1
|
Giordano D, Verde C, Corti P. Nitric Oxide Production and Regulation in the Teleost Cardiovascular System. Antioxidants (Basel) 2022; 11:957. [PMID: 35624821 PMCID: PMC9137985 DOI: 10.3390/antiox11050957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/08/2023] Open
Abstract
Nitric Oxide (NO) is a free radical with numerous critical signaling roles in vertebrate physiology. Similar to mammals, in the teleost system the generation of sufficient amounts of NO is critical for the physiological function of the cardiovascular system. At the same time, NO amounts are strictly controlled and kept within basal levels to protect cells from NO toxicity. Changes in oxygen tension highly influence NO bioavailability and can modulate the mechanisms involved in maintaining the NO balance. While NO production and signaling appears to have general similarities with mammalian systems, the wide range of environmental adaptations made by fish, particularly with regards to differing oxygen availabilities in aquatic habitats, creates a foundation for a variety of in vivo models characterized by different implications of NO production and signaling. In this review, we present the biology of NO in the teleost cardiovascular system and summarize the mechanisms of NO production and signaling with a special emphasis on the role of globin proteins in NO metabolism.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy; (D.G.); (C.V.)
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Napoli, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy; (D.G.); (C.V.)
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Napoli, Italy
| | - Paola Corti
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Modulating the Antioxidant Response for Better Oxidative Stress-Inducing Therapies: How to Take Advantage of Two Sides of the Same Medal? Biomedicines 2022; 10:biomedicines10040823. [PMID: 35453573 PMCID: PMC9029215 DOI: 10.3390/biomedicines10040823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 01/17/2023] Open
Abstract
Oxidative stress-inducing therapies are characterized as a specific treatment that involves the production of reactive oxygen and nitrogen species (RONS) by external or internal sources. To protect cells against oxidative stress, cells have evolved a strong antioxidant defense system to either prevent RONS formation or scavenge them. The maintenance of the redox balance ensures signal transduction, development, cell proliferation, regulation of the mechanisms of cell death, among others. Oxidative stress can beneficially be used to treat several diseases such as neurodegenerative disorders, heart disease, cancer, and other diseases by regulating the antioxidant system. Understanding the mechanisms of various endogenous antioxidant systems can increase the therapeutic efficacy of oxidative stress-based therapies, leading to clinical success in medical treatment. This review deals with the recent novel findings of various cellular endogenous antioxidant responses behind oxidative stress, highlighting their implication in various human diseases, such as ulcers, skin pathologies, oncology, and viral infections such as SARS-CoV-2.
Collapse
|
3
|
Zhang X, Griepentrog JE, Zou B, Xu L, Cyr AR, Chambers LM, Zuckerbraun BS, Shiva S, Rosengart MR. CaMKIV regulates mitochondrial dynamics during sepsis. Cell Calcium 2020; 92:102286. [PMID: 32932146 DOI: 10.1016/j.ceca.2020.102286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Sepsis and shock states impose mitochondrial stress, and in response, adaptive mechanisms such as fission, fusion and mitophagy are induced to eliminate damaged portions of or entire dysfunctional mitochondria. The mechanisms underlying these events are being elucidated; yet a direct link between loss of mitochondrial membrane potential ΔΨm and the initiation of fission, fusion and mitophagy remains to be well characterized. The direct association between the magnitude of the ΔΨm and the capacity for mitochondria to buffer Ca2+ renders Ca2+ uniquely suited as the signal engaging these mechanisms in circumstances of mitochondrial stress that lower the ΔΨm. Herein, we show that the calcium/calmodulin-dependent protein kinase (CaMK) IV mediates an adaptive slowing in oxidative respiration that minimizes oxidative stress in the kidneys of mice subjected to either cecal ligation and puncture (CLP) sepsis or endotoxemia. CaMKIV shifts the balance towards mitochondrial fission and away from fusion by 1) directly phosphorylating an activating Serine616 on the fission protein DRP1 and 2) reducing the expression of the fusion proteins Mfn1/2 and OPA-1. CaMKIV, through its function as a direct PINK1 kinase and regulator of Parkin expression, also enables mitophagy. These data support that CaMKIV serves as a keystone linking mitochondrial stress with the adaptive mechanisms of mitochondrial fission, fusion and mitophagy that mitigate oxidative stress in the kidneys of mice responding to sepsis.
