1
|
Montalvo-Alonso JJ, Del Val-Manzano M, Ferragut C, Valadés D, López-Samanes Á, Domínguez R, Pérez-López A. Single and combined effect of beetroot juice and caffeine intake on muscular strength, power and endurance performance in resistance-trained males. Sci Rep 2025; 15:16781. [PMID: 40369047 PMCID: PMC12078514 DOI: 10.1038/s41598-025-02021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 05/08/2025] [Indexed: 05/16/2025] Open
Abstract
To examine the single and combined effect of acute beetroot juice and caffeine supplementation in muscular strength, power, and endurance performance. Thirteen resistance-trained males participated in a triple-blind, cross-over, randomized controlled-trial with four conditions: (a) caffeine (CAF); (b) beetroot juice (BJ); (c) caffeine and beetroot juice (CAF + BJ); (d) placebo (PLA). Participants ingested 70 mL of beetroot juice, concentrated NO3--rich beverage (BJ, 6.4 mmol NO3-) or PLA (~ 0.04 mmol NO3-) 180 min and caffeine or placebo (3 mg/kg) 60 min before the trial. Muscular strength/power was evaluated at 25%, 50%, 75%, 90% and 100%1RM and muscular endurance at 65%1RM, in bench press (BP) and back squat (BS). In all tests, mean (Vmean and Wmean) and peak (Vpeak and Wpeak) velocity and power output were measured. In BS, muscular strength/power showed a supplement-by-load effect in Vmean and Wmean (P < 0.05, ηp2 = 0.167-0.173), with caffeine increased compared to placebo at 75%, 90% and 100%1RM (9-25%, P < 0.005, g = 0.51-1.47); while in muscular endurance, significant differences were found in number of repetitions, Vmean and Wmean (P < 0.05, ηp2 > 0.277), in all experimental groups (CAF, BJ and CAF + BJ) compared to placebo (6-17%, P < 0.05, g = 0.46-94). No differences in muscular strength/power or endurance were found in BP. Single and combined acute beetroot juice and caffeine intake increased muscular endurance performance at 65%1RM in back squat but not in bench press exercise.
Collapse
Affiliation(s)
- Juan Jesús Montalvo-Alonso
- Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Facultad de Medicina y Ciencias de La Salud, Universidad de Alcalá, Ctra. Madrid-Barcelona Km 33,600, Alcalá de Henares, 28871, Madrid, Spain
| | - Marta Del Val-Manzano
- Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Facultad de Medicina y Ciencias de La Salud, Universidad de Alcalá, Ctra. Madrid-Barcelona Km 33,600, Alcalá de Henares, 28871, Madrid, Spain
| | - Carmen Ferragut
- Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Facultad de Medicina y Ciencias de La Salud, Universidad de Alcalá, Ctra. Madrid-Barcelona Km 33,600, Alcalá de Henares, 28871, Madrid, Spain
| | - David Valadés
- Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Facultad de Medicina y Ciencias de La Salud, Universidad de Alcalá, Ctra. Madrid-Barcelona Km 33,600, Alcalá de Henares, 28871, Madrid, Spain
| | - Álvaro López-Samanes
- GICAF Research Group, Research Methods and Evaluation Department, Faculty of Human and Social Sciences, Universidad Pontificia Comillas, Madrid, Spain
| | - Raúl Domínguez
- Departamento de Motricidad Humana y Rendimiento Deportivo, Universidad de Sevilla, Seville, Spain
| | - Alberto Pérez-López
- Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Facultad de Medicina y Ciencias de La Salud, Universidad de Alcalá, Ctra. Madrid-Barcelona Km 33,600, Alcalá de Henares, 28871, Madrid, Spain.
| |
Collapse
|
2
|
Bescos R, Gallardo-Alfaro L, Ashor A, Rizzolo-Brime L, Siervo M, Casas-Agustench P. Nitrate and nitrite bioavailability in plasma and saliva: Their association with blood pressure - A systematic review and meta-analysis. Free Radic Biol Med 2025; 226:70-83. [PMID: 39522567 DOI: 10.1016/j.freeradbiomed.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
In this study, we conducted a systematic review and meta-analysis to determine plasma and salivary nitrate (NO3-) and nitrite (NO2-) concentrations under resting and fasting conditions in different type of individuals and their association with blood pressure levels. A total of 77 studies, involving 1918 individuals aged 19-74 years (males = 906; females = 1012), which measured plasma and/or salivary NO3- and NO2- using the chemiluminescence technique, were included. Mean plasma NO3- and NO2- concentrations were 33.9 μmol/L and 158.3 nmol/L, respectively. Subgroup analyses revealed lower plasma NO3- and NO2- concentrations in individuals with cardiometabolic risk (NO3-: 21.2 μmol/L; 95 % CI, 13.4-29.0; NO2-: 122.8 nmol/L; 95 % CI, 75.3-138.9) compared to healthy (NO3-: 33.9 μmol/L; 95 % CI, 29.9-37.9; NO2-: 159.5 nmol/L; 95 % CI, 131.8-187.1; P < 0.01) and trained individuals (NO3-: 43.0 μmol/L; 95 % CI, 13.2-72.9; NO2-: 199.3 nmol/L; 95 % CI, 117.6-281; P < 0.01). Mean salivary NO3- and NO2- concentrations were 546.2 μmol/L and 197.8 μmol/L, respectively. Salivary NO3-, but no NO2-, concentrations were higher in individuals with cardiometabolic risk (680.0 μmol/L; 95 % CI, 510.2-849.8; P = 0.001) compared to healthy individuals (535.9 μmol/L; 95 % CI, 384.2-687.6). A significant positive association (coefficient, 15.4 [95 % CI, 0.255 to 30.5], P = 0.046) was observed between salivary NO3- and diastolic blood pressure (DBP). These findings suggest that the health status is positively associated with plasma NO3- and NO2- concentrations, but the circulatory levels of these anions are not associated with blood pressure. Only salivary NO3- showed a significant positive association with DBP.
Collapse
Affiliation(s)
- Raul Bescos
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth, PL4 6AB, United Kingdom.
| | - Laura Gallardo-Alfaro
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; RICAPPS- Red de Investigación Cooperativa de Atención Primaria y Promoción de la Salud - Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Ammar Ashor
- Department of Internal Medicine, College of Medicine, University of Al-Mustansiriyah, Baghdad, Iraq
| | - Lucia Rizzolo-Brime
- Unit of Nutrition and Cancer, Catalan Institute of Oncology-ICO, 08908, L'Hospitalet de Llobregat, Barcelona, Spain; Nutrition and Cancer Group, Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute-IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mario Siervo
- School of Population Health, Curtin University, Perth, WA, Australia
| | - Patricia Casas-Agustench
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth, PL4 6AB, United Kingdom
| |
Collapse
|
3
|
Rowland SN, O'Donnell E, James LJ, Da Boit M, Fujii N, Arnold JT, Lloyd AB, Eglin CM, Shepherd AI, Bailey SJ. Nitrate ingestion blunts the increase in blood pressure during cool air exposure: a double-blind, placebo-controlled, randomized, crossover trial. J Appl Physiol (1985) 2024; 136:1364-1375. [PMID: 38572540 PMCID: PMC11365552 DOI: 10.1152/japplphysiol.00593.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Cold exposure increases blood pressure (BP) and salivary flow rate (SFR). Increased cold-induced SFR would be hypothesized to enhance oral nitrate delivery for reduction to nitrite by oral anaerobes and to subsequently elevate plasma [nitrite] and nitric oxide bioavailability. We tested the hypothesis that dietary nitrate supplementation would increase plasma [nitrite] and lower BP to a greater extent in cool compared with normothermic conditions. Twelve males attended the laboratory on four occasions. Baseline measurements were completed at 28°C. Subsequently, participants ingested 140 mL of concentrated nitrate-rich (BR; ∼13 mmol nitrate) or nitrate-depleted (PL) beetroot juice. Measurements were repeated over 3 h at either 28°C (Norm) or 20°C (Cool). Mean skin temperature was lowered compared with baseline in PL-Cool and BR-Cool. SFR was greater in BR-Norm, PL-Cool, and BR-Cool than PL-Norm. Plasma [nitrite] at 3 h was higher in BR-Cool (592 ± 239 nM) versus BR-Norm (410 ± 195 nM). Systolic BP (SBP) at 3 h was not different between PL-Norm (117 ± 6 mmHg) and BR-Norm (113 ± 9 mmHg). SBP increased above baseline at 1, 2, and 3 h in PL-Cool but not BR-Cool. These results suggest that BR consumption is more effective at increasing plasma [nitrite] in cool compared with normothermic conditions and blunts the rise in BP following acute cool air exposure, which might have implications for attenuating the increased cardiovascular strain in the cold.NEW & NOTEWORTHY Compared with normothermic conditions, acute nitrate ingestion increased plasma [nitrite], a substrate for oxygen-independent nitric oxide generation, to a greater extent during cool air exposure. Systolic blood pressure was increased during cool air exposure in the placebo condition with this cool-induced blood pressure increase attenuated after acute nitrate ingestion. These findings improve our understanding of environmental factors that influence nitrate metabolism and the efficacy of nitrate supplementation to lower blood pressure.
Collapse
Affiliation(s)
- Samantha N Rowland
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Emma O'Donnell
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Lewis J James
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Mariasole Da Boit
- Health and Life Sciences, School of Allied Health Sciences, De Montfort University, Leicester, United Kingdom
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
- Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Ibaraki, Japan
| | - Josh T Arnold
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom
| | - Alex B Lloyd
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Clare M Eglin
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, United Kingdom
| | - Anthony I Shepherd
- Clinical Health and Rehabilitation Team, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, United Kingdom
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
4
|
Rowland SN, James LJ, O'Donnell E, Bailey SJ. Influence of acute dietary nitrate supplementation timing on nitrate metabolism, central and peripheral blood pressure and exercise tolerance in young men. Eur J Appl Physiol 2024; 124:1381-1396. [PMID: 38040982 PMCID: PMC11055761 DOI: 10.1007/s00421-023-05369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
PURPOSE Dietary nitrate (NO3-) supplementation can lower systolic blood pressure (SBP) and improve exercise performance. Salivary flow rate (SFR) and pH are key determinants of oral NO3- reduction and purported to peak in the afternoon. We tested the hypotheses that NO3--rich beetroot juice (BR) would increase plasma [nitrite] ([NO2-]), lower SBP and improve exercise performance to a greater extent in the afternoon (AFT) compared to the morning (MORN) and evening (EVE). METHOD Twelve males completed six experimental visits in a repeated-measures, crossover design. NO3--depleted beetroot juice (PL) or BR (~ 13 mmol NO3-) were ingested in the MORN, AFT and EVE. SFR and pH, salivary and plasma [NO3-] and [NO2-], brachial SBP and central SBP were measured pre and post supplementation. A severe-intensity exercise tolerance test was completed to determine cycling time to exhaustion (TTE). RESULTS There were no between-condition differences in mean SFR or salivary pH. The elevation in plasma [NO2-] after BR ingestion was not different between BR-MORN, BR-AFT and BR-EVE. Brachial SBP was unchanged following BR supplementation in all conditions. Central SBP was reduced in BR-MORN (- 3 ± 4 mmHg), BR-AFT (- 4 ± 3 mmHg), and BR-EVE (- 2 ± 3 mmHg), with no differences between timepoints. TTE was not different between BR and PL at any timepoint. CONCLUSION Acute BR supplementation was ineffective at improving TTE and brachial SBP and similarly effective at increasing plasma [NO2-] and lowering central SBP across the day, which may have implications for informing NO3- supplementation strategies.
Collapse
Affiliation(s)
- Samantha N Rowland
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Lewis J James
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Emma O'Donnell
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK.
- Department of Cardiovascular Science, University of Leicester, Leicester, UK.
| |
Collapse
|
5
|
Webb AJ. "Every beet you take": lowering systolic blood pressure and improving vascular function/exercise capacity via the dietary nitrate-nitrite-NO pathway in patients with COPD. Eur Respir J 2024; 63:2302238. [PMID: 38302179 DOI: 10.1183/13993003.02238-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024]
Affiliation(s)
- Andrew J Webb
- Department of Clinical Pharmacology, King's College London British Heart Foundation Centre, School of Cardiovascular and Metabolic Medicine and Sciences, London, UK
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
6
|
Alasmari AM, Alsulayyim AS, Alghamdi SM, Philip KEJ, Buttery SC, Banya WAS, Polkey MI, Armstrong PC, Rickman MJ, Warner TD, Mitchell JA, Hopkinson NS. Oral nitrate supplementation improves cardiovascular risk markers in COPD: ON-BC, a randomised controlled trial. Eur Respir J 2024; 63:2202353. [PMID: 38123239 PMCID: PMC10831142 DOI: 10.1183/13993003.02353-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Short-term studies suggest that dietary nitrate (NO3 -) supplementation may improve the cardiovascular risk profile, lowering blood pressure (BP) and enhancing endothelial function. It is not clear if these beneficial effects are sustained and whether they apply in people with COPD, who have a worse cardiovascular profile than those without COPD. Nitrate-rich beetroot juice (NR-BRJ) is a convenient dietary source of nitrate. METHODS The ON-BC trial was a randomised, double-blind, placebo-controlled parallel group study in stable COPD patients with home systolic BP (SBP) measurement ≥130 mmHg. Participants were randomly allocated (1:1) using computer-generated, block randomisation to either 70 mL NR-BRJ (400 mg NO3 -) (n=40) or an otherwise identical nitrate-depleted placebo juice (0 mg NO3 -) (n=41), once daily for 12 weeks. The primary end-point was between-group change in home SBP measurement. Secondary outcomes included change in 6-min walk distance (6MWD) and measures of endothelial function (reactive hyperaemia index (RHI) and augmentation index normalised to a heart rate of 75 beats·min-1 (AIx75)) using an EndoPAT device. Plasma nitrate and platelet function were also measured. RESULTS Compared with placebo, active treatment lowered SBP (Hodges-Lehmann treatment effect -4.5 (95% CI -5.9- -3.0) mmHg), and improved 6MWD (30.0 (95% CI 15.7-44.2) m; p<0.001), RHI (0.34 (95% CI 0.03-0.63); p=0.03) and AIx75 (-7.61% (95% CI -14.3- -0.95%); p=0.026). CONCLUSIONS In people with COPD, prolonged dietary nitrate supplementation in the form of beetroot juice produces a sustained reduction in BP, associated with an improvement in endothelial function and exercise capacity.
Collapse
Affiliation(s)
- Ali M Alasmari
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
- Respiratory Therapy Department, College of Medical Rehabilitation Sciences, Taibah University, Madinah, Saudi Arabia
| | - Abdullah S Alsulayyim
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Saeed M Alghamdi
- Clinical Technology Department, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Keir E J Philip
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
- Respiratory Medicine, Royal Brompton and Harefield Hospitals, London, UK
| | - Sara C Buttery
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| | - Winston A S Banya
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| | - Michael I Polkey
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
- Respiratory Medicine, Royal Brompton and Harefield Hospitals, London, UK
| | - Paul C Armstrong
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Matthew J Rickman
- National Heart and Lung Institute, Cardiothoracic Pharmacology, Vascular Biology, Imperial College London, London, UK
| | - Timothy D Warner
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jane A Mitchell
- National Heart and Lung Institute, Cardiothoracic Pharmacology, Vascular Biology, Imperial College London, London, UK
| | - Nicholas S Hopkinson
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| |
Collapse
|
7
|
Pinaffi-Langley ACDC, Dajani RM, Prater MC, Nguyen HVM, Vrancken K, Hays FA, Hord NG. Dietary Nitrate from Plant Foods: A Conditionally Essential Nutrient for Cardiovascular Health. Adv Nutr 2024; 15:100158. [PMID: 38008359 PMCID: PMC10776916 DOI: 10.1016/j.advnut.2023.100158] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023] Open
Abstract
Under specific conditions, such as catabolic stress or systemic inflammation, endogenous nutrient production becomes insufficient and exogenous supplementation (for example, through dietary intake) is required. Herein, we propose consideration of a dietary nitrate from plant foods as a conditionally essential nutrient for cardiovascular health based on its role in nitric oxide homeostasis. Nitrate derived from plant foods may function as a conditionally essential nutrient, whereas nitrate obtained from other dietary sources, such as drinking water and cured/processed meats, warrants separate consideration because of the associated health risks. We have surveyed the literature and summarized epidemiological evidence regarding the effect of dietary nitrate on cardiovascular disease and risk factors. Meta-analyses and population-based observational studies have consistently demonstrated an inverse association of dietary nitrate with blood pressure and cardiovascular disease outcomes. Considering the available evidence, we suggest 2 different approaches to providing dietary guidance on nitrate from plant-based dietary sources as a nutrient: the Dietary Reference Intakes developed by the National Academies of Sciences, Engineering, and Medicine, and the dietary guidelines evaluated by the Academy of Nutrition and Dietetics. Ultimately, this proposal underscores the need for food-based dietary guidelines to capture the complex and context-dependent relationships between nutrients, particularly dietary nitrate, and health.
Collapse
Affiliation(s)
- Ana Clara da C Pinaffi-Langley
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rosa M Dajani
- Nutrition and Food Services, San Francisco Health, University of California, San Francisco, CA, United States
| | - M Catherine Prater
- Department of Foods and Nutrition, Dawson Hall, University of Georgia, Athens, GA, United States
| | - Hoang Van M Nguyen
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | | | - Franklin A Hays
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Norman G Hord
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Department of Nutritional Sciences, College of Education and Human Sciences, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
8
|
Willmott T, Ormesher L, McBain AJ, Humphreys GJ, Myers JE, Singh G, Lundberg JO, Weitzberg E, Nihlen C, Cottrell EC. Altered Oral Nitrate Reduction and Bacterial Profiles in Hypertensive Women Predict Blood Pressure Lowering Following Acute Dietary Nitrate Supplementation. Hypertension 2023; 80:2397-2406. [PMID: 37702047 DOI: 10.1161/hypertensionaha.123.21263] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/26/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND The efficacy of dietary nitrate supplementation to lower blood pressure (BP) in pregnant women is highly variable. We aimed to investigate whether differences in oral microbiota profiles and oral nitrate-reducing capacity may explain interindividual differences in BP lowering following nitrate supplementation. METHODS Participants recruited for this study were both pregnant and nonpregnant women, with or without hypertension (n=55). Following an overnight fast, plasma, saliva, and tongue scraping samples were collected for measurement of nitrate/nitrite concentrations, oral NaR (nitrate reductase) activity, and microbiota profiling using 16S rRNA gene sequencing. Baseline BP was measured, followed by the administration of a single dose of dietary nitrate (400 mg nitrate in 70 mL beetroot juice). Post-nitrate intervention, plasma and salivary nitrate/nitrite concentrations and BP were determined 2.5 hours later. RESULTS Women with hypertension had significantly lower salivary nitrite concentrations (P=0.006) and reduced abundance of the nitrate-reducing taxa Veillonella(P=0.007) compared with normotensive women. Oral NaR activity was not significantly different in pregnant versus nonpregnant women (P=0.991) but tended to be lower in hypertensive compared with normotensive women (P=0.099). Oral NaR activity was associated with both baseline diastolic BP (P=0.050) and change in diastolic BP following acute nitrate intake (P=0.01, adjusted for baseline BP). CONCLUSIONS The abundance and activity of oral nitrate-reducing bacteria impact both baseline BP as well as the ability of dietary nitrate supplementation to lower BP. Strategies to increase oral nitrate-reducing capacity could lower BP and enhance the efficacy of dietary nitrate supplementation, in pregnancy as well as in nonpregnant adults. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT03930693.
Collapse
Affiliation(s)
- Thomas Willmott
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences (T.W., L.O., J.E.M., E.C.C.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
- Division of Pharmacy and Optometry, School of Health Sciences (T.W., A.J.M., G.J.H.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Laura Ormesher
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences (T.W., L.O., J.E.M., E.C.C.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences (T.W., A.J.M., G.J.H.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Gavin J Humphreys
- Division of Pharmacy and Optometry, School of Health Sciences (T.W., A.J.M., G.J.H.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Jenny E Myers
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences (T.W., L.O., J.E.M., E.C.C.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Gurdeep Singh
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre (G.S.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (J.O.L., E.W., C.N.)
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (J.O.L., E.W., C.N.)
| | - Carina Nihlen
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (J.O.L., E.W., C.N.)
| | - Elizabeth C Cottrell
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences (T.W., L.O., J.E.M., E.C.C.), Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| |
Collapse
|
9
|
Sagar PS, Munt A, Saravanabavan S, Vahedi FA, Elhindi J, Nguyen B, Chau K, Harris DC, Lee V, Sud K, Wong N, Rangan GK. Efficacy of beetroot juice on reducing blood pressure in hypertensive adults with autosomal dominant polycystic kidney disease (BEET-PKD): study protocol for a double-blind, randomised, placebo-controlled trial. Trials 2023; 24:482. [PMID: 37507763 PMCID: PMC10386227 DOI: 10.1186/s13063-023-07519-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND In autosomal dominant polycystic kidney disease (ADPKD) impaired nitric oxide (NO) synthesis, in part, contributes to early-onset hypertension. Beetroot juice (BRJ) reduces blood pressure (BP) by increasing NO-mediated vasodilation. The aim of this double-blind, randomised, placebo-controlled study is to test the hypothesis that BRJ reduces systolic and diastolic clinic BP in hypertensive adults with ADPKD. METHODS Participants with ADPKD and treated hypertension (n = 60) will be randomly allocated (1:1) to receive a daily dose of either nitrate-replete (400 mg nitrate/day) or nitrate-deplete BRJ for 4 weeks. The co-primary outcomes are change in mean systolic and diastolic clinic BP before and after 4 weeks of treatment with daily BRJ. Secondary outcomes are changes in daily home BP, urinary albumin to creatinine ratio, serum and salivary nitrate/nitrite levels and serum asymmetric dimethylarginine levels before and after 4 weeks of BRJ. DISCUSSION The effect of BRJ in ADPKD has not been previously tested. BRJ is an accessible, natural dietary supplement that, if effective, will provide a novel adjunctive approach for treating hypertension in ADPKD. TRIAL REGISTRATION ClinicalTrials.gov NCT05401409. Retrospectively registered on 27th May 2022.
Collapse
Affiliation(s)
- Priyanka S Sagar
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, 2145, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, 2145, Australia
| | - Alexandra Munt
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, 2145, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, 2145, Australia
| | - Sayanthooran Saravanabavan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, 2145, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, 2145, Australia
| | - Farnoosh Asghar Vahedi
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, 2145, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, 2145, Australia
| | - James Elhindi
- Research and Education Network, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, 2145, Australia
| | - Beatrice Nguyen
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, 2145, Australia
| | - Katrina Chau
- Department of Renal Medicine, Blacktown Hospital, Western Sydney Local Health District, Sydney, NSW, 2148, Australia
- Blacktown Clinical School, Western Sydney University, Blacktown, NSW, 2148, Australia
| | - David C Harris
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, 2145, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, 2145, Australia
| | - Vincent Lee
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, 2145, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2145, Australia
| | - Kamal Sud
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2145, Australia
- Department of Renal Medicine, Nepean Hospital, Nepean Blue Mountains Local Health District, Sydney, NSW, 2750, Australia
| | - Nikki Wong
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2145, Australia
- Department of Renal Medicine, Nepean Hospital, Nepean Blue Mountains Local Health District, Sydney, NSW, 2750, Australia
| | - Gopala K Rangan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, 2145, Australia.
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, 2145, Australia.
| |
Collapse
|
10
|
Cocksedge SP, Causer AJ, Winyard PG, Jones AM, Bailey SJ. Oral Temperature and pH Influence Dietary Nitrate Metabolism in Healthy Adults. Nutrients 2023; 15:nu15030784. [PMID: 36771490 PMCID: PMC9919366 DOI: 10.3390/nu15030784] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
This study tested the hypothesis that the increases in salivary and plasma [NO2-] after dietary NO3- supplementation would be greater when oral temperature and pH were independently elevated, and increased further when oral temperature and pH were elevated concurrently. Seven healthy males (mean ± SD, age 23 ± 4 years) ingested 70 mL of beetroot juice concentrate (BR, which provided ~6.2 mmol NO3-) during six separate laboratory visits. In a randomised crossover experimental design, salivary and plasma [NO3-] and [NO2-] were assessed at a neutral oral pH with a low (TLo-pHNorm), intermediate (TMid-pHNorm), and high (THi-pHNorm) oral temperature, and when the oral pH was increased at a low (TLo-pHHi), intermediate (TMid-pHHi), and high (THi-pHHi) oral temperature. Compared with the TMid-pHNorm condition (976 ± 388 µM), the mean salivary [NO2-] 1-3 h post BR ingestion was higher in the TMid-pHHi (1855 ± 423 µM), THi-pHNorm (1371 ± 653 µM), THi-pHHi (1792 ± 741 µM), TLo-pHNorm (1495 ± 502 µM), and TLo-pHHi (2013 ± 662 µM) conditions, with salivary [NO2-] also higher at a given oral temperature when the oral pH was increased (p < 0.05). Plasma [NO2-] was higher 3 h post BR ingestion in the TMid-pHHi, THi-pHHi, and TLo-pHHi conditions, but not the TLo-pHNorm and THi-pHNorm conditions, compared with TMid-pHNorm (p < 0.05). Therefore, despite ingesting the same NO3- dose, the increases in salivary [NO2-] varied depending on the temperature and pH of the oral cavity, while the plasma [NO2-] increased independently of oral temperature, but to a greater extent at a higher oral pH.
Collapse
Affiliation(s)
- Stuart P. Cocksedge
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Adam J. Causer
- Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Paul G. Winyard
- Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK
| | - Andrew M. Jones
- Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Stephen J. Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
- Correspondence:
| |
Collapse
|
11
|
Tan R, Cano L, Lago-Rodríguez Á, Domínguez R. The Effects of Dietary Nitrate Supplementation on Explosive Exercise Performance: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020762. [PMID: 35055584 PMCID: PMC8775572 DOI: 10.3390/ijerph19020762] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Dietary nitrate supplementation is evidenced to induce physiological effects on skeletal muscle function in fast-twitch muscle fibers and may enhance high-intensity exercise performance. An important component of sport-specific skills is the ability to perform explosive movements; however, it is unclear if nitrate supplementation can impact explosive efforts. We examined the existing evidence to determine whether nitrate supplementation improves explosive efforts lasting ≤ 6 s. PubMed, Scopus and Directory of Open Access Journals (DOAJ) were searched for articles using the following search strategy: (nitrate OR nitrite OR beetroot) AND (supplement OR supplementation) AND (explosive OR power OR high intensity OR high-intensity OR sprint* OR “athletic performance”). Out of 810 studies, 18 were eligible according to inclusion criteria. Results showed that 4 of the 10 sprint-type studies observed improved sprint time, power output, and total work in cycling or running, whereas 4 of the 10 resistance-based exercise studies observed improvements to power and velocity of free-weight bench press as well as isokinetic knee extension and flexion at certain angular velocities. These results suggest that nitrate potentially improves explosive exercise performance, but further work is required to clarify the factors influencing the efficacy of nitrate in different exercise modalities.
Collapse
Affiliation(s)
- Rachel Tan
- Faculty of Sports Medicine, Natural Sciences Division, Pepperdine University, Malibu, CA 90263, USA;
| | - Leire Cano
- Independent Researcher, 48991 Getxo, Spain;
| | - Ángel Lago-Rodríguez
- Movement, Brain and Health Group, Center of Higher Education Alberta Giménez, 07013 Palma de Mallorca, Spain
- Correspondence: ; Tel.: +34-680-330-105
| | - Raúl Domínguez
- Departamento de Motricidad Humana y Rendimiento, Universidad de Sevilla, 41013 Sevilla, Spain;
- Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras 37200-000, Brazil
| |
Collapse
|
12
|
Dent MR, DeMartino AW, Tejero J, Gladwin MT. Endogenous Hemoprotein-Dependent Signaling Pathways of Nitric Oxide and Nitrite. Inorg Chem 2021; 60:15918-15940. [PMID: 34313417 PMCID: PMC9167621 DOI: 10.1021/acs.inorgchem.1c01048] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interdisciplinary research at the interface of chemistry, physiology, and biomedicine have uncovered pivotal roles of nitric oxide (NO) as a signaling molecule that regulates vascular tone, platelet aggregation, and other pathways relevant to human health and disease. Heme is central to physiological NO signaling, serving as the active site for canonical NO biosynthesis in nitric oxide synthase (NOS) enzymes and as the highly selective NO binding site in the soluble guanylyl cyclase receptor. Outside of the primary NOS-dependent biosynthetic pathway, other hemoproteins, including hemoglobin and myoglobin, generate NO via the reduction of nitrite. This auxiliary hemoprotein reaction unlocks a "second axis" of NO signaling in which nitrite serves as a stable NO reservoir. In this Forum Article, we highlight these NO-dependent physiological pathways and examine complex chemical and biochemical reactions that govern NO and nitrite signaling in vivo. We focus on hemoprotein-dependent reaction pathways that generate and consume NO in the presence of nitrite and consider intermediate nitrogen oxides, including NO2, N2O3, and S-nitrosothiols, that may facilitate nitrite-based signaling in blood vessels and tissues. We also discuss emergent therapeutic strategies that leverage our understanding of these key reaction pathways to target NO signaling and treat a wide range of diseases.
Collapse
Affiliation(s)
- Matthew R Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Anthony W DeMartino
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
13
|
Moreira LDSG, Fanton S, Cardozo L, Borges NA, Combet E, Shiels PG, Stenvinkel P, Mafra D. Pink pressure: beetroot (Beta vulgaris rubra) as a possible novel medical therapy for chronic kidney disease. Nutr Rev 2021; 80:1041-1061. [PMID: 34613396 DOI: 10.1093/nutrit/nuab074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) manifests with systemic inflammation, oxidative stress, and gut dysbiosis, resulting in metabolic disorders and elevated rates of cardiovascular disease-associated death. These all correlate with a high economic cost to healthcare systems. Growing evidence indicates that diet is an indispensable ally in the prevention and management of CKD and its complications. In this context, the root vegetable beetroot (Beta vulgaris rubra) deserves special attention because it is a source of several bioactive compounds, such as nitrate, betaine, and betalain, and has shown beneficial effects in CKD, including reduction of blood pressure, anti-inflammatory effects, and antioxidant actions by scavenging radical oxidative species, as observed in preclinical studies. Beetroot consumption as a possible therapeutic strategy to improve the clinical treatment of patients with CKD and future directions for clinical studies are addressed in this narrative review.
Collapse
Affiliation(s)
- Laís de Souza Gouveia Moreira
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Susane Fanton
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ludmila Cardozo
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Natalia A Borges
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Emilie Combet
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Paul G Shiels
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Stenvinkel
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Denise Mafra
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Acute Effects of Dietary Nitrate on Exercise Tolerance, Muscle Oxygenation, and Cardiovascular Function in Patients With Peripheral Arterial Disease. Int J Sport Nutr Exerc Metab 2021; 31:385-396. [PMID: 34284348 DOI: 10.1123/ijsnem.2021-0054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/18/2022]
Abstract
Previous studies have used supplements to increase dietary nitrate intake in clinical populations. Little is known about whether effects can also be induced through vegetable consumption. Therefore, the aim of this study was to assess the impact of dietary nitrate, through nitrate-rich vegetables (NRV) and beetroot juice (BRJ) supplementation, on plasma nitrate and nitrite concentrations, exercise tolerance, muscle oxygenation, and cardiovascular function in patients with peripheral arterial disease. In a randomized crossover design, 18 patients with peripheral arterial disease (age: 73 ± 8 years) followed a nitrate intake protocol (∼6.5 mmol) through the consumption of NRV, BRJ, and nitrate-depleted BRJ (placebo). Blood samples were taken, blood pressure and arterial stiffness were measured in fasted state and 150 min after intervention. Each intervention was followed by a maximal walking exercise test to determine claudication onset time and peak walking time. Gastrocnemius oxygenation was measured by near-infrared spectroscopy. Blood samples were taken and blood pressure was measured 10 min after exercise. Mean plasma nitrate and nitrite concentrations increased (nitrate; Time × Intervention interaction; p < .001), with the highest concentrations after BRJ (494 ± 110 μmol/L) compared with NRV (202 ± 89 μmol/L) and placebo (80 ± 19 μmol/L; p < .001). Mean claudication onset time and peak walking time did not differ between NRV (413 ± 187 s and 745 ± 220 s, respectively), BRJ (392 ± 154 s and 746 ± 176 s), and placebo (403 ± 176 s and 696 ± 222 s) (p = .762 and p = .165, respectively). Gastrocnemius oxygenation, blood pressure, and arterial stiffness were not affected by the intervention. NRV and BRJ intake markedly increase plasma nitrate and nitrite, but this does not translate to improved exercise tolerance, muscle oxygenation, and/or cardiovascular function.
Collapse
|
15
|
Repeated administration of inorganic nitrate on blood pressure and arterial stiffness: a systematic review and meta-analysis of randomized controlled trials. J Hypertens 2021; 38:2122-2140. [PMID: 32723980 DOI: 10.1097/hjh.0000000000002524] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE We aim to synthesize effects of repeated administration (≥3 days) of inorganic nitrate on blood pressure and arterial stiffness measures. METHODS We conducted a systematic review and meta-analysis of randomized controlled trials with at least 3 days treatment of inorganic nitrate on blood pressure and arterial stiffness in individuals with or without elevated cardiovascular disease risk. MEDLINE, EMBASE and the Cochrane Library were searched through 2 July 2019. Two independent reviewers extracted relevant study data. Data were pooled using the generic inverse variance method with random-effects model, and expressed as mean differences with 95% confidence intervals. Certainty in the evidence was assessed using GRADE. RESULTS Forty-seven trials were included (n = 1101). Administration of inorganic nitrate significantly lowered SBP [mean difference: -2.91 mmHg, 95% confidence interval (95% CI): -3.92 to -1.89, I = 76%], DBP (mean difference: -1.45 mmHg, 95% CI: -2.22 to -0.68, I = 78%], central SBP (mean difference: -1.56 mmHg, 95% CI: -2.62 to -0.50, I = 30%) and central DBP (mean difference: -1.99 mmHg, 95% CI: -2.37 to -1.60, I = 0%). There was no effect on 24-h blood pressure, augmentation index or pulse wave velocity. Certainty in the evidence was graded moderate for central blood pressure, pulse wave velocity and low for peripheral blood pressure, 24-h blood pressure and augmentation index. CONCLUSION Repeated administration (≥3 days) of inorganic nitrate lower peripheral and central blood pressure. Results appear to be driven by beneficial effects in healthy and hypertensive individuals. More studies are required to increase certainty in the evidence.
Collapse
|
16
|
Shannon OM, Easton C, Shepherd AI, Siervo M, Bailey SJ, Clifford T. Dietary nitrate and population health: a narrative review of the translational potential of existing laboratory studies. BMC Sports Sci Med Rehabil 2021; 13:65. [PMID: 34099037 PMCID: PMC8186051 DOI: 10.1186/s13102-021-00292-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dietary inorganic nitrate (NO3-) is a polyatomic ion, which is present in large quantities in green leafy vegetables and beetroot, and has attracted considerable attention in recent years as a potential health-promoting dietary compound. Numerous small, well-controlled laboratory studies have reported beneficial health effects of inorganic NO3- consumption on blood pressure, endothelial function, cerebrovascular blood flow, cognitive function, and exercise performance. Translating the findings from small laboratory studies into 'real-world' applications requires careful consideration. MAIN BODY This article provides a brief overview of the existing empirical evidence basis for the purported health-promoting effects of dietary NO3- consumption. Key areas for future research are then proposed to evaluate whether promising findings observed in small animal and human laboratory studies can effectively translate into clinically relevant improvements in population health. These proposals include: 1) conducting large-scale, longer duration trials with hard clinical endpoints (e.g. cardiovascular disease incidence); 2) exploring the feasibility and acceptability of different strategies to facilitate a prolonged increase in dietary NO3- intake; 3) exploitation of existing cohort studies to explore associations between NO3- intake and health outcomes, a research approach allowing larger samples sizes and longer duration follow up than is feasible in randomised controlled trials; 4) identifying factors which might account for individual differences in the response to inorganic NO3- (e.g. sex, genetics, habitual diet) and could assist with targeted/personalised nutritional interventions; 5) exploring the influence of oral health and medication on the therapeutic potential of NO3- supplementation; and 6) examining potential risk of adverse events with long term high- NO3- diets. CONCLUSION The salutary effects of dietary NO3- are well established in small, well-controlled laboratory studies. Much less is known about the feasibility and efficacy of long-term dietary NO3- enrichment for promoting health, and the factors which might explain the variable responsiveness to dietary NO3- supplementation between individuals. Future research focussing on the translation of laboratory data will provide valuable insight into the potential applications of dietary NO3- supplementation to improve population health.
Collapse
Affiliation(s)
- Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Chris Easton
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Blantyre, Scotland, UK
| | - Anthony I Shepherd
- School of Sport, Health & Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| |
Collapse
|
17
|
Mirmiran P, Houshialsadat Z, Gaeini Z, Bahadoran Z, Azizi F. Functional properties of beetroot ( Beta vulgaris) in management of cardio-metabolic diseases. Nutr Metab (Lond) 2020; 17:3. [PMID: 31921325 PMCID: PMC6947971 DOI: 10.1186/s12986-019-0421-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/23/2019] [Indexed: 11/12/2022] Open
Abstract
Red beetroot (Beta vulgaris), as a naturally occurring root vegetable and a rich source of phytochemicals and bioactive compounds, is known for its beneficial roles in the improvement of several clinical and pathologic outcome. Chronic and acute beetroot juice supplementation, as a cost-effective strategy, is proposed to hold promises in controlling diabetes and insulin hemostasis, blood pressure and vascular function, renal health and the possible effect on microbiome abundance. The secondary outcome and physiological response of microbiome abundance modulation included the non- significant fluctuation of systolic and diastolic blood pressures. Also, some studies have suggested a reno-protective property of beetroot juice that is associated with the reduction of mortality rate and favorable changes in kidney’s functional parameters among patients with renal disorders. Similarly, it is shown that the persistent consumption of beetroot juice effectively postpones the postprandial glycemic response and decreases the blood glucose peak. The significant blood pressure lowering effect has been seen among normotensive subjects, which tend to be more considerable among hypertensive individuals and progressive among overweight adults. Within this context, this review aims to provide a comprehensive overview on the therapeutic applications of beetroot juice in metabolic disorders and theirs underlying mechanisms. Despite the inconsistencies in the set of results from the reviewed studies, there is no doubt that further contributing factors must be investigated more deeply in future studies.
Collapse
Affiliation(s)
- Parvin Mirmiran
- 1Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, No. 24, Sahid-Erabi St, Yemen St, Chamran Exp, Tehran, Iran
| | - Zeinab Houshialsadat
- 1Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, No. 24, Sahid-Erabi St, Yemen St, Chamran Exp, Tehran, Iran
| | - Zahra Gaeini
- 1Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, No. 24, Sahid-Erabi St, Yemen St, Chamran Exp, Tehran, Iran
| | - Zahra Bahadoran
- 1Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, No. 24, Sahid-Erabi St, Yemen St, Chamran Exp, Tehran, Iran
| | - Fereidoun Azizi
- 2Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Oliveira-Paula GH, Pinheiro LC, Tanus-Santos JE. Mechanisms impairing blood pressure responses to nitrite and nitrate. Nitric Oxide 2019; 85:35-43. [PMID: 30716418 DOI: 10.1016/j.niox.2019.01.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/13/2018] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
Hypertension is a multifactorial disease associated with impaired nitric oxide (NO) production and bioavailability. In this respect, restoring NO activity by using nitrite and nitrate has been considered a potential therapeutic strategy to treat hypertension. This possibility is justified by the understanding that both nitrite and nitrate may be recycled back to NO and also promote the generation of other bioactive species. This process involves a complex biological circuit known as the enterosalivary cycle of nitrate, where this anion is actively taken up by the salivary glands and converted to nitrite by nitrate-reducing bacteria in the oral cavity. Nitrite is then ingested and reduced to NO and other nitroso species under the acid conditions of the stomach, whereas reminiscent nitrite that escapes gastric reduction is absorbed systemically and can be converted into NO by nitrite-reductases in tissues. While there is no doubt that nitrite and nitrate exert antihypertensive effects, several agents can impair the blood pressure responses to these anions by disrupting the enterosalivary cycle of nitrate. These agents include dietary and smoking-derived thiocyanate, antiseptic mouthwash, proton pump inhibitors, ascorbate at high concentrations, and xanthine oxidoreductase inhibitors. In this article, we provide an overview of the physiological aspects of nitrite and nitrate bioactivation and the therapeutic potential of these anions in hypertension. We also discuss mechanisms by which agents counteracting the antihypertensive responses to nitrite and nitrate mediate their effects. These critical aspects should be taken into consideration when suggesting nitrate or nitrite-based therapies to patients.
Collapse
Affiliation(s)
- Gustavo H Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
19
|
DeMartino AW, Kim‐Shapiro DB, Patel RP, Gladwin MT. Nitrite and nitrate chemical biology and signalling. Br J Pharmacol 2019; 176:228-245. [PMID: 30152056 PMCID: PMC6295445 DOI: 10.1111/bph.14484] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
Inorganic nitrate (NO3 - ), nitrite (NO2 - ) and NO are nitrogenous species with a diverse and interconnected chemical biology. The formation of NO from nitrate and nitrite via a reductive 'nitrate-nitrite-NO' pathway and resulting in vasodilation is now an established complementary route to traditional NOS-derived vasodilation. Nitrate, found in our diet and abundant in mammalian tissues and circulation, is activated via reduction to nitrite predominantly by our commensal oral microbiome. The subsequent in vivo reduction of nitrite, a stable vascular reserve of NO, is facilitated by a number of haem-containing and molybdenum-cofactor proteins. NO generation from nitrite is enhanced during physiological and pathological hypoxia and in disease states involving ischaemia-reperfusion injury. As such, modulation of these NO vascular repositories via exogenously supplied nitrite and nitrate has been evaluated as a therapeutic approach in a number of diseases. Ultimately, the chemical biology of nitrate and nitrite is governed by local concentrations, reaction equilibrium constants, and the generation of transient intermediates, with kinetic rate constants modulated at differing physiological pH values and oxygen tensions. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Anthony W DeMartino
- Heart, Lung, Blood, and Vascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
| | - Daniel B. Kim‐Shapiro
- Department of PhysicsWake Forest UniversityWinston‐SalemNCUSA
- Translational Science CenterWake Forest UniversityWinston‐SalemNCUSA
| | - Rakesh P Patel
- Department of Pathology and Center for Free Radical BiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
- Division of Pulmonary, Allergy, and Critical Care MedicineUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
20
|
Lowering of blood pressure after nitrate-rich vegetable consumption is abolished with the co-ingestion of thiocyanate-rich vegetables in healthy normotensive males. Nitric Oxide 2018; 74:39-46. [DOI: 10.1016/j.niox.2018.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/20/2022]
|
21
|
McDonagh STJ, Wylie LJ, Thompson C, Vanhatalo A, Jones AM. Potential benefits of dietary nitrate ingestion in healthy and clinical populations: A brief review. Eur J Sport Sci 2018. [PMID: 29529987 DOI: 10.1080/17461391.2018.1445298] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This article provides an overview of the current literature relating to the efficacy of dietary nitrate (NO3-) ingestion in altering aspects of cardiovascular and metabolic health and exercise capacity in healthy and diseased individuals. The consumption of NO3--rich vegetables, such as spinach and beetroot, have been variously shown to promote nitric oxide bioavailability, reduce systemic blood pressure, enhance tissue blood flow, modulate muscle O2 utilisation and improve exercise tolerance both in normoxia and in hypoxia, as is commonly observed in a number of disease states. NO3- ingestion may, therefore, act as a natural means for augmenting performance and attenuating complications associated with limited O2 availability or transport, hypertension and the metabolic syndrome. Recent studies indicate that dietary NO3- might also augment intrinsic skeletal muscle contractility and improve the speed and power of muscle contraction. Moreover, several investigations suggest that NO3- supplementation may improve aspects of cognitive performance both at rest and during exercise. Collectively, these observations position NO3- as more than a putative ergogenic aid and suggest that increasing natural dietary NO3- intake may act as a prophylactic in countering the predations of senescence and certain cardiovascular-metabolic diseases.
Collapse
Affiliation(s)
- Sinead T J McDonagh
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Lee J Wylie
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Christopher Thompson
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Anni Vanhatalo
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Andrew M Jones
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| |
Collapse
|
22
|
Bahadoran Z, Mirmiran P, Kabir A, Azizi F, Ghasemi A. The Nitrate-Independent Blood Pressure-Lowering Effect of Beetroot Juice: A Systematic Review and Meta-Analysis. Adv Nutr 2017; 8:830-838. [PMID: 29141968 PMCID: PMC5683004 DOI: 10.3945/an.117.016717] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Beetroot is considered a complementary treatment for hypertension because of its high content of inorganic NO3 This systematic review and meta-analysis aimed to clarify several aspects of beetroot juice supplementation on systolic blood pressure (SBP) and diastolic blood pressure (DBP). We searched PubMed, Scopus, and Embase databases, and the reference lists of previous reviews. Randomized clinical trials that investigated the effects of beetroot juice on resting blood pressure in humans were recruited for quality assessment, meta-analyses, subgroup analyses, and meta-regressions; of these, 22 were conducted between 2009 and 2017 and included a total of 47 intervention (n = 650) and 43 control (n = 598) groups. Overall, SBP (-3.55 mm Hg; 95% CI: -4.55, -2.54 mm Hg) and DBP (-1.32 mm Hg; 95% CI: -1.97, -0.68 mm Hg) were significantly lower in the beetroot juice-supplemented groups than in the control groups. The mean difference of SBP was larger between beetroot juice-supplemented and control groups in the longer than in the shorter (≥14 compared with <14 d) study durations (-5.11 compared with -2.67 mm Hg) and the highest compared with the lowest (500 compared with 70 and 140 mL/d) doses of beetroot juice (-4.78 compared with -2.37 mm Hg). A positive correlation was observed between beetroot juice doses and the mean differences of blood pressures. In contrast, a smaller effect size of blood pressures was observed after supplementation with higher NO3 (milligrams per 100 mL beetroot juice). A weak effect size was observed in a meta-analysis of trials that used NO3-depleted beetroot juice as a placebo compared with other interventions (-3.09 compared with -4.51 mm Hg for SBP and -0.81 compared with -2.01 mm Hg for DBP). Our results demonstrate the blood pressure-lowering effects of beetroot juice and highlight its potential NO3-independent effects.
Collapse
Affiliation(s)
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; and
| | - Ali Kabir
- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Asghar Ghasemi
- Endocrine Physiology Center, Research Institute for Endocrine Sciences
| |
Collapse
|
23
|
Ahmed KA, Nichols AL, Honavar J, Dransfield MT, Matalon S, Patel RP. Measuring nitrate reductase activity from human and rodent tongues. Nitric Oxide 2017; 66:62-70. [PMID: 28390999 DOI: 10.1016/j.niox.2017.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 12/14/2022]
Abstract
Reduction of salivary nitrate to nitrite by oral microbes expressing nitrate-reductase has emerged as a crucial pathway in systemic NO homeostasis in humans and other mammals. Selective depletion of oral microbes prevents dietary nitrate-dependent lowering of blood pressure, inhibition of platelet aggregation and ischemic injury. To date, most studies interrogate enterosalivary nitrate reduction by following changes in saliva or plasma nitrite and NO-signaling (functional) end points. Little is known about whether, and if so how, nitrate-reductase enzymatic activity per se (i.e. independent of nitrate levels) is a variable and may account for any individual to individual variation. Here, we describe a minimally invasive protocol that allows for NR activity determination from human, rat and mouse tongue scrapes/swabs. We validate this method using selective application of antiseptic agents to the distal tongue surface which decreased NR activity by >80% and show that bacterial number is a significant variable in measured NR activities between males and females. Also, we show that NR activity is >80% lower in smokers (humans) and after bromine gas exposure (mice), suggesting that exposure to inhaled reactive substances inhibit NR activity identifying a potentially new mechanism by which environmental toxicants promote dysfunction in NO-bioavailability. The described method will facilitate studies testing whether NR specific activity is a variable in different pathophysiologic settings, and in turn how this activity modulates enterosalivary nitrate-reduction.
Collapse
Affiliation(s)
- Khandaker A Ahmed
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, United States
| | - Alexandria L Nichols
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, United States
| | - Jaideep Honavar
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, United States
| | - Mark T Dransfield
- Department of Medicine, Pulmonary, Allergy and Critical Care, University of Alabama at Birmingham, United States
| | - Sadis Matalon
- Anesthesiology and Pulmonary Injury Repair Center, University of Alabama at Birmingham, United States
| | - Rakesh P Patel
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, United States.
| |
Collapse
|
24
|
Bailey SJ, Blackwell JR, Wylie LJ, Emery A, Taylor E, Winyard PG, Jones AM. Influence of iodide ingestion on nitrate metabolism and blood pressure following short-term dietary nitrate supplementation in healthy normotensive adults. Nitric Oxide 2016; 63:13-20. [PMID: 28024935 DOI: 10.1016/j.niox.2016.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/08/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023]
Abstract
Uptake of inorganic nitrate (NO3-) into the salivary circulation is a rate-limiting step for dietary NO3- metabolism in mammals. It has been suggested that salivary NO3- uptake occurs in competition with inorganic iodide (I-). Therefore, this study tested the hypothesis that I- supplementation would interfere with NO3- metabolism and blunt blood pressure reductions after dietary NO3- supplementation. Nine healthy adults (4 male, mean ± SD, age 20 ± 1 yr) reported to the laboratory for initial baseline assessment (control) and following six day supplementation periods with 140 mL·day-1 NO3--rich beetroot juice (8.4 mmol NO3-·day-1) and 198 mg potassium gluconate·day-1 (nitrate), and 140 mL·day-1 NO3--rich beetroot juice and 450 μg potassium iodide·day-1 (nitrate + iodide) in a randomized, cross-over experiment. Salivary [I-] was higher in the nitrate + iodide compared to the control and NIT trials (P < 0.05). Salivary and plasma [NO3-] and [NO2-] were higher in the nitrate and nitrate + iodide trials compared to the control trial (P < 0.05). Plasma [NO3-] was higher (474 ± 127 vs. 438 ± 117 μM) and the salivary-plasma [NO3-] ratio was lower (14 ± 6 vs. 20 ± 6 μM), indicative of a lower salivary NO3- uptake, in the nitrate + iodide trial compared to the nitrate trial (P < 0.05). Plasma and salivary [NO2-] were not different between the nitrate and nitrate + iodide trials (P > 0.05). Systolic blood pressure was lower than control (112 ± 13 mmHg) in the nitrate (106 ± 13 mmHg) and nitrate + iodide (106 ± 11 mmHg) trials (P < 0.05), with no differences between the nitrate and nitrate + iodide trials (P > 0.05). In conclusion, co-ingesting NO3- and I- perturbed salivary NO3- uptake, but the increase in salivary and plasma [NO2-] and the lowering of blood pressure were similar compared to NO3- ingestion alone. Therefore, increased dietary I- intake, which is recommended in several countries worldwide as an initiative to offset hypothyroidism, does not appear to compromise the blood pressure reduction afforded by increased dietary NO3- intake.
Collapse
Affiliation(s)
- Stephen J Bailey
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK.
| | - Jamie R Blackwell
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK
| | - Lee J Wylie
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK
| | - Annabelle Emery
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK
| | - Ellie Taylor
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK
| | - Paul G Winyard
- University of Exeter Medical School, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK
| | - Andrew M Jones
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, UK
| |
Collapse
|