1
|
Kavcı Z, Ozan M, Buzdağlı Y, Savaş A, Uçar H. Investigation of the effect of nitrate and L-arginine intake on aerobic, anaerobic performance, balance, agility, and recovery in elite taekwondo athletes. J Int Soc Sports Nutr 2025; 22:2445609. [PMID: 39714103 DOI: 10.1080/15502783.2024.2445609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Taekwondo is a complex martial art that requires speed, balance, agility, and endurance. This study aims to examine the effects of nitrate and L-arginine supplementation on acute aerobic and anaerobic performance, balance, agility, and recovery in elite taekwondo athletes. METHOD This study was conducted as a double-blind, randomized, crossover study with the participation of 15 experienced taekwondo athletes aged 19.06 ± 0.96 years and 8.93 ± 1.27 years of training experience. Participants visited the laboratory a total of nine times, including a practice session and anthropometric measurements. These visits consisted of eight experimental sessions conducted at 72-hour intervals. The experimental sessions were conducted with nitrate, L-arginine, and a combination of both supplements (NIT*L-ARG) and placebo. Nitrate supplementation was provided by homogenizing fresh spinach (837.40 mg/kg), while L-ARG was given as a single dose of 6 g in powder form three hours before exercise. RESULTS NIT*L-ARG supplementation significantly improved the anaerobic performance of athletes in Wingate peak power and peak power (w/kg) compared to placebo and in mean power compared to NIT, L-ARG, and PLA. In addition, NIT*L-ARG supplementation significantly improved blood lactate levels and agility performance immediately after Wingate and Shuttle run tests. CONCLUSION The combined intake of NIT*L-ARG was found to be effective in improving aerobic, anaerobic, and agility performances as well as fatigue levels of athletes. It was determined that taking NIT and L-ARG supplements alone contributed to the improvement of improving athletes' performance in Wingate mean power values and subsequent fatigue level compared to PLA.
Collapse
Affiliation(s)
- Zafer Kavcı
- Atatürk University, Graduate School of Winter Sports and Sport Sciences, Erzurum, Turkey
| | - Murat Ozan
- Atatürk University, Department of Physical Education and Sports, Kazım Karabekir Faculty of Education, Erzurum, Turkey
| | - Yusuf Buzdağlı
- Erzurum Technical University, Department of Coaching Education, Faculty of Sport Sciences, Erzurum, Turkey
| | - Adem Savaş
- Giresun University, Department of the Food Engineering, Giresun, Turkey
| | - Halil Uçar
- İnönü University, Department of Physical Education and Sports, Faculty of Education, Malatya, Turkey
| |
Collapse
|
2
|
Tan R, Lincoln IG, Paniagua KK, Foster JM, Wideen LE, Gerardo RT, Ornelas NJ, Tchaprazian I, Li J, Egiazarian M, Rowland SN, Bailey SJ, Pennell A. The effect of dietary nitrate supplementation on resistance exercise performance: A dose-response investigation. Eur J Appl Physiol 2025:10.1007/s00421-025-05779-1. [PMID: 40274664 DOI: 10.1007/s00421-025-05779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
Dietary nitrate (NO3-) can enhance skeletal muscle contractile function and explosive-type exercise by modulating type II muscle fibers; however, limited attention has been directed at exploring the optimal dosing guidelines and potential performance-enhancing effects of NO3- supplementation during resistance-type exercise. The purpose of our investigation was to examine potential dose-response effects of concentrated NO3--rich beetroot juice on neuromuscular performance during resistance exercise. Eighteen resistance-trained men were assigned in a double-blind, randomized, crossover design, to four conditions to consume beetroot juice containing: negligible NO3- (PL); ~ 6 mmol NO3- (BR-LOW); ~ 12 mmol NO3- (BR-MOD); and ~ 24 mmol NO3- (BR-HIGH). Participants completed 1 set of vertical countermovement jumps (CMJ), 2 sets × 3 repetitions of barbell back squats, and 2 sets × 3 repetitions of barbell bench press 2.5 h post-supplementation. Plasma [NO3-] increased in a dose-dependent manner (P < 0.01). Plasma [nitrite] ([NO2-]) increased in all BR conditions compared to PL (P < 0.05), such that BR-MOD vs. BR-LOW (P < 0.01) and BR-LOW vs. PL (P < 0.01), but BR-HIGH was not different compared to BR-MOD (P > 0.05). Performance was not different between conditions in CMJ, 50% one-repetition maximum (1RM) and 75%1RM back squats, or 50%1RM and 75%1RM bench press (P > 0.05). The change in plasma [NO2-] was significantly correlated with peak power (r = - 0.65, P = 0.003), mean power (r = - 0.52, P = 0.03), and mean velocity (r = - 0.48, P = 0.04) during 50%1RM back squats following BR-LOW vs. PL but not in other conditions (P > 0.05). This study indicates that dietary NO3- does not impact resistance exercise performance at any of the doses assessed in the current study.
Collapse
Affiliation(s)
- Rachel Tan
- Department of Sports Medicine, Natural Sciences Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA, 90263, USA.
| | - Isabella G Lincoln
- Department of Sports Medicine, Natural Sciences Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA, 90263, USA
| | - Keonabelle K Paniagua
- Department of Sports Medicine, Natural Sciences Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA, 90263, USA
| | - Justin M Foster
- Department of Sports Medicine, Natural Sciences Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA, 90263, USA
| | - Lauren E Wideen
- Department of Sports Medicine, Natural Sciences Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA, 90263, USA
| | - Raymond T Gerardo
- Department of Sports Medicine, Natural Sciences Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA, 90263, USA
| | - Nathan J Ornelas
- Department of Sports Medicine, Natural Sciences Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA, 90263, USA
| | - Isaac Tchaprazian
- Department of Sports Medicine, Natural Sciences Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA, 90263, USA
| | - Jeffrey Li
- Department of Sports Medicine, Natural Sciences Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA, 90263, USA
| | - Michael Egiazarian
- Department of Sports Medicine, Natural Sciences Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA, 90263, USA
| | - Samantha N Rowland
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Adam Pennell
- Department of Sports Medicine, Natural Sciences Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA, 90263, USA
| |
Collapse
|
3
|
Park HS, Yoon JH, Oh JK. Impact of Resistance Exercise and Nitrate Supplementation on Muscle Function and Clinical Outcomes After Knee Osteoarthritis Surgery in Middle-Aged Women with Sarcopenia: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. J Clin Med 2025; 14:615. [PMID: 39860619 PMCID: PMC11765574 DOI: 10.3390/jcm14020615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Sarcopenia, characterized by reduced muscle mass and strength, is associated with osteoarthritis (OA), particularly in middle-aged women, and may worsen postoperatively. Resistance exercise (RE) can resolve sarcopenia; however, recovery is often suboptimal. Nitrate (NO3-) supplementation may enhance muscle recovery and complement RE. We investigated whether NO3- supplementation combined with RE improves thigh muscle mass and strength in middle-aged women during postoperative rehabilitation. Methods: We conducted a prospective randomized placebo-controlled double-blind study including 36 middle-aged women with sarcopenia and cartilage defects undergoing mesenchymal stem cell implantation. Participants were assigned to RE with NO3- supplementation (NG, n = 18) or with placebo (PG, n = 18) groups. Both groups underwent 12 weeks of supervised RE. The primary outcomes were thigh muscle cross-sectional area (CSA) and knee strength, whereas functional and clinical measures, including the Short Physical Performance Battery (SPPB), skeletal muscle index (SMI), International Knee Documentation Committee (IKDC), and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores, were secondary outcomes. Results: Thigh muscle CSA decreased in the PG but was maintained in the NG. Knee extension strength improved significantly in the NG compared with that in the PG at 6 and 12 weeks. Knee flexion strength also improved rapidly in the NG, with a significant increase at 6 weeks. SPPB and IKDC scores improved significantly in the NG. However, similar improvements were observed for WOMAC scores in both groups. Conclusions: NO3- supplementation combined with RE effectively prevented muscle atrophy and enhanced muscle strength in our study participants, indicating potential for improving postoperative recovery.
Collapse
Affiliation(s)
| | | | - Jae-Keun Oh
- Sports Medicine Laboratory, Korea National Sport University, 1239 Yangjae-daero, Songpa-gu, Seoul 05541, Republic of Korea; (H.-S.P.); (J.-H.Y.)
| |
Collapse
|
4
|
Ortiz de Zevallos J, Hogwood AC, Kruse K, De Guzman J, Buckley M, DeJong Lempke AF, Weltman A, Allen JD. The influence of sex on the effects of inorganic nitrate supplementation on muscular power and endurance. J Appl Physiol (1985) 2024; 137:1649-1658. [PMID: 39417813 PMCID: PMC11687840 DOI: 10.1152/japplphysiol.00321.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/23/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024] Open
Abstract
Inorganic nitrate ([Formula: see text]) supplementation increases nitric oxide (NO) bioavailability and may improve muscular power and endurance, although most studies are in males. Therefore, the present double-blind, randomized, placebo-controlled study examined the effects of [Formula: see text] supplementation on isokinetic peak power, maximal voluntary isometric contraction (MVIC) force, muscular endurance (time-to-task failure; TTF), and recovery from fatigue in young females (n = 12) and males (n = 14). Participants consumed ∼13 mmol [Formula: see text] [beetroot juice (BRJ)], or an identical [Formula: see text]-depleted beverage placebo (PL), for ∼3 days and 2 h before testing visits. Plasma nitrate and nitrite were elevated in the BRJ condition (P ≤ 0.05). Peak power (W·kg-1) showed a sex effect (P ≤ 0.05) at all angular velocities and a sex-by-treatment effect at 270 and 360°/s (P ≤ 0.05). Post hoc analysis revealed no significant differences between treatments (P > 0.05). Estimated maximal knee extension power (Pmax) and maximal knee extension velocity (Vmax) demonstrated no sex, treatment, or sex-by-treatment effect (P > 0.05). There were no significant effects for TTF (F: PL; 269 ± 161 vs. BRJ; 277 ± 158 s and M: PL; 228 ± 171 vs. BRJ; 194 ± 100 s; P > 0.05). Cohen's d effect sizes for peak power showed moderate to large effect sizes at 270 (d = 0.92) and 360°/s (d = 0.81), showing a possible differentiated effect of dietary nitrate in females and males. The present data indicate that [Formula: see text] supplementation does not significantly affect knee extensor maximal power, maximal contraction velocity, and muscular endurance in either sex. The sex-dependent response to dietary nitrate supplementation requires further investigation as data on females is scarce.NEW & NOTEWORTHY Recent data have suggested that inorganic nitrate ([Formula: see text]) supplementation may benefit males; however, females may experience worsened endurance capacity. This study revealed a potential differentiated effect of [Formula: see text] supplementation on outcomes of muscle contractile function between healthy, young males and females. The specific responses of [Formula: see text] supplementation in females and across sexes remain understudied and require further investigation.
Collapse
Affiliation(s)
- Joaquin Ortiz de Zevallos
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia, United States
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Austin C Hogwood
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia, United States
| | - Ka'eo Kruse
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia, United States
| | - Jeison De Guzman
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia, United States
| | - Meredith Buckley
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia, United States
| | - Alexandra F DeJong Lempke
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia, United States
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, United States
| | - Arthur Weltman
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia, United States
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Jason D Allen
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia, United States
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| |
Collapse
|
5
|
Hogwood AC, Ortiz De Zevallos J, Kruse K, Buckley M, De Guzman J, DeJong Lempke A, Weltman A, Allen JD. The effects of inorganic nitrate supplementation on muscular power and endurance across the menstrual cycle. J Appl Physiol (1985) 2024; 137:1503-1511. [PMID: 39417819 DOI: 10.1152/japplphysiol.00323.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Oral inorganic nitrate ([Formula: see text]) supplementation increases nitric oxide (NO) bioavailability and may improve muscular power in males and females, although data in females are limited. Estrogen increases NO bioavailability and fluctuates throughout the menstrual cycle, with low levels in the early follicular (EF) phase and peaking during the late follicular (LF) phase. The purpose of the present study was to examine the effects of [Formula: see text] supplementation on isokinetic peak power, maximal voluntary isometric contraction (MVIC) force, muscular endurance, and recovery from fatigue in healthy young females during the EF and LF phases of the menstrual cycle. Ten eumenorrheic females were tested in a double-blinded, randomized, placebo-controlled design. Participants consumed ∼13 mmol [Formula: see text], in the form of 140 mL beetroot juice (BRJ), or an identical [Formula: see text]-depleted placebo (PL), for ∼5 days prior to visits and 2 h prior to testing. Plasma estradiol was elevated in the LF phase, and plasma nitrite and nitrate were elevated in the BRJ condition (P < 0.05). Although isokinetic peak power was unchanged, calculated maximal power (Pmax) and maximal velocity (Vmax) were significantly worsened in the BRJ treatment independent of the menstrual cycle phase (P = 0.02 and 0.03, respectively). Muscular endurance, MVIC, and fatigue recovery were unaltered by BRJ or the menstrual cycle. These data indicate that [Formula: see text] supplementation decreased maximal power and velocity in females and suggest that the benefits of [Formula: see text] supplementation previously found in males may not extend to young females.NEW & NOTEWORTHY Recent data have suggested that inorganic nitrate ([Formula: see text]) supplementation may benefit males, however, females may experience worsened endurance capacity independent of menstrual cycle phase. This study revealed neither [Formula: see text] supplementation nor the follicular phase of the menstrual cycle influenced maximal isometric voluntary contraction or endurance capacity in healthy, young, naturally menstruating females, whereas [Formula: see text] supplementation significantly worsened estimated peak power (Pmax) and velocity (Vmax) independent of the menstrual cycle phase.