Collapse
Affiliation(s)
- Xianghong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - John E Griepentrog
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Baobo Zou
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Li Xu
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Department of Emergency, Union Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, China
| | - Anthony R Cyr
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lauran M Chambers
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brian S Zuckerbraun
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sruti Shiva
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew R Rosengart
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
4
|
Abstract
People living with HIV can experience accelerated aging and the development of neurological disorders. Recently, we reported that HIV-1 infection results in a dramatic loss of peroxisomes in macrophages and brain tissue. This is significant because (i) peroxisomes are important for the innate immune response and (ii) loss of peroxisome function is associated with cellular aging and neurodegeneration. Accordingly, understanding how HIV-1 infection causes peroxisome depletion may provide clues regarding how the virus establishes persistent infections and, potentially, the development of neurological disorders. Here, we show that the accessory protein Vpu is necessary and sufficient for the induction of microRNAs that target peroxisome biogenesis factors. The ability of Vpu to downregulate peroxisome formation depends on the Wnt/β-catenin pathway. Thus, in addition to revealing a novel mechanism by which HIV-1 uses intracellular signaling pathways to target antiviral signaling platforms (peroxisomes), we have uncovered a previously unknown link between the Wnt/β-catenin pathway and peroxisome homeostasis. Human immunodeficiency virus type 1 (HIV-1) establishes lifelong infections in humans, a process that relies on its ability to thwart innate and adaptive immune defenses of the host. Recently, we reported that HIV-1 infection results in a dramatic reduction of the cellular peroxisome pool. Peroxisomes are metabolic organelles that also function as signaling platforms in the innate immune response. Here, we show that the HIV-1 accessory protein Vpu is necessary and sufficient for the depletion of cellular peroxisomes during infection. Vpu induces the expression of four microRNAs that target mRNAs encoding proteins required for peroxisome formation and metabolic function. The ability of Vpu to downregulate peroxisomes was found to be dependent upon the Wnt/β-catenin signaling pathway. Given the importance of peroxisomes in innate immune signaling and central nervous system function, the roles of Vpu in dampening antiviral signaling appear to be more diverse than previously realized. Finally, our findings highlight a potential role for Wnt/β-catenin signaling in peroxisome homeostasis through modulating the production of biogenesis factors.
Collapse
|
5
|
Kunze M. The type-2 peroxisomal targeting signal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118609. [PMID: 31751594 DOI: 10.1016/j.bbamcr.2019.118609] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
The type-2 peroxisomal targeting signal (PTS2) is one of two peptide motifs destining soluble proteins for peroxisomes. This signal acts as amphiphilic α-helix exposing the side chains of all conserved residues to the same side. PTS2 motifs are recognized by a bipartite protein complex consisting of the receptor PEX7 and a co-receptor. Cargo-loaded receptor complexes are translocated across the peroxisomal membrane by a transient pore and inside peroxisomes, cargo proteins are released and processed in many, but not all species. The components of the bipartite receptor are re-exported into the cytosol by a ubiquitin-mediated and ATP-driven export mechanism. Structurally, PTS2 motifs resemble other N-terminal targeting signals, whereas the functional relation to the second peroxisomal targeting signal (PTS1) is unclear. Although only a few PTS2-carrying proteins are known in humans, subjects lacking a functional import mechanism for these proteins suffer from the severe inherited disease rhizomelic chondrodysplasia punctata.
Collapse
Affiliation(s)
- Markus Kunze
- Medical University of Vienna, Center for Brain Research, Department of Pathobiology of the Nervous System, Spitalgasse 4, 1090 Vienna, Austria.
| |
Collapse
|
6
|
S-Nitrosylation: An Emerging Paradigm of Redox Signaling. Antioxidants (Basel) 2019; 8:antiox8090404. [PMID: 31533268 PMCID: PMC6769533 DOI: 10.3390/antiox8090404] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a highly reactive molecule, generated through metabolism of L-arginine by NO synthase (NOS). Abnormal NO levels in mammalian cells are associated with multiple human diseases, including cancer. Recent studies have uncovered that the NO signaling is compartmentalized, owing to the localization of NOS and the nature of biochemical reactions of NO, including S-nitrosylation. S-nitrosylation is a selective covalent post-translational modification adding a nitrosyl group to the reactive thiol group of a cysteine to form S-nitrosothiol (SNO), which is a key mechanism in transferring NO-mediated signals. While S-nitrosylation occurs only at select cysteine thiols, such a spatial constraint is partially resolved by transnitrosylation, where the nitrosyl moiety is transferred between two interacting proteins to successively transfer the NO signal to a distant location. As NOS is present in various subcellular locales, a stress could trigger concerted S-nitrosylation and transnitrosylation of a large number of proteins involved in divergent signaling cascades. S-nitrosylation is an emerging paradigm of redox signaling by which cells confer protection against oxidative stress.
Collapse
|
7
|
Corpas FJ, Del Río LA, Palma JM. Plant peroxisomes at the crossroad of NO and H 2 O 2 metabolism. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:803-816. [PMID: 30609289 DOI: 10.1111/jipb.12772] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Plant peroxisomes are subcellular compartments involved in many biochemical pathways during the life cycle of a plant but also in the mechanism of response against adverse environmental conditions. These organelles have an active nitro-oxidative metabolism under physiological conditions but this could be exacerbated under stress situations. Furthermore, peroxisomes have the capacity to proliferate and also undergo biochemical adaptations depending on the surrounding cellular status. An important characteristic of peroxisomes is that they have a dynamic metabolism of reactive nitrogen and oxygen species (RNS and ROS) which generates two key molecules, nitric oxide (NO) and hydrogen peroxide (H2 O2 ). These molecules can exert signaling functions by means of post-translational modifications that affect the functionality of target molecules like proteins, peptides or fatty acids. This review provides an overview of the endogenous metabolism of ROS and RNS in peroxisomes with special emphasis on polyamine and uric acid metabolism as well as the possibility that these organelles could be a source of signal molecules involved in the functional interconnection with other subcellular compartments.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - Luis A Del Río
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| |
Collapse
|
8
|
Liu J, Lu W, Shi B, Klein S, Su X. Peroxisomal regulation of redox homeostasis and adipocyte metabolism. Redox Biol 2019; 24:101167. [PMID: 30921635 PMCID: PMC6434164 DOI: 10.1016/j.redox.2019.101167] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 12/26/2022] Open
Abstract
Peroxisomes are ubiquitous cellular organelles required for specific pathways of fatty acid oxidation and lipid synthesis, and until recently their functions in adipocytes have not been well appreciated. Importantly, peroxisomes host many oxygen-consumption reactions and play a major role in generation and detoxification of reactive oxygen species (ROS) and reactive nitrogen species (RNS), influencing whole cell redox status. Here, we review recent progress in peroxisomal functions in lipid metabolism as related to ROS/RNS metabolism and discuss the roles of peroxisomal redox homeostasis in adipogenesis and adipocyte metabolism. We provide a framework for understanding redox regulation of peroxisomal functions in adipocytes together with testable hypotheses for developing therapies for obesity and the related metabolic diseases.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Biochemistry and Molecular Biology, Soochow University College of Medicine, Suzhou, 215123, China
| | - Wen Lu
- Department of Biochemistry and Molecular Biology, Soochow University College of Medicine, Suzhou, 215123, China; Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Bimin Shi
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Soochow University College of Medicine, Suzhou, 215123, China; Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
9
|
Corpas FJ, Río LAD, Palma JM. Impact of Nitric Oxide (NO) on the ROS Metabolism of Peroxisomes. PLANTS (BASEL, SWITZERLAND) 2019; 8:E37. [PMID: 30744153 PMCID: PMC6409570 DOI: 10.3390/plants8020037] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/02/2019] [Accepted: 02/07/2019] [Indexed: 12/24/2022]
Abstract
Nitric oxide (NO) is a gaseous free radical endogenously generated in plant cells. Peroxisomes are cell organelles characterized by an active metabolism of reactive oxygen species (ROS) and are also one of the main cellular sites of NO production in higher plants. In this mini-review, an updated and comprehensive overview is presented of the evidence available demonstrating that plant peroxisomes have the capacity to generate NO, and how this molecule and its derived products, peroxynitrite (ONOO⁻) and S-nitrosoglutathione (GSNO), can modulate the ROS metabolism of peroxisomes, mainly throughout protein posttranslational modifications (PTMs), including S-nitrosation and tyrosine nitration. Several peroxisomal antioxidant enzymes, such as catalase (CAT), copper-zinc superoxide dismutase (CuZnSOD), and monodehydroascorbate reductase (MDAR), have been demonstrated to be targets of NO-mediated PTMs. Accordingly, plant peroxisomes can be considered as a good example of the interconnection existing between ROS and reactive nitrogen species (RNS), where NO exerts a regulatory function of ROS metabolism acting upstream of H₂O₂.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| | - Luis A Del Río
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry and Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
10
|
Corpas FJ, Barroso JB. Peroxisomal plant metabolism - an update on nitric oxide, Ca 2+ and the NADPH recycling network. J Cell Sci 2018; 131:jcs.202978. [PMID: 28775155 DOI: 10.1242/jcs.202978] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plant peroxisomes are recognized organelles that - with their capacity to generate greater amounts of H2O2 than other subcellular compartments - have a remarkable oxidative metabolism. However, over the last 15 years, new information has shown that plant peroxisomes contain other important molecules and enzymes, including nitric oxide (NO), peroxynitrite, a NADPH-recycling system, Ca2+ and lipid-derived signals, such as jasmonic acid (JA) and nitro-fatty acid (NO2-FA). This highlights the potential for complex interactions within the peroxisomal nitro-oxidative metabolism, which also affects the status of the cell and consequently its physiological processes. In this review, we provide an update on the peroxisomal interactions between all these molecules. Particular emphasis will be placed on the generation of the free-radical NO, which requires the presence of Ca2+, calmodulin and NADPH redox power. Peroxisomes possess several NADPH regeneration mechanisms, such as those mediated by glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) proteins, which are involved in the oxidative phase of the pentose phosphate pathway, as well as that mediated by NADP-isocitrate dehydrogenase (ICDH). The generated NADPH is also an essential cofactor across other peroxisomal pathways, including the antioxidant ascorbate-glutathione cycle and unsaturated fatty acid β-oxidation, the latter being a source of powerful signaling molecules such as JA and NO2-FA.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| |
Collapse
|
11
|
Corpas FJ, Del Río LA, Palma JM. A Role for RNS in the Communication of Plant Peroxisomes with Other Cell Organelles? Subcell Biochem 2018; 89:473-493. [PMID: 30378037 DOI: 10.1007/978-981-13-2233-4_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plant peroxisomes are organelles with a very active participation in the cellular regulation of the metabolism of reactive oxygen species (ROS). However, during the last two decades peroxisomes have been shown to be also a relevant source of nitric oxide (NO) and other related molecules designated as reactive nitrogen species (RNS). ROS and RNS have been mainly associated to nitro-oxidative processes; however, some members of these two families of molecules such as H2O2, NO or S-nitrosoglutathione (GSNO) are also involved in the mechanism of signaling processes mainly through post-translational modifications. Peroxisomes interact metabolically with other cell compartments such as chloroplasts, mitochondria or oil bodies in different pathways including photorespiration, glyoxylate cycle or β-oxidation, but peroxisomes are also involved in the biosynthesis of phytohormones including auxins and jasmonic acid (JA). This review will provide a comprehensive overview of peroxisomal RNS metabolism with special emphasis in the identified protein targets of RNS inside and outside these organelles. Moreover, the potential interconnectivity between peroxisomes and other plant organelles, such as mitochondria or chloroplasts, which could have a regulatory function will be explored, with special emphasis on photorespiration.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain.
