectivity in the acute and subacute phase after stroke. Eur J Neurosci 2018; 47:1024-1032. [PMID: 29465793 DOI: 10.1111/ejn.13874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/07/2018] [Accepted: 02/16/2018] [Indexed: 12/18/2022]
Abstract
The functional relevance of cortical reorganization post-stroke is still not well understood. In this study, we investigated task-specific modulation of cortical connectivity between neural oscillations in key motor regions during the early phase after stroke. EEG and EMG recordings were examined from 15 patients and 18 controls during a precision grip task using the affected hand. Each patient attended two sessions in the acute and subacute phase (median of 3 and 34 days) post-stroke. Dynamic causal modelling (DCM) for induced responses was used to investigate task-specific modulations of oscillatory couplings in a bilateral network comprising supplementary motor area (SMA), dorsal premotor cortex (PMd) and primary motor cortex (M1). Fourteen models were constructed for each subject, and the input induced by the experimental manipulation (task) was set to inferior parietal lobule (IPL). Bayesian model selection favoured a fully connected model. A reduced coupling from SMA and intact M1 in the γ-band (31-48 Hz) to lesioned M1 in the β-band (15-30 Hz) was observed in patients in the acute phase compared to controls. Behavioural performance improved significantly in the subacute phase, while an increased positive coupling from intact PMd to lesioned M1 and a less negative modulation from lesioned M1 to intact M1 were observed for patients compared to controls both from the γ-band to the β-band. We infer that the observed differences in cross-frequency cortical interactions are important for functional recovery.
Collapse
Affiliation(s)
- Lisbeth H Larsen
- CopenRehab, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.,Department for Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Ivan C Zibrandtsen
- Faculty of Health and Medical Sciences, Department of Neurology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - Troels Wienecke
- Faculty of Health and Medical Sciences, Department of Neurology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - Troels W Kjaer
- Department for Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Department of Neurology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - Henning Langberg
- CopenRehab, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jens B Nielsen
- Department for Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Mark S Christensen
- Department for Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.,DTU Compute, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
34
|
Spalletti C, Alia C, Lai S, Panarese A, Conti S, Micera S, Caleo M. Combining robotic training and inactivation of the healthy hemisphere restores pre-stroke motor patterns in mice. eLife 2017; 6:28662. [PMID: 29280732 PMCID: PMC5762156 DOI: 10.7554/elife.28662] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 12/22/2017] [Indexed: 11/13/2022] Open
Abstract
Focal cortical stroke often leads to persistent motor deficits, prompting the need for more effective interventions. The efficacy of rehabilitation can be increased by ‘plasticity-stimulating’ treatments that enhance experience-dependent modifications in spared areas. Transcallosal pathways represent a promising therapeutic target, but their role in post-stroke recovery remains controversial. Here, we demonstrate that the contralesional cortex exerts an enhanced interhemispheric inhibition over the perilesional tissue after focal cortical stroke in mouse forelimb motor cortex. Accordingly, we designed a rehabilitation protocol combining intensive, repeatable exercises on a robotic platform with reversible inactivation of the contralesional cortex. This treatment promoted recovery in general motor tests and in manual dexterity with remarkable restoration of pre-lesion movement patterns, evaluated by kinematic analysis. Recovery was accompanied by a reduction of transcallosal inhibition and ‘plasticity brakes’ over the perilesional tissue. Our data support the use of combinatorial clinical therapies exploiting robotic devices and modulation of interhemispheric connectivity.
Collapse
Affiliation(s)
| | - Claudia Alia
- CNR Neuroscience Institute, Pisa, Italy.,Scuola Normale Superiore, Pisa, Italy
| | - Stefano Lai
- Scuola Superiore Sant'Anna, Translational Neural Engineering Area, The BioRobotics Institute, Pontedera, Italy
| | - Alessandro Panarese
- Scuola Superiore Sant'Anna, Translational Neural Engineering Area, The BioRobotics Institute, Pontedera, Italy
| | - Sara Conti
- Scuola Superiore Sant'Anna, Translational Neural Engineering Area, The BioRobotics Institute, Pontedera, Italy
| | - Silvestro Micera
- Scuola Superiore Sant'Anna, Translational Neural Engineering Area, The BioRobotics Institute, Pontedera, Italy.,Bertarelli Foundation Chair in Translational NeuroEngineering Laboratory, Ecole Polytechnique Federale de Lausanne (EPFL), Center for Neuroprosthetics and Institute of Bioengineering, Lausanne, Switzerland
| | | |
Collapse
|
35
|
Pool EM, Leimbach M, Binder E, Nettekoven C, Eickhoff SB, Fink GR, Grefkes C. Network dynamics engaged in the modulation of motor behavior in stroke patients. Hum Brain Mapp 2017; 39:1078-1092. [PMID: 29193484 DOI: 10.1002/hbm.23872] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/06/2017] [Accepted: 10/20/2017] [Indexed: 01/14/2023] Open
Abstract
Stroke patients with motor deficits typically feature enhanced neural activity in several cortical areas when moving their affected hand. However, also healthy subjects may show higher levels of neural activity in tasks with higher motor demands. Therefore, the question arises to what extent stroke-related overactivity reflects performance-level-associated recruitment of neural resources rather than stroke-induced neural reorganization. We here investigated which areas in the lesioned brain enable the flexible adaption to varying motor demands compared to healthy subjects. Accordingly, eleven well-recovered left-hemispheric chronic stroke patients were scanned using functional magnetic resonance imaging. Motor system activity was assessed for fist closures at increasing movement frequencies performed with the affected/right or unaffected/left hand. In patients, an increasing movement rate of the affected hand was associated with stronger neural activity in ipsilesional/left primary motor cortex (M1) but unlike in healthy controls also in contralesional/right dorsolateral premotor cortex (PMd) and contralesional/right superior parietal lobule (SPL). Connectivity analyses using dynamic causal modeling revealed stronger coupling of right SPL onto affected/left M1 in patients but not in controls when moving the affected/right hand independent of the movement speed. Furthermore, coupling of right SPL was positively coupled with the "active" ipsilesional/left M1 when stroke patients moved their affected/right hand with increasing movement frequency. In summary, these findings are compatible with a supportive role of right SPL with respect to motor function of the paretic hand in the reorganized brain.
Collapse
Affiliation(s)
- Eva-Maria Pool
- Institute of Neuroscience and Medicine (INM-3, INM-7), Jülich Research Centre, Jülich, 52428, Germany.,Department of Neurology, University of Cologne, Cologne, 50931, Germany
| | - Martha Leimbach
- Department of Neurology, University of Cologne, Cologne, 50931, Germany
| | - Ellen Binder
- Institute of Neuroscience and Medicine (INM-3, INM-7), Jülich Research Centre, Jülich, 52428, Germany.,Department of Neurology, University of Cologne, Cologne, 50931, Germany
| | - Charlotte Nettekoven
- Institute of Neuroscience and Medicine (INM-3, INM-7), Jülich Research Centre, Jülich, 52428, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-3, INM-7), Jülich Research Centre, Jülich, 52428, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Gereon R Fink
- Institute of Neuroscience and Medicine (INM-3, INM-7), Jülich Research Centre, Jülich, 52428, Germany.,Department of Neurology, University of Cologne, Cologne, 50931, Germany
| | - Christian Grefkes
- Institute of Neuroscience and Medicine (INM-3, INM-7), Jülich Research Centre, Jülich, 52428, Germany.,Department of Neurology, University of Cologne, Cologne, 50931, Germany
| |
Collapse
|
36
|
Hartwigsen G, Saur D. Neuroimaging of stroke recovery from aphasia - Insights into plasticity of the human language network. Neuroimage 2017; 190:14-31. [PMID: 29175498 DOI: 10.1016/j.neuroimage.2017.11.056] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/02/2017] [Accepted: 11/22/2017] [Indexed: 12/15/2022] Open
Abstract
The role of left and right hemisphere brain regions in language recovery after stroke-induced aphasia remains controversial. Here, we summarize how neuroimaging studies increase the current understanding of functional interactions, reorganization and plasticity in the language network. We first discuss the temporal dynamics across the time course of language recovery, with a main focus on longitudinal studies from the acute to the chronic phase after stroke. These studies show that the functional contribution of perilesional and spared left hemisphere as well as contralesional right hemisphere regions to language recovery changes over time. The second section introduces critical variables and recent advances on early prediction of subsequent outcome. In the third section, we outline how multi-method approaches that combine neuroimaging techniques with non-invasive brain stimulation elucidate mechanisms of plasticity and reorganization in the language network. These approaches provide novel insights into general mechanisms of plasticity in the language network and might ultimately support recovery processes during speech and language therapy. Finally, the neurobiological correlates of therapy-induced plasticity are discussed. We argue that future studies should integrate individualized approaches that might vary the combination of language therapy with specific non-invasive brain stimulation protocols across the time course of recovery. The way forward will include the combination of such approaches with large data sets obtained from multicentre studies.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Research Group Modulation of Language Networks, Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Dorothee Saur
- Language & Aphasia Laboratory, Department of Neurology, University of Leipzig, Germany.
| |
Collapse
|
37
|
Archer DB, Kang N, Misra G, Marble S, Patten C, Coombes SA. Visual feedback alters force control and functional activity in the visuomotor network after stroke. NEUROIMAGE-CLINICAL 2017; 17:505-517. [PMID: 29201639 PMCID: PMC5700823 DOI: 10.1016/j.nicl.2017.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 11/27/2022]
Abstract
Modulating visual feedback may be a viable option to improve motor function after stroke, but the neurophysiological basis for this improvement is not clear. Visual gain can be manipulated by increasing or decreasing the spatial amplitude of an error signal. Here, we combined a unilateral visually guided grip force task with functional MRI to understand how changes in the gain of visual feedback alter brain activity in the chronic phase after stroke. Analyses focused on brain activation when force was produced by the most impaired hand of the stroke group as compared to the non-dominant hand of the control group. Our experiment produced three novel results. First, gain-related improvements in force control were associated with an increase in activity in many regions within the visuomotor network in both the stroke and control groups. These regions include the extrastriate visual cortex, inferior parietal lobule, ventral premotor cortex, cerebellum, and supplementary motor area. Second, the stroke group showed gain-related increases in activity in additional regions of lobules VI and VIIb of the ipsilateral cerebellum. Third, relative to the control group, the stroke group showed increased activity in the ipsilateral primary motor cortex, and activity in this region did not vary as a function of visual feedback gain. The visuomotor network, cerebellum, and ipsilateral primary motor cortex have each been targeted in rehabilitation interventions after stroke. Our observations provide new insight into the role these regions play in processing visual gain during a precisely controlled visuomotor task in the chronic phase after stroke.
Collapse
Affiliation(s)
- Derek B Archer
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Nyeonju Kang
- Division of Sport Science, Incheon National University, Incheon, South Korea
| | - Gaurav Misra
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Shannon Marble
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Carolynn Patten
- Neural Control of Movement Lab, Department of Physical Therapy, University of Florida and Malcolm-Randall VA Medical Center, Gainesville, FL, United States
| | - Stephen A Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
38
|
Dhamoon MS, Cheung YK, Bagci A, Alperin N, Sacco RL, Elkind MSV, Wright CB. Differential Effect of Left vs. Right White Matter Hyperintensity Burden on Functional Decline: The Northern Manhattan Study. Front Aging Neurosci 2017; 9:305. [PMID: 28970793 PMCID: PMC5609109 DOI: 10.3389/fnagi.2017.00305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022] Open
Abstract
Asymmetry of brain dysfunction may disrupt brain network efficiency. We hypothesized that greater left-right white matter hyperintensity volume (WMHV) asymmetry was associated with functional trajectories. Methods: In the Northern Manhattan Study, participants underwent brain MRI with axial T1, T2, and fluid attenuated inversion recovery sequences, with baseline interview and examination. Volumetric WMHV distribution across 14 brain regions was determined separately by combining bimodal image intensity distribution and atlas based methods. Participants had annual functional assessments with the Barthel index (BI, range 0-100) over a mean of 7.3 years. Generalized estimating equations (GEE) models estimated associations of regional WMHV and regional left-right asymmetry with baseline BI and change over time, adjusted for baseline medical risk factors, sociodemographics, and cognition, and stroke and myocardial infarction during follow-up. Results: Among 1,195 participants, greater WMHV asymmetry in the parietal lobes (-8.46 BI points per unit greater WMHV on the right compared to left, 95% CI -3.07, -13.86) and temporal lobes (-2.48 BI points, 95% CI -1.04, -3.93) was associated with lower overall function. Greater WMHV asymmetry in the parietal lobes (-1.09 additional BI points per year per unit greater WMHV on the left compared to right, 95% CI -1.89, -0.28) was independently associated with accelerated functional decline. Conclusions: In this large population-based study with long-term repeated measures of function, greater regional WMHV asymmetry was associated with lower function and functional decline. In addition to global WMHV, WHMV asymmetry may be an important predictor of long-term functional status.
Collapse
Affiliation(s)
- Mandip S. Dhamoon
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew York, NY, United States
- Department of Epidemiology, Mailman School of Public Health, Columbia UniversityNew York, NY, United States
| | - Ying-Kuen Cheung
- Department of Biostatistics, Mailman School of Public Health, Columbia UniversityNew York, NY, United States
| | - Ahmet Bagci
- Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of MiamiMiami, FL, United States
| | - Noam Alperin
- Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of MiamiMiami, FL, United States
| | - Ralph L. Sacco
- Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of MiamiMiami, FL, United States
- Departments of Public Health Sciences and Human Genetics, Miller School of Medicine, University of MiamiMiami, FL, United States
| | - Mitchell S. V. Elkind
- Department of Epidemiology, Mailman School of Public Health, Columbia UniversityNew York, NY, United States
- Department of Neurology, College of Physicians and Surgeons, Columbia UniversityNew York, NY, United States
| | | |
Collapse
|