Collapse
Affiliation(s)
- Austin C Hogwood
- Department of Kinesiology University of Virginia, Charlottesville, Virginia, United States
| | - Joaquin Ortiz De Zevallos
- Department of Kinesiology University of Virginia, Charlottesville, Virginia, United States
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ka'eo Kruse
- Department of Kinesiology University of Virginia, Charlottesville, Virginia, United States
| | - Meredith Buckley
- Department of Kinesiology University of Virginia, Charlottesville, Virginia, United States
| | - Jeison De Guzman
- Department of Kinesiology University of Virginia, Charlottesville, Virginia, United States
| | - Alexandra DeJong Lempke
- Department of Kinesiology University of Virginia, Charlottesville, Virginia, United States
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States
| | - Arthur Weltman
- Department of Kinesiology University of Virginia, Charlottesville, Virginia, United States
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Jason D Allen
- Department of Kinesiology University of Virginia, Charlottesville, Virginia, United States
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| |
Collapse
|
6
|
Black MI, Wylie LJ, Kadach S, Piknova B, Park JW, Stoyanov Z, L'Heureux JE, Schechter AN, Vanhatalo A, Jones AM. Effects of low and high dietary nitrate intake on human saliva, plasma and skeletal muscle nitrate and nitrite concentrations and their functional consequences. Free Radic Biol Med 2024; 225:881-893. [PMID: 39401733 DOI: 10.1016/j.freeradbiomed.2024.10.282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
Dietary nitrate (NO3-) supplementation has been shown to reduce blood pressure (BP), improve exercise performance, and alter the oral microbiome. Following a "control" diet (CON), we manipulated dietary NO3- intake to examine the effect of a short-term (7-day) low NO3- diet (LOW) followed by a 3-day high NO3- diet (HIGH), compared to a 7-day standard (STD) NO3- diet followed by HIGH, on saliva, plasma, and muscle [NO3-] and nitrite ([NO2-]), BP, and cycling exercise performance in healthy young adults. We also examined the effect of LOW on the oral microbiome. Saliva [NO3-] and [NO2-], and plasma [NO3-] were significantly lower than CON following LOW (all P < 0.05) but there was no change in plasma [NO2-] or muscle [NO3-] and [NO2-] (all P > 0.05). Following HIGH, saliva and plasma [NO3-] and [NO2-], and muscle [NO3-], were significantly elevated above CON, LOW and STD (all P < 0.05), but there was no difference between CON-LOW-HIGH and CON-STD-HIGH (P < 0.05). BP and exercise performance were not altered following LOW (P > 0.05). HIGH significantly reduced systolic and diastolic BP compared to CON when preceded by STD (both P < 0.05) but not when preceded by LOW (P > 0.05). Peak (+4 %) and mean (+3 %) power output during sprint cycling was significantly improved following HIGH (both P < 0.05), with no differences between CON-LOW-HIGH and CON-STD-HIGH (both P > 0.05). LOW altered the oral microbiome composition, including decreases in relative abundances of phylum Proteobacteria and genus Neisseria. The findings indicate that a short-term low NO3- diet lowers plasma but not skeletal muscle [NO3-]. The maintenance of plasma [NO2-] and muscle [NO3-] and [NO2-] following LOW may be indicative of their importance to biological functions, including BP regulation and exercise performance.
Collapse
Affiliation(s)
- Matthew I Black
- University of Exeter Medical School, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK.
| | - Lee J Wylie
- University of Exeter Medical School, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - Stefan Kadach
- University of Exeter Medical School, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - Barbora Piknova
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, MD, 20892-1822, USA
| | - Ji W Park
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, MD, 20892-1822, USA
| | - Zdravko Stoyanov
- University of Exeter Medical School, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - Joanna E L'Heureux
- University of Exeter Medical School, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - Alan N Schechter
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, MD, 20892-1822, USA
| | - Anni Vanhatalo
- University of Exeter Medical School, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - Andrew M Jones
- University of Exeter Medical School, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| |
Collapse
|
7
|
Faiss R, Raberin A, Brocherie F, Millet GP. Repeated-sprint training in hypoxia: A review with 10 years of perspective. J Sports Sci 2024:1-15. [PMID: 39445500 DOI: 10.1080/02640414.2024.2416821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Over the past decade, numerous studies have investigated an innovative "live low-train high" approach based on the repetition of short (<30 s) "all-out" sprints with incomplete recoveries in hypoxia; the so-called Repeated-Sprint training in Hypoxia (RSH). The aims of the present review are therefore threefold. First, this study summarizes the available evidence on putative additional performance enhancement after RSH comparing to the same training in normoxia (RSN). Second, a critical analysis of underpinning mechanisms discusses how advantages can be obtained through RSH for sea-level performance enhancement. An enhanced microcirculatory vasodilation leading to improved muscle perfusion and/or oxygenation and an increase in muscular phosphocreatine content may help explain the superiority of RSH vs. RSN. Third, the present review aims to provide guidelines for coaches, athletes and scientists to apply RSH interventions with regard to the interval duration, exercise-to-rest ratio and training volume. In conclusion, this review supports repeated-sprint training in hypoxia as an efficient (but not magic) training intervention with 77% of the controlled studies reporting an additional benefit with added hypoxia, mainly for team-, combat- and racket-sports athletes but also for all other sports (e.g. endurance) that require repeated accelerations with lesser fatigue.
Collapse
Affiliation(s)
- Raphaël Faiss
- Institute of Sports Sciences, Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Antoine Raberin
- Institute of Sports Sciences, Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance, French Institute of Sport, Paris, France
| | - Grégoire P Millet
- Institute of Sports Sciences, Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Tan R, Cass JK, Lincoln IG, Wideen LE, Nicholl MJ, Molnar TJ, Gough LA, Bailey SJ, Pennell A. Effects of Dietary Nitrate Supplementation on High-Intensity Cycling Sprint Performance in Recreationally Active Adults: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:2764. [PMID: 39203900 PMCID: PMC11357493 DOI: 10.3390/nu16162764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
This systematic review and meta-analysis investigated the influence of dietary nitrate supplementation on performance metrics during cycling sprint exercise according to the PRISMA guidelines. Searches were conducted on MEDLINE, PubMed, ScienceDirect, Scopus, and SPORTDiscus databases up to September 2023. Inclusion criteria were healthy recreationally active men and women who consumed nitrate-rich and nitrate-deficient beetroot juice to assess performance outcomes of mean power, peak power, time-to-peak power, and minimum power during 30-s cycling sprints. Risk of bias was assessed using the Cochrane Risk of Bias 2 and TESTEX tools and funnel plots. A random effects model was performed on six studies and showed that dietary nitrate had significant effects on time-to-peak power (SMD: -0.66, 95% CI: -1.127 to -0.192, p = 0.006) but not on mean power, peak power, or minimum power. Subgroup analysis revealed that an acute low nitrate dose improved time-to-peak power (SMD: -0.977, 95% CI: -1.524 to -0.430, p < 0.001) but not after a multiday moderate nitrate dose (SMD: -0.177, 95% CI: -0.619 to -0.264, p = 0.431). These data suggest that acute nitrate supplementation can benefit time-to-peak power during 30-s cycling sprints, but due to the limited availability of data and heterogeneity in methodology, these results should be interpreted with caution. There was insufficient data on women to analyze sex-based differences. Future studies are required to provide insight on how supplementation regimen and population impact the effects of dietary nitrate for enhancing cycling sprint performance.
Collapse
Affiliation(s)
- Rachel Tan
- Natural Sciences Division, Pepperdine University, Malibu, CA 90263, USA; (J.K.C.)
| | - Jordan K. Cass
- Natural Sciences Division, Pepperdine University, Malibu, CA 90263, USA; (J.K.C.)
| | - Isabella G. Lincoln
- Natural Sciences Division, Pepperdine University, Malibu, CA 90263, USA; (J.K.C.)
| | - Lauren E. Wideen
- Natural Sciences Division, Pepperdine University, Malibu, CA 90263, USA; (J.K.C.)
| | - Madelyn J. Nicholl
- Natural Sciences Division, Pepperdine University, Malibu, CA 90263, USA; (J.K.C.)
| | - Trevor J. Molnar
- Natural Sciences Division, Pepperdine University, Malibu, CA 90263, USA; (J.K.C.)
| | - Lewis A. Gough
- Human Performance and Health Laboratory, Centre for Life and Sport Sciences (CLaSS), Birmingham City University, Birmingham B5 5JU, UK;
| | - Stephen J. Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK;
| | - Adam Pennell
- Natural Sciences Division, Pepperdine University, Malibu, CA 90263, USA; (J.K.C.)
| |
Collapse
|
9
|
Esen O, Fox J, Karayigit R, Walshe I. Acute Beetroot Juice Supplementation Has No Effect on Upper- and Lower-Body Maximal Isokinetic Strength and Muscular Endurance in International-Level Male Gymnasts. Int J Sport Nutr Exerc Metab 2024; 34:164-171. [PMID: 38237581 DOI: 10.1123/ijsnem.2023-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 04/14/2024]
Abstract
Nitrate (NO3-) has properties that can improve muscle function, leading to improvements in metabolic cost of exercise as well as enhance force production. Gymnastics is a whole-body sport, involving events that demand a high level of strength and fatigue resistance. However, the effect of NO3- supplementation on both upper- and lower-body function in gymnasts is unknown. This study examined the effect of acute beetroot juice (BRJ) supplementation on isokinetic strength and endurance of the upper- and lower-body in highly trained international-level male gymnasts. In a double-blind, randomized crossover design, 10 international-level male gymnasts completed two acute supplementation periods, consuming either 2 × 70 ml NO3--rich (∼12.8 mmol/L of NO3-) or NO3--depleted (PLA) BRJ. Maximal strength of the upper-leg and upper-arm at 60°/s, 120°/s, 180°/s, and 300°/s, and muscular endurance (50 repeated isokinetic contractions at 180°/s) were assessed. Plasma NO3- (BRJ: 663 ± 164 μM, PLA: 89 ± 48 μM) and nitrite (NO2-) concentrations (BRJ: 410 ± 137 nmol/L, PLA: 125 ± 36 nmol/L) were elevated following BRJ compared to PLA (both p < .001). Maximal strength of knee and elbow extensors and flexors did not differ between supplements (p > .05 for all velocities). Similarly, fatigue index of knee and elbow extension and flexion was not different between supplements (all p > .05). Acute BRJ supplementation, containing ∼12.8 mmol/L of NO3-, increased plasma NO3- and NO2- concentrations, but did not enhance isokinetic strength or fatigue resistance of either upper or lower extremities in international-level male gymnasts.
Collapse
Affiliation(s)
- Ozcan Esen
- Department of Sport and Exercise Rehabilitation, Northumbria University, Newcastle Upon Tyne, United Kingdom
- Department of Health Professions, Manchester Metropolitan University, Manchester, United Kingdom
| | - Joseph Fox
- Department of Health Professions, Manchester Metropolitan University, Manchester, United Kingdom
| | - Raci Karayigit
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Turkey
| | - Ian Walshe
- Department of Sport and Exercise Rehabilitation, Northumbria University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
10
|
Seibert TA, Shi L, Althouse S, Hoffman R, Schneider BP, Russ KA, Altherr CA, Warden SJ, Guise TA, Coggan AR, Ballinger TJ. Molecular and clinical effects of aromatase inhibitor therapy on skeletal muscle function in early-stage breast cancer. Sci Rep 2024; 14:1029. [PMID: 38200207 PMCID: PMC10781701 DOI: 10.1038/s41598-024-51751-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024] Open
Abstract
We evaluated biochemical changes in skeletal muscle of women with breast cancer initiating aromatase inhibitors (AI), including oxidation of ryanodine receptor RyR1 and loss of stabilizing protein calstabin1, and detailed measures of muscle function. Fifteen postmenopausal women with stage I-III breast cancer planning to initiate AI enrolled. Quadriceps muscle biopsy, dual-energy x-ray absorptiometry, isokinetic dynamometry, Short Physical Performance Battery, grip strength, 6-min walk, patient-reported outcomes, and serologic measures of bone turnover were assessed before and after 6 months of AI. Post-AI exposure, oxidation of RyR1 significantly increased (0.23 ± 0.37 vs. 0.88 ± 0.80, p < 0.001) and RyR1-bound calstabin1 significantly decreased (1.69 ± 1.53 vs. 0.74 ± 0.85, p < 0.001), consistent with dysfunctional calcium channels in skeletal muscle. Grip strength significantly decreased at 6 months. No significant differences were seen in isokinetic dynamometry measures of muscle contractility, fatigue resistance, or muscle recovery post-AI exposure. However, there was significant correlation between oxidation of RyR1 with muscle power (r = 0.60, p = 0.02) and muscle fatigue (r = 0.57, p = 0.03). Estrogen deprivation therapy for breast cancer resulted in maladaptive changes in skeletal muscle, consistent with the biochemical signature of dysfunctional RyR1 calcium channels. Future studies will evaluate longer trajectories of muscle function change and include other high bone turnover states, such as bone metastases.
Collapse
Affiliation(s)
- Tara A Seibert
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Lei Shi
- Department of Endocrine Neoplasia and Hormonal Disorders, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sandra Althouse
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Richard Hoffman
- Department of Kinesiology, Indiana University School of Health & Human Sciences, Indianapolis, IN, 46202, USA
| | - Bryan P Schneider
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, 535 Barnhill Dr. RT 472, Indianapolis, IN, 46202, USA
| | - Kristen A Russ
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Cody A Altherr
- Indiana Center for Musculoskeletal Health, Clinical Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Stuart J Warden
- Department of Physical Therapy, Indiana University School of Health & Human Sciences, Indianapolis, IN, 46202, USA
| | - Theresa A Guise
- Department of Kinesiology, Indiana University School of Health & Human Sciences, Indianapolis, IN, 46202, USA
| | - Andrew R Coggan
- Department of Kinesiology, Indiana University School of Health & Human Sciences, Indianapolis, IN, 46202, USA
| | - Tarah J Ballinger
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, 535 Barnhill Dr. RT 472, Indianapolis, IN, 46202, USA.
| |
Collapse
|
11
|
Apte M, Nadavade N, Sheikh SS. A review on nitrates' health benefits and disease prevention. Nitric Oxide 2024; 142:1-15. [PMID: 37981005 DOI: 10.1016/j.niox.2023.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Dietary nitrates (NO3-) are naturally occurring compounds in various vegetables, especially beetroot, which is mainly supplemented in the form of BRJ. Dietary nitrates (NO3-) play a crucial function in human physiology. On consumption, nitrates (NO3-) undergo a conversion process, producing nitric oxide (NO) via a complex metabolic pathway. Nitric oxide (NO) is associated with many physiological processes, entailing immune modulation, neurotransmission, and vasodilation, enabling blood vessel dilation and relaxation, which boosts blood flow and oxygen delivery to tissues, positively influencing cardiovascular health, exercise performance, and cognitive function. There are various analytical processes to determine the level of nitrate (NO3-) present in dietary sources. The impact of dietary nitrates (NO3-) can differ among individuals. Thus, the review revisits the dietary source of nitrates (NO3-), its metabolism, absorption, excretion, analytical techniques to assess nitrates (NO3-) content in various dietary sources, and discusses health effects.
Collapse
Affiliation(s)
- Madhavi Apte
- Department: Quality Assurance, Pharmacognosy, and Phytochemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| | - Nishigandha Nadavade
- Department: Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| | - Sohail Shakeel Sheikh
- Department: Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| |
Collapse
|
12
|
Sebastiá-Rico J, Cabeza-Melendre D, Anderson L, Martínez-Sanz JM. Nitric Oxide in the Field: Prevalence and Use of Nitrates by Dietitians and Nutritionists in Spanish Elite Soccer. Nutrients 2023; 15:5128. [PMID: 38140386 PMCID: PMC10745965 DOI: 10.3390/nu15245128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Soccer players make frequent use of dietary supplements to improve performance. One of the most widely used strategies to optimize performance is to increase the bioavailability of nitric oxide through nitrates, as it could delay fatigue during physical exertion, among other benefits. This may be positive for performance in soccer, although there is almost no research in professional soccer. The aim of the study was to evaluate the use of nitrates and behaviours related to their consumption in Spanish elite soccer clubs. Dietitian-nutritionist representatives from 45 teams from the most important Spanish soccer leagues completed an online survey to determine if, when, how and why nitrates are prescribed to soccer players. Of the total sample, 55.6% indicated providing nitrates, always before matches, but only 36% in training. There was a wide variation and lack of consistency in the timing, dosage and form of administration of nitrates. The use of mouthwashes or the protocol of chronic nitrate intake was not taken into account in most cases. The present study indicates a lack of interpretation between scientific knowledge and its application in practice, highlighting the need for future research to better understand how to optimize the use of nitrates in professional soccer.
Collapse
Affiliation(s)
- Jaime Sebastiá-Rico
- Area of Nutrition, University Clinic of Nutrition, Physical Activity and Physiotherapy (CUNAFF), Lluís Alcanyís Foundation—University of Valencia, 46020 Valencia, Spain
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain
| | - Daniel Cabeza-Melendre
- Area of Nutrition, University Clinic of Nutrition, Physical Activity and Physiotherapy (CUNAFF), Lluís Alcanyís Foundation—University of Valencia, 46020 Valencia, Spain
| | - Liam Anderson
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | | |
Collapse
|
13
|
Webster J, Dalla Via J, Langley C, Smith C, Sale C, Sim M. Nutritional strategies to optimise musculoskeletal health for fall and fracture prevention: Looking beyond calcium, vitamin D and protein. Bone Rep 2023; 19:101684. [PMID: 38163013 PMCID: PMC10757289 DOI: 10.1016/j.bonr.2023.101684] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 01/03/2024] Open
Abstract
Falls and osteoporotic fractures are a major public health problem, particularly among older adults. A third of individuals aged 65 years and over fall at least once each year, with up to 20 % of these resulting in serious injury, including fracture. In conjunction with regular exercise, the importance of diet for musculoskeletal health has largely focused upon calcium, vitamin D, and protein, particularly in the context of preventing falls and fractures. Whilst there is evidence for the benefits of these nutrients for musculoskeletal health, other aspects of the diet remain largely underexplored. For example, vegetables are rich sources of macro- and micronutrients that are essential for muscle function and bone health, which are key factors in the prevention of falls and fractures. Recent work has highlighted the importance of nutrients such as vegetable-derived nitrate and vitamin K1 in optimising muscle strength, physical function, and bone quality. In the context of dietary patterns, vegan/plant-based diets have recently gained popularity due to perceived health benefits, animal welfare, or to tackle climate change. The elimination and/or substitution of animal-based products for plant foods (without careful planning and/or expert dietary guidance) could, however, have long-term negative musculoskeletal consequences; a trend uncovered by recent evidence. Within the overarching theme of nutrition for fall and fracture prevention in older populations, the aim of this review is to (i) summarise the current evidence for calcium, vitamin D and protein; (ii) describe the importance of vegetables and selected nutrients, such as nitrate and vitamin K1, for muscle function and bone structural integrity; and (iii) highlight current evidence around different dietary patterns (e.g., plant-based, diet quality, data driven approaches) and their impact on musculoskeletal health.
Collapse
Affiliation(s)
- James Webster
- Nutritional Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| | - Jack Dalla Via
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Christina Langley
- Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| | - Cassandra Smith
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Craig Sale
- Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| | - Marc Sim
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
14
|
Tan R, Baranauskas MN, Karl ST, Ortiz de Zevallos J, Shei RJ, Paris HL, Wiggins CC, Bailey SJ. Effects of dietary nitrate supplementation on peak power output: Influence of supplementation strategy and population. Nitric Oxide 2023; 138-139:105-119. [PMID: 37438201 DOI: 10.1016/j.niox.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Increasing evidence indicates that dietary nitrate supplementation has the potential to increase muscular power output during skeletal muscle contractions. However, there is still a paucity of data characterizing the impact of different nitrate dosing regimens on nitric oxide bioavailability and its potential ergogenic effects across various population groups. This review discusses the potential influence of different dietary nitrate supplementation strategies on nitric oxide bioavailability and muscular peak power output in healthy adults, athletes, older adults and some clinical populations. Effect sizes were calculated for peak power output and absolute and/or relative nitrate doses were considered where applicable. There was no relationship between the effect sizes of peak power output change following nitrate supplementation and when nitrate dosage when considered in absolute or relative terms. Areas for further research are also recommended including a focus on nitrate dosing regimens that optimize nitric oxide bioavailability for enhancing peak power at times of increased muscular work in a variety of healthy and disease populations.
Collapse
Affiliation(s)
- Rachel Tan
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA.
| | - Marissa N Baranauskas
- Department of Human Physiology & Nutrition, University of Colorado, Colorado Springs, CO, 80918, USA
| | - Sean T Karl
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA
| | | | - Ren-Jay Shei
- Indiana University Alumni Association, Indiana University, Bloomington, IN, 47408, USA
| | - Hunter L Paris
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA
| | - Chad C Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
15
|
Tan R, Price KM, Wideen LE, Lincoln IG, Karl ST, Seals JP, Paniagua KK, Hagen DW, Tchaprazian I, Bailey SJ, Pennell A. Dietary nitrate ingested with and without pomegranate supplementation does not improve resistance exercise performance. Front Nutr 2023; 10:1217192. [PMID: 37485396 PMCID: PMC10358845 DOI: 10.3389/fnut.2023.1217192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
This study tested the hypothesis that co-ingesting nitrate (NO3-)-rich beetroot juice (BR) and pomegranate powder (POM) would enhance neuromuscular performance during vertical countermovement jumps, explosive kneeling countermovement push-ups, and back squats compared to BR ingestion alone. Fifteen recreationally-active males were assigned in a double-blind, randomized, crossover design, to supplement in 3 conditions: (1) NO3--depleted beetroot juice (PL; 0.10 mmol NO3-) with two empty gelatin capsules; (2) NO3--rich beetroot juice (BR; 11.8 mmol NO3-) with two empty gelatin capsules, and (3) BR with 1,000 mg of POM powder in two capsules (BR + POM). Participants completed 5 countermovement jumps and 5 kneeling countermovement push-ups interspersed by 1 min of recovery. Subsequently, participants performed 2 sets of 2 × 70% one-repetition maximum back squats, interspersed by 2 min of recovery. Plasma [NO3-] and nitrite ([NO2-]) were elevated following BR and BR + POM compared with PL and POM (p < 0.001) with no differences between BR and BR + POM (p > 0.05) or PL and POM (p > 0.05). Peak power during countermovement jumps increased by 3% following BR compared to BR + POM (88.50 ± 11.46 vs. 85.80 ± 10.14 W/Kg0.67, p = 0.009) but not PL (88.50 ± 11.46 vs. 85.58 ± 10.05 W/Kg0.67, p = 0.07). Neuromuscular performance was not different between conditions during explosive kneeling push-ups and back squats (p > 0.05). These data provide insight into the efficacy of NO3- to modulate explosive resistance exercise performance and indicate that supplementing with BR alone or combined with POM has limited ergogenic potential on resistance exercise. Furthermore, caution is required when combining BR with POM, as this could compromise aspects of resistance exercise performance, at least when compared to BR ingested independently.
Collapse
Affiliation(s)
- Rachel Tan
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| | - Katherine M. Price
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| | - Lauren E. Wideen
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| | - Isabella G. Lincoln
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| | - Sean T. Karl
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| | - Jacob P. Seals
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| | | | - Dylan W. Hagen
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| | - Isaac Tchaprazian
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| | - Stephen J. Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Adam Pennell
- Department of Sports Medicine, Pepperdine University, Malibu, CA, United States
| |
Collapse
|
16
|
Bielecka-Dabrowa A, Banach M, Wittczak A, Cicero AF, Kallel A, Kubilius R, Mikhailidis DP, Sahebkar A, Pantea Stoian A, Vinereanu D, Penson PE, von Haehling S. The role of nutraceuticals in heart failure muscle wasting as a result of inflammatory activity. The International Lipid Expert Panel (ILEP) Position Paper. Arch Med Sci 2023; 19:841-864. [PMID: 37560745 PMCID: PMC10408027 DOI: 10.5114/aoms/167799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 08/11/2023] Open
Abstract
Muscle wasting is one of the main causes for exercise intolerance and ventilatory inefficiency in patients with heart failure and a strong predictor of frailty and reduced survival. The prevalence of sarcopenia is at least 20% in patients with heart failure. Patients with heart failure often have subclinical systemic inflammation, which may exert sustained effects on skeletal muscle. Besides exercise, nutrition should also be carefully evaluated as an appropriate diet with selected nutraceuticals may be able to stimulate muscle anabolism and inhibit muscle catabolism. This review summarizes the epidemiological and clinical trial evidence supporting the recommendations for the use of nutraceuticals with anti-inflammatory properties in heart failure and provides an overview of the state of the evidence for nutraceutical supplementation to prevent and/or mitigate heart failure muscle wasting.
Collapse
Affiliation(s)
- Agata Bielecka-Dabrowa
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
- Department of Cardiology and Congenital Diseases of Adults, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
- Department of Cardiology and Congenital Diseases of Adults, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Andrzej Wittczak
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
| | - Arrigo F.G. Cicero
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences Department, Sant’Orsola-Malpighi University Hospital, Bologna, Italy
| | - Amani Kallel
- University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia
- Laboratory of Biochemistry, Rabta University Hospital, Tunis, Tunisia
| | - Raimondas Kubilius
- Department of Rehabilitation, Hospital of Lithuanian University of Health Sciences Kauno Klinikos, Kaunas, Lithuania
- Department of Rehabilitation, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dimitri P. Mikhailidis
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London Medical School, University College London (UCL) and Department of Clinical Biochemistry, Royal Free Hospital Campus, UCL, London, UK
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anca Pantea Stoian
- Faculty of Medicine, Diabetes, Nutrition and Metabolic Diseases, Carol Davila University, Bucharest, Romania
| | - Dragos Vinereanu
- University Emergency Hospital of Bucharest, Bucharest, Romania
- Cardiology and Cardiovascular Surgery Department, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Peter E. Penson
- Clinical Pharmacy and Therapeutics Research Group, School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| |
Collapse
|
17
|
Alsharif NS, Clifford T, Alhebshi A, Rowland SN, Bailey SJ. Effects of Dietary Nitrate Supplementation on Performance during Single and Repeated Bouts of Short-Duration High-Intensity Exercise: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Antioxidants (Basel) 2023; 12:1194. [PMID: 37371924 DOI: 10.3390/antiox12061194] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Inorganic nitrate (NO3-) has emerged as a potential ergogenic aid over the last couple of decades. While recent systematic reviews and meta-analyses have suggested some small positive effects of NO3- supplementation on performance across a range of exercise tasks, the effect of NO3- supplementation on performance during single and repeated bouts of short-duration, high-intensity exercise is unclear. This review was conducted following PRISMA guidelines. MEDLINE and SPORTDiscus were searched from inception to January 2023. A paired analysis model for cross-over trials was incorporated to perform a random effects meta-analysis for each performance outcome and to generate standardized mean differences (SMD) between the NO3- and placebo supplementation conditions. The systematic review and meta-analysis included 27 and 23 studies, respectively. Time to reach peak power (SMD: 0.75, p = 0.02), mean power output (SMD: 0.20, p = 0.02), and total distance covered in the Yo-Yo intermittent recovery level 1 test (SMD: 0.17, p < 0.0001) were all improved after NO3- supplementation. Dietary NO3- supplementation had small positive effects on some performance outcomes during single and repeated bouts of high-intensity exercise. Therefore, athletes competing in sports requiring single or repeated bouts of high-intensity exercise may benefit from NO3- supplementation.
Collapse
Affiliation(s)
- Nehal S Alsharif
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Abrar Alhebshi
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Samantha N Rowland
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
18
|
Tan R, Pennell A, Karl ST, Cass JK, Go K, Clifford T, Bailey SJ, Perkins Storm C. Effects of Dietary Nitrate Supplementation on Back Squat and Bench Press Performance: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:nu15112493. [PMID: 37299456 DOI: 10.3390/nu15112493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
This systematic review and meta-analysis investigated the influence of dietary nitrate supplementation on resistance exercise performance according to the PRISMA guidelines. Searches were conducted on MEDLINE, PubMed, ScienceDirect, Scopus and SPORTDiscus databases up to April 2023. Inclusion criteria were adult resistance-trained males who supplemented with a nitrate-rich supplement and nitrate-deficient placebo to assess repetitions-to-failure (RTF), peak power, mean power, peak velocity, and/or mean velocity during back squat and bench press exercise. A random effects model was performed on six studies and showed that nitrate supplementation improved RTF (standardized mean difference [SMD]: 0.43, 95% confidence intervals [95% CI]: 0.156 to 0.699, p = 0.002), mean power (SMD: 0.40, 95% CI: 0.127 to 0.678, p = 0.004), and mean velocity (SMD: 0.57, 95% CI: 0.07 to 1.061, p = 0.025) but had no effect on peak power (SMD: 0.204, 95% CI: -0.004 to 0.411, p = 0.054) or peak velocity (SMD: 0.00, 95% CI: -0.173 to 0.173, p = 1.000) when back squat and bench press were combined. Subgroup analyses revealed that back squats were more likely to be enhanced and that a dosing regimen may influence the efficacy of nitrate supplementation. Overall, nitrate supplementation had a small beneficial effect on some aspects of resistance exercise performance, but there were limited studies available and the variability was large. Additional studies that focus on upper and lower body resistance exercise and nitrate dosage are required to elucidate the efficacy of dietary nitrate supplementation on resistance exercise performance.
Collapse
Affiliation(s)
- Rachel Tan
- Department of Sports Medicine, Pepperdine University, Malibu, CA 90263, USA
| | - Adam Pennell
- Department of Sports Medicine, Pepperdine University, Malibu, CA 90263, USA
| | - Sean T Karl
- Department of Sports Medicine, Pepperdine University, Malibu, CA 90263, USA
| | - Jordan K Cass
- Department of Sports Medicine, Pepperdine University, Malibu, CA 90263, USA
| | - Katherine Go
- Department of Sports Medicine, Pepperdine University, Malibu, CA 90263, USA
| | - Tom Clifford
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Stephen J Bailey
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | | |
Collapse
|
19
|
Tan R, Baranauskas MN, Karl ST, Ortiz de Zevallos J, Shei RJ, Paris HL, Wiggins CC, Bailey SJ. Effects of dietary nitrate supplementation on muscular power output: Influence of supplementation strategy and population. Nitric Oxide 2023:S1089-8603(23)00047-2. [PMID: 37244391 DOI: 10.1016/j.niox.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Increasing evidence indicates that dietary nitrate supplementation has the potential to increase muscular power output during skeletal muscle contractions. However, there is still a paucity of data characterizing the impact of different nitrate dosing regimens on nitric oxide bioavailability its potential ergogenic effects across various population groups. This narrative review discusses the potential influence of different dietary nitrate supplementation strategies on nitric oxide bioavailability and muscular power output in healthy adults, athletes, older adults and some clinical populations. Areas for further research are also recommended including a focus individualized nitrate dosing regimens to optimize nitric oxide bioavailability and to promote muscular power enhancements in different populations.
Collapse
Affiliation(s)
- Rachel Tan
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA.
| | - Marissa N Baranauskas
- Department of Human Physiology & Nutrition, University of Colorado, Colorado Springs, CO, 80918, USA
| | - Sean T Karl
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA
| | | | - Ren-Jay Shei
- Indiana University Alumni Association, Indiana University, Bloomington, IN, 47408, USA
| | - Hunter L Paris
- Department of Sports Medicine, Pepperdine University, Malibu, CA, 90263, USA
| | - Chad C Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
20
|
Zoughaib WS, Hoffman RL, Yates BA, Moorthi RN, Lim K, Coggan AR. The influence of acute dietary nitrate supplementation on skeletal muscle fatigue and recovery in older women. Physiol Rep 2023; 11:e15694. [PMID: 37226336 PMCID: PMC10209430 DOI: 10.14814/phy2.15694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/26/2023] Open
Abstract
Older individuals fatigue more rapidly during, and recover more slowly from, dynamic exercise. Women are particularly vulnerable to these deleterious effects of aging, which increases their risk of falling. We have shown that dietary nitrate (NO3 - ), a source of nitric oxide (NO) via the NO3 - → nitrite (NO2 - ) → NO pathway, enhances muscle speed and power in older individuals in the non-fatigued state; however, it is unclear if it reduces fatigability and/or improves recoverability in this population. Using a double-blind, placebo-controlled, crossover design, we studied 18 older (age 70 ± 4 years) women who were administered an acute dose of beetroot juice (BRJ) containing either 15.6 ± 3.6 or <0.05 mmol of NO3 - . Blood samples were drawn throughout each ~3 h visit for plasma NO3 - and NO2 - analysis. Peak torque was measured during, and periodically for 10 min after, 50 maximal knee extensions performed at 3.14 rad/s on an isokinetic dynamometer. Ingestion of NO3 - -containing BRJ increased plasma NO3 - and NO2 - concentrations by 21 ± 8 and 4 ± 4 fold, respectively. However, there were no differences in muscle fatigue or recovery. Dietary NO3 - increases plasma NO3 - and NO2 - concentrations but does not reduce fatigability during or enhance recoverability after high intensity exercise in older women.
Collapse
Affiliation(s)
- William S. Zoughaib
- Department of Kinesiology, School of Health & Human SciencesIndiana University Purdue University IndianapolisIndianapolisIndianaUSA
| | - Richard L. Hoffman
- Department of Kinesiology, School of Health & Human SciencesIndiana University Purdue University IndianapolisIndianapolisIndianaUSA
| | - Brandon A. Yates
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisIndianaUSA
| | - Ranjani N. Moorthi
- Division of Nephrology and Hypertension, Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| | - Kenneth Lim
- Division of Nephrology and Hypertension, Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| | - Andrew R. Coggan
- Department of Kinesiology, School of Health & Human SciencesIndiana University Purdue University IndianapolisIndianapolisIndianaUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
21
|
Esen O, Dobbin N, Callaghan MJ. The Effect of Dietary Nitrate on the Contractile Properties of Human Skeletal Muscle: A Systematic Review and Meta-Analysis. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:327-338. [PMID: 35604074 DOI: 10.1080/07315724.2022.2037475] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The propose of this study was to systematically review the current literature and meta-analyse the effects of dietary nitrate (NO3-) supplementation on the contractile properties of skeletal muscle. A literature search of three databases was conducted in June 2021, with 19 studies meeting the inclusion criteria. Studies were included if a placebo versus dietary NO3--only supplementation protocol was used in healthy human, assessed muscle contraction or activities that was < 3 minutes in duration and focused on the lower-body. For the meta-analysis, a pooled standardised mean difference (SMD) was determined for maximum voluntary contraction (MVC) (n = 11), cycling, running and inertial load squad peak power output (PPO) (n = 8), mean power output (MPO) (n = 6) and time to PPO (n = 4). NO3- supplementation demonstrated a small improvement in PPO (SMD = 0.25, P = 0.030) and MPO (SMD = 0.28, P = 0.030) when compared to the placebo. NO3- also resulted in an enhanced time to PPO (SMD = -0.78, P < 0.001). There was no clear effect of NO3- on isometric MVC (SMD = 0.03, P = 0.758). This review reports that NO3- supplementation may have potential to enhance PPO, MPO and time to PPO during dynamic exercise, which may transfer to brief explosive actions commonly observed in sporting activities. Due to the variability in studies, we encourage researchers to use this work to explore areas where evidence in lacking and standardize the study design and procedures.Key teaching pointsFindings from this meta-analysis highlight the potential positive ergogenic effect of dietary NO3-supplementation on PPO, MPO and time to PPO during short duration (<10 s) dynamic exercise.NO3- supplementation might be considered as an ergogenic aid when executing power-based actions (e.g., 100 m sprinter or weightlifter).This review highlights that further research is required to address some of the contrasting findings presented here using a standardised procedure to allow for improved synthesis.
Collapse
Affiliation(s)
- Ozcan Esen
- Department of Health Professions, Manchester Metropolitan University, Manchester, UK
- Manchester Metropolitan University Institute of Sport, Manchester, UK
| | - Nick Dobbin
- Department of Health Professions, Manchester Metropolitan University, Manchester, UK
| | - Michael J Callaghan
- Department of Health Professions, Manchester Metropolitan University, Manchester, UK
- Manchester Metropolitan University Institute of Sport, Manchester, UK
- Manchester University Hospital Foundation Trust, Manchester, UK
- Arthritis Research UK Centre for Epidemiology, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
22
|
Bondonno CP, Zhong L, Bondonno NP, Sim M, Blekkenhorst LC, Liu A, Rajendra A, Pokharel P, Erichsen DW, Neubauer O, Croft KD, Hodgson JM. Nitrate: The Dr. Jekyll and Mr. Hyde of human health? Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
23
|
Allen JD. Nitric oxide as a mediator of exercise performance: NO pain NO gain. Nitric Oxide 2023; 136-137:8-11. [PMID: 37116609 DOI: 10.1016/j.niox.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Jason D Allen
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, VA, USA; Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
24
|
Kadach S, Park JW, Stoyanov Z, Black MI, Vanhatalo A, Burnley M, Walter PJ, Cai H, Schechter AN, Piknova B, Jones AM. 15 N-labeled dietary nitrate supplementation increases human skeletal muscle nitrate concentration and improves muscle torque production. Acta Physiol (Oxf) 2023; 237:e13924. [PMID: 36606507 DOI: 10.1111/apha.13924] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/24/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
AIM Dietary nitrate (NO3 - ) supplementation increases nitric oxide bioavailability and can enhance exercise performance. We investigated the distribution and metabolic fate of ingested NO3 - at rest and during exercise with a focus on skeletal muscle. METHODS In a randomized, crossover study, 10 healthy volunteers consumed 12.8 mmol 15 N-labeled potassium nitrate (K15 NO3 ; NIT) or potassium chloride placebo (PLA). Muscle biopsies were taken at baseline, at 1- and 3-h post-supplement ingestion, and immediately following the completion of 60 maximal intermittent contractions of the knee extensors. Muscle, plasma, saliva, and urine samples were analyzed using chemiluminescence to determine absolute [NO3 - ] and [NO2 - ], and by mass spectrometry to determine the proportion of NO3 - and NO2 - that was 15 N-labeled. RESULTS Neither muscle [NO3 - ] nor [NO2 - ] were altered by PLA. Following NIT, muscle [NO3 - ] (but not [NO2 - ]) was elevated at 1-h (from ~35 to 147 nmol/g, p < 0.001) and 3-h, with almost all of the increase being 15 N-labeled. There was a significant reduction in 15 N-labeled muscle [NO3 - ] from pre- to post-exercise. Relative to PLA, mean muscle torque production was ~7% greater during the first 18 contractions following NIT. This improvement in torque was correlated with the pre-exercise 15 N-labeled muscle [NO3 - ] and the magnitude of decline in 15 N-labeled muscle [NO3 - ] during exercise (r = 0.66 and r = 0.62, respectively; p < 0.01). CONCLUSION This study shows, for the first time, that skeletal muscle rapidly takes up dietary NO3 - , the elevated muscle [NO3 - ] following NO3 - ingestion declines during exercise, and muscle NO3 - dynamics are associated with enhanced torque production during maximal intermittent muscle contractions.
Collapse
Affiliation(s)
- Stefan Kadach
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| | - Ji Won Park
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Zdravko Stoyanov
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| | - Matthew I Black
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| | - Anni Vanhatalo
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| | - Mark Burnley
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Peter J Walter
- Clinical Mass Spectrometry Core, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Hongyi Cai
- Clinical Mass Spectrometry Core, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Alan N Schechter
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Barbora Piknova
- Molecular Medicine Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew M Jones
- Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
25
|
Distribution of dietary nitrate and its metabolites in rat tissues after 15N-labeled nitrate administration. Sci Rep 2023; 13:3499. [PMID: 36859526 PMCID: PMC9977953 DOI: 10.1038/s41598-023-28190-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/13/2023] [Indexed: 03/03/2023] Open
Abstract
The reduction pathway of nitrate (NO3-) and nitrite (NO2-) to nitric oxide (NO) contributes to regulating many physiological processes. To examine the rate and extent of dietary nitrate absorption and its reduction to nitrite, we supplemented rat diets with Na15NO3-containing water (1 g/L) and collected plasma, urine and several tissue samples. We found that plasma and urine showed 8.8- and 11.7-fold increases respectively in total nitrate concentrations in 1-day supplementation group compared to control. In tissue samples-gluteus, liver and eyes-we found 1.7-, 2.4- and 4.2-fold increases respectively in 1-day supplementation group. These increases remained similar in 3-day supplementation group. LC-MS/MS analysis showed that the augmented nitrate concentrations were primarily from the exogenously provided 15N-nitrate. Overall nitrite concentrations and percent of 15N-nitrite were also greatly increased in all samples after nitrate supplementation; eye homogenates showed larger increases compared to gluteus and liver. Moreover, genes related to nitrate transport and reduction (Sialin, CLC and XOR) were upregulated after nitrate supplementation for 3 days in muscle (Sialin 2.3-, CLC1 1.3-, CLC3 2.1-, XOR 2.4-fold) and eye (XOR 1.7-fold) homogenates. These results demonstrate that dietary nitrate is quickly absorbed into circulation and tissues, and it can be reduced to nitrite in tissues (and likely to NO) suggesting that nitrate-enriched diets can be an efficient intervention to enhance nitrite and NO bioavailability.
Collapse
|
26
|
Zoughaib WS, Hoffman RL, Yates BA, Moorthi RN, Lim K, Coggan AR. The influence of acute dietary nitrate supplementation on skeletal muscle fatigue and recovery in older women. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.15.23285957. [PMID: 36824817 PMCID: PMC9949194 DOI: 10.1101/2023.02.15.23285957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Older individuals fatigue more rapidly during, and recover more slowly from, dynamic exercise. Women are particularly vulnerable to these deleterious effects of aging, which increases their risk of falling. We have shown that dietary nitrate (NO 3 - ), a source of nitric oxide (NO) via the NO 3 - → nitrite (NO 2 - ) → NO pathway, enhances muscle speed and power in older individuals in the non-fatigued state; however, it is unclear if it reduces fatigability and/or improves recoverability in this population. Using a double-blind, placebo-controlled, crossover design, we studied 18 older (age 70 ± 4 y) women who were administered an acute dose of beetroot juice (BRJ) containing either 15.6±3.6 or <0.05 mmol of NO 3 - . Blood samples were drawn throughout each ∼3 h visit for plasma NO 3 - and NO 2 - analysis. Peak torque was measured during, and periodically for 10 min after, 50 maximal knee extensions performed at 3.14 rad/s on an isokinetic dynamometer. Ingestion of NO 3 - -containing BRJ increased plasma NO 3 - and NO 2 - concentrations by 21±8 and 4±4 fold, respectively. However, there were no differences in muscle fatigue or recovery. Dietary NO 3 - increases plasma NO 3 - and NO 2 - concentrations but does not reduce fatigability during or enhance recoverability after high intensity exercise in older women.
Collapse
|
27
|
Supplementation with Nitric Oxide Precursors for Strength Performance: A Review of the Current Literature. Nutrients 2023; 15:nu15030660. [PMID: 36771366 PMCID: PMC9921013 DOI: 10.3390/nu15030660] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Nitric-oxide-stimulating dietary supplements are widely available and marketed to strength athletes and weightlifters seeking to increase muscle performance and augment training adaptations. These supplements contain ingredients classified as nitric oxide (NO) precursors (i.e., "NO boosters"). Endogenous NO is generated via a nitric oxide synthase (NOS)-dependent pathway and a NOS-independent pathway that rely on precursors including L-arginine and nitrates, with L-citrulline serving as an effective precursor of L-arginine. Nitric oxide plays a critical role in endothelial function, promoting relaxation of vascular smooth muscle and subsequent dilation which may favorably impact blood flow and augment mechanisms contributing to skeletal muscle performance, hypertrophy, and strength adaptations. The aim of this review is to describe the NO production pathways and summarize the current literature on the effects of supplementation with NO precursors for strength and power performance. The information will allow for an informed decision when considering the use of L-arginine, L-citrulline, and nitrates to improve muscular function by increasing NO bioavailability.
Collapse
|
28
|
Bordonie NC, Saunders MJ, de Zevallos JO, Kurti SP, Luden ND, Crance JH, Baur DA. Dietary nitrate supplementation enhances heavy load carriage performance in military cadets. Eur J Appl Physiol 2023; 123:91-102. [PMID: 36175576 DOI: 10.1007/s00421-022-05056-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE To determine the effects of dietary nitrate (NO3-) supplementation on physiological responses, cognitive function, and performance during heavy load carriage in military cadets. METHODS Ten healthy males (81.0 ± 6.5 kg; 180.0 ± 4.5 cm; 56.2 ± 3.7 ml·kg·min-1 VO2max) consumed 140 mL·d-1 of beetroot juice (BRJ; 12.8 mmol NO3-) or placebo (PL) for six d preceding an exercise trial, which consisted of 45 min of load carriage (55% body mass) at 4.83 km·h-1 and 1.5% grade, followed by a 1.6-km time-trial (TT) at 4% grade. Gas exchange, heart rate, and perceptual responses were assessed during constant-load exercise and the TT. Cognitive function was assessed immediately prior to, during, and post-exercise via the psychomotor vigilance test (PVT). RESULTS Post-TT HR (188 ± 7.1 vs. 185 ± 7.4; d = 0.40; p = 0.03), mean tidal volume (2.15 ± 0.27 vs. 2.04 ± 0.23; p = 0.02; d = 0.47), and performance (770.9 ± 78.2 s vs. 809.8 ± 61.4 s; p = 0.03; d = 0.63) were increased during the TT with BRJ versus PL. There were no effects of BRJ on constant-load gas exchange or perceptual responses, and cognitive function was unchanged at all time points. CONCLUSION BRJ supplementation improves heavy load carriage performance in military cadets possibly as a result of attenuated respiratory muscle fatigue, rather than enhanced exercise economy.
Collapse
Affiliation(s)
- Nicholas C Bordonie
- Department of Kinesiology, James Madison University, Harrisonburg, VA, 22807, USA
| | - Michael J Saunders
- Department of Kinesiology, James Madison University, Harrisonburg, VA, 22807, USA
| | - Joaquin Ortiz de Zevallos
- Department of Kinesiology, School of Health and Human Development, University of Virginia, Charlottesville, VA, 22904, USA
| | - Stephanie P Kurti
- Department of Kinesiology, James Madison University, Harrisonburg, VA, 22807, USA
| | - Nicholas D Luden
- Department of Kinesiology, James Madison University, Harrisonburg, VA, 22807, USA
| | - Jenny H Crance
- Infirmary, Virginia Military Institute, Lexington, VA, 24450, USA
| | - Daniel A Baur
- Department of Human Performance and Wellness, Virginia Military Institute, 208 Cormack Hall, Lexington, VA, 24450, USA.
| |
Collapse
|
29
|
Rowland SN, Da Boit M, Tan R, Robinson GP, O’Donnell E, James LJ, Bailey SJ. Dietary Nitrate Supplementation Enhances Performance and Speeds Muscle Deoxyhaemoglobin Kinetics during an End-Sprint after Prolonged Moderate-Intensity Exercise. Antioxidants (Basel) 2022; 12:antiox12010025. [PMID: 36670889 PMCID: PMC9854517 DOI: 10.3390/antiox12010025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Short-term dietary nitrate (NO3−) supplementation has the potential to enhance performance during submaximal endurance, and short-duration, maximal-intensity exercise. However, it has yet to be determined whether NO3− supplementation before and during submaximal endurance exercise can improve performance during a short-duration, maximal-intensity end-sprint. In a randomised, double-blind, crossover study, 9 recreationally active men ingested NO3−-rich (BR: 8 mmol NO3−/day) and NO3−-depleted (PL: 0.75 mmol NO3−/day) beetroot powder for 7 days. On day 7, participants completed 2 h of moderate-intensity cycling, which immediately transitioned into a 60 s maximal-intensity end-sprint, with supplements ingested 2 h before and 1 h into the moderate-intensity exercise bout. Plasma [NO3−] and [NO2−] were higher in BR compared to PL pre- and post-exercise (p < 0.05). Post-exercise plasma [NO3−] was higher than pre-exercise (562 ± 89 µM vs. 300 ± 73 µM; p < 0.05) and plasma [NO2−] was not significantly different pre- (280 ± 58 nM) and post-exercise (228 ± 63 nM) in the BR condition (p > 0.05). Mean power output during the final 30 s of the end-sprint was greater after BR (390 ± 38 W) compared to PL (365 ± 41 W; p < 0.05). There were no differences between BR and PL in any muscle oxygenation variables during moderate-intensity cycling (p > 0.05), but muscle [deoxyhaemoglobin] kinetics was faster during the end-sprint in BR (6.5 ± 1.4 s) compared to PL (7.3 ± 1.4 s; p < 0.05). These findings suggest that NO3− supplementation has the potential to improve end-sprint performance in endurance events when ingested prior to and during exercise.
Collapse
Affiliation(s)
- Samantha N. Rowland
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Mariasole Da Boit
- Health and Life Sciences, School of Allied Health Sciences, De Montfort University, Leicester LE1 9BH, UK
| | - Rachel Tan
- Department of Sports Medicine, Pepperdine University, Malibu, CA 90263, USA
| | - George P. Robinson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Emma O’Donnell
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Lewis J. James
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Stephen J. Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
- Correspondence:
| |
Collapse
|
30
|
Effects of acute nitrate supplementation against placebo on the physical performance of athletes in a time trial test: Systematic review and meta-analysis. Sci Sports 2022. [DOI: 10.1016/j.scispo.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
López-Samanes Á, Ramos-Álvarez JJ, Miguel-Tobal F, Gaos S, Jodra P, Arranz-Muñoz R, Domínguez R, Montoya JJ. Influence of Beetroot Juice Ingestion on Neuromuscular Performance on Semi-Professional Female Rugby Players: A Randomized, Double-Blind, Placebo-Controlled Study. Foods 2022; 11:foods11223614. [PMID: 36429210 PMCID: PMC9689822 DOI: 10.3390/foods11223614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/21/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Beetroot juice (BRJ) is considered an ergogenic aid with good to strong evidence for improving human performance in sport modalities with similar demands to rugby. However, most of the studies were realized in male athletes with limited evidence in female athletes. Thus, the aim of this study was to explore the acute ingestion of BRJ in female rugby players. METHODS Fourteen semi-professional female rugby players (25.0 ± 3.7 years) belonging to a team from the First Spanish Female Rugby Division participated in this study. Participants were randomly divided into two groups that realized a neuromuscular battery after BRJ (140mL, 12.8 mmol NO3-) or placebo (PLAC, 140 mL, 0.08 mmol NO3-) ingestion on two different days separated by one week between protocols. The neuromuscular test battery consisted of a countermovement jump (CMJ), isometric handgrip strength (i.e., dominant), 10-m and 30-m sprint, agility t-test and Bronco test. Afterwards, participants reported a rate of perception scale (6-20 points) and side effects questionnaire associated with BRJ or PLAC ingestion. RESULTS Statistically significant improvements were observed in CMJ (7.7%; p = 0.029; ES = 0.62), while no differences were reported in dominant isometric handgrip strength (-1.7%; p = 0.274; ES = -0.20); 10-m and 30-m sprint (0.5-0.8%; p = 0.441-0.588; ES = 0.03-0.18); modified agility t-test (-0.6%; p = 0.503; ES = -0.12) and Bronco test (1.94%; p = 0.459; ES = 0.16). CONCLUSIONS BRJ ingestion could improve neuromuscular performance in the CMJ test, while no differences in sprint (10-m and 30-m sprint test), agility, isometric handgrip strength and endurance performance (i.e., Bronco test) were reported.
Collapse
Affiliation(s)
- Álvaro López-Samanes
- Exercise Physiology Group, Faculty of Health Sciences, School of Physiotherapy, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Juan José Ramos-Álvarez
- Faculty of Medicine, School of Sport Medicine, Madrid Complutense University, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913-947-088
| | - Francisco Miguel-Tobal
- Faculty of Medicine, School of Sport Medicine, Madrid Complutense University, 28040 Madrid, Spain
| | - Sofía Gaos
- Exercise Physiology Group, Faculty of Health Sciences, School of Physiotherapy, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Pablo Jodra
- Faculty of Education Sciences, University of Alcalá, 19001 Alcala de Henares, Spain
| | - Raquel Arranz-Muñoz
- Faculty of Medicine, School of Sport Medicine, Madrid Complutense University, 28040 Madrid, Spain
| | - Raúl Domínguez
- Departamento de Motricidad Humana y Rendimiento Deportivo, University of Seville, 41013 Seville, Spain
- Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras 37200-000, Brazil
| | - Juan José Montoya
- Faculty of Medicine, School of Sport Medicine, Madrid Complutense University, 28040 Madrid, Spain
| |
Collapse
|
32
|
Shannon OM, Allen JD, Bescos R, Burke L, Clifford T, Easton C, Gonzalez JT, Jones AM, Jonvik KL, Larsen FJ, Peeling P, Piknova B, Siervo M, Vanhatalo A, McGawley K, Porcelli S. Dietary Inorganic Nitrate as an Ergogenic Aid: An Expert Consensus Derived via the Modified Delphi Technique. Sports Med 2022; 52:2537-2558. [PMID: 35604567 PMCID: PMC9474378 DOI: 10.1007/s40279-022-01701-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2022] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Dietary inorganic nitrate is a popular nutritional supplement, which increases nitric oxide bioavailability and may improve exercise performance. Despite over a decade of research into the effects of dietary nitrate supplementation during exercise there is currently no expert consensus on how, when and for whom this compound could be recommended as an ergogenic aid. Moreover, there is no consensus on the safe administration of dietary nitrate as an ergogenic aid. This study aimed to address these research gaps. METHODS The modified Delphi technique was used to establish the views of 12 expert panel members on the use of dietary nitrate as an ergogenic aid. Over three iterative rounds (two via questionnaire and one via videoconferencing), the expert panel members voted on 222 statements relating to dietary nitrate as an ergogenic aid. Consensus was reached when > 80% of the panel provided the same answer (i.e. yes or no). Statements for which > 80% of the panel cast a vote of insufficient evidence were categorised as such and removed from further voting. These statements were subsequently used to identify directions for future research. RESULTS The 12 panel members contributed to voting in all three rounds. A total of 39 statements (17.6%) reached consensus across the three rounds (20 yes, 19 no). In round one, 21 statements reached consensus (11 yes, 10 no). In round two, seven further statements reached consensus (4 yes, 3 no). In round three, an additional 11 statements reached consensus (5 yes, 6 no). The panel agreed that there was insufficient evidence for 134 (60.4%) of the statements, and were unable to agree on the outcome of the remaining statements. CONCLUSIONS This study provides information on the current expert consensus on dietary nitrate, which may be of value to athletes, coaches, practitioners and researchers. The effects of dietary nitrate appear to be diminished in individuals with a higher aerobic fitness (peak oxygen consumption [V̇O2peak] > 60 ml/kg/min), and therefore, aerobic fitness should be taken into account when considering use of dietary nitrate as an ergogenic aid. It is recommended that athletes looking to benefit from dietary nitrate supplementation should consume 8-16 mmol nitrate acutely or 4-16 mmol/day nitrate chronically (with the final dose ingested 2-4 h pre-exercise) to maximise ergogenic effects, taking into consideration that, from a safety perspective, athletes may be best advised to increase their intake of nitrate via vegetables and vegetable juices. Acute nitrate supplementation up to ~ 16 mmol is believed to be safe, although the safety of chronic nitrate supplementation requires further investigation. The expert panel agreed that there was insufficient evidence for most of the appraised statements, highlighting the need for future research in this area.
Collapse
Affiliation(s)
- Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK.
| | - Jason D Allen
- Department of Kinesiology, School of Education and Human Development and Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Raul Bescos
- School of Health Professions, Faculty of Health, Plymouth Institute of Health and Care Research (PIHR), University of Plymouth, Plymouth, UK
| | - Louise Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Chris Easton
- Institute for Clinical Exercise and Health Sciences, University of the West of Scotland, Blantyre, UK
| | - Javier T Gonzalez
- Department for Health, University of Bath, Bath, UK
- Centre for Nutrition and Exercise Metabolism, University of Bath, Bath, UK
| | - Andrew M Jones
- Sport and Health Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, UK
| | - Kristin L Jonvik
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Filip J Larsen
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Peter Peeling
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, WA, Australia
| | | | - Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Anni Vanhatalo
- Sport and Health Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, UK
| | - Kerry McGawley
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Simone Porcelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
33
|
Dietary Supplement Use of Turkish Footballers: Differences by Sex and Competition Level. Nutrients 2022; 14:nu14183863. [PMID: 36145239 PMCID: PMC9503904 DOI: 10.3390/nu14183863] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
This study aimed to evaluate the consumption of dietary supplements (DS) and to determine related topics in Turkish football players of different sexes and competition levels. A total of 117 footballers (79 males and 38 females) completed a specific survey regarding DS consumption in athletes. The type of DS ingested was classified based on the level of scientific evidence by the Australian Institute of Sport (AIS): group A (high level of scientific evidence), group B (DS that could have a positive effect, but require more evidence), group C (evidence is against their use), and group D (prohibited substances). After a Kolmogorov−Smirnov test, a t-test or Mann−Whitney U test was performed for quantitative variables, while Pearson’s chi-square and odds ratio (with the confidence interval) were performed for qualitative variables. Of the sample, 87.2% reported having consumed DS, with a higher consumption rate in males (males: 93.7%, females: 73.7%; p = 0.006; OR = 5.3 [1.7−16.8]) and professional players (professional: 98.2%, non-professional: 77.4%; p < 0.001; OR = 7.9 [1.2−52.3]). Males and professional players consume more sports foods (p < 0.001), performance supplements (p < 0.001), and total group A supplements (p < 0.001) compared to females and non-professionals. In addition, males consume more medical supplements (p = 0.012) and total group C supplements (p < 0.001) than female footballers. The most consumed DS were sports drinks (63.2%), magnesium (52.1%), vitamin C (51.3%), vitamin D (46.2%), caffeine (38.5%), sports bars (37.6%), whey protein (28.2%), meat protein (25.6%), vitamin E (24.8%), and omega-3 fatty acids (24.8%). The supplement consumption was higher in male and professional footballers. According to the AIS classification, there were significant differences in the consumption of sports foods, medical supplements, performance supplements, and the total number of group A and group C supplements according to sex, and there were significant differences in the consumption of sports foods, performance supplements, and the total number of group A supplements according to competition level.
Collapse
|
34
|
Tan R, Pennell A, Price KM, Karl ST, Seekamp-Hicks NG, Paniagua KK, Weiderman GD, Powell JP, Sharabidze LK, Lincoln IG, Kim JM, Espinoza MF, Hammer MA, Goulding RP, Bailey SJ. Effects of Dietary Nitrate Supplementation on Performance and Muscle Oxygenation during Resistance Exercise in Men. Nutrients 2022; 14:nu14183703. [PMID: 36145080 PMCID: PMC9504620 DOI: 10.3390/nu14183703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of the current study was to assess the effects of acute and short-term nitrate (NO3−)-rich beetroot juice (BR) supplementation on performance outcomes and muscle oxygenation during bench press and back squat exercise. Fourteen recreationally active males were assigned in a randomized, double-blind, crossover design to supplement for 4 days in two conditions: (1) NO3−-depleted beetroot juice (PL; 0.10 mmol NO3− per day) and (2) BR (11.8 mmol NO3− per day). On days 1 and 4 of the supplementation periods, participants completed 2 sets of 2 × 70%1RM interspersed by 2 min of recovery, followed by one set of repetitions-to-failure (RTF) at 60%1RM for the determination of muscular power, velocity, and endurance. Quadriceps and pectoralis major tissue saturation index (TSI) were measured throughout exercise. Plasma [NO3−] and nitrite ([NO2−]) were higher after 1 and 4 days of supplementation with BR compared to PL (p < 0.05). Quadriceps and pectoralis major TSI were not different between conditions (p > 0.05). The number of RTF in bench press was 5% greater after acute BR ingestion compared to PL (PL: 23 ± 4 vs. BR: 24 ± 5, p < 0.05). There were no differences between BR and PL for RTF for back squat or power and velocity for back squat or bench press (p > 0.05). These data improve understanding on the ergogenic potential of BR supplementation during resistance exercise.
Collapse
Affiliation(s)
- Rachel Tan
- Department of Sports Medicine, Pepperdine University, Malibu, CA 90263, USA
- Correspondence: ; Tel.: +1-3105067041
| | - Adam Pennell
- Department of Sports Medicine, Pepperdine University, Malibu, CA 90263, USA
| | - Katherine M. Price
- Department of Sports Medicine, Pepperdine University, Malibu, CA 90263, USA
| | - Sean T. Karl
- Department of Sports Medicine, Pepperdine University, Malibu, CA 90263, USA
| | | | | | - Grant D. Weiderman
- Department of Sports Medicine, Pepperdine University, Malibu, CA 90263, USA
| | - Joanna P. Powell
- Department of Sports Medicine, Pepperdine University, Malibu, CA 90263, USA
| | - Luka K. Sharabidze
- Department of Sports Medicine, Pepperdine University, Malibu, CA 90263, USA
| | | | - Justin M. Kim
- Department of Sports Medicine, Pepperdine University, Malibu, CA 90263, USA
| | | | - Maya A. Hammer
- Department of Sports Medicine, Pepperdine University, Malibu, CA 90263, USA
| | - Richie P. Goulding
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Stephen J. Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
35
|
Wynne AG, Affourtit C. Nitrite lowers the oxygen cost of ATP supply in cultured skeletal muscle cells by stimulating the rate of glycolytic ATP synthesis. PLoS One 2022; 17:e0266905. [PMID: 35939418 PMCID: PMC9359526 DOI: 10.1371/journal.pone.0266905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Dietary nitrate lowers the oxygen cost of human exercise. This effect has been suggested to result from stimulation of coupling efficiency of skeletal muscle oxidative phosphorylation by reduced nitrate derivatives. In this paper, we report the acute effects of sodium nitrite on the bioenergetic behaviour of cultured rat (L6) myocytes. At odds with improved efficiency of mitochondrial ATP synthesis, extracellular flux analysis reveals that a ½-hour exposure to NaNO2 (0.1–5 μM) does not affect mitochondrial coupling efficiency in static myoblasts or in spontaneously contracting myotubes. Unexpectedly, NaNO2 stimulates the rate of glycolytic ATP production in both myoblasts and myotubes. Increased ATP supply through glycolysis does not emerge at the expense of oxidative phosphorylation, which means that NaNO2 acutely increases the rate of overall myocellular ATP synthesis, significantly so in myoblasts and tending towards significance in contractile myotubes. Notably, NaNO2 exposure shifts myocytes to a more glycolytic bioenergetic phenotype. Mitochondrial oxygen consumption does not decrease after NaNO2 exposure, and non-mitochondrial respiration tends to drop. When total ATP synthesis rates are expressed in relation to total cellular oxygen consumption rates, it thus transpires that NaNO2 lowers the oxygen cost of ATP supply in cultured L6 myocytes.
Collapse
Affiliation(s)
- Anthony G. Wynne
- School of Biomedical Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Charles Affourtit
- School of Biomedical Sciences, University of Plymouth, Plymouth, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Broxterman RM, La Salle DT, Zhao J, Reese VR, Kwon OS, Richardson RS, Trinity JD. Dietary Nitrate Supplementation and Small Muscle Mass Exercise Hemodynamics in Patients with Essential Hypertension. J Appl Physiol (1985) 2022; 133:506-516. [PMID: 35834624 PMCID: PMC9377785 DOI: 10.1152/japplphysiol.00218.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exaggerated blood pressure and diminished limb hemodynamics during exercise in patients with hypertension often are not resolved by antihypertensive medications. We hypothesized that, independent of antihypertensive medication status, dietary nitrate supplementation would increase limb blood flow, decrease mean arterial pressure (MAP), and increase limb vascular conductance during exercise in patients with hypertension. Patients with hypertension either abstained from (n=14, Off-Meds) or continued (n=12, On-Meds) antihypertensive medications. Within each group, patients consumed (cross-over design) nitrate-rich or nitrate-depleted (placebo) beetroot juice for 3-days before performing handgrip (HG) and knee-extensor exercise (KE). Blood flow and MAP were measured using Doppler ultrasound and an automated monitor, respectively. Dietary nitrate increased plasma-[nitrite] Off-Meds and On-Meds. There were no significant effects of dietary nitrate on blood flow, MAP, or vascular conductance during HG in Off-Meds or On-Meds. For KE, dietary nitrate decreased MAP (mean±SD across all three exercise intensities, 118±14 vs. 122±14 mmHg, p=0.024) and increased vascular conductance (26.2±6.1 vs. 24.7±7.0 ml/min/mmHg, p=0.024), but did not affect blood flow for Off-Meds, with no effects On-Meds. Dietary nitrate-induced changes in blood flow (r=-0.67, p<0.001), MAP (r=-0.43, p=0.009), and vascular conductance (r=-0.64, p<0.001) during KE, but only vascular conductance (r=-0.35, p=0.039) during HG, were significantly related to the magnitude of placebo values, with no differentiation between groups. Thus, the effects of dietary nitrate on limb hemodynamics and MAP during exercise in patients with hypertension are dependent on the values at baseline, independent of antihypertensive medication status, and dependent on whether exercise was performed by the forearm or quadriceps.
Collapse
Affiliation(s)
- Ryan M Broxterman
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, Salt Lake City, UT, United States.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States.,Center on Aging, University of Utah, Salt Lake City, UT, United States
| | - D Taylor La Salle
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| | - Jia Zhao
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Van R Reese
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Oh Sung Kwon
- Department of Kinesiology, University of Connecticut, Storrs, CT, United States.,Department of Orthopedic Surgery and Center of Aging, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, Salt Lake City, UT, United States.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States.,Center on Aging, University of Utah, Salt Lake City, UT, United States.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| | - Joel D Trinity
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, Salt Lake City, UT, United States.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States.,Center on Aging, University of Utah, Salt Lake City, UT, United States.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
37
|
Park LK, Coggan AR, Peterson LR. Skeletal Muscle Contractile Function in Heart Failure With Reduced Ejection Fraction-A Focus on Nitric Oxide. Front Physiol 2022; 13:872719. [PMID: 35721565 PMCID: PMC9198547 DOI: 10.3389/fphys.2022.872719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Despite advances over the past few decades, heart failure with reduced ejection fraction (HFrEF) remains not only a mortal but a disabling disease. Indeed, the New York Heart Association classification of HFrEF severity is based on how much exercise a patient can perform. Moreover, exercise capacity-both aerobic exercise performance and muscle power-are intimately linked with survival in patients with HFrEF. This review will highlight the pathologic changes in skeletal muscle in HFrEF that are related to impaired exercise performance. Next, it will discuss the key role that impaired nitric oxide (NO) bioavailability plays in HFrEF skeletal muscle pathology. Lastly, it will discuss intriguing new data suggesting that the inorganic nitrate 'enterosalivary pathway' may be leveraged to increase NO bioavailability via ingestion of inorganic nitrate. This ingestion of inorganic nitrate has several advantages over organic nitrate (e.g., nitroglycerin) and the endogenous nitric oxide synthase pathway. Moreover, inorganic nitrate has been shown to improve exercise performance: both muscle power and aerobic capacity, in some recent small but well-controlled, cross-over studies in patients with HFrEF. Given the critical importance of better exercise performance for the amelioration of disability as well as its links with improved outcomes in patients with HFrEF, further studies of inorganic nitrate as a potential novel treatment is critical.
Collapse
Affiliation(s)
- Lauren K. Park
- Department of Medicine, Cardiology Division, Washington University School of Medicine, Saint Louis, MO, United States
| | - Andrew R. Coggan
- Department of Kinesiology, Indiana University Purdue University, Indianapolis, IN, United States
| | - Linda R. Peterson
- Department of Medicine, Cardiology Division, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
38
|
Nitric oxide and skeletal muscle contractile function. Nitric Oxide 2022; 122-123:54-61. [PMID: 35405336 PMCID: PMC10167965 DOI: 10.1016/j.niox.2022.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022]
Abstract
Nitric oxide (NO) is complex modulator of skeletal muscle contractile function, capable of increasing or decreasing force and power output depending on multiple factors. This review explores the effects and potential mechanisms for modulation of skeletal muscle contractile function by NO, from pharmacological agents in isolated muscle preparations to dietary nitrate supplementation in humans and animals. Pharmacological manipulation in vitro suggests that NO signaling diminishes submaximal isometric force, whereas dietary manipulation in vivo suggest that NO enhances submaximal force. The bases for these different responses are unknown but could reflect dose-dependent effects. Maximal isometric force is unaffected by physiologically relevant levels of NO, which do not induce overt protein oxidation. Pharmacological and dietary manipulation of NO signaling enhances the maximal rate of isometric force development, unloaded shortening velocity, and peak power. We hypothesize that these effects are mediated by post-translational modifications of myofibrillar proteins that modulate thick filament regulation of contraction (e.g., mechanosensing and strain-dependence of cross-bridge kinetics). NO effects on contractile function appear to have some level of fiber type and sex-specificity. The mechanisms behind NO-mediated changes in skeletal muscle function need to be explored through proteomics analysis and advanced biophysical assays to advance the development of small molecules and open intriguing therapeutic and ergogenic possibilities for aging, disease, and athletic performance.
Collapse
|
39
|
Tan R, Cano L, Lago-Rodríguez Á, Domínguez R. The Effects of Dietary Nitrate Supplementation on Explosive Exercise Performance: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020762. [PMID: 35055584 PMCID: PMC8775572 DOI: 10.3390/ijerph19020762] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Dietary nitrate supplementation is evidenced to induce physiological effects on skeletal muscle function in fast-twitch muscle fibers and may enhance high-intensity exercise performance. An important component of sport-specific skills is the ability to perform explosive movements; however, it is unclear if nitrate supplementation can impact explosive efforts. We examined the existing evidence to determine whether nitrate supplementation improves explosive efforts lasting ≤ 6 s. PubMed, Scopus and Directory of Open Access Journals (DOAJ) were searched for articles using the following search strategy: (nitrate OR nitrite OR beetroot) AND (supplement OR supplementation) AND (explosive OR power OR high intensity OR high-intensity OR sprint* OR “athletic performance”). Out of 810 studies, 18 were eligible according to inclusion criteria. Results showed that 4 of the 10 sprint-type studies observed improved sprint time, power output, and total work in cycling or running, whereas 4 of the 10 resistance-based exercise studies observed improvements to power and velocity of free-weight bench press as well as isokinetic knee extension and flexion at certain angular velocities. These results suggest that nitrate potentially improves explosive exercise performance, but further work is required to clarify the factors influencing the efficacy of nitrate in different exercise modalities.
Collapse
Affiliation(s)
- Rachel Tan
- Faculty of Sports Medicine, Natural Sciences Division, Pepperdine University, Malibu, CA 90263, USA;
| | - Leire Cano
- Independent Researcher, 48991 Getxo, Spain;
| | - Ángel Lago-Rodríguez
- Movement, Brain and Health Group, Center of Higher Education Alberta Giménez, 07013 Palma de Mallorca, Spain
- Correspondence: ; Tel.: +34-680-330-105
| | - Raúl Domínguez
- Departamento de Motricidad Humana y Rendimiento, Universidad de Sevilla, 41013 Sevilla, Spain;
- Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras 37200-000, Brazil
| |
Collapse
|
40
|
Dudhe R, Dudhe AC, Raut SD. Significance of Inorganic Nitrate Supplement in Cardiovascular Health. Cardiovasc Hematol Agents Med Chem 2022; 20:83-89. [PMID: 33906593 DOI: 10.2174/1871525719666210427130511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/27/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND & OBJECTIVES Nitric Oxide (NO) is frequently produced by the enzyme nitric oxide synthase (NOS) and is crucial for the control and effectiveness of the cardiovascular system. However, there is a substantial reduction in NOS activity with aging that can lead to the development of hypertension and other cardiovascular obstacles. Fortunately, NO can also be produced by sequential reduction of inorganic nitrates supplementation. This proves that NO from inorganic nitrate supplements can compensate for inadequate NOS activity, thus providing cardio protective benefits. DISCUSSION This review focuses on the general information about nitrous oxide, its types and mechanism of action and the fact that overview of inadequate NOS activity for cardio protective benefits was often studied for cardiovascular treatments. CONCLUSION We concluded that the natural plant NO is essential for cardiovascular activity to target site with desired concentration. Moreover, the researchers focused on evidence that suggested that nitrate supplementation could help regulate blood pressure, limit progression of atherosclerosis, and improve myocardial contractility in both healthy individuals and those with cardiovascular diseases.
Collapse
Affiliation(s)
- Rupesh Dudhe
- School of Pharmacy, G H Raisoni University, Saikheda, Chhindwara-480337, M.P., India
| | - Anshu C Dudhe
- School of Pharmacy, G H Raisoni University, Saikheda, Chhindwara-480337, M.P., India
| | - Shravan D Raut
- School of Pharmacy, G H Raisoni University, Saikheda, Chhindwara-480337, M.P., India
| |
Collapse
|
41
|
Khosravi S, Ahmadizad S, Yekaninejad M, Karami M, Djafarian K. The effect of beetroot juice supplementation on muscle performance during isokinetic knee extensions in male Taekwondo athletes. Sci Sports 2021; 36:483.e1-483.e7. [DOI: 10.1016/j.scispo.2020.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Capper TE, Siervo M, Clifford T, Taylor G, Iqbal W, West D, Stevenson EJ. Pharmacokinetic Profile of Incremental Oral Doses of Dietary Nitrate in Young and Older Adults: A Crossover Randomized Clinical Trial. J Nutr 2021; 152:130-139. [PMID: 34718635 PMCID: PMC8754575 DOI: 10.1093/jn/nxab354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dietary nitrate consumption can increase concentrations of nitrate and nitrite in blood, saliva, and urine. Whether the change in concentrations is influenced by age is currently unknown. OBJECTIVES We aimed to measure changes in nitrate and nitrite concentrations in plasma, urine, and saliva and exhaled NO concentrations after single incremental doses of dietary nitrate in young and older healthy adults. METHODS Twelve young (18-35 y old) and 12 older (60-75 y old) healthy, nonsmoking participants consumed single doses of 100 g, 200 g, 300 g whole beetroot (BR) and 1000 mg potassium nitrate (positive control) ≥7 d apart in a crossover, randomized clinical trial. Plasma nitrate and nitrite concentrations and exhaled NO concentrations were measured over a 5-h period. Salivary nitrate and nitrite concentrations were measured over a 12-h period and urinary nitrate over a 24-h period. Time, intervention, age, and interaction effects were measured with repeated-measures ANOVAs. RESULTS Dose-dependent increases were seen in plasma, salivary, and urinary nitrate after BR ingestion (all P ≤ 0.002) but there were no differences between age groups at baseline (all P ≥ 0.56) or postintervention (all P ≥ 0.12). Plasma nitrite concentrations were higher in young than older participants at baseline (P = 0.04) and after consumption of 200 g (P = 0.04; +25.7 nmol/L; 95% CI: 0.97, 50.3 nmol/L) and 300 g BR (P = 0.02; +50.3 nmol/L; 95% CI: 8.57, 92.1 nmol/L). Baseline fractional exhaled NO (FeNO) concentrations were higher in the younger group [P = 0.03; +8.60 parts per billion (ppb); 95% CI: 0.80, 16.3 ppb], and rose significantly over the 5-h period, peaking 5 h after KNO3 consumption (39.4 ± 4.5 ppb; P < 0.001); however, changes in FeNO were not influenced by age (P = 0.276). CONCLUSIONS BR is a source of bioavailable dietary nitrate in both young and older adults and can effectively raise nitrite and nitrate concentrations. Lower plasma nitrite and FeNO concentrations were found in older subjects, confirming the impact of ageing on NO bioavailability across different systems.This trial was registered at www.isrctn.com as ISRCTN86706442.
Collapse
Affiliation(s)
| | | | - Tom Clifford
- Human Nutrition Research Centre, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Guy Taylor
- Human Nutrition Research Centre, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Wasim Iqbal
- Human Nutrition Research Centre, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Daniel West
- Human Nutrition Research Centre, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
43
|
Broeder CE, Flores V, Julian B, Wojan F, Tauber R, Schubert L, Salacinski A, Ivy JL. Nitric oxide enhancement supplement containing beet nitrite and nitrate benefits high intensity cycle interval training. Curr Res Physiol 2021; 4:183-191. [PMID: 34746837 PMCID: PMC8562140 DOI: 10.1016/j.crphys.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022] Open
Abstract
This study investigated the effects of a beet nitric oxide enhancing (NOE) supplement comprised of nitrite and nitrate on cycling performance indices in trained cyclists. METHODS Subjects completed a lactate threshold test and a high-intensity interval (HIIT) protocol at 50% above functional threshold power with or without oral NOE supplement. RESULTS NOE supplementation enhanced lactate threshold by 7.2% (Placebo = 191.6 ± 37.3 W, NOE = 205.3 ± 39.9; p = 0.01; Effect Size (ES) = 0.40). During the HIIT protocol, NOE supplementation improved time to exhaustion 18% (Placebo = 1251 ± 562s, NOE = 1474 ± 504s; p = 0.02; ES = 0.42) and total energy expended 22.3% (Placebo = 251 ± 48.6 kJ, NOE = 306.6 ± 55.2 kJ; p = 0.01; ES = 1.079). NOE supplementation increased the intervals completed (Placebo = 7.00 ± 2.5, NOE = 8.14 ± 2.4; p = 0.03; ES = 0.42) and distance cycled (Placebo = 10.9 ± 4.0 km, NOE = 13.5 ± 3.9 km; p = 0.01; ES = 0.65). Also, target power was achieved at a higher cadence during the HIIT work and rest periods (p = 0.02), which enhanced muscle oxygen saturation (SmO2) recovery. Time-to-fatigue was negatively correlated with the degree of SmO2, desaturation during the HIIT work interval segment (r = -0.67; p 0.008), while both SmO2 desaturation and the SmO2 starting work segment saturation level correlated with a cyclist's kJ expended (SmO2 desaturation: r = -0.51, p = 0.06; SmO2 starting saturation: r = 0.59, p = 0.03). CONCLUSION NOE supplementation containing beet nitrite and nitrate enhanced submaximal (lactate threshold) and HIIT maximal effort work. The NOE supplementation resulted in a cyclist riding at higher cadence rates with lower absolute torque values at the same power during both the work and rest periods, which in-turn delayed over-all fatigue and improved total work output.
Collapse
Affiliation(s)
- Craig E Broeder
- Exercising Nutritionally, LLC, United States.,Northern Illinois University, United States
| | | | - Bill Julian
- Exercising Nutritionally, LLC, United States
| | - Frank Wojan
- Exercising Nutritionally, LLC, United States.,University of Texas at Austin, United States
| | | | | | - Amanda Salacinski
- Exercising Nutritionally, LLC, United States.,Westfield State University, United States
| | - John L Ivy
- University of Texas at Austin, United States
| |
Collapse
|
44
|
Piknova B, Schechter AN, Park JW, Vanhatalo A, Jones AM. Skeletal Muscle Nitrate as a Regulator of Systemic Nitric Oxide Homeostasis. Exerc Sport Sci Rev 2021; 50:2-13. [PMID: 34669624 DOI: 10.1249/jes.0000000000000272] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Non-enzymatic nitric oxide (NO) generation via the reduction of nitrate and nitrite ions, along with remarkably high levels of nitrate ions in skeletal muscle, have been recently described. Skeletal muscle nitrate storage may be critical for maintenance of NO homeostasis in healthy ageing and nitrate supplementation may be useful for treatment of specific pathophysiologies as well as enhancing normal functions.
Collapse
Affiliation(s)
- Barbora Piknova
- Molecular Medicine Branch, NIDDK, National Institutes of Health,Bethesda, MD 20892, U.S. Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | | | | | | |
Collapse
|
45
|
Coggan AR, Baranauskas MN, Hinrichs RJ, Liu Z, Carter SJ. Effect of dietary nitrate on human muscle power: a systematic review and individual participant data meta-analysis. J Int Soc Sports Nutr 2021; 18:66. [PMID: 34625064 PMCID: PMC8501726 DOI: 10.1186/s12970-021-00463-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/15/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Previous narrative reviews have concluded that dietary nitrate (NO3-) improves maximal neuromuscular power in humans. This conclusion, however, was based on a limited number of studies, and no attempt has been made to quantify the exact magnitude of this beneficial effect. Such information would help ensure adequate statistical power in future studies and could help place the effects of dietary NO3- on various aspects of exercise performance (i.e., endurance vs. strength vs. power) in better context. We therefore undertook a systematic review and individual participant data meta-analysis to quantify the effects of NO3- supplementation on human muscle power. METHODS The literature was searched using a strategy developed by a health sciences librarian. Data sources included Medline Ovid, Embase, SPORTDiscus, Scopus, Clinicaltrials.gov , and Google Scholar. Studies were included if they used a randomized, double-blind, placebo-controlled, crossover experimental design to measure the effects of dietary NO3- on maximal power during exercise in the non-fatigued state and the within-subject correlation could be determined from data in the published manuscript or obtained from the authors. RESULTS Nineteen studies of a total of 268 participants (218 men, 50 women) met the criteria for inclusion. The overall effect size (ES; Hedge's g) calculated using a fixed effects model was 0.42 (95% confidence interval (CI) 0.29, 0.56; p = 6.310 × 10- 11). There was limited heterogeneity between studies (i.e., I2 = 22.79%, H2 = 1.30, p = 0.3460). The ES estimated using a random effects model was therefore similar (i.e., 0.45, 95% CI 0.30, 0.61; p = 1.064 × 10- 9). Sub-group analyses revealed no significant differences due to subject age, sex, or test modality (i.e., small vs. large muscle mass exercise). However, the ES in studies using an acute dose (i.e., 0.54, 95% CI 0.37, 0.71; p = 6.774 × 10- 12) was greater (p = 0.0211) than in studies using a multiple dose regimen (i.e., 0.22, 95% CI 0.01, 0.43; p = 0.003630). CONCLUSIONS Acute or chronic dietary NO3- intake significantly increases maximal muscle power in humans. The magnitude of this effect-on average, ~ 5%-is likely to be of considerable practical and clinical importance.
Collapse
Affiliation(s)
- Andrew R Coggan
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
- Department of Kinesiology, Indiana University Purdue University Indianapolis, IF 101C, 250 University Boulevard, Indianapolis, IN, 46112, USA.
| | | | - Rachel J Hinrichs
- University Library, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Ziyue Liu
- Department of Biostatistics, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Stephen J Carter
- Department of Kinesiology, Indiana University, Bloomington, IN, 47405, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| |
Collapse
|
46
|
Impact of Red Spinach Extract Supplementation on Bench Press Performance, Muscle Oxygenation, and Cognitive Function in Resistance-Trained Males. Sports (Basel) 2021; 9:sports9060077. [PMID: 34071862 PMCID: PMC8227312 DOI: 10.3390/sports9060077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/21/2022] Open
Abstract
The purpose of this study was to assess the impact of short-term dietary nitrate supplementation, in the form of red spinach extract (RSE), on bench press performance, muscle oxygenation, and cognitive function in resistance-trained males. Ten resistance-trained males participated in this randomized, cross-over, placebo-controlled, double-blind investigation. Each participant completed 7 days of either RSE (2 g; 180 mg NO3−) or a maltodextrin placebo (PL) in a counterbalanced fashion with a 14-day washout between treatments. During experimental visits, participants were provided their 8th and last dose of RSE or PL 40 min before completing 5 sets of the barbell bench press exercise to failure at 75% of a predetermined 1-repetition maximum with 2 min rest intervals. Mean and peak power were recorded via a linear transducer. Near-infrared spectroscopy (NIRS) was implemented to estimate muscle oxygenation, a Stroop Test was used to assess cognitive function, and subjective performance ratings were obtained in relation to the acute resistance exercise sessions. Data were analyzed via separate repeated measures analyses of variance. There were no time by group interactions for bench press repetitions (p = 0.549), peak power (p = 0.061), or mean power (p = 0.877) across the 5 sets of bench press. Additionally, no significant differences (p > 0.05) were observed for any measure of muscle oxygenation, Stroop performance, or subjective performance ratings. It appears that 7 days of RSE supplementation did not alter performance, muscle oxygenation, nor Stroop scores during or following the bench press exercise in resistance-trained males.
Collapse
|
47
|
Mata F, Domínguez R, López-Samanes Á, Sánchez-Gómez Á, Jodra P, Sánchez-Oliver AJ. Analysis of the consumption of sports supplements in elite fencers according to sex and competitive level. BMC Sports Sci Med Rehabil 2021; 13:50. [PMID: 33975639 PMCID: PMC8114510 DOI: 10.1186/s13102-021-00278-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022]
Abstract
Background The aim of this study was to analyze the consumption of sports supplements (SS) in competitive level fencers and compare differences based on sex and competitive level (international and national). Methods A total of 49 fencers (18 men and 31 women) of national (n = 16) and international (n = 33) level completed a questionnaire with questions about SS consumption and the possible repercussions on health and / or sports performance. The results were analyzed based on the different categorizations established by the Australian Institute of Sport (AIS), as well as by sex and level of competence to which the participants belonged to. Results 46.9% of fencers have consumed SS with the main motivation being performance improvement (34.2%). Medical doctors were the individuals who were more likely to advise men to consume SS (50.0% vs 5.6%; OR = 3.29 [1.50–7.20]). Friends were most likely to advise women (38.9% vs 8.3%; OR = 1.75 [1.05–2.93]). The most consumed SS were sport drinks (44.9%), vitamin C (43.4%), sport bars (38.8%), and caffeine (28.6%). In regards to the SS categories, it was observed differences in the interaction level·sex in medical supplements (p = 0.017). In addition, there was a higher prevalence of whey protein consumption in women (25.8% vs 0%; p = 0.020) and iron consumption in men (33% vs 6.5%; p = 0.039). Conclusions The prevalence of SS use in fencers is within the values previously reported in athletes of the same competitive level. There were no differences by sex and competitive level in the total consumption of SS, nor in each of the groups of level of evidence, being sport drinks, bars and caffeine the most consumed SS.
Collapse
Affiliation(s)
- Fernando Mata
- Centro de Estudios Avanzados en Nutrición (CEAN), Córdoba, Spain
| | - Raúl Domínguez
- Departamento de Motricidad Humana y Rendimiento Deportivo, Faculty of Education Sciences, Universidad de Sevilla, Sevilla, Spain. .,Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras, Brazil.
| | - Álvaro López-Samanes
- Exercise Physiology Group, School of Physiotherapy, Faculty of Health Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Ángela Sánchez-Gómez
- Departamento de Enfermería Farmacología y Fisioterapia, Facultad de Medicina y Enfermería, Universidad de Córdoba, Córdoba, Spain
| | - Pablo Jodra
- Faculty of Education Sciences, University of Alcalá, Guadalajara, Spain
| | - Antonio J Sánchez-Oliver
- Departamento de Motricidad Humana y Rendimiento Deportivo, Faculty of Education Sciences, Universidad de Sevilla, Sevilla, Spain.,Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras, Brazil
| |
Collapse
|
48
|
Conger SA, Zamzow CM, Darnell ME. Acute Beet Juice Supplementation Does Not Improve 30- or 60-second Maximal Intensity Performance in Anaerobically Trained Athletes. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2021; 14:60-75. [PMID: 34055148 PMCID: PMC8136611 DOI: 10.70252/qgkh6961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Research suggests that beet juice is beneficial during aerobic exercise. However, the impact of beet juice during primarily anaerobic exercise is equivocal. The purpose of this study was to determine the effects of acute beet juice supplementation on maximal intensity performance during 30-s and 60-s maximal-intensity cycling sprints. Using a double-blind, crossover-study design, 14 anaerobically trained male hockey players completed six Wingate cycling tests: familiarization trials of a 30-s and 60-s Wingate test, followed by 30-s Wingate placebo/beet juice trials, and 60-s Wingate placebo/beet juice trials. Repeated measures ANOVAs were used to compare the change in power between conditions over the duration of each trial. Paired t-tests were run to compare performance between conditions of various work and power variables. One-way ANOVAs were utilized to compare the change between conditions of the 30-s test to the change between conditions of the 60-s test. Beet juice supplementation yielded no statistical differences from placebo in any of the measured variables during the 30-s or 60-s tests (p > 0.05). The percent change for fatigue index was significantly different between the 30-s and 60-s tests (p = 0.032) suggesting less fatigue with beet juice supplementation. Overall, beet juice did not improve maximal intensity performance during 30-s or 60-s cycling sprint tests. Performance during the 60-s bout was not impacted to a greater extent than the 30-s bout after beet juice supplementation. These results suggest that beet juice supplementation does not improve short-duration exercise performance in anaerobically trained athletes.
Collapse
Affiliation(s)
- Scott A Conger
- Department of Kinesiology, Boise State University, Boise, ID USA
| | - Clare M Zamzow
- Department of Kinesiology, Boise State University, Boise, ID USA
| | - Matthew E Darnell
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
49
|
Gallardo EJ, Gray DA, Hoffman RL, Yates BA, Moorthi RN, Coggan AR. Dose-Response Effect of Dietary Nitrate on Muscle Contractility and Blood Pressure in Older Subjects: A Pilot Study. J Gerontol A Biol Sci Med Sci 2021; 76:591-598. [PMID: 33301009 DOI: 10.1093/gerona/glaa311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
We have recently demonstrated that dietary nitrate, a source of nitric oxide (NO) via the nitrate → nitrite → NO enterosalivary pathway, can improve muscle contractility in healthy older men and women. Nitrate ingestion has also been shown to reduce blood pressure in some, but not all, studies of older individuals. However, the optimal dose for eliciting these beneficial effects is unknown. A pilot randomized, double-blind, placebo-controlled crossover study was therefore performed to determine the effects of ingesting 3.3 mL/kg of concentrated beetroot juice containing 0, 200, or 400 µmol/kg of nitrate in 9 healthy older subjects (mean age 70 ± 1 years). Maximal knee extensor power (Pmax) and speed (Vmax) were measured ~2.5 hours after nitrate ingestion using isokinetic dynamometry. Blood pressure was monitored periodically throughout each study. Pmax (in W/kg) was higher (p < .05) after the lower dose (3.9 ± 0.4) compared to the placebo (3.7 ± 0.4) or higher dose (3.7 ± 0.4). Vmax (in rad/s) also tended to be higher (p = .08) after the lower dose (11.9 ± 0.7) compared to the placebo (10.8 ± 0.8) or higher dose (11.2 ± 0.8). Eight out of 9 subjects achieved a higher Pmax and Vmax after the lower versus the higher dose. These dose-related changes in muscle contractility generally paralleled changes in breath NO levels. No significant changes were found in systolic, diastolic, or mean arterial blood pressure. A lower dose of nitrate increases muscle speed and power in healthy older individuals, but these improvements are lost at a higher dose. Blood pressure, on the other hand, is not reduced even with a higher dose.
Collapse
Affiliation(s)
- Edgar J Gallardo
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Purdue University Indianapolis
| | - Derrick A Gray
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Purdue University Indianapolis
| | - Richard L Hoffman
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Purdue University Indianapolis
| | - Brandon A Yates
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Purdue University Indianapolis
| | - Ranjani N Moorthi
- Department of Internal Medicine, School of Medicine, Indiana University Purdue University Indianapolis
| | - Andrew R Coggan
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Purdue University Indianapolis
| |
Collapse
|
50
|
Townsend JR, Hart TL, Haynes JT, Woods CA, Toy AM, Pihera BC, Aziz MA, Zimmerman GA, Jones MD, Vantrease WC, Gonzalez AM. Influence of Dietary Nitrate Supplementation on Physical Performance and Body Composition Following Offseason Training in Division I Athletes. J Diet Suppl 2021; 19:534-549. [PMID: 33754923 DOI: 10.1080/19390211.2021.1900482] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To determine the effects of dietary nitrate supplementation, in the form of red spinach extract (RSE), on adaptations to offseason training in collegiate athletes. Methods: Sixteen Division I male baseball athletes (20.5 ± 1.7y, 90.4 ± 0.5 kg) enrolled in this study and were randomized into a RSE (n = 8) or placebo (n = 8; PL) group. Athletes completed an 11-week resistance training program during the offseason, which consisted of 2-3 workouts per week of upper and lower-body exercises and baseball-specific training. Athletes consumed a RSE (2 g; 180 mg nitrate) or PL supplement daily for the entire offseason training program. Pre and post-training, all athletes underwent one-repetition maximum (1RM) strength testing for the bench press and completed a Wingate anaerobic cycle test (WAnT). Body composition analysis was completed via a 4-compartment model, as well as muscle thickness (MT) measurement of the rectus femoris (RF) and vastus lateralis (VL) via ultrasonography. Resting heart rate and blood pressure (BP) were also obtained. Separate repeated measures analyses of variance were used to analyze all data. Results: Significant (p ≤ 0.05) main effects for time were observed for improved bench 1RM, fat-free mass, body fat percentage, RF MT, and VL MT. No significant group x time interactions (p > 0.05) were found for any measure of performance, body composition, or cardiovascular health. However, a trend for improved peak power in the WAnT was observed (p = 0.095; η2=0.200). Conclusions: These data suggest that daily RSE supplementation had no effect on performance, body composition, or cardiovascular measures in male Division I baseball players following offseason training.
Collapse
Affiliation(s)
| | - Tricia L Hart
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN
| | - James T Haynes
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN
| | - Clint A Woods
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN
| | - Ann M Toy
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN
| | - Bailey C Pihera
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN
| | - Marko A Aziz
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN
| | - Grace A Zimmerman
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN
| | - Megan D Jones
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN
| | - William C Vantrease
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN
| | - Adam M Gonzalez
- Department of Health Professions, Hofstra University, Hempstead, NY
| |
Collapse
|