| | - Luis A Del Río
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
12
|
Zhang X, Yuan D, Sun Q, Xu L, Lee E, Lewis AJ, Zuckerbraun BS, Rosengart MR. Calcium/calmodulin-dependent protein kinase regulates the PINK1/Parkin and DJ-1 pathways of mitophagy during sepsis. FASEB J 2017; 31:4382-4395. [PMID: 28615325 DOI: 10.1096/fj.201601096rrr] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 06/06/2017] [Indexed: 11/11/2022]
Abstract
During sepsis and shock states, mitochondrial dysfunction occurs. Consequently, adaptive mechanisms, such as fission, fusion, and mitophagy, are induced to eliminate damaged portions or entire dysfunctional mitochondria. The regulatory PINK1/Parkin and DJ-1 pathways are strongly induced by mitochondrial depolarization, although a direct link between loss of mitochondrial membrane potential (ΔΨ) and mitophagy has not been identified. Mitochondria also buffer Ca2+, and their buffering capacity is dependent on ΔΨ Here, we characterize a role for calcium/calmodulin-dependent protein kinase (CaMK) I in the regulation of these mechanisms. Loss of ΔΨ with either pharmacologic depolarization or LPS leads to Ca2+-dependent mitochondrial recruitment and activation of CaMKI that precedes the colocalization of PINK1/Parkin and DJ-1. CaMKI is required and serves as both a PINK1 and Parkin kinase. The mechanisms operate in both immune and nonimmune cells and are induced in in vivo models of endotoxemia, sepsis, and hemorrhagic shock. These data support the idea that CaMKI links mitochondrial stress with the PINK1/Parkin and DJ-1 mechanisms of mitophagy.-Zhang, X., Yuan, D., Sun, Q., Xu, L., Lee, E., Lewis, A. J., Zuckerbraun, B. S., Rosengart, M. R. Calcium/calmodulin-dependent protein kinase regulates the PINK1/Parkin and DJ-1 pathways of mitophagy during sepsis.
Collapse
Affiliation(s)
- Xianghong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Du Yuan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qian Sun
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Li Xu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Emma Lee
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony J Lewis
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brian S Zuckerbraun
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew R Rosengart
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
13
|
Xu Z, Asahchop EL, Branton WG, Gelman BB, Power C, Hobman TC. MicroRNAs upregulated during HIV infection target peroxisome biogenesis factors: Implications for virus biology, disease mechanisms and neuropathology. PLoS Pathog 2017; 13:e1006360. [PMID: 28594894 PMCID: PMC5464672 DOI: 10.1371/journal.ppat.1006360] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) represent a spectrum neurological syndrome that affects up to 25% of patients with HIV/AIDS. Multiple pathogenic mechanisms contribute to the development of HAND symptoms including chronic neuroinflammation and neurodegeneration. Among the factors linked to development of HAND is altered expression of host cell microRNAs (miRNAs) in brain. Here, we examined brain miRNA profiles among HIV/AIDS patients with and without HAND. Our analyses revealed differential expression of 17 miRNAs in brain tissue from HAND patients. A subset of the upregulated miRNAs (miR-500a-5p, miR-34c-3p, miR-93-3p and miR-381-3p), are predicted to target peroxisome biogenesis factors (PEX2, PEX7, PEX11B and PEX13). Expression of these miRNAs in transfected cells significantly decreased levels of peroxisomal proteins and concomitantly decreased peroxisome numbers or affected their morphology. The levels of miR-500a-5p, miR-34c-3p, miR-93-3p and miR-381-3p were not only elevated in the brains of HAND patients, but were also upregulated during HIV infection of primary macrophages. Moreover, concomitant loss of peroxisomal proteins was observed in HIV-infected macrophages as well as in brain tissue from HIV-infected patients. HIV-induced loss of peroxisomes was abrogated by blocking the functions of the upregulated miRNAs. Overall, these findings point to previously unrecognized miRNA expression patterns in the brains of HIV patients. Targeting peroxisomes by up-regulating miRNAs that repress peroxisome biogenesis factors may represent a novel mechanism by which HIV-1 subverts innate immune responses and/or causes neurocognitive dysfunction.
Collapse
Affiliation(s)
- Zaikun Xu
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Eugene L. Asahchop
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - William G. Branton
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin B. Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Christopher Power
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
- Women & Childrens Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Tom C. Hobman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
- Women & Childrens Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Corpas FJ, Barroso JB, Palma JM, Rodriguez-Ruiz M. Plant peroxisomes: A nitro-oxidative cocktail. Redox Biol 2017; 11:535-542. [PMID: 28092771 PMCID: PMC5238456 DOI: 10.1016/j.redox.2016.12.033] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/28/2016] [Accepted: 12/30/2016] [Indexed: 12/16/2022] Open
Abstract
Although peroxisomes are very simple organelles, research on different species has provided us with an understanding of their importance in terms of cell viability. In addition to the significant role played by plant peroxisomes in the metabolism of reactive oxygen species (ROS), data gathered over the last two decades show that these organelles are an endogenous source of nitric oxide (NO) and related molecules called reactive nitrogen species (RNS). Molecules such as NO and H2O2 act as retrograde signals among the different cellular compartments, thus facilitating integral cellular adaptation to physiological and environmental changes. However, under nitro-oxidative conditions, part of this network can be overloaded, possibly leading to cellular damage and even cell death. This review aims to update our knowledge of the ROS/RNS metabolism, whose important role in plant peroxisomes is still underestimated. However, this pioneering approach, in which key elements such as β-oxidation, superoxide dismutase (SOD) and NO have been mainly described in relation to plant peroxisomes, could also be used to explore peroxisomes from other organisms.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain.
| | - Juan B Barroso
- Biochemistry and Cell Signaling in Nitric Oxide Group, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071 Jaén, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain
| | - Marta Rodriguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain
| |
Collapse
|
15
|
Loughran P, Xu L, Billiar T. Nitric Oxide and the Liver. LIVER PATHOPHYSIOLOGY 2017:799-816. [DOI: 10.1016/b978-0-12-804274-8.00058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Loughran PA, Lei Z, Xu L, Deng M, Billiar TR. Nitric Oxide in Sepsis and Hemorrhagic Shock: Beneficial or Detrimental? NITRIC OXIDE 2017:289-300. [DOI: 10.1016/b978-0-12-804273-1.00022-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Uppala R, Dudiak B, Beck ME, Bharathi SS, Zhang Y, Stolz DB, Goetzman ES. Aspirin increases mitochondrial fatty acid oxidation. Biochem Biophys Res Commun 2016; 482:346-351. [PMID: 27856258 DOI: 10.1016/j.bbrc.2016.11.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 01/01/2023]
Abstract
The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders.
Collapse
Affiliation(s)
- Radha Uppala
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, United States
| | - Brianne Dudiak
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, United States
| | - Megan E Beck
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, United States
| | - Sivakama S Bharathi
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, United States
| | - Yuxun Zhang
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, United States
| | - Donna B Stolz
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Eric S Goetzman
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, United States.
| |
Collapse
|
18
|
Lismont C, Nordgren M, Van Veldhoven PP, Fransen M. Redox interplay between mitochondria and peroxisomes. Front Cell Dev Biol 2015; 3:35. [PMID: 26075204 PMCID: PMC4444963 DOI: 10.3389/fcell.2015.00035] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/09/2015] [Indexed: 12/14/2022] Open
Abstract
Reduction-oxidation or “redox” reactions are an integral part of a broad range of cellular processes such as gene expression, energy metabolism, protein import and folding, and autophagy. As many of these processes are intimately linked with cell fate decisions, transient or chronic changes in cellular redox equilibrium are likely to contribute to the initiation and progression of a plethora of human diseases. Since a long time, it is known that mitochondria are major players in redox regulation and signaling. More recently, it has become clear that also peroxisomes have the capacity to impact redox-linked physiological processes. To serve this function, peroxisomes cooperate with other organelles, including mitochondria. This review provides a comprehensive picture of what is currently known about the redox interplay between mitochondria and peroxisomes in mammals. We first outline the pro- and antioxidant systems of both organelles and how they may function as redox signaling nodes. Next, we critically review and discuss emerging evidence that peroxisomes and mitochondria share an intricate redox-sensitive relationship and cooperate in cell fate decisions. Key issues include possible physiological roles, messengers, and mechanisms. We also provide examples of how data mining of publicly-available datasets from “omics” technologies can be a powerful means to gain additional insights into potential redox signaling pathways between peroxisomes and mitochondria. Finally, we highlight the need for more studies that seek to clarify the mechanisms of how mitochondria may act as dynamic receivers, integrators, and transmitters of peroxisome-derived mediators of oxidative stress. The outcome of such studies may open up exciting new avenues for the community of researchers working on cellular responses to organelle-derived oxidative stress, a research field in which the role of peroxisomes is currently highly underestimated and an issue of discussion.
Collapse
Affiliation(s)
- Celien Lismont
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven Leuven, Belgium
| | - Marcus Nordgren
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven Leuven, Belgium
| | - Paul P Van Veldhoven
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven Leuven, Belgium
| | - Marc Fransen
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven Leuven, Belgium
| |
Collapse
|
19
|
Zhang X, Howell GM, Guo L, Collage RD, Loughran PA, Zuckerbraun BS, Rosengart MR. CaMKIV-dependent preservation of mTOR expression is required for autophagy during lipopolysaccharide-induced inflammation and acute kidney injury. THE JOURNAL OF IMMUNOLOGY 2014; 193:2405-15. [PMID: 25070845 DOI: 10.4049/jimmunol.1302798] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Autophagy, an evolutionarily conserved homeostasis process regulating biomass quantity and quality, plays a critical role in the host response to sepsis. Recent studies show its calcium dependence, but the calcium-sensitive regulatory cascades have not been defined. In this study, we describe a novel mechanism in which calcium/calmodulin-dependent protein kinase IV (CaMKIV), through inhibitory serine phosphorylation of GSK-3β and inhibition of FBXW7 recruitment, prevents ubiquitin proteosomal degradation of mammalian target of rapamycin (mTOR) and thereby augments autophagy in both the macrophage and the kidney. Under the conditions of sepsis studied, mTOR expression and activity were requisite for autophagy, a paradigm countering the current perspective that prototypically, mTOR inhibition induces autophagy. CaMKIV-mTOR-dependent autophagy was fundamentally important for IL-6 production in vitro and in vivo. Similar mechanisms were operant in the kidney during endotoxemia and served a cytoprotective role in mitigating acute kidney injury. Thus, CaMKIV-mTOR-dependent autophagy is conserved in both immune and nonimmune/parenchymal cells and is fundamental for the respective functional and adaptive responses to septic insult.
Collapse
Affiliation(s)
- Xianghong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Gina M Howell
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Lanping Guo
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Richard D Collage
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Patricia A Loughran
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213; and
| | | | - Matthew R Rosengart
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
20
|
Corpas FJ, Barroso JB. Peroxisomal plant nitric oxide synthase (NOS) protein is imported by peroxisomal targeting signal type 2 (PTS2) in a process that depends on the cytosolic receptor PEX7 and calmodulin. FEBS Lett 2014; 588:2049-54. [DOI: 10.1016/j.febslet.2014.04.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 04/18/2014] [Accepted: 04/23/2014] [Indexed: 01/09/2023]
|
21
|
Huang H, Nace GW, McDonald KA, Tai S, Klune JR, Rosborough BR, Ding Q, Loughran P, Zhu X, Beer-Stolz D, Chang EB, Billiar T, Tsung A. Hepatocyte-specific high-mobility group box 1 deletion worsens the injury in liver ischemia/reperfusion: a role for intracellular high-mobility group box 1 in cellular protection. Hepatology 2014; 59:1984-1997. [PMID: 24375466 PMCID: PMC3999251 DOI: 10.1002/hep.26976] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/11/2013] [Accepted: 12/17/2013] [Indexed: 12/07/2022]
Abstract
UNLABELLED High-mobility group box 1 (HMGB1) is an abundant chromatin-associated nuclear protein and released into the extracellular milieu during liver ischemia-reperfusion (I/R), signaling activation of proinflammatory cascades. Because the intracellular function of HMGB1 during sterile inflammation of I/R is currently unknown, we sought to determine the role of intracellular HMGB1 in hepatocytes after liver I/R. When hepatocyte-specific HMGB1 knockout (HMGB1-HC-KO) and control mice were subjected to a nonlethal warm liver I/R, it was found that HMGB1-HC-KO mice had significantly greater hepatocellular injury after I/R, compared to control mice. Additionally, there was significantly greater DNA damage and decreased chromatin accessibility to repair with lack of HMGB1. Furthermore, lack of hepatocyte HMGB1 led to excessive poly(ADP-ribose)polymerase 1 activation, exhausting nicotinamide adenine dinucleotide and adenosine triphosphate stores, exacerbating mitochondrial instability and damage, and, consequently, leading to increased cell death. We found that this was also associated with significantly more oxidative stress (OS) in HMGB1-HC-KO mice, compared to control. Increased nuclear instability led to a resultant increase in the release of histones with subsequently more inflammatory cytokine production and organ damage through activation of Toll-like receptor 9. CONCLUSION The lack of HMGB1 within hepatocytes leads to increased susceptibility to cellular death after OS conditions.
Collapse
Affiliation(s)
- Hai Huang
- Department Of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Gary W. Nace
- Department Of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Kerry-Ann McDonald
- Department Of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Sheng Tai
- Department Of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - John R. Klune
- Department Of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Brian R. Rosborough
- Department Of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Qing Ding
- Department Of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Patricia Loughran
- Department Of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA.
,Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Xiaorong Zhu
- Department of Medicine, University of Chicago, Chicago, IL
| | - Donna Beer-Stolz
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | | | - Timothy Billiar
- Department Of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Allan Tsung
- Department Of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
22
|
Trompier D, Vejux A, Zarrouk A, Gondcaille C, Geillon F, Nury T, Savary S, Lizard G. Brain peroxisomes. Biochimie 2014; 98:102-10. [DOI: 10.1016/j.biochi.2013.09.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/12/2013] [Indexed: 02/06/2023]
|
23
|
Huang H, Chen HW, Evankovich J, Yan W, Rosborough BR, Nace GW, Ding Q, Loughran P, Beer-Stolz D, Billiar TR, Esmon CT, Tsung A. Histones activate the NLRP3 inflammasome in Kupffer cells during sterile inflammatory liver injury. THE JOURNAL OF IMMUNOLOGY 2013; 191:2665-79. [PMID: 23904166 DOI: 10.4049/jimmunol.1202733] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cellular processes that drive sterile inflammatory injury after hepatic ischemia/reperfusion (I/R) injury are not completely understood. Activation of the inflammasome plays a key role in response to invading intracellular pathogens, but mounting evidence suggests that it also plays a role in inflammation driven by endogenous danger-associate molecular pattern molecules released after ischemic injury. The nucleotide-binding domain, leucine-rich repeat containing protein 3 (NLRP3) inflammasome is one such process, and the mechanism by which its activation results in damage and inflammatory responses following liver I/R is unknown. In this article, we report that both NLRP3 and its downstream target caspase-1 are activated during I/R and are essential for hepatic I/R injury, because both NLRP3 and caspase-1 knockout mice are protected from injury. Furthermore, inflammasome-mediated injury is dependent on caspase-1 expression in liver nonparenchymal cells. Although upstream signals that activate the inflammasome during ischemic injury are not well characterized, we show that endogenous extracellular histones activate the NLRP3 inflammasome during liver I/R through TLR9. This occurs through TLR9-dependent generation of reactive oxygen species. This mechanism is operant in resident liver Kupffer cells, which drive innate immune responses after I/R injury by recruiting additional cell types, including neutrophils and inflammatory monocytes. These novel findings illustrate a new mechanism by which extracellular histones and activation of NLRP3 inflammasome contribute to liver damage and the activation of innate immunity during sterile inflammation.
Collapse
Affiliation(s)
- Hai Huang
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|