1
|
Geng S, Zhou Y, Ng G, Fan Q, Cheong S, Mazur F, Boyer C, Chandrawati R. Selenium nanoparticles as catalysts for nitric oxide generation. Colloids Surf B Biointerfaces 2025; 251:114592. [PMID: 40024109 DOI: 10.1016/j.colsurfb.2025.114592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/09/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
The critical role of nitric oxide (NO), a potent signalling molecule, in various physiological processes has driven the development of NO delivery strategies for numerous therapeutic applications. However, NO's short half-life poses a significant challenge for its effective delivery. Glutathione peroxidase, a selenium-containing antioxidant enzyme, can catalyse the decomposition of S-nitrosothiols (endogenous NO prodrugs) to produce NO in situ. Inspired by this, we explored selenium nanoparticles (SeNPs) for their enzyme-mimicking NO-generating activity. Stabilised with polyvinyl alcohol (PVA) or chitosan (CTS), SeNPs demonstrated tuneable NO generation when exposed to varying concentrations of NO prodrug, nanoparticles, and glutathione (GSH). In the presence of GSH, a naturally occurring antioxidant in the human body, 0.1 µg mL-1 of SeNPs could catalytically generate 7.5 µM of NO under physiological conditions within 30 min. We investigated the effects of nanoparticle crystallinity and NO prodrug type on NO generation, as well as the stability and sustained NO generation of the catalytic nanoparticles. PVA-stabilised SeNPs were non-toxic to NIH 3T3 cells and effectively dispersed Pseudomonas aeruginosa biofilms upon NO generation. This study broadens the repertoire of nanomaterials for NO generation and highlights SeNPs as a non-toxic alternative for therapeutic NO delivery.
Collapse
Affