1
|
Nickels K, Beeson PM, Kielar A. Addressing Phonological Deficit in Primary Progressive Aphasia With Behavioral Intervention and Transcranial Direct Current Stimulation. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2025:1-38. [PMID: 40227131 DOI: 10.1044/2024_jslhr-24-00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
PURPOSE Despite recognition of the underlying phonological impairment observed in the logopenic and nonfluent variants of primary progressive aphasia (PPA), there is relatively little treatment research directed toward strengthening phonological skills. In this study, we focused on remediating phonological deficits in logopenic and nonfluent PPA. Specifically, we hypothesized that behavioral intervention intended to strengthen phonological manipulation skills and sound-letter correspondences-coupled with transcranial direct current stimulation (tDCS)-would improve language abilities, especially in the written modality. METHOD Twelve individuals with logopenic or nonfluent variants of PPA and 24 neurotypical adults completed neuropsychological assessment that documented spoken and written language deficits in those with PPA. Phonological skills were consistently impaired in relation to other language processes. Following a double-blind, crossover design, six individuals with PPA were randomized to receive active tDCS with phonological intervention during the first treatment phase, and after a 2-month break, they received a second phase of behavioral intervention paired with sham tDCS. The other six individuals were randomized to receive sham first and active tDCS second. Language skills were evaluated before and after each treatment phase and 2 months after the intervention. RESULTS Both treatment groups (tDCS-first and sham-first) made significant improvement in phonological transcoding skills in response to behavioral intervention, but those who received active tDCS first showed stronger gains in phonological manipulation ability. This group also showed positive changes in written narratives, which contained more grammatical sentences with increased meaningful content and more accurate spelling. CONCLUSIONS These data provide compelling evidence supporting an approach that targets phonological deficits in logopenic and nonfluent PPA. Specifically, we found that improved phonological skills resulted in better functional communication ability (text-level writing) relevant to everyday life. Positive outcomes were strongest when tDCS was combined with behavioral treatment from the beginning, suggesting that this combination may potentiate positive changes that extend beyond the initial stimulation period. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.28598195.
Collapse
Affiliation(s)
- Katlyn Nickels
- Department of Speech, Language, and Hearing Sciences, The University of Arizona, Tucson
| | - Pélagie M Beeson
- Department of Speech, Language, and Hearing Sciences, The University of Arizona, Tucson
- Department of Neurology, The University of Arizona, Tucson
| | - Aneta Kielar
- Department of Speech, Language, and Hearing Sciences, The University of Arizona, Tucson
- BIO5 Institute, The University of Arizona, Tucson
| |
Collapse
|
2
|
George A, McConathey E, Vogel-Eyny A, Galletta E, Pilloni G, Charvet L. Feasibility of home-based transcranial direct current stimulation combined with personalized word retrieval for improving naming in primary progressive aphasia. Front Neurol 2025; 16:1543712. [PMID: 40007739 PMCID: PMC11852435 DOI: 10.3389/fneur.2025.1543712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives Primary progressive aphasia (PPA) is managed with speech-language therapy (SLT) to slow language decline. Pairing transcranial direct current stimulation (tDCS) with SLT can enhance its effects. However, further research is needed to confirm these findings and guide its clinical use. We evaluated the feasibility of providing an intervention combining tDCS with SLT as a home-based and remotely supervised intervention. Methods Participants with confirmed PPA who had word-finding difficulties were recruited for an open-label observational study. The intervention consisted of 20 daily sessions over 1 month, each with 45-min of personalized word retrieval training. During the first 30-min, participants received tDCS over the left inferior frontal gyrus (anode F7, cathode O1) at 2.0 mA. Language measures were remotely administered at baseline and intervention end. Results We enrolled 10 patients (age: 70 ± 7 years; 60% male) with confirmed logopenic variant (n = 2), semantic variant (n = 2), or unspecified (n = 6) PPA. The intervention was well-tolerated with no treatment-limiting adverse events. All participants completed all sessions, confirming the feasibility of the home-based treatment. There were no declines in language functioning measures, with improved naming for trained vs. untrained items (p = 0.003) and a significant improvement in confrontation naming (p = 0.016) from baseline to intervention end. Conclusions Our case series demonstrates that home-based tDCS added to SLT is feasible for patients with PPA. However, larger controlled studies are required to confirm its effectiveness in slowing language decline and to fully determine the benefits of this approach. This approach not only facilitates broader access to participation but also enables the extended treatment necessary to evaluate its clinical benefits, moving this treatment closer to clinical availability as a telehealth treatment.
Collapse
Affiliation(s)
- Allan George
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Eric McConathey
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Amy Vogel-Eyny
- Rusk Rehabilitation, New York University Langone Health, New York, NY, United States
| | - Elizabeth Galletta
- Rusk Rehabilitation, New York University Langone Health, New York, NY, United States
| | - Giuseppina Pilloni
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Leigh Charvet
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
3
|
Sheppard SM, Goldberg EB, Sebastian R, Vitti E, Ruch K, Meier EL, Hillis AE. Augmenting Verb-Naming Therapy With Neuromodulation Decelerates Language Loss in Primary Progressive Aphasia. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2025; 34:155-173. [PMID: 39666609 PMCID: PMC11745310 DOI: 10.1044/2024_ajslp-24-00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/29/2024] [Accepted: 08/29/2024] [Indexed: 12/14/2024]
Abstract
PURPOSE The purpose of the study was to evaluate Verb Network Strengthening Treatment (VNeST) paired with the transcranial direct current stimulation (tDCS) of the left inferior frontal gyrus, which was compared to VNeST paired with a sham stimulation in primary progressive aphasia (PPA). METHOD A double-blind, within-subject, sham-controlled crossover design was used. Eight participants with PPA were enrolled. Participants were enrolled in two treatment phases, one with VNeST plus real tDCS and one with VNeST plus sham. Participants received fifteen 1-hr sessions of VNeST in each phase. Linear mixed-effects models were used to compare changes between baseline and two follow-up time points (1 week and 8 weeks posttreatment) in naming trained verbs, untrained verbs, and untrained nouns; sentence production and comprehension; and producing content units and complete utterances in discourse. RESULTS VNeST was effective for significantly improving naming trained verbs and producing more complete utterances in discourse at 1 week posttreatment in both tDCS and sham conditions. A significant tDCS advantage yielded generalization of treatment effects to untrained verbs (at 1 week and 8 weeks posttreatment), sentence production (at 1 week posttreatment), and sentence comprehension (at 8 weeks posttreatment). Untrained verb naming and sentence comprehension declined when VNeST was not augmented with tDCS. CONCLUSIONS Our findings provide emerging evidence that VNeST paired with tDCS can improve word finding, and other language abilities, in people with PPA. VNeST without neuromodulation can improve trained verb naming, but untrained verbs will likely decline faster when VNeST is not augmented with tDCS. Future research is required with a larger sample size to continue investigating the potential of treating word finding with VNeST and tDCS in PPA. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.27914325.
Collapse
Affiliation(s)
- Shannon M. Sheppard
- Department of Speech and Hearing Sciences, University of Washington, Seattle
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Emily B. Goldberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rajani Sebastian
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Emilia Vitti
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kristina Ruch
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Erin L. Meier
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Cognitive Science, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
4
|
Aiswarya GS, Joseph Ponniah R. Dysgraphia and Memory: Insights into the Cognitive Mechanisms, Neural Correlates, and Intervention Strategies. Integr Psychol Behav Sci 2024; 58:1778-1792. [PMID: 39505782 DOI: 10.1007/s12124-024-09835-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 11/08/2024]
Abstract
Studies regarding dysgraphia, an impairment in writing, have been receiving more attention in recent research. Most studies have broadly discussed the multiple cognitive mechanisms involved in writing and its disruption leading to dysgraphia. However, little attention has been paid to the involvement of different memory systems integral to writing and its disruption in individuals with dysgraphia. Orthographic long-term memory and orthographic working memory are the two memory systems predominantly involved in the production of written expressions, and the subsequent interruption of these memory systems often leads to varied deficit profiles of dysgraphia. These disruptions have resulted from damage in the brain caused by neural injuries, neurological disorders, or epigenetic factors. The existing studies did not probe into the nuances of the disruptions of these two memory systems in dysgraphia and associated neural pathways. In order to fill this gap, the review attempts to provide a comprehensive account of dysgraphia and its association with orthographic long-term memory and orthographic working memory by comparing and contrasting their workings and patterns of disruption in the deficit profiles of dysgraphia by probing into the underlying neural correlates. Such a detailed account brings insights into pertinent intervention strategies for improving memory systems and dysgraphia. It also helps identify the limitations of the existing intervention methods like CART, ACT, or Spell-Study-Spell, leading to the proposal of improvised neuro-targeted interventions for dysgraphia.
Collapse
Affiliation(s)
- G S Aiswarya
- Department of Humanities and Social Sciences, National Institute of Technology, Tiruchirappalli, Tamil Nadu, 620015, India
| | - R Joseph Ponniah
- Department of Humanities and Social Sciences, National Institute of Technology, Tiruchirappalli, Tamil Nadu, 620015, India.
| |
Collapse
|
5
|
Tippett DC, Neophytou K, Tao Y, Gallegos J, Morrow C, Onyike CU, Tsapkini K. Long-term, home-based transcranial direct current stimulation coupled with computerized cognitive training in frontotemporal dementia: A case report. J Cent Nerv Syst Dis 2024; 16:11795735241258435. [PMID: 38835997 PMCID: PMC11149448 DOI: 10.1177/11795735241258435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 05/02/2024] [Indexed: 06/06/2024] Open
Abstract
We present the case of a 62-year-old woman with probable behavioral variant of frontotemporal dementia (bvFTD) with cognitive/language deficits who demonstrated improved performance on cognitive/language testing and in functional tasks following long-term, home-based transcranial direct current stimulation (tDCS) coupled with computerized cognitive training (CCT). The patient underwent home-based tDCS (anode on the left prefrontal cortex and cathode on the right homologue) for 46 sessions over 10 weeks along with CCT. On post-treatment testing, the patient improved by 3 points on the Mini-Mental State Exam (MMSE) (23 to 26). She also showed improvement on several cognitive/language tasks, such as immediate recall of single words and word pairs, total accurate words in sentence repetition, delayed recall, semantic processing, and sentence level comprehension. There was no decline in several other cognitive and language tasks. Family members reported subjective improvements in expressiveness, communication, and interaction with others as well as increased attention to grooming and style which contrasted with her pre-treatment condition. This report suggests that home-based tDCS combined with CCT for an extended period may slow decline, and improve cognitive/language performance and everyday function in FTD.
Collapse
Affiliation(s)
- Donna C Tippett
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kyriaki Neophytou
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuan Tao
- Department of Cognitive Science, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Jessica Gallegos
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher Morrow
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kyrana Tsapkini
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Roheger M, Riemann S, Brauer A, McGowan E, Grittner U, Flöel A, Meinzer M. Non-pharmacological interventions for improving language and communication in people with primary progressive aphasia. Cochrane Database Syst Rev 2024; 5:CD015067. [PMID: 38808659 PMCID: PMC11134511 DOI: 10.1002/14651858.cd015067.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
BACKGROUND Primary progressive aphasia (PPA) accounts for approximately 43% of frontotemporal dementias and is mainly characterised by a progressive impairment of speech and communication abilities. Three clinical variants have been identified: (a) non-fluent/agrammatic, (b) semantic, and (c) logopenic/phonological PPA variants. There is currently no curative treatment for PPA, and the disease progresses inexorably over time, with devastating effects on speech and communication ability, functional status, and quality of life. Several non-pharmacological interventions that may improve symptoms (e.g. different forms of language training and non-invasive brain stimulation) have been investigated in people with PPA. OBJECTIVES To assess the effects of non-pharmacological interventions for people with PPA on word retrieval (our primary outcome), global language functions, cognition, quality of life, and adverse events. SEARCH METHODS We searched the Cochrane Dementia and Cognitive Improvement Group's trial register, MEDLINE (Ovid SP), Embase (Ovid SP), four other databases and two other trial registers. The latest searches were run on 26 January 2024. SELECTION CRITERIA We included randomised controlled trials (RCTs) evaluating the effects of non-pharmacological interventions in people with PPA. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS There were insufficient data available to conduct the network meta-analyses that we had originally planned (due to trial data being insufficiently reported or not reported at all, as well as the heterogeneous content of the included interventions). Therefore, we provide a descriptive summary of the included studies and results. We included 10 studies, with a total of 132 participants, evaluating non-pharmacological interventions. These were: transcranial direct current stimulation (tDCS) or repetitive transcranial magnetic stimulation (rTMS) as stand-alone treatments (used by two and one studies, respectively); tDCS combined with semantic and phonological word-retrieval training (five studies); tDCS combined with semantic word-retrieval training (one study); and tDCS combined with phonological word-retrieval training (one study). Results for our primary outcome of word retrieval were mixed. For the two studies that investigated the effects of tDCS as stand-alone treatment compared to placebo ("sham") tDCS, we rated the results as having very low-certainty evidence. One study found a significant beneficial effect on word retrieval after active tDCS; one study did not report any significant effects in favour of the active tDCS group. Five studies investigated tDCS administered to the dorsolateral prefrontal cortex, inferior frontal cortex, left frontotemporal region, or the temporoparietal cortex, combined with semantic and phonological word-retrieval training. The most consistent finding was enhancement of word-retrieval ability for trained items immediately after the intervention, when behavioural training was combined with active tDCS compared to behavioural training plus sham tDCS. We found mixed effects for untrained items and maintenance of treatment effects during follow-up assessments. We rated the certainty of the evidence as very low in all studies. One study investigated tDCS combined with semantic word-retrieval training. Training was provided across 15 sessions with a frequency of three to five sessions per week, depending on the personal preferences of the participants. tDCS targeted the left frontotemporal region. The study included three participants: two received 1 mA stimulation and one received 2 mA stimulation. The study showed mixed results. We rated it as very low-certainty evidence. One study investigated tDCS combined with phonological word-retrieval training. Training was again provided across 15 sessions over a period of three weeks. tDCS targeted the left inferior frontal gyrus. This study showed a significantly more pronounced improvement for trained and untrained words in favour of the group that had received active tDCS, but we rated the certainty of the evidence as very low. One study compared active rTMS applied to an individually determined target site to active rTMS applied to a control site (vertex) for effects on participants' word retrieval. This study demonstrated better word retrieval for active rTMS administered to individually determined target brain regions than in the control intervention, but we rated the results as having a very low certainty of evidence. Four studies assessed overall language ability, three studies assessed cognition, five studies assessed potential adverse effects of brain stimulation, and one study investigated quality of life. AUTHORS' CONCLUSIONS There is currently no high-certainty evidence to inform clinical decision-making regarding non-pharmacological treatment selection for people with PPA. Preliminary evidence suggests that the combination of active tDCS with specific language therapy may improve impaired word retrieval for specifically trained items beyond the effects of behavioural treatment alone. However, more research is needed, including high-quality RCTs with detailed descriptions of participants and methods, and consideration of outcomes such as quality of life, depressive symptoms, and overall cognitive functioning. Moreover, studies assessing optimal treatments (i.e. behavioural interventions, brain stimulation interventions, and their combinations) for individual patients and PPA subtypes are needed. We were not able to conduct the planned (network) meta-analyses due to missing data that could not be obtained from most of the authors, a general lack of RCTs in the field, and heterogeneous interventions in eligible trials. Journals should implement a mandatory data-sharing requirement to assure transparency and accessibility of data from clinical trials.
Collapse
Affiliation(s)
- Mandy Roheger
- Department of Psychology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Steffen Riemann
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Andreas Brauer
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Ellen McGowan
- Speech and Language Therapy, Older People's Mental Health, Stockport, Pennine Care NHS Foundation Trust, Pennine Care NHS Foundation Trust, Stockport, UK
| | - Ulrike Grittner
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Marcus Meinzer
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
7
|
Di Fuccio R, Lardone A, De Luca M, Ali L, Limone P, Marangolo P. Neurobiological Effects of Transcranial Direct Current Stimulation over the Inferior Frontal Gyrus: A Systematic Review on Cognitive Enhancement in Healthy and Neurological Adults. Biomedicines 2024; 12:1146. [PMID: 38927353 PMCID: PMC11200721 DOI: 10.3390/biomedicines12061146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
The neurobiological effects of transcranial direct current stimulation (tDCS) have still not been unequivocally clarified. Some studies have suggested that the application of tDCS over the inferior frontal gyrus (IFG) enhances different aspects of cognition in healthy and neurological individuals, exerting neural changes over the target area and its neural surroundings. In this systematic review, randomized sham-controlled trials in healthy and neurological adults were selected through a database search to explore whether tDCS over the IFG combined with cognitive training modulates functional connectivity or neural changes. Twenty studies were finally included, among which twelve measured tDCS effects through functional magnetic resonance (fMRI), two through functional near-infrared spectroscopy (fNIRS), and six through electroencephalography (EEG). Due to the high heterogeneity observed across studies, data were qualitatively described and compared to assess reliability. Overall, studies that combined fMRI and tDCS showed widespread changes in functional connectivity at both local and distant brain regions. The findings also suggested that tDCS may also modulate electrophysiological changes underlying the targeted area. However, these outcomes were not always accompanied by corresponding significant behavioral results. This work raises the question concerning the general efficacy of tDCS, the implications of which extend to the steadily increasing tDCS literature.
Collapse
Affiliation(s)
- Raffaele Di Fuccio
- Department of Psychology and Educational Sciences, Telematic University of Pegaso, Piazza dei Santi Apostoli 49, 00187 Rome, Italy; (R.D.F.); (L.A.); (P.L.)
| | - Anna Lardone
- Department of Humanities Studies, University Federico II, Via Porta di Massa 1, 80133 Naples, Italy; (A.L.); (M.D.L.)
| | - Mariagiovanna De Luca
- Department of Humanities Studies, University Federico II, Via Porta di Massa 1, 80133 Naples, Italy; (A.L.); (M.D.L.)
| | - Leila Ali
- Department of Psychology and Educational Sciences, Telematic University of Pegaso, Piazza dei Santi Apostoli 49, 00187 Rome, Italy; (R.D.F.); (L.A.); (P.L.)
| | - Pierpaolo Limone
- Department of Psychology and Educational Sciences, Telematic University of Pegaso, Piazza dei Santi Apostoli 49, 00187 Rome, Italy; (R.D.F.); (L.A.); (P.L.)
| | - Paola Marangolo
- Department of Humanities Studies, University Federico II, Via Porta di Massa 1, 80133 Naples, Italy; (A.L.); (M.D.L.)
| |
Collapse
|
8
|
Wang Z, Gallegos J, Tippett D, Onyike CU, Desmond JE, Hillis AE, Frangakis CE, Caffo B, Tsapkini K. Baseline functional connectivity predicts who will benefit from neuromodulation: evidence from primary progressive aphasia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.19.24305354. [PMID: 38699365 PMCID: PMC11065007 DOI: 10.1101/2024.04.19.24305354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background Identifying the characteristics of individuals who demonstrate response to an intervention allows us to predict who is most likely to benefit from certain interventions. Prediction is challenging in rare and heterogeneous diseases, such as primary progressive aphasia (PPA), that have varying clinical manifestations. We aimed to determine the characteristics of those who will benefit most from transcranial direct current stimulation (tDCS) of the left inferior frontal gyrus (IFG) using a novel heterogeneity and group identification analysis. Methods We compared the predictive ability of demographic and clinical patient characteristics (e.g., PPA variant and disease progression, baseline language performance) vs. functional connectivity alone (from resting-state fMRI) in the same cohort. Results Functional connectivity alone had the highest predictive value for outcomes, explaining 62% and 75% of tDCS effect of variance in generalization (semantic fluency) and in the trained outcome of the clinical trial (written naming), contrasted with <15% predicted by clinical characteristics, including baseline language performance. Patients with higher baseline functional connectivity between the left IFG (opercularis and triangularis), and between the middle temporal pole and posterior superior temporal gyrus, were most likely to benefit from tDCS. Conclusions We show the importance of a baseline 7-minute functional connectivity scan in predicting tDCS outcomes, and point towards a precision medicine approach in neuromodulation studies. The study has important implications for clinical trials and practice, providing a statistical method that addresses heterogeneity in patient populations and allowing accurate prediction and enrollment of those who will most likely benefit from specific interventions.
Collapse
Affiliation(s)
- Zeyi Wang
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Jessica Gallegos
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Donna Tippett
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
- Department of Physical Medicine & Rehabilitation, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medicine, Baltimore, MD, USA
| | - John E Desmond
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
- Department of Cognitive Science, Johns Hopkins Medicine, Baltimore, MD, USA
- Neuroscience Program, Johns Hopkins University, Baltimore, MD, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
- Department of Physical Medicine & Rehabilitation, Johns Hopkins Medicine, Baltimore, MD, USA
- Department of Cognitive Science, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Constantine E Frangakis
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medicine, Baltimore, MD, USA
- Department of Radiology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Brian Caffo
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
- Department of Cognitive Science, Johns Hopkins Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Neophytou K, Williamson K, Herrmann O, Afthinos A, Gallegos J, Martin N, Tippett DC, Tsapkini K. Home-Based Transcranial Direct Current Stimulation in Primary Progressive Aphasia: A Pilot Study. Brain Sci 2024; 14:391. [PMID: 38672040 PMCID: PMC11048435 DOI: 10.3390/brainsci14040391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND This study aims to determine (a) if home-based anodal transcranial direct current stimulation (a-tDCS) delivered to the left supramarginal gyrus (SMG) coupled with verbal short-term memory/working memory (vSTM/WM) treatment ("RAM", short for "Repeat After Me") is more effective than sham-tDCS in improving vSTM/WM in patients with primary progressive aphasia (PPA), and (b) whether tDCS effects generalize to other language and cognitive abilities. METHODS Seven PPA participants received home-based a-tDCS and sham-tDCS coupled with RAM treatment in separate conditions in a double-blind design. The treatment task required participants to repeat word spans comprising semantically and phonologically unrelated words in the same and reverse order. The evaluation of treatment effects was carried out using the same tasks as in the treatment but with different items (near-transfer effects) and tasks that were not directly related to the treatment (far-transfer effects). RESULTS A-tDCS showed (a) a significant effect in improving vSTM abilities, measured by word span backward, and (b) a generalization of this effect to other language abilities, namely, spelling (both real words and pseudowords) and learning (retention and delayed recall). CONCLUSIONS These preliminary results indicate that vSTM/WM intervention can improve performance in trained vSTM/WM tasks in patients with PPA, especially when augmented with home-based tDCS over the left SMG.
Collapse
Affiliation(s)
- Kyriaki Neophytou
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD 21287, USA; (K.N.); (K.W.); (O.H.); (A.A.); (J.G.); (D.C.T.)
| | - Kelly Williamson
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD 21287, USA; (K.N.); (K.W.); (O.H.); (A.A.); (J.G.); (D.C.T.)
| | - Olivia Herrmann
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD 21287, USA; (K.N.); (K.W.); (O.H.); (A.A.); (J.G.); (D.C.T.)
| | - Alexandros Afthinos
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD 21287, USA; (K.N.); (K.W.); (O.H.); (A.A.); (J.G.); (D.C.T.)
- Cooper Medical School of Rowan University, Rowan University, 401 Broadway, Camden, NJ 08103, USA
| | - Jessica Gallegos
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD 21287, USA; (K.N.); (K.W.); (O.H.); (A.A.); (J.G.); (D.C.T.)
| | - Nadine Martin
- Department of Communication Sciences and Disorders, Temple University, 1701 N. 13th Street, Philadelphia, PA 19122, USA;
| | - Donna C. Tippett
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD 21287, USA; (K.N.); (K.W.); (O.H.); (A.A.); (J.G.); (D.C.T.)
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 174, Baltimore, MD 21287, USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, 601 N. Caroline Street, Baltimore, MD 21287, USA
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD 21287, USA; (K.N.); (K.W.); (O.H.); (A.A.); (J.G.); (D.C.T.)
- Department of Cognitive Science, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
10
|
Joshi H, Sinha P, Bowers D, John JP. Dose response of transcranial near infrared light stimulation on brain functional connectivity and cognition in older adults-A randomized comparison. JOURNAL OF BIOPHOTONICS 2024; 17:e202300215. [PMID: 37776079 DOI: 10.1002/jbio.202300215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023]
Abstract
Photobiomodulation, also called low-level light therapy, has been reported in animal studies to have an effect on brain activity and cognition. However, studies in humans regarding its effect on cognition and brain functional connectivity, and the required dose threshold for achieving the same have been very limited. We compared the effects of different doses of photobiomodulation (PBM) on cognition and resting state brain functional connectivity in 25 cognitively normal adults aged 55-70 years. They were randomized to a single session of the sham group, "low-dose" and "high-dose" groups receiving NIR light with transcranial fluence of 26 and 52 J/cm2 respectively, and intranasal fluence of 9 and 18 J/cm2 respectively. There was a significant increase in resting state functional connectivity of the left superior frontal gyrus (SFG) with the left planum temporale (PT), p = 0.0016, and with the left inferior frontal gyrus, pars triangularis, p = 0.0235 in the "high-dose" group only compared to the "sham" group. There was also a significant improvement in visual search and processing speed (p = 0.012) in the "high-dose" group. Replication of these findings in an adequately powered randomized sham-controlled study in healthy older adults can pave the way for clinical application of NIRL as a therapeutic modality in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Himanshu Joshi
- Multimodal Brain Image Analysis Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
- Geriatric Clinic and Services, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Preeti Sinha
- Geriatric Clinic and Services, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
- Non-invasive Brain Stimulation Services, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Dawn Bowers
- Department of Clinical & Health Psychology, College of Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida, USA
- Cognitive Neuroscience Laboratory, Department of Neurology, Fixel Center of Neurological Diseases, University of Florida Health Science Center, Gainesville, Florida, USA
| | - John P John
- Multimodal Brain Image Analysis Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| |
Collapse
|
11
|
Strunk K, Weiss S, Müller HM. High-Frequency Language Therapy with Semantic Feature Analysis (SFA) and Transcranial Direct Current Stimulation (tDCS): A Longitudinal Single-Case Report of Semantic Variant of Primary Progressive Aphasia (svPPA). Brain Sci 2024; 14:133. [PMID: 38391708 PMCID: PMC10886986 DOI: 10.3390/brainsci14020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The goal of this study was to investigate whether the combination of semantic feature analysis (SFA) and transcranial direct current stimulation (tDCS) is effective in treating word retrieval in the semantic variant of primary progressive aphasia (svPPA) and how long the potential effects last. METHODS A 56-year-old woman diagnosed with frontotemporal dementia (FTD) and svPPA participated in this longitudinal single-subject design. A total of four 2-week stimulation phases were conducted over a 14-month period, each of which was started depending on the participant's language performance. Follow-up testing was conducted shortly after the stimulation period, approximately 2 weeks, and approximately 4 weeks thereafter. RESULTS Significant improvement in word retrieval occurred after SFA and tDCS therapy. Two weeks after the end of each stimulation phase, approx. 80% of the trained words could be named correctly. For the untrained words, also significantly more words were correctly named at follow-ups compared to the baseline. Furthermore, the Boston Naming Test (BNT) demonstrated a significant increase in naming performance and showed that phonological cues facilitated word retrieval compared to semantic cues. CONCLUSION The combination of SFA and tDCS was able to counteract the expected language deterioration of a participant with svPPA. This effect increased until approximately 2 weeks after each intervention. In addition, a generalization of the effect to untrained words was shown.
Collapse
Affiliation(s)
- Katharina Strunk
- Experimental Neurolinguistics Group, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Sabine Weiss
- Experimental Neurolinguistics Group, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Inspiration 1, 33619 Bielefeld, Germany
- Clinical Linguistics, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Horst M Müller
- Experimental Neurolinguistics Group, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
12
|
Nakamura-Palacios EM, Falçoni Júnior AT, Tanese GL, Vogeley ACE, Namasivayam AK. Enhancing Speech Rehabilitation in a Young Adult with Trisomy 21: Integrating Transcranial Direct Current Stimulation (tDCS) with Rapid Syllable Transition Training for Apraxia of Speech. Brain Sci 2024; 14:58. [PMID: 38248273 PMCID: PMC10813810 DOI: 10.3390/brainsci14010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Apraxia of speech is a persistent speech motor disorder that affects speech intelligibility. Studies on speech motor disorders with transcranial Direct Current Stimulation (tDCS) have been mostly directed toward examining post-stroke aphasia. Only a few tDCS studies have focused on apraxia of speech or childhood apraxia of speech (CAS), and no study has investigated individuals with CAS and Trisomy 21 (T21, Down syndrome). This N-of-1 randomized trial examined the effects of tDCS combined with a motor learning task in developmental apraxia of speech co-existing with T21 (ReBEC RBR-5435x9). The accuracy of speech sound production of nonsense words (NSWs) during Rapid Syllable Transition Training (ReST) over 10 sessions of anodal tDCS (1.5 mA, 25 cm) over Broca's area with the cathode over the contralateral region was compared to 10 sessions of sham-tDCS and four control sessions in a 20-year-old male individual with T21 presenting moderate-severe childhood apraxia of speech (CAS). The accuracy for NSW production progressively improved (gain of 40%) under tDCS (sham-tDCS and control sessions showed < 20% gain). A decrease in speech severity from moderate-severe to mild-moderate indicated transfer effects in speech production. Speech accuracy under tDCS was correlated with Wernicke's area activation (P3 current source density), which in turn was correlated with the activation of the left supramarginal gyrus and the Sylvian parietal-temporal junction. Repetitive bihemispheric tDCS paired with ReST may have facilitated speech sound acquisition in a young adult with T21 and CAS, possibly through activating brain regions required for phonological working memory.
Collapse
Affiliation(s)
| | | | - Gabriela Lolli Tanese
- Clinic of Speech-Language Pathology, Eldorado Business Tower, Goiânia 74280-010, GO, Brazil;
| | - Ana Carla Estellita Vogeley
- Department of Speech and Language Pathology, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil;
| | - Aravind Kumar Namasivayam
- Department of Speech-Language Pathology, University of Toronto, Toronto, ON M5G 1V7, Canada;
- Speech Research Centre Inc., Brampton, ON L7A 2T1, Canada
| |
Collapse
|
13
|
LoBue C, McClintock S, Chiang HS, Helphrey J, Thakkar V, Hart J. A Critical Review of Noninvasive Brain Stimulation Technologies in Alzheimer's Dementia and Primary Progressive Aphasia. J Alzheimers Dis 2024; 100:743-760. [PMID: 38905047 PMCID: PMC11959453 DOI: 10.3233/jad-240230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Multiple pharmacologic agents now have been approved in the United States and other countries as treatment to slow disease and clinical progression for Alzheimer's disease. Given these treatments have not been proven to lessen the cognitive deficits already manifested in the Alzheimer's Clinical Syndrome (ACS), and none are aimed for another debilitating dementia syndrome identified as primary progressive aphasia (PPA), there is an urgent need for new, safe, tolerable, and efficacious treatments to mitigate the cognitive deficits experienced in ACS and PPA. Noninvasive brain stimulation has shown promise for enhancing cognitive functioning, and there has been interest in its potential therapeutic value in ACS and PPA. This review critically examines the evidence of five technologies in ACS and PPA: transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), transcranial random noise stimulation (tRNS), repetitive transcranial magnetic stimulation (rTMS), and noninvasive vagus nerve stimulation (nVNS). Many randomized controlled trials of tDCS and rTMS report positive treatment effects on cognition in ACS and PPA that persist out to at least 8 weeks, whereas there are few trials for tACS and none for tRNS and nVNS. However, most positive trials did not identify clinically meaningful changes, underscoring that clinical efficacy has yet to be established in ACS and PPA. Much is still to be learned about noninvasive brain stimulation in ACS and PPA, and shifting the focus to prioritize clinical significance in addition to statistical significance in trials could yield greater success in understanding its potential cognitive effects and optimal parameters.
Collapse
Affiliation(s)
- Christian LoBue
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas,TX, 75390
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas,TX, 75390
| | - Shawn McClintock
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas,TX, 75390
| | - Hsueh-Sheng Chiang
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas,TX, 75390
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080
| | - Jessica Helphrey
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas,TX, 75390
| | - Vishal Thakkar
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas,TX, 75390
| | - John Hart
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas,TX, 75390
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas,TX, 75390
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080
| |
Collapse
|
14
|
Norata D, Motolese F, Magliozzi A, Pilato F, Di Lazzaro V, Luzzi S, Capone F. Transcranial direct current stimulation in semantic variant of primary progressive aphasia: a state-of-the-art review. Front Hum Neurosci 2023; 17:1219737. [PMID: 38021245 PMCID: PMC10663282 DOI: 10.3389/fnhum.2023.1219737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
The semantic variant of primary progressive aphasia (svPPA), known also as "semantic dementia (SD)," is a neurodegenerative disorder that pertains to the frontotemporal lobar degeneration clinical syndromes. There is currently no approved pharmacological therapy for all frontotemporal dementia variants. Transcranial direct current stimulation (tDCS) is a promising non-invasive brain stimulation technique capable of modulating cortical excitability through a sub-threshold shift in neuronal resting potential. This technique has previously been applied as adjunct treatment in Alzheimer's disease, while data for frontotemporal dementia are controversial. In this scoped review, we summarize and critically appraise the currently available evidence regarding the use of tDCS for improving performance in naming and/or matching tasks in patients with svPPA. Clinical trials addressing this topic were identified through MEDLINE (accessed by PubMed) and Web of Science, as of November 2022, week 3. Clinical trials have been unable to show a significant benefit of tDCS in enhancing semantic performance in svPPA patients. The heterogeneity of the studies available in the literature might be a possible explanation. Nevertheless, the results of these studies are promising and may offer valuable insights into methodological differences and overlaps, raising interest among researchers in identifying new non-pharmacological strategies for treating svPPA patients. Further studies are therefore warranted to investigate the potential therapeutic role of tDCS in svPPA.
Collapse
Affiliation(s)
- Davide Norata
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Neurological Clinic, Department of Experimental and Clinical Medicine (DIMSC), Marche Polytechnic University, Ancona, Italy
| | - Francesco Motolese
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Alessandro Magliozzi
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fabio Pilato
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Simona Luzzi
- Neurological Clinic, Department of Experimental and Clinical Medicine (DIMSC), Marche Polytechnic University, Ancona, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
15
|
Xie Y, Guan M, Wang Z, Ma Z, Wang H, Fang P. Alterations in brain connectivity patterns in schizophrenia patients with auditory verbal hallucinations during low frequency repetitive transcranial magnetic stimulation. Psychiatry Res 2023; 328:115457. [PMID: 37716322 DOI: 10.1016/j.psychres.2023.115457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE Auditory verbal hallucinations (AVH) are a characteristic symptom of schizophrenia. Although low-frequency repetitive transcranial magnetic stimulation (rTMS) has been demonstrated to alleviate the severity of AVH, its exact neurophysiological mechanisms remain unclear. This study aimed to elucidate the alterations in brain connectivity patterns in schizophrenia patients with AVH after low frequency rTMS. Furthermore, the relationship between these alterations and clinical outcomes was examined, thereby identifying potential biomarkers for rTMS treatment efficacy. METHODS A total of 30 schizophrenia patients with AVH and 33 healthy controls were recruited. The patients received 1 Hz rTMS applied to the left temporoparietal junction region over 15 days. Resting-state functional magnetic resonance imaging scans were conducted for all participants. Subsequently, degree centrality (DC) and seed-based functional connectivity (FC) analyses were employed to identify specific alterations in brain connectivity patterns after rTMS treatment. RESULTS At baseline, patients exhibited divergent DC patterns in the frontal, occipital, and limbic lobes compared to healthy controls. In addition, prior to treatment, patients demonstrated altered FC from the superior frontal gyrus seeds that linked to the frontal, temporal, and somatosensory regions. Following rTMS treatment, these abnormalities were notably reversed, correlating with improved clinical outcomes. CONCLUSIONS These findings demonstrate that schizophrenia patients with AVH exhibited atypical interactions within the frontal and temporal lobes. These alterations might be crucial biomarkers for predicting the efficacy of low frequency rTMS.
Collapse
Affiliation(s)
- Yuanjun Xie
- Military Medical Psychology School , Fourth Military Medical University, Xi'an, China; Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical College, Xi'an, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhujing Ma
- Military Medical Psychology School , Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Peng Fang
- Military Medical Psychology School , Fourth Military Medical University, Xi'an, China; Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China.
| |
Collapse
|
16
|
Mandelli ML, Lorca-Puls DL, Lukic S, Montembeault M, Gajardo-Vidal A, Licata A, Scheffler A, Battistella G, Grasso SM, Bogley R, Ratnasiri BM, La Joie R, Mundada NS, Europa E, Rabinovici G, Miller BL, De Leon J, Henry ML, Miller Z, Gorno-Tempini ML. Network anatomy in logopenic variant of primary progressive aphasia. Hum Brain Mapp 2023; 44:4390-4406. [PMID: 37306089 PMCID: PMC10318204 DOI: 10.1002/hbm.26388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/21/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023] Open
Abstract
The logopenic variant of primary progressive aphasia (lvPPA) is a neurodegenerative syndrome characterized linguistically by gradual loss of repetition and naming skills resulting from left posterior temporal and inferior parietal atrophy. Here, we sought to identify which specific cortical loci are initially targeted by the disease (epicenters) and investigate whether atrophy spreads through predetermined networks. First, we used cross-sectional structural MRI data from individuals with lvPPA to define putative disease epicenters using a surface-based approach paired with an anatomically fine-grained parcellation of the cortical surface (i.e., HCP-MMP1.0 atlas). Second, we combined cross-sectional functional MRI data from healthy controls and longitudinal structural MRI data from individuals with lvPPA to derive the epicenter-seeded resting-state networks most relevant to lvPPA symptomatology and ascertain whether functional connectivity in these networks predicts longitudinal atrophy spread in lvPPA. Our results show that two partially distinct brain networks anchored to the left anterior angular and posterior superior temporal gyri epicenters were preferentially associated with sentence repetition and naming skills in lvPPA. Critically, the strength of connectivity within these two networks in the neurologically-intact brain significantly predicted longitudinal atrophy progression in lvPPA. Taken together, our findings indicate that atrophy progression in lvPPA, starting from inferior parietal and temporoparietal junction regions, predominantly follows at least two partially nonoverlapping pathways, which may influence the heterogeneity in clinical presentation and prognosis.
Collapse
Affiliation(s)
- Maria Luisa Mandelli
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California, USA
| | - Diego L Lorca-Puls
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California, USA
- Sección de Neurología, Departamento de Especialidades, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Sladjana Lukic
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California, USA
- Department of Communication Sciences and Disorders, Adelphi University, Garden City, New York, USA
| | - Maxime Montembeault
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California, USA
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, Canada
| | - Andrea Gajardo-Vidal
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California, USA
- Faculty of Health Sciences, Universidad del Desarrollo, Concepción, Chile
| | - Abigail Licata
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California, USA
| | - Aaron Scheffler
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Giovanni Battistella
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California, USA
- Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, Massachusetts, USA
| | - Stephanie M Grasso
- Department of Speech, Language, and Hearing Sciences, University of Texas, Austin, Texas, USA
| | - Rian Bogley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California, USA
| | - Buddhika M Ratnasiri
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California, USA
| | - Nidhi S Mundada
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California, USA
| | - Eduardo Europa
- Department of Communicative Disorders and Sciences, San Jose State University, San Jose, California, USA
| | - Gil Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California, USA
| | - Jessica De Leon
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California, USA
| | - Maya L Henry
- Department of Speech, Language, and Hearing Sciences, University of Texas, Austin, Texas, USA
| | - Zachary Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California, USA
| |
Collapse
|
17
|
Kim HC, Lee W, Weisholtz DS, Yoo SS. Transcranial focused ultrasound stimulation of cortical and thalamic somatosensory areas in human. PLoS One 2023; 18:e0288654. [PMID: 37478086 PMCID: PMC10361523 DOI: 10.1371/journal.pone.0288654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/30/2023] [Indexed: 07/23/2023] Open
Abstract
The effects of transcranial focused ultrasound (FUS) stimulation of the primary somatosensory cortex and its thalamic projection (i.e., ventral posterolateral nucleus) on the generation of electroencephalographic (EEG) responses were evaluated in healthy human volunteers. Stimulation of the unilateral somatosensory circuits corresponding to the non-dominant hand generated EEG evoked potentials across all participants; however, not all perceived stimulation-mediated tactile sensations of the hand. These FUS-evoked EEG potentials (FEP) were observed from both brain hemispheres and shared similarities with somatosensory evoked potentials (SSEP) from median nerve stimulation. Use of a 0.5 ms pulse duration (PD) sonication given at 70% duty cycle, compared to the use of 1 and 2 ms PD, elicited more distinctive FEP peak features from the hemisphere ipsilateral to sonication. Although several participants reported hearing tones associated with FUS stimulation, the observed FEP were not likely to be confounded by the auditory sensation based on a separate measurement of auditory evoked potentials (AEP) to tonal stimulation (mimicking the same repetition frequency as the FUS stimulation). Off-line changes in resting-state functional connectivity (FC) associated with thalamic stimulation revealed that the FUS stimulation enhanced connectivity in a network of sensorimotor and sensory integration areas, which lasted for at least more than an hour. Clinical neurological evaluations, EEG, and neuroanatomical MRI did not reveal any adverse or unintended effects of sonication, attesting its safety. These results suggest that FUS stimulation may induce long-term neuroplasticity in humans, indicating its neurotherapeutic potential for various neurological and neuropsychiatric conditions.
Collapse
Affiliation(s)
- Hyun-Chul Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wonhye Lee
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel S Weisholtz
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
18
|
Coemans S, Struys E, Tsapkini K, Paquier P, Vandenborre D, Keulen S. Case report: the effects of cerebellar tDCS in bilingual post-stroke aphasia. Front Hum Neurosci 2023; 17:1173178. [PMID: 37545596 PMCID: PMC10398340 DOI: 10.3389/fnhum.2023.1173178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/15/2023] [Indexed: 08/08/2023] Open
Abstract
Transcranial Direct Current Stimulation may be a useful neuromodulation tool for enhancing the effects of speech and language therapy in people with aphasia, but research so far has focused on monolinguals. We present the effects of 9 sessions of anodal cerebellar tDCS (ctDCS) coupled with language therapy in a bilingual patient with chronic post-stroke aphasia caused by left frontal ischemia, in a double-blind, sham-controlled within-subject design. Language therapy was provided in his second language (L2). Both sham and anodal treatment improved trained picture naming in the treated language (L2), while anodal ctDCS in addition improved picture naming of untrained items in L2 and his first language, L1. Picture description improved in L2 and L1 after anodal ctDCS, but not after sham.
Collapse
Affiliation(s)
- Silke Coemans
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels, Brussels, Belgium
| | - Esli Struys
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels, Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussels, Brussels, Belgium
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States
| | - Philippe Paquier
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels, Brussels, Belgium
- Center for Research in Cognition and Neurosciences (CRCN), Université Libre de Bruxelles, Brussels, Belgium
- Department of Translational Neurosciences (TNW), Universiteit Antwerpen (UA), Antwerp, Belgium
| | - Dorien Vandenborre
- Health and Wellbeing Research Unit, Thomas More University of Applied Sciences, Antwerp, Belgium
| | - Stefanie Keulen
- Brussels Centre for Language Studies (BCLS), Vrije Universiteit Brussels, Brussels, Belgium
| |
Collapse
|
19
|
Higashi S, Koshibe Y, Miyazaki T, Watanabe R, Nakanome H, Inoue T, Asada T, Arai T. Feasibility study of Internet video-based speech-language activity for outpatients with primary progressive aphasia. PLoS One 2023; 18:e0288468. [PMID: 37440500 DOI: 10.1371/journal.pone.0288468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Primary progressive aphasia is a clinical dementia syndrome secondary to neurodegenerative disease characterized by language-related difficulties. Currently, there is no effective treatment for language impairment in primary progressive aphasia. In the present study, we investigated the feasibility of Internet video-based speech-language activities for this condition. METHODS Twenty-three people with primary progressive aphasia (pwPPA) participated in the study and were provided with twelve speech-language activity videos on a dedicated website, with three sessions per week. The group that chose to continue with participation after three months of intervention received Internet activities for one year. Cognitive domains associated with persistence, treatment motivation, and video difficulty settings were statistically analyzed. RESULTS After three months, 17 out of 23 participants opted to continue with the activities. The ability to follow oral commands which was measured pre intervention was higher in the group that continued compared with those participants who discontinued activity. The scores of two Standard Language Test of Aphasia subtests, sentence repetition and narrative writing-associated with the ability to comprehend and produce sentence structure-were highly correlated with motivation, interest and concentration in activity. Participants with different levels of primary progressive aphasia progression could participate in the same video-based activities when high-frequency words were used in the video. CONCLUSIONS Internet video-based speech-language activity at home has potential as a useful tool for future primary progressive aphasia treatment because it provides a cost-effective approach to intensive intervention and overcomes barriers associated with traditional therapy approaches.
Collapse
Affiliation(s)
- Shinji Higashi
- Department of Psychiatry, Ibaraki Medical Center, Tokyo Medical University, Ibaraki, Japan
| | - Yuko Koshibe
- Department of Psychiatry, Ibaraki Medical Center, Tokyo Medical University, Ibaraki, Japan
- Memory Clinic Ochanomizu, Bunkyo-ku, Tokyo, Japan
- Division of Clinical Medicine, Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takehiro Miyazaki
- Department of Psychiatry, Ibaraki Medical Center, Tokyo Medical University, Ibaraki, Japan
| | - Ryohei Watanabe
- Department of Psychiatry, Ibaraki Medical Center, Tokyo Medical University, Ibaraki, Japan
| | - Hanako Nakanome
- Department of Psychiatry, Ibaraki Medical Center, Tokyo Medical University, Ibaraki, Japan
- Memory Clinic Ochanomizu, Bunkyo-ku, Tokyo, Japan
| | - Takeshi Inoue
- Department of Psychiatry, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | | | - Tetsuaki Arai
- Division of Clinical Medicine, Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
20
|
Cotelli M, Baglio F, Manenti R, Blasi V, Galimberti D, Gobbi E, Pagnoni I, Rossetto F, Rotondo E, Esposito V, De Icco R, Giudice C, Tassorelli C, Catricalà E, Perini G, Alaimo C, Campana E, Benussi L, Ghidoni R, Binetti G, Carandini T, Cappa SF. A Multimodal Approach for Clinical Diagnosis and Treatment of Primary Progressive Aphasia (MAINSTREAM): A Study Protocol. Brain Sci 2023; 13:1060. [PMID: 37508992 PMCID: PMC10377301 DOI: 10.3390/brainsci13071060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Primary Progressive Aphasia (PPA) is a syndrome due to different neurodegenerative disorders selectively disrupting language functions. PPA specialist care is underdeveloped. There are very few specialists (neurologists, psychiatrists, neuropsychologists, and speech therapists) and few hospital- or community-based services dedicated to the diagnosis and continuing care of people with PPA. Currently, healthcare systems struggle to provide adequate coverage of care that is too often fragmented, uncoordinated, and unresponsive to the needs of people with PPA and their families. Recently, attention has been gained by non-invasive brain stimulation techniques that allow a personalized treatment approach, such as transcranial Direct Current Stimulation (tDCS). The MAINSTREAM trial looks forward to introducing and evaluating therapeutic innovations such as tDCS coupled with language therapy in rehabilitation settings. A Multimodal Approach for Clinical Diagnosis and Treatment of Primary Progressive Aphasia, MAINSTREAM (ID: 3430931) was registered in the clinicaltrials.gov database (identifier: NCT05730023) on 15 February 2023.
Collapse
Affiliation(s)
- Maria Cotelli
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | | | - Rosa Manenti
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Valeria Blasi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Daniela Galimberti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Deparment of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Elena Gobbi
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Ilaria Pagnoni
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | | | - Emanuela Rotondo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | | | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Movement Analysis Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Carla Giudice
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Movement Analysis Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Movement Analysis Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Eleonora Catricalà
- ICoN Cognitive Neuroscience Center, Institute for Advanced Studies, IUSS, 27100 Pavia, Italy
| | - Giulia Perini
- Dementia Research Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Cristina Alaimo
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Elena Campana
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Giuliano Binetti
- MAC-Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Tiziana Carandini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Stefano Francesco Cappa
- Dementia Research Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
- ICoN Cognitive Neuroscience Center, Institute for Advanced Studies, IUSS, 27100 Pavia, Italy
| |
Collapse
|
21
|
Benussi A, Borroni B. Advances in the treatment and management of frontotemporal dementia. Expert Rev Neurother 2023; 23:621-639. [PMID: 37357688 DOI: 10.1080/14737175.2023.2228491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
INTRODUCTION Frontotemporal dementia (FTD) is a complex neurodegenerative disorder, characterized by a wide range of pathological conditions associated with the buildup of proteins such as tau and TDP-43. With a strong hereditary component, FTD often results from genetic variants in three genes - MAPT, GRN, and C9orf72. AREAS COVERED In this review, the authors explore abnormal protein accumulation in FTD and forthcoming treatments, providing a detailed analysis of new diagnostic advancements, including innovative markers. They analyze how these discoveries have influenced therapeutic strategies, particularly disease-modifying treatments, which could potentially transform FTD management. This comprehensive exploration of FTD from its molecular underpinnings to its therapeutic prospects offers a compelling overview of the current state of FTD research. EXPERT OPINION Notable challenges in FTD management involve identifying reliable biomarkers for early diagnosis and response monitoring. Genetic forms of FTD, particularly those linked to C9orf72 and GRN, show promise, with targeted therapies resulting in substantial progress in disease-modifying strategies. The potential of neuromodulation techniques, like tDCS and rTMS, is being explored, requiring further study. Ongoing trials and multi-disciplinary care highlight the continued push toward effective FTD treatments. With increasing understanding of FTD's molecular and clinical intricacies, the hope for developing effective interventions grows.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
22
|
Ross DA, Shinde AB, Lerud KD, Schlaug G. Multielectrode Network Stimulation (ME-NETS) demonstrated by concurrent tDCS and fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544867. [PMID: 37398497 PMCID: PMC10312777 DOI: 10.1101/2023.06.13.544867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Non-invasive transcranial direct current stimulation (tDCS) can modulate activity of targeted brain regions. Whether tDCS can reliably and repeatedly modulate intrinsic connectivity of entire brain networks is unclear. We used concurrent tDCS-MRI to investigate the effect of high dose anodal tDCS on resting state connectivity within the Arcuate Fasciculus (AF) network, which spans the temporal, parietal, and frontal lobes and is connected via a structural backbone, the Arcuate Fasciculus (AF) white matter tract. Effects of high-dose tDCS (4mA) delivered via a single electrode placed over one of the AF nodes (single electrode stimulation, SE-S) was compared to the same dose split between multiple electrodes placed over AF-network nodes (multielectrode network stimulation, ME-NETS). While both SE-S and ME-NETS significantly modulated connectivity between AF network nodes (increasing connectivity during stimulation epochs), ME-NETS had a significantly larger and more reliable effect than SE-S. Moreover, comparison with a control network, the Inferior Longitudinal Fasciculus (ILF) network suggested that the effect of ME-NETS on connectivity was specific to the targeted AF-network. This finding was further supported by the results of a seed-to-voxel analysis wherein we found ME-NETS primarily modulated connectivity between AF-network nodes. Finally, an exploratory analysis looking at dynamic connectivity using sliding window correlation found strong and immediate modulation of connectivity during three stimulation epochs within the same imaging session.
Collapse
|
23
|
Wang Z, Ficek BN, Webster KT, Herrmann O, Frangakis CE, Desmond JE, Onyike CU, Caffo B, Hillis AE, Tsapkini K. Specificity in Generalization Effects of Transcranial Direct Current Stimulation Over the Left Inferior Frontal Gyrus in Primary Progressive Aphasia. Neuromodulation 2023; 26:850-860. [PMID: 37287321 PMCID: PMC10250817 DOI: 10.1016/j.neurom.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Generalization (or near-transfer) effects of an intervention to tasks not explicitly trained are the most desirable intervention outcomes. However, they are rarely reported and even more rarely explained. One hypothesis for generalization effects is that the tasks improved share the same brain function/computation with the intervention task. We tested this hypothesis in this study of transcranial direct current stimulation (tDCS) over the left inferior frontal gyrus (IFG) that is claimed to be involved in selective semantic retrieval of information from the temporal lobes. MATERIALS AND METHODS In this study, we examined whether tDCS over the left IFG in a group of patients with primary progressive aphasia (PPA), paired with a lexical/semantic retrieval intervention (oral and written naming), may specifically improve semantic fluency, a nontrained near-transfer task that relies on selective semantic retrieval, in patients with PPA. RESULTS Semantic fluency improved significantly more in the active tDCS than in the sham tDCS condition immediately after and two weeks after treatment. This improvement was marginally significant two months after treatment. We also found that the active tDCS effect was specific to tasks that require this IFG computation (selective semantic retrieval) but not to other tasks that may require different computations of the frontal lobes. CONCLUSIONS We provided interventional evidence that the left IFG is critical for selective semantic retrieval, and tDCS over the left IFG may have a near-transfer effect on tasks that depend on the same computation, even if they are not specifically trained. CLINICAL TRIAL REGISTRATION The Clinicaltrials.gov registration number for the study is NCT02606422.
Collapse
Affiliation(s)
- Zeyi Wang
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Bronte N Ficek
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Kimberly T Webster
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Olivia Herrmann
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Constantine E Frangakis
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Radiology, Johns Hopkins Medicine, Baltimore, MD, USA
| | - John E Desmond
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA; Neuroscience Program, Johns Hopkins University, Baltimore, MD, USA
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Brian Caffo
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Argye E Hillis
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA; Department of Cognitive Science, Johns Hopkins Medicine, Baltimore, MD, USA; Department of Physical Medicine & Rehabilitation, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Kyrana Tsapkini
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA; Department of Cognitive Science, Johns Hopkins Medicine, Baltimore, MD, USA.
| |
Collapse
|
24
|
Borrego-Écija S, Montagut N, Martín-Trias P, Vaqué-Alcázar L, Illán-Gala I, Balasa M, Lladó A, Casanova-Mollà J, Bargalló N, Valls-Solé J, Lleó A, Bartrés-Faz D, Sánchez-Valle R. Multifocal Transcranial Direct Current Stimulation in Primary Progressive Aphasia Does Not Provide a Clinical Benefit Over Speech Therapy. J Alzheimers Dis 2023:JAD230069. [PMID: 37182884 DOI: 10.3233/jad-230069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Primary progressive aphasia (PPA) is a group of neurodegenerative disorders including Alzheimer's disease and frontotemporal dementia characterized by language deterioration. Transcranial direct current stimulation (tDCS) is a non-invasive intervention for brain dysfunction. OBJECTIVE To evaluate the tolerability and efficacy of tDCS combined with speech therapy in the three variants of PPA. We evaluate changes in fMRI activity in a subset of patients. METHODS Double-blinded, randomized, cross-over, and sham-controlled tDCS study. 15 patients with PPA were included. Each patient underwent two interventions: a) speech therapy + active tDCS and b) speech therapy + sham tDCS stimulation. A multifocal strategy with anodes placed in the left frontal and parietal regions was used to stimulate the entire language network. Efficacy was evaluated by comparing the results of two independent sets of neuropsychological assessments administered at baseline, immediately after the intervention, and at 1 month and 3 months after the intervention. In a subsample, fMRI scanning was performed before and after each intervention. RESULTS The interventions were well tolerated. Participants in both arms showed clinical improvement, but no differences were found between active and sham tDCS interventions in any of the evaluations. There were trends toward better outcomes in the active tDCS group for semantic association and reading skills. fMRI identified an activity increase in the right frontal medial cortex and the bilateral paracingulate gyrus after the active tDCS intervention. CONCLUSION We did not find differences between active and sham tDCS stimulation in clinical scores of language function in PPA patients.
Collapse
Affiliation(s)
- Sergi Borrego-Écija
- Alzheimer's disease and other cognitive disorders Unit. Neurology Service, Hospital Clinic de Barcelona, Institutd'Investigació Biomèdica August Pi i Sunyer, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Nuria Montagut
- Alzheimer's disease and other cognitive disorders Unit. Neurology Service, Hospital Clinic de Barcelona, Institutd'Investigació Biomèdica August Pi i Sunyer, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Pablo Martín-Trias
- Medical Psychology Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Insitute of Neurosciences, University of Barcelona; Institut d'Investigació Biomèdica August Pi i Sunyer, Barcelona, Spain
| | - Lídia Vaqué-Alcázar
- Medical Psychology Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Insitute of Neurosciences, University of Barcelona; Institut d'Investigació Biomèdica August Pi i Sunyer, Barcelona, Spain
| | - Ignacio Illán-Gala
- Memory Unit, Service of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. Centro de Investigación en Red en enfermedadesneurogenerativas (CIBERNED), Madrid, Spain
| | - Mircea Balasa
- Alzheimer's disease and other cognitive disorders Unit. Neurology Service, Hospital Clinic de Barcelona, Institutd'Investigació Biomèdica August Pi i Sunyer, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Albert Lladó
- Alzheimer's disease and other cognitive disorders Unit. Neurology Service, Hospital Clinic de Barcelona, Institutd'Investigació Biomèdica August Pi i Sunyer, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Jordi Casanova-Mollà
- Clinical Neurophysiology Unit, Institutd'Investigació Biomèdica August Pi i Sunyer, NeurologyService, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Nuria Bargalló
- Radiology Service, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Josep Valls-Solé
- Clinical Neurophysiology Unit, Institutd'Investigació Biomèdica August Pi i Sunyer, NeurologyService, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Alberto Lleó
- Memory Unit, Service of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. Centro de Investigación en Red en enfermedadesneurogenerativas (CIBERNED), Madrid, Spain
| | - David Bartrés-Faz
- Medical Psychology Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Insitute of Neurosciences, University of Barcelona; Institut d'Investigació Biomèdica August Pi i Sunyer, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's disease and other cognitive disorders Unit. Neurology Service, Hospital Clinic de Barcelona, Institutd'Investigació Biomèdica August Pi i Sunyer, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Nickels K, Beeson PM, Rising K, Jebahi F, Kielar A. Positive changes to written language following phonological treatment in logopenic variant primary progressive aphasia: Case report. Front Hum Neurosci 2023; 16:1006350. [PMID: 36760227 PMCID: PMC9905434 DOI: 10.3389/fnhum.2022.1006350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/31/2022] [Indexed: 01/26/2023] Open
Abstract
Phonological impairment contributes to deficits in repetition and spoken naming in logopenic variant Primary Progressive Aphasia (lvPPA), but weakened phonology can also affect written language skills. In this experimental case report, we demonstrate phonological text agraphia in a 71-year-old woman in the early stages of lvPPA that undermined her ability to write meaningful, grammatical sentences. We investigated the therapeutic value of a rigorous treatment protocol to strengthen phonological manipulation skills coupled with transcranial direct current stimulation (tDCS). Intervention took place 5 days a week for 2 weeks with active tDCS, followed by a 2-month rest period, and then a second period of phonological treatment with sham tDCS. Over the course of treatment, our participant demonstrated improved phonological transcoding and manipulation skills as well as marked improvement in the proportion of grammatically well-formed, meaningful written narratives. Improvements in spelling and letter selection were also observed. Treatment gains were documented during phonological intervention in both active tDCS and sham treatment phases and were maintained 2 months after the conclusion of intervention. Importantly, improvements were observed in the context of a progressive disorder. These data present compelling evidence regarding the impairment-based approach that targets compromised phonological skills, presenting opportunity for improving functional written communication skills relevant to the everyday lives of individuals with lvPPA.
Collapse
Affiliation(s)
- Katlyn Nickels
- Department of Speech, Language, and Hearing Sciences, The University of Arizona, Tucson, AZ, United States
| | - Pélagie M. Beeson
- Department of Speech, Language, and Hearing Sciences, The University of Arizona, Tucson, AZ, United States
- Department of Neurology, The University of Arizona, Tucson, AZ, United States
| | - Kindle Rising
- Department of Speech, Language, and Hearing Sciences, The University of Arizona, Tucson, AZ, United States
| | - Fatima Jebahi
- Department of Speech, Language, and Hearing Sciences, The University of Arizona, Tucson, AZ, United States
| | - Aneta Kielar
- Department of Speech, Language, and Hearing Sciences, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
26
|
Licata AE, Zhao Y, Herrmann O, Hillis AE, Desmond J, Onyike C, Tsapkini K. Sex differences in effects of tDCS and language treatments on brain functional connectivity in primary progressive aphasia. Neuroimage Clin 2023; 37:103329. [PMID: 36701874 PMCID: PMC9883295 DOI: 10.1016/j.nicl.2023.103329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Primary Progressive Aphasia (PPA) is a neurodegenerative disorder primarily affecting language functions. Neuromodulatory techniques (e.g., transcranial direct current stimulation, active-tDCS) and behavioral (speech-language) therapy have shown promising results in treating speech and language deficits in PPA patients. One mechanism of active-tDCS efficacy is through modulation of network functional connectivity (FC). It remains unknown how biological sex influences FC and active-tDCS or language treatment(s). In the current study, we compared sex differences, induced by active-tDCS and language therapy alone, in the default mode and language networks, acquired during resting-state fMRI in 36 PPA patients. Using a novel statistical method, the covariate-assisted-principal-regression (CAPs) technique, we found sex and age differences in FC changes following active-tDCS. In the default mode network (DMN): (1) men (in both conditions) showed greater FC in DMN than women. (2) men who received active-tDCS showed greater FC in the DMN than men who received language-treatment only. In the language network: (1) women who received active-tDCS showed significantly greater FC across the language network than women who received sham-tDCS. As age increases, regardless of sex and treatment condition, FC in language regions decreases. The current findings suggest active-tDCS treatment in PPA alters network-specific FC in a sex-dependent manner.
Collapse
Affiliation(s)
- Abigail E Licata
- Department of Neurology, University of California, San Francisco, CA 94158, USA; Faculty of Psychology and Educational Sciences, University of Geneva, Geneva 1205, Switzerland
| | - Yi Zhao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Olivia Herrmann
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Department of Cognitive Science, Johns Hopkins University, Baltimore MD 21287, USA; Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - John Desmond
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Chiadi Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Department of Cognitive Science, Johns Hopkins University, Baltimore MD 21287, USA.
| |
Collapse
|
27
|
Muccio M, Walton Masters L, Pilloni G, He P, Krupp L, Datta A, Bikson M, Charvet L, Ge Y. Cerebral metabolic rate of oxygen (CMRO 2) changes measured with simultaneous tDCS-MRI in healthy adults. Brain Res 2022; 1796:148097. [PMID: 36150457 PMCID: PMC10335216 DOI: 10.1016/j.brainres.2022.148097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a safe and well-tolerated noninvasive technique used for cortical excitability modulation. tDCS has been extensively investigated for its clinical applications; however further understanding of its underlying in-vivo physiological mechanisms remains a fundamental focus of current research. OBJECTIVES We investigated the simultaneous effects of tDCS on cerebral blood flow (CBF), venous blood oxygenation (Yv) and cerebral metabolic rate of oxygen (CMRO2) using simultaneous MRI in healthy adults to provide a reference frame for its neurobiological mechanisms. METHODS Twenty-three healthy participants (age = 35.6 ± 15.0 years old, 10 males) completed a simultaneous tDCS-MRI session in a 3 T scanner fitted with a 64-channels head coil. A MR-compatible tDCS device was used to acquire CBF, Yv and CMRO2 at three time points: pre-, during- and post- 15 minutes of 2.0 mA tDCS on left anodal dorsolateral prefrontal cortex. RESULTS During tDCS, CBF significantly increased (57.10 ± 8.33 mL/100g/min) from baseline (53.67 ± 7.75 mL/100g/min; p < 0.0001) and remained elevated in post-tDCS (56.79 ± 8.70 mL/100g/min). Venous blood oxygenation levels measured in pre-tDCS (60.71 ± 4.12 %) did not significantly change across the three timepoints. The resulting CMRO2 significantly increased by 5.9 % during-tDCS (175.68 ± 30.78 µmol/100g/min) compared to pre-tDCS (165.84 ± 25.32 µmol/100g/min; p = 0.0015), maintaining increased levels in post-tDCS (176.86 ± 28.58 µmol/100g/min). CONCLUSIONS tDCS has immediate effects on neuronal excitability, as measured by increased cerebral blood supply and oxygen consumption supporting increased neuronal firing. These findings provide a standard range of CBF and CMRO2 changes due to tDCS in healthy adults that may be incorporated in clinical studies to evaluate its therapeutic potential.
Collapse
Affiliation(s)
- Marco Muccio
- Department of Radiology, NYU Grossman School of Medicine, New York City, NY, United States
| | - Lillian Walton Masters
- Department of Neurology, NYU Grossman School of Medicine, New York City, NY, United States
| | - Giuseppina Pilloni
- Department of Neurology, NYU Grossman School of Medicine, New York City, NY, United States
| | - Peidong He
- Department of Radiology, NYU Grossman School of Medicine, New York City, NY, United States
| | - Lauren Krupp
- Department of Neurology, NYU Grossman School of Medicine, New York City, NY, United States
| | - Abhishek Datta
- Research and Development, Soterix Medical, Inc, Woodbridge, NJ, United States
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York, New York City, NY, United States
| | - Leigh Charvet
- Department of Neurology, NYU Grossman School of Medicine, New York City, NY, United States
| | - Yulin Ge
- Department of Radiology, NYU Grossman School of Medicine, New York City, NY, United States.
| |
Collapse
|
28
|
Tang B, Zhao Y, Venkataraman A, Tsapkini K, Lindquist MA, Pekar J, Caffo B. Differences in functional connectivity distribution after transcranial direct-current stimulation: A connectivity density point of view. Hum Brain Mapp 2022; 44:170-185. [PMID: 36371779 PMCID: PMC9783448 DOI: 10.1002/hbm.26112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/09/2022] [Accepted: 10/02/2022] [Indexed: 11/14/2022] Open
Abstract
In this manuscript, we consider the problem of relating functional connectivity measurements viewed as statistical distributions to outcomes. We demonstrate the utility of using the distribution of connectivity on a study of resting-state functional magnetic resonance imaging association with an intervention. The method uses the estimated density of connectivity between nodes of interest as a functional covariate. Moreover, we demonstrate the utility of the procedure in an instance where connectivity is naturally considered an outcome by reversing the predictor/response relationship using case/control methodology. The method utilizes the density quantile, the density evaluated at empirical quantiles, instead of the empirical density directly. This improved the performance of the method by highlighting tail behavior, though we emphasize that by being flexible and non-parametric, the technique can detect effects related to the central portion of the density. To demonstrate the method in an application, we consider 47 primary progressive aphasia patients with various levels of language abilities. These patients were randomly assigned to two treatment arms, transcranial direct-current stimulation and language therapy versus sham (language therapy only), in a clinical trial. We use the method to analyze the effect of direct stimulation on functional connectivity. As such, we estimate the density of correlations among the regions of interest and study the difference in the density post-intervention between treatment arms. We discover that it is the tail of the density, rather than the mean or lower order moments of the distribution, that demonstrates a significant impact in the classification. The new approach has several benefits. Among them, it drastically reduces the number of multiple comparisons compared with edge-wise analysis. In addition, it allows for the investigation of the impact of functional connectivity on the outcomes where the connectivity is not geometrically localized.
Collapse
Affiliation(s)
- Bohao Tang
- Department of BiostatisticsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Yi Zhao
- Department of Biostatistics and Health Data ScienceIndiana University School of MedicineIndianapolisIndianaUSA
| | - Archana Venkataraman
- Department of Electrical and Computer EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Kyrana Tsapkini
- Department of NeurologyJohns Hopkins MedicineBaltimoreMarylandUSA,Department of Cognitive ScienceJohns Hopkins MedicineBaltimoreMarylandUSA
| | | | - James Pekar
- F.M. Kirby Research Center for Functional Brain ImagingKennedy Krieger InstituteBaltimoreMarylandUSA,Department of Radiology and Radiological ScienceJohns Hopkins University MedicineBaltimoreMarylandUSA
| | - Brian Caffo
- Department of BiostatisticsJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
29
|
Lee YS, Rogers CS, Grossman M, Wingfield A, Peelle JE. Hemispheric dissociations in regions supporting auditory sentence comprehension in older adults. AGING BRAIN 2022; 2:100051. [PMID: 36908889 PMCID: PMC9997128 DOI: 10.1016/j.nbas.2022.100051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
We investigated how the aging brain copes with acoustic and syntactic challenges during spoken language comprehension. Thirty-eight healthy adults aged 54 - 80 years (M = 66 years) participated in an fMRI experiment wherein listeners indicated the gender of an agent in short spoken sentences that varied in syntactic complexity (object-relative vs subject-relative center-embedded clause structures) and acoustic richness (high vs low spectral detail, but all intelligible). We found widespread activity throughout a bilateral frontotemporal network during successful sentence comprehension. Consistent with prior reports, bilateral inferior frontal gyrus and left posterior superior temporal gyrus were more active in response to object-relative sentences than to subject-relative sentences. Moreover, several regions were significantly correlated with individual differences in task performance: Activity in right frontoparietal cortex and left cerebellum (Crus I & II) showed a negative correlation with overall comprehension. By contrast, left frontotemporal areas and right cerebellum (Lobule VII) showed a negative correlation with accuracy specifically for syntactically complex sentences. In addition, laterality analyses confirmed a lack of hemispheric lateralization in activity evoked by sentence stimuli in older adults. Importantly, we found different hemispheric roles, with a left-lateralized core language network supporting syntactic operations, and right-hemisphere regions coming into play to aid in general cognitive demands during spoken sentence processing. Together our findings support the view that high levels of language comprehension in older adults are maintained by a close interplay between a core left hemisphere language network and additional neural resources in the contralateral hemisphere.
Collapse
Affiliation(s)
- Yune Sang Lee
- Department of Speech, Language, and Hearing, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Chad S. Rogers
- Department of Psychology, Union College, Schenectady, NY, USA
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jonathan E. Peelle
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
30
|
Association of Long-Term Speech Therapy and Neuromodulation in Primary Progressive Aphasia: Lessons from a Case Report. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2022. [DOI: 10.3390/ctn6030017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Primary progressive aphasia (PPA) is a neurodegenerative disorder with a progressive loss of language. Long-term support requires speech therapy but also individually set training programs. Here we propose an 8-month individualized speech-training program which alternates 3-week periods of transcranial direct current stimulation (tDCS) treatment with intensive daily language exercises and a 3-week period without tDCS treatment and a less intensive language exercise from home in a patient with non-fluent variant PPA (nfvPPA). The endpoints were the following: adherence to this program, language data after 8 months, questionnaires related to emotional valence, and brain volume changes. The results showed a persistent adherence after 8 months and a positive compliance reported by both the patient and the partner. The language evaluation showed a clinical stabilization. Moreover, a significant and positive influence of tDCS on mood was observed. This is, to our knowledge, the first ever published report of a combined neuromodulation and language training during the course of 8 months. Our finding suggests the feasibility of programs integrating hospital speech therapy, home training, and tDCS modulation in PPA. Further studies should be conducted in order to disentangle the contextual influences on language performance from the tDCS intervention effects and to address the observation of an initial improvement and a subsequent stabilization effect of language performances.
Collapse
|
31
|
Sheppard SM, Goldberg EB, Sebastian R, Walker A, Meier EL, Hillis AE. Transcranial Direct Current Stimulation Paired With Verb Network Strengthening Treatment Improves Verb Naming in Primary Progressive Aphasia: A Case Series. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2022; 31:1736-1754. [PMID: 35605599 PMCID: PMC9531928 DOI: 10.1044/2022_ajslp-21-00272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/16/2022] [Accepted: 03/10/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE There are few evidence-based treatments for language deficits in primary progressive aphasia (PPA). PPA treatments are often adopted from the poststroke aphasia literature. The poststroke aphasia literature has shown promising results using Verb Network Strengthening Treatment (VNeST), a behavioral therapy that focuses on improving naming by producing verbs and their arguments in phrases and sentences. Emerging research in poststroke aphasia and PPA has shown promising results pairing behavioral language therapy with transcranial direct current stimulation (tDCS). METHOD This study used a double-blind, within-subjects, sham-controlled crossover design to study the effect of anodal tDCS applied to left inferior frontal gyrus (IFG) plus VNeST versus VNeST plus sham stimulation in two individuals with nonfluent variant PPA and one individual with logopenic variant PPA. Participants received two phases of treatment, each with 15 1-hr sessions of VNeST. One phase paired VNeST with tDCS stimulation, and one with sham. For each phase, language testing was conducted at baseline, and at 1 week and 8 weeks posttreatment conclusion. For each participant, treatment efficacy was evaluated for each treatment phase by comparing the mean change in accuracy between baseline and the follow-up time points for naming trained verbs (primary outcome measure), untrained verbs, and nouns on the Object and Action Naming Battery. Mean change from baseline was also directly compared between tDCS and sham phases at each time point. RESULTS Results revealed a different pattern of outcomes for each of the participants. A tDCS advantage was not found for trained verbs for any participant. Two participants with nonfluent variant PPA had a tDCS advantage for generalization to naming of untrained verbs, which was apparent at 1 week and 8 weeks posttreatment. One participant with nonfluent variant also showed evidence of generalization to sentence production in the tDCS phase. CONCLUSION VNeST plus anodal tDCS stimulation of left IFG shows promising results for improving naming in PPA.
Collapse
Affiliation(s)
- Shannon M. Sheppard
- Department of Communication Sciences and Disorders, Chapman University, Irvine, CA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Emily B. Goldberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rajani Sebastian
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alexandra Walker
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Erin L. Meier
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Cognitive Science, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
32
|
Nissim NR, Harvey DY, Haslam C, Friedman L, Bharne P, Litz G, Phillips JS, Cousins KAQ, Xie SX, Grossman M, Hamilton RH. Through Thick and Thin: Baseline Cortical Volume and Thickness Predict Performance and Response to Transcranial Direct Current Stimulation in Primary Progressive Aphasia. Front Hum Neurosci 2022; 16:907425. [PMID: 35874157 PMCID: PMC9302040 DOI: 10.3389/fnhum.2022.907425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022] Open
Abstract
Objectives We hypothesized that measures of cortical thickness and volume in language areas would correlate with response to treatment with high-definition transcranial direct current stimulation (HD-tDCS) in persons with primary progressive aphasia (PPA). Materials and Methods In a blinded, within-group crossover study, PPA patients (N = 12) underwent a 2-week intervention HD-tDCS paired with constraint-induced language therapy (CILT). Multi-level linear regression (backward-fitted models) were performed to assess cortical measures as predictors of tDCS-induced naming improvements, measured by the Western Aphasia Battery-naming subtest, from baseline to immediately after and 6 weeks post-intervention. Results Greater baseline thickness of the pars opercularis significantly predicted naming gains (p = 0.03) immediately following intervention, while greater thickness of the middle temporal gyrus (MTG) and lower thickness of the superior temporal gyrus (STG) significantly predicted 6-week naming gains (p's < 0.02). Thickness did not predict naming gains in sham. Volume did not predict immediate gains for active stimulation. Greater volume of the pars triangularis and MTG, but lower STG volume significantly predicted 6-week naming gains in active stimulation. Greater pars orbitalis and MTG volume, and lower STG volume predicted immediate naming gains in sham (p's < 0.05). Volume did not predict 6-week naming gains in sham. Conclusion Cortical thickness and volume were predictive of tDCS-induced naming improvement in PPA patients. The finding that frontal thickness predicted immediate active tDCS-induced naming gains while temporal areas predicted naming changes at 6-week suggests that a broader network of regions may be important for long-term maintenance of treatment gains. The finding that volume predicted immediate naming performance in the sham condition may reflect the benefits of behavioral speech language therapy and neural correlates of its short-lived treatment gains. Collectively, thickness and volume were predictive of treatment gains in the active condition but not sham, suggesting that pairing HD-tDCS with CILT may be important for maintaining treatment effects.
Collapse
Affiliation(s)
- Nicole R. Nissim
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
- Moss Rehabilitation Research Institute, Elkins Park, PA, United States
| | - Denise Y. Harvey
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher Haslam
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Leah Friedman
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Pandurang Bharne
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Geneva Litz
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Jeffrey S. Phillips
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Katheryn A. Q. Cousins
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Sharon X. Xie
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Roy H. Hamilton
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
33
|
Herrmann O, Ficek B, Webster KT, Frangakis C, Spira AP, Tsapkini K. Sleep as a predictor of tDCS and language therapy outcomes. Sleep 2022; 45:zsab275. [PMID: 34875098 PMCID: PMC8919198 DOI: 10.1093/sleep/zsab275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
STUDY OBJECTIVES To determine whether sleep at baseline (before therapy) predicted improvements in language following either language therapy alone or coupled with transcranial direct current stimulation (tDCS) in individuals with primary progressive aphasia (PPA). METHODS Twenty-three participants with PPA (mean age 68.13 ± 6.21) received written naming/spelling therapy coupled with either anodal tDCS over the left inferior frontal gyrus (IFG) or sham condition in a crossover, sham-controlled, double-blind design (ClinicalTrials.gov identifier: NCT02606422). The outcome measure was percent of letters spelled correctly for trained and untrained words retrieved in a naming/spelling task. Given its particular importance as a sleep parameter in older adults, we calculated sleep efficiency (total sleep time/time in bed x100) based on subjective responses on the Pittsburgh Sleep Quality Index (PSQI). We grouped individuals based on a median split: high versus low sleep efficiency. RESULTS Participants with high sleep efficiency benefited more from written naming/spelling therapy than participants with low sleep efficiency in learning therapy materials (trained words). There was no effect of sleep efficiency in generalization of therapy materials to untrained words. Among participants with high sleep efficiency, those who received tDCS benefitted more from therapy than those who received sham condition. There was no additional benefit from tDCS in participants with low sleep efficiency. CONCLUSION Sleep efficiency modified the effects of language therapy and tDCS on language in participants with PPA. These results suggest sleep is a determinant of neuromodulation effects.Clinical Trial: tDCS Intervention in Primary Progressive Aphasia https://clinicaltrials.gov/ct2/show/NCT02606422.
Collapse
Affiliation(s)
- Olivia Herrmann
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bronte Ficek
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kimberly T Webster
- Department of Otolaryngology, Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Constantine Frangakis
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD, USA
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Adam P Spira
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Johns Hopkins Center on Aging and Health, Baltimore, MD, USA
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Cognitive Science, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
34
|
Sheppard SM. Noninvasive brain stimulation to augment language therapy for primary progressive aphasia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:251-260. [PMID: 35078603 DOI: 10.1016/b978-0-12-823384-9.00018-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Primary progressive aphasia (PPA) is a debilitating disorder characterized by the gradual loss of language functioning resulting from neurodegenerative diseases including frontotemporal lobar degeneration or Alzheimer's disease pathology. There is a dearth of research investigating language therapy in PPA. Unlike individuals with poststroke aphasia, language skills are expected to decline over time, so the goal of treatment is often to preserve existing language functioning. There has been an increasing interest in using non-invasive brain stimulation including transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) to augment traditional behavioral therapy in PPA. Research is promising and suggests neuromodulation can lead to generalization and maintenance of treatment effects for a longer period compared to behavioral therapy alone. Emerging research is also beginning to identify predictors of treatment response. Yet there is still much to learn regarding how neuromodulation factors (e.g., type of stimulation, stimulation intensity), participant factors (e.g., demographics, extent and location of atrophy), and treatment factors (e.g., type of language therapy, and dosage) will interact to predict treatment response. We are moving toward a promising future where individuals with PPA will benefit from individualized therapy protocols pairing traditional language therapy with neuromodulation.
Collapse
Affiliation(s)
- Shannon M Sheppard
- Department of Communication Sciences & Disorders, Chapman University, Irvine, CA, United States.
| |
Collapse
|
35
|
Premi E, Costa T, Gazzina S, Benussi A, Cauda F, Gasparotti R, Archetti S, Alberici A, van Swieten JC, Sanchez-Valle R, Moreno F, Santana I, Laforce R, Ducharme S, Graff C, Galimberti D, Masellis M, Tartaglia C, Rowe JB, Finger E, Tagliavini F, de Mendonça A, Vandenberghe R, Gerhard A, Butler CR, Danek A, Synofzik M, Levin J, Otto M, Ghidoni R, Frisoni G, Sorbi S, Peakman G, Todd E, Bocchetta M, Rohrer JD, Borroni B. An Automated Toolbox to Predict Single Subject Atrophy in Presymptomatic Granulin Mutation Carriers. J Alzheimers Dis 2022; 86:205-218. [DOI: 10.3233/jad-215447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Magnetic resonance imaging (MRI) measures may be used as outcome markers in frontotemporal dementia (FTD). Objectives: To predict MRI cortical thickness (CT) at follow-up at the single subject level, using brain MRI acquired at baseline in preclinical FTD. Methods: 84 presymptomatic subjects carrying Granulin mutations underwent MRI scans at baseline and at follow-up (31.2±16.5 months). Multivariate nonlinear mixed-effects model was used for estimating individualized CT at follow-up based on baseline MRI data. The automated user-friendly preGRN-MRI script was coded. Results: Prediction accuracy was high for each considered brain region (i.e., prefrontal region, real CT at follow-up versus predicted CT at follow-up, mean error ≤1.87%). The sample size required to detect a reduction in decline in a 1-year clinical trial was equal to 52 subjects (power = 0.80, alpha = 0.05). Conclusion: The preGRN-MRI tool, using baseline MRI measures, was able to predict the expected MRI atrophy at follow-up in presymptomatic subjects carrying GRN mutations with good performances. This tool could be useful in clinical trials, where deviation of CT from the predicted model may be considered an effect of the intervention itself.
Collapse
Affiliation(s)
- Enrico Premi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Stroke Unit, Azienda Socio Sanitaria Territoriale Spedali Civili, Spedali Civili Hospital, Brescia, Italy
| | - Tommaso Costa
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
- GCS-FMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- Neuroscience Institute of Turin, University of Turin, Turin, Italy
| | - Stefano Gazzina
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Franco Cauda
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
- GCS-FMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- Neuroscience Institute of Turin, University of Turin, Turin, Italy
| | | | - Silvana Archetti
- Biotechnology Laboratory, Department of Diagnostic, Spedali Civili Hospital, Brescia, Italy
| | - Antonella Alberici
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Raquel Sanchez-Valle
- Neurology Department, Hospital Clinic, Institut d’Investigacions Biomèdiques, Barcelona, Spain
| | - Fermin Moreno
- Department of Neurology, Hospital Universitario Donostia, San Sebastian, Gipuzkoa, Spain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre of Neurosciences and Cell biology, Universidade de Coimbra, Coimbra, Portugal
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, QC, Canada
| | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Daniela Galimberti
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, University of Milan, Milan, Italy
- Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - James B. Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Fabrizio Tagliavini
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alexandre de Mendonça
- Laboratory of Neurosciences, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Neurology Service, University Hospitals Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
- Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg- Essen, Germany
| | - Chris R. Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich, Germany
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Markus Otto
- Department of Neurology, University Hospital Ulm, Ulm, Germany
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giovanni Frisoni
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) “Don Gnocchi”, Florence, Italy
| | - Georgia Peakman
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Emily Todd
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Martina Bocchetta
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Johnathan D. Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | |
Collapse
|
36
|
Meier EL. The role of disrupted functional connectivity in aphasia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:99-119. [PMID: 35078613 DOI: 10.1016/b978-0-12-823384-9.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Language is one of the most complex and specialized higher cognitive processes. Brain damage to the distributed, primarily left-lateralized language network can result in aphasia, a neurologic disorder characterized by receptive and/or expressive deficits in spoken and/or written language. Most often, aphasia is the consequence of stroke-termed poststroke aphasia (PSA)-yet, aphasia can also manifest due to neurodegenerative disease, specifically, a disorder called primary progressive aphasia (PPA). In recent years, functional connectivity neuroimaging studies have provided emerging evidence supporting theories regarding the relationships between language impairments, structural brain damage, and functional network properties in these two disorders. This chapter reviews the current evidence for the "network phenotype of stroke injury" hypothesis (Siegel et al., 2016) as it pertains to PSA and the "network degeneration hypothesis" (Seeley et al., 2009) as it pertains to PPA. Methodologic considerations for functional connectivity studies, limitations of the current functional connectivity literature in aphasia, and future directions are also discussed.
Collapse
Affiliation(s)
- Erin L Meier
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA, United States.
| |
Collapse
|
37
|
Pini L, Wennberg AM, Salvalaggio A, Vallesi A, Pievani M, Corbetta M. Breakdown of specific functional brain networks in clinical variants of Alzheimer's disease. Ageing Res Rev 2021; 72:101482. [PMID: 34606986 DOI: 10.1016/j.arr.2021.101482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is characterized by different clinical entities. Although AD phenotypes share a common molecular substrate (i.e., amyloid beta and tau accumulation), several clinicopathological differences exist. Brain functional networks might provide a macro-scale scaffolding to explain this heterogeneity. In this review, we summarize the evidence linking different large-scale functional network abnormalities to distinct AD phenotypes. Specifically, executive deficits in early-onset AD link with the dysfunction of networks that support sustained attention and executive functions. Posterior cortical atrophy relates to the breakdown of visual and dorsal attentional circuits, while the primary progressive aphasia variant of AD may be associated with the dysfunction of the left-lateralized language network. Additionally, network abnormalities might provide in vivo signatures for distinguishing proteinopathies that mimic AD, such as TAR DNA binding protein 43 related pathologies. These network differences vis-a-vis clinical syndromes are more evident in the earliest stage of AD. Finally, we discuss how these findings might pave the way for new tailored interventions targeting the most vulnerable brain circuit at the optimal time window to maximize clinical benefits.
Collapse
|
38
|
Tao Y, Ficek B, Wang Z, Rapp B, Tsapkini K. Selective Functional Network Changes Following tDCS-Augmented Language Treatment in Primary Progressive Aphasia. Front Aging Neurosci 2021; 13:681043. [PMID: 34322010 PMCID: PMC8311858 DOI: 10.3389/fnagi.2021.681043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022] Open
Abstract
Objective Transcranial direct current stimulation (tDCS) has shown promising results when used as an adjunct to behavioral training in neurodegenerative diseases. However, the underlying neural mechanisms are not understood and neuroimaging evidence from pre/post treatment has been sparse. In this study, we examined tDCS-induced neural changes in a language intervention study for primary progressive aphasia (PPA), a neurodegenerative syndrome with language impairment as the primary clinical presentation. Anodal tDCS was applied to the left inferior frontal gyrus (LIFG). To evaluate the hypothesis that tDCS promotes system segregation, analysis focused on understanding tDCS-induced changes in the brain-wide functional network connectivity of the targeted LIFG. Methods Resting-state fMRI data were obtained from 32 participants with PPA before and after receiving a written naming therapy, accompanied either by tDCS or sham stimulation. We focused on evaluating changes in the global connectivity of the stimulated LIFG-triangularis (LIFG-tri) region given its important role in lexical processing. Global connectivity was indexed by the graph-theoretic measure participation coefficient (PC) which quantifies a region’s level of system segregation. The values before and after treatment were compared for each condition (tDCS or Sham) as well as with age-matched healthy controls (n = 19). Results Higher global connectivity of the LIFG-tri before treatment was associated with greater dementia severity. After treatment, the tDCS group showed a significant decrease in global connectivity whereas the Sham group’s did not change, suggesting specific neural effects induced by tDCS. Further examination revealed that the decrease was driven by reduced connectivity between the LIFG-tri and regions outside the perisylvian language area, consistent with the hypothesis that tDCS enhances the segregation of the language system and improves processing efficiency. Additionally, we found that these effects were specific to the LIFG-tri and not observed in other control regions. Conclusion TDCS-augmented language therapy in PPA increased the functional segregation of the language system, a normalization of the hyper-connectivity observed before treatment. These findings add to our understanding of the nature of tDCS-induced neural changes in disease treatment and have applications for validating treatment efficacy and designing future tDCS and other non-invasive brain stimulation (NIBS) treatments.
Collapse
Affiliation(s)
- Yuan Tao
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States
| | - Bronte Ficek
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Zeyi Wang
- Division of Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Brenda Rapp
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States.,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, United States.,Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
39
|
Giunta M, Solje E, Gardoni F, Borroni B, Benussi A. Experimental Disease-Modifying Agents for Frontotemporal Lobar Degeneration. J Exp Pharmacol 2021; 13:359-376. [PMID: 33790662 PMCID: PMC8005747 DOI: 10.2147/jep.s262352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia is a clinically, genetically and pathologically heterogeneous neurodegenerative disorder, enclosing a wide range of different pathological entities, associated with the accumulation of proteins such as tau and TPD-43. Characterized by a high hereditability, mutations in three main genes, MAPT, GRN and C9orf72, can drive the neurodegenerative process. The connection between different genes and proteinopathies through specific mechanisms has shed light on the pathophysiology of the disease, leading to the identification of potential pharmacological targets. New experimental strategies are emerging, in both preclinical and clinical settings, which focus on small molecules rather than gene therapy. In this review, we provide an insight into the aberrant mechanisms leading to FTLD-related proteinopathies and discuss recent therapies with the potential to ameliorate neurodegeneration and disease progression.
Collapse
Affiliation(s)
- Marcello Giunta
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Eino Solje
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
40
|
Themistocleous C, Webster K, Tsapkini K. Effects of tDCS on Sound Duration in Patients with Apraxia of Speech in Primary Progressive Aphasia. Brain Sci 2021; 11:brainsci11030335. [PMID: 33800933 PMCID: PMC8000042 DOI: 10.3390/brainsci11030335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/20/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) over the left inferior frontal gyrus (IFG) was found to improve oral and written naming in post-stroke and primary progressive aphasia (PPA), speech fluency in stuttering, a developmental speech-motor disorder, and apraxia of speech (AOS) symptoms in post-stroke aphasia. This paper addressed the question of whether tDCS over the left IFG coupled with speech therapy may improve sound duration in patients with apraxia of speech (AOS) symptoms in non-fluent PPA (nfvPPA/AOS) more than sham. Eight patients with non-fluent PPA/AOS received either active or sham tDCS, along with speech therapy for 15 sessions. Speech therapy involved repeating words of increasing syllable-length. Evaluations took place before, immediately after, and two months post-intervention. Words were segmented into vowels and consonants and the duration of each vowel and consonant was measured. Segmental duration was significantly shorter after tDCS compared to sham and tDCS gains generalized to untrained words. The effects of tDCS sustained over two months post-treatment in trained and untrained sounds. Taken together, these results demonstrate that tDCS over the left IFG may facilitate speech production by reducing segmental duration. The results provide preliminary evidence that tDCS may maximize efficacy of speech therapy in patients with nfvPPA/AOS.
Collapse
Affiliation(s)
| | - Kimberly Webster
- Department of Otolaryngology, Johns Hopkins Medicine, Baltimore, MD 21210, USA;
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21210, USA;
- Correspondence: ; Tel.: +1-410-7362940
| |
Collapse
|
41
|
Chan MMY, Yau SSY, Han YMY. The neurobiology of prefrontal transcranial direct current stimulation (tDCS) in promoting brain plasticity: A systematic review and meta-analyses of human and rodent studies. Neurosci Biobehav Rev 2021; 125:392-416. [PMID: 33662444 DOI: 10.1016/j.neubiorev.2021.02.035] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/05/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022]
Abstract
The neurobiological mechanisms underlying prefrontal transcranial direct current stimulation (tDCS) remain elusive. Randomized, sham-controlled trials in humans and rodents applying in vivo prefrontal tDCS were included to explore whether prefrontal tDCS modulates resting-state and event-related functional connectivity, neural oscillation and synaptic plasticity. Fifty studies were included in the systematic review and 32 in the meta-analyses. Neuroimaging meta-analysis indicated anodal prefrontal tDCS significantly enhanced bilateral median cingulate activity [familywise error (FWE)-corrected p < .005]; meta-regression revealed a positive relationship between changes in median cingulate activity after tDCS and current density (FWE-corrected p < .005) as well as electric current strength (FWE-corrected p < .05). Meta-analyses of electroencephalography and magnetoencephalography data revealed nonsignificant changes (ps > .1) in both resting-state and event-related oscillatory power across all frequency bands. Applying anodal tDCS over the rodent hippocampus/prefrontal cortex enhanced long-term potentiation and brain-derived neurotrophic factor expression in the stimulated brain regions (ps <.005). Evidence supporting prefrontal tDCS administration is preliminary; more methodologically consistent studies evaluating its effects on cognitive function that include brain activity measurements are needed.
Collapse
Affiliation(s)
- Melody M Y Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Sonata S Y Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yvonne M Y Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
42
|
de Aguiar V, Rofes A, Wendt H, Ficek BN, Webster K, Tsapkini K. Treating lexical retrieval using letter fluency and tDCS in primary progressive aphasia: a single-case study. APHASIOLOGY 2021; 36:353-379. [PMID: 38765920 PMCID: PMC11101187 DOI: 10.1080/02687038.2021.1881432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/20/2021] [Indexed: 05/22/2024]
Abstract
Background In early stages, individuals with Primary Progressive Aphasia (PPA) report language symptoms while scoring within norm in formal language tests. Early intervention is important due to the progressive nature of the disease. Method We report a single case study of an individual with logopenic variant PPA (lvPPA). We tested whether letter fluency, used as a therapy task, can improve lexical retrieval when combined with tDCS to either the left inferior-frontal gyrus (IFG) or the left inferior parietal lobe (IPL), administered in two separate therapy phases separated by a wash-out period of three months. Outcomes and results We observed increases in number of words retrieved during a letter fluency task in trained and untrained letters, when letter fluency therapy (LeFT) was administered with anodal tDCS. When LeFT was combined with left IFG stimulation, words produced in a letter fluency task were lower frequency and higher age of acquisition after treatment, compared to before treatment and there was also an increase in accuracy and response times in an untrained picture-naming task. Conclusions The results indicate that letter fluency therapy combined anodal tDCS is effective in improving lexical retrieval, particularly when left IFG stimulation was used. Effects generalize beyond the trained task, albeit slowing down of responses in picture naming. This task may provide a useful clinical intervention strategy for patients with mild anomia, who are not challenged enough by traditional naming therapies.
Collapse
Affiliation(s)
- Vânia de Aguiar
- Department of Neurology, Johns Hopkins Medicine
- Center for Language and Cognition Groningen (CLCG), University of Groningen
| | - Adrià Rofes
- Center for Language and Cognition Groningen (CLCG), University of Groningen
- Department of Cognitive Science, Johns Hopkins University
| | - Haley Wendt
- Department of Neurology, Johns Hopkins Medicine
| | | | - Kimberly Webster
- Department of Neurology, Johns Hopkins Medicine
- Department of Otolaryngology – Head and Neck Surgery, Johns Hopkins Medicine
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins Medicine
- Department of Otolaryngology – Head and Neck Surgery, Johns Hopkins Medicine
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Frontotemporal dementia (FTD) is a rare dementia, that accounts for about 15% of all dementia cases. Despite consensus diagnostic criteria, FTD remains difficult to diagnose in life because of its complex and variable clinical phenomenology and heterogeneous disorders. This review provides an update on the current knowledge of the main FTD syndromes -- the behavioural variant, semantic variant, and nonfluent/agrammatic variant-- their brain abnormalities and genetic profiles. RECENT FINDINGS The complexity of the clinical features in FTD has become increasingly apparent, particularly in the domain of behaviour. Such behaviour changes are now also being recognized in the language variants of FTD. Initial interest on emotion processing and social cognition is now complemented by studies on other behavioural disturbance, that spans gambling, antisocial behaviours, repetitive behaviours, and apathy. At a biological level, novel pathological subcategories continue to be identified. From a genetic viewpoint, abnormalities in three genes explain nearly three quarters of familial cases of FTD. SUMMARY In the absence of effective drug treatments, novel approaches are needed to target some of the most disabling features of FTD, such as language loss or behaviour disturbance. Recent interventions appear promising but will require confirmation.
Collapse
|
44
|
Sanches C, Stengel C, Godard J, Mertz J, Teichmann M, Migliaccio R, Valero-Cabré A. Past, Present, and Future of Non-invasive Brain Stimulation Approaches to Treat Cognitive Impairment in Neurodegenerative Diseases: Time for a Comprehensive Critical Review. Front Aging Neurosci 2021; 12:578339. [PMID: 33551785 PMCID: PMC7854576 DOI: 10.3389/fnagi.2020.578339] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Low birth rates and increasing life expectancy experienced by developed societies have placed an unprecedented pressure on governments and the health system to deal effectively with the human, social and financial burden associated to aging-related diseases. At present, ∼24 million people worldwide suffer from cognitive neurodegenerative diseases, a prevalence that doubles every five years. Pharmacological therapies and cognitive training/rehabilitation have generated temporary hope and, occasionally, proof of mild relief. Nonetheless, these approaches are yet to demonstrate a meaningful therapeutic impact and changes in prognosis. We here review evidence gathered for nearly a decade on non-invasive brain stimulation (NIBS), a less known therapeutic strategy aiming to limit cognitive decline associated with neurodegenerative conditions. Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation, two of the most popular NIBS technologies, use electrical fields generated non-invasively in the brain to long-lastingly enhance the excitability/activity of key brain regions contributing to relevant cognitive processes. The current comprehensive critical review presents proof-of-concept evidence and meaningful cognitive outcomes of NIBS in eight of the most prevalent neurodegenerative pathologies affecting cognition: Alzheimer's Disease, Parkinson's Disease, Dementia with Lewy Bodies, Primary Progressive Aphasias (PPA), behavioral variant of Frontotemporal Dementia, Corticobasal Syndrome, Progressive Supranuclear Palsy, and Posterior Cortical Atrophy. We analyzed a total of 70 internationally published studies: 33 focusing on Alzheimer's disease, 19 on PPA and 18 on the remaining neurodegenerative pathologies. The therapeutic benefit and clinical significance of NIBS remains inconclusive, in particular given the lack of a sufficient number of double-blind placebo-controlled randomized clinical trials using multiday stimulation regimes, the heterogeneity of the protocols, and adequate behavioral and neuroimaging response biomarkers, able to show lasting effects and an impact on prognosis. The field remains promising but, to make further progress, research efforts need to take in account the latest evidence of the anatomical and neurophysiological features underlying cognitive deficits in these patient populations. Moreover, as the development of in vivo biomarkers are ongoing, allowing for an early diagnosis of these neuro-cognitive conditions, one could consider a scenario in which NIBS treatment will be personalized and made part of a cognitive rehabilitation program, or useful as a potential adjunct to drug therapies since the earliest stages of suh diseases. Research should also integrate novel knowledge on the mechanisms and constraints guiding the impact of electrical and magnetic fields on cerebral tissues and brain activity, and incorporate the principles of information-based neurostimulation.
Collapse
Affiliation(s)
- Clara Sanches
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Chloé Stengel
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Juliette Godard
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Justine Mertz
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Marc Teichmann
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- National Reference Center for Rare or Early Onset Dementias, Department of Neurology, Institute of Memory and Alzheimer’s Disease, Pitié-Salpêtrière Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - Raffaella Migliaccio
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- National Reference Center for Rare or Early Onset Dementias, Department of Neurology, Institute of Memory and Alzheimer’s Disease, Pitié-Salpêtrière Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - Antoni Valero-Cabré
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- Laboratory for Cerebral Dynamics Plasticity & Rehabilitation, Boston University School of Medicine, Boston, MA, United States
- Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia, Barcelona, Spain
| |
Collapse
|
45
|
Zhao Y, Ficek B, Webster K, Frangakis C, Caffo B, Hillis AE, Faria A, Tsapkini K. White Matter Integrity Predicts Electrical Stimulation (tDCS) and Language Therapy Effects in Primary Progressive Aphasia. Neurorehabil Neural Repair 2021; 35:44-57. [PMID: 33317422 PMCID: PMC7748290 DOI: 10.1177/1545968320971741] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS), in conjunction with language therapy, improves language therapy outcomes in primary progressive aphasia (PPA). However, no studies show whether white matter integrity predicts language therapy or tDCS effects in PPA. OBJECTIVE We aimed to determine whether white matter integrity, measured by diffusion tensor imaging (DTI), predicts written naming/spelling language therapy effects (letter accuracy on trained and untrained words) with and without tDCS over the left inferior frontal gyrus (IFG) in PPA. METHODS Thirty-nine participants with PPA were randomly assigned to tDCS or sham condition, coupled with language therapy for 15 daily sessions. White matter integrity was measured by mean diffusivity (MD) and fractional anisotropy (FA) in DTI scans before therapy. Written naming outcomes were evaluated before, immediately after, 2 weeks, and 2 months posttherapy. To assess tDCS treatment effect, we used a mixed-effects model with treatment evaluation and time interaction. We considered a forward model selection approach to identify brain regions/fasciculi of which white matter integrity can predict improvement in performance of word naming. RESULTS Both sham and tDCS groups significantly improved in trained items immediately after and at 2 months posttherapy. Improvement in the tDCS group was greater and generalized to untrained words. White matter integrity of ventral language pathways predicted tDCS effects in trained items whereas white matter integrity of dorsal language pathways predicted tDCS effects in untrained items. CONCLUSIONS White matter integrity influences both language therapy and tDCS effects. Thus, it holds promise as a biomarker for deciding which patients will benefit from language therapy and tDCS.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
| | - Bronte Ficek
- Department of Neurology, Johns Hopkins School of Medicine
| | - Kimberly Webster
- Department of Neurology, Johns Hopkins School of Medicine
- Department of Otolaryngology-Head and Neck Surgery
| | - Constantine Frangakis
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
- Department of Radiology, Johns Hopkins School of Medicine
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine
| | - Brian Caffo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins School of Medicine
- Department of Cognitive Science, Johns Hopkins University
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine
| | - Andreia Faria
- Department of Radiology, Johns Hopkins School of Medicine
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine
- Department of Cognitive Science, Johns Hopkins University
| |
Collapse
|
46
|
Chan MMY, Han YMY. The Effect of Transcranial Direct Current Stimulation in Changing Resting-State Functional Connectivity in Patients With Neurological Disorders: A Systematic Review. J Cent Nerv Syst Dis 2020; 12:1179573520976832. [PMID: 33402860 PMCID: PMC7745554 DOI: 10.1177/1179573520976832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND People with neurological disorders are found to have abnormal resting-state functional connectivity (rsFC), which is associated with the persistent functional impairment found in these patients. Recently, transcranial direct current stimulation (tDCS) has been shown to improve rsFC, although the results are inconsistent. OBJECTIVE We hope to explore whether tDCS induces rsFC changes among patients with neurological disorders, whether rsFC is clinically relevant and how different tDCS parameters affect rsFC outcome among these individuals. METHODS A systematic review was conducted according to PRISMA guidelines (systematic review registration number: CRD42020168654). Randomized controlled trials that studied the tDCS effects on rsFC between the experimental and sham-controlled groups using either electrophysiological or neuroimaging methods were included. RESULTS Active tDCS can induce changes in both localized (ie, brain regions under the transcranial electrodes) and diffused (ie, brain regions not directly influenced by the transcranial electrodes) rsFC. Interestingly, fMRI studies showed that the default mode network was enhanced regardless of patients' diagnoses, the stimulation paradigms used or the rsFC analytical methods employed. Second, stimulation intensity, but not total stimulation time, appeared to positively influence the effect of tDCS on rsFC. LIMITATIONS AND CONCLUSION Due to the inherent heterogeneity in rsFC analytical methods and tDCS protocols, meta-analysis was not conducted. We recommend that future studies may investigate the effect of tDCS on rsFC for repeated cathodal stimulation. For clinicians, we suggest anodal stimulation at a higher stimulation intensity within the safety limit may maximize tDCS effects in modulating aberrant functional connectivity of patients with neurological disorders.
Collapse
Affiliation(s)
- Melody MY Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yvonne MY Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
47
|
Tao Y, Ficek B, Rapp B, Tsapkini K. Different patterns of functional network reorganization across the variants of primary progressive aphasia: a graph-theoretic analysis. Neurobiol Aging 2020; 96:184-196. [PMID: 33031971 DOI: 10.1016/j.neurobiolaging.2020.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 01/17/2023]
Abstract
Primary progressive aphasia (PPA) is a neurodegenerative syndrome with three main variants (nonfluent, logopenic, semantic) that are identified primarily based on language deficit profiles and are associated with neurotopographically distinct atrophic patterns. We used a graph-theoretic analytic approach to examine changes in functional network properties measured with resting-state fMRI in all three PPA variants compared with age-matched healthy controls. All three variants showed a more segregated network organization than controls. To better understand the changes underlying the increased segregation, we examined the distribution of functional "hubs". We found that while all variants lost hubs in the left superior frontal and parietal regions, new hubs were recruited in different areas across the variants. In particular, both logopenic and semantic variants recruited significant numbers of hubs in the right hemisphere. Importantly, these functional characteristics could not be fully explained by local volume changes. These findings indicate that patterns of functional connectivity can serve as further evidence to distinguish the PPA variants, and provide a basis for longitudinal studies and for investigating treatment effects. This study also highlights the utility of graph-theoretic approaches in understanding the brain's functional reorganization in response to neurodegenerative disease.
Collapse
Affiliation(s)
- Yuan Tao
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA.
| | - Bronte Ficek
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Brenda Rapp
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA; Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
48
|
Nissim NR, Moberg PJ, Hamilton RH. Efficacy of Noninvasive Brain Stimulation (tDCS or TMS) Paired with Language Therapy in the Treatment of Primary Progressive Aphasia: An Exploratory Meta-Analysis. Brain Sci 2020; 10:E597. [PMID: 32872344 PMCID: PMC7563447 DOI: 10.3390/brainsci10090597] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Noninvasive brain stimulation techniques, such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), paired with behavioral language therapy, have demonstrated the capacity to enhance language abilities in primary progressive aphasia (PPA), a debilitating degenerative neurological syndrome that leads to declines in communication abilities. The aim of this meta-analysis is to systematically evaluate the efficacy of tDCS and TMS in improving language outcomes in PPA, explore the magnitude of effects between stimulation modalities, and examine potential moderators that may influence treatment effects. Standard mean differences for change in performance from baseline to post-stimulation on language-related tasks were evaluated. Six tDCS studies and two repetitive TMS studies met inclusion criteria and provided 22 effects in the analysis. Random effect models revealed a significant, heterogeneous, and moderate effect size for tDCS and TMS in the enhancement of language outcomes. Findings demonstrate that naming ability significantly improves due to brain stimulation, an effect found to be largely driven by tDCS. Future randomized controlled trials are needed to determine long-term effectiveness of noninvasive brain stimulation techniques on language abilities, further delineate the efficacy of tDCS and TMS, and identify optimal parameters to enable the greatest gains for persons with PPA.
Collapse
Affiliation(s)
- Nicole R. Nissim
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Moss Rehabilitation Research Institute, Elkins Park, PA 19027, USA
| | - Paul J. Moberg
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Otorhinolaryngology: Head & Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roy H. Hamilton
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
49
|
Zhao Y, Li L, Caffo BS. Multimodal neuroimaging data integration and pathway analysis. Biometrics 2020; 77:879-889. [PMID: 32789850 DOI: 10.1111/biom.13351] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 07/15/2020] [Accepted: 06/05/2020] [Indexed: 12/01/2022]
Abstract
With advancements in technology, the collection of multiple types of measurements on a common set of subjects is becoming routine in science. Some notable examples include multimodal neuroimaging studies for the simultaneous investigation of brain structure and function and multi-omics studies for combining genetic and genomic information. Integrative analysis of multimodal data allows scientists to interrogate new mechanistic questions. However, the data collection and generation of integrative hypotheses is outpacing available methodology for joint analysis of multimodal measurements. In this article, we study high-dimensional multimodal data integration in the context of mediation analysis. We aim to understand the roles that different data modalities play as possible mediators in the pathway between an exposure variable and an outcome. We propose a mediation model framework with two data types serving as separate sets of mediators and develop a penalized optimization approach for parameter estimation. We study both the theoretical properties of the estimator through an asymptotic analysis and its finite-sample performance through simulations. We illustrate our method with a multimodal brain pathway analysis having both structural and functional connectivity as mediators in the association between sex and language processing.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lexin Li
- Department of Biostatistics and Epidemiology, University of California, Berkeley, California
| | - Brian S Caffo
- Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
50
|
Unal G, Ficek B, Webster K, Shahabuddin S, Truong D, Hampstead B, Bikson M, Tsapkini K. Impact of brain atrophy on tDCS and HD-tDCS current flow: a modeling study in three variants of primary progressive aphasia. Neurol Sci 2020; 41:1781-1789. [PMID: 32040791 PMCID: PMC7363529 DOI: 10.1007/s10072-019-04229-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND During transcranial direct current stimulation (tDCS), the amount and distribution of current that reaches the brain depends on individual anatomy. Many progressive neurodegenerative diseases are associated with cortical atrophy, but the importance of individual brain atrophy during tDCS in patients with progressive atrophy, including primary progressive aphasia (PPA), remains unclear. OBJECTIVE In the present study, we addressed the question whether brain anatomy in patients with distinct cortical atrophy patterns would impact brain current intensity and distribution during tDCS over the left IFG. METHOD We developed state-of-the-art, gyri-precise models of three subjects, each representing a variant of primary progressive aphasia: non-fluent variant PPA (nfvPPA), semantic variant PPA (svPPA), and logopenic variant PPA (lvPPA). We considered two exemplary montages over the left inferior frontal gyrus (IFG): a conventional pad montage (anode over F7, cathode over the right cheek) and a 4 × 1 high-definition tDCS montage. We further considered whether local anatomical features, specifically distance of the cortex to skull, can directly predict local electric field intensity. RESULTS We found that the differences in brain current flow across the three PPA variants fall within the distribution of anatomically typical adults. While clustering of electric fields was often around individual gyri or sulci, the minimal distance from the gyri/sulci to skull was not correlated with electric field intensity. CONCLUSION Limited to the conditions and assumptions considered here, this argues against a specific need to adjust the tDCS montage for these patients any more than might be considered useful in anatomically typical adults. Therefore, local atrophy does not, in isolation, reliably predict local electric field. Rather, our results are consistent with holistic head anatomy influencing brain current flow, with tDCS producing diffuse and individualized brain current flow patterns and HD-tDCS producing targeted brain current flow across individuals.
Collapse
Affiliation(s)
- Gozde Unal
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Bronte Ficek
- Department of Neurology, Cerebrovascular Division, Johns Hopkins Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD, 21287, USA
| | - Kimberly Webster
- Department of Neurology, Cerebrovascular Division, Johns Hopkins Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD, 21287, USA
- Department of Otolaryngology, Johns Hopkins Medicine, Baltimore, MD, 21287, USA
| | - Syed Shahabuddin
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Dennis Truong
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Benjamin Hampstead
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Kyrana Tsapkini
- Department of Neurology, Cerebrovascular Division, Johns Hopkins Medicine, 600 N. Wolfe Street, Phipps 488, Baltimore, MD, 21287, USA.
- Department of Cognitive Science, Johns Hopkins Medicine, Baltimore, MD, 21218, USA.
| |
Collapse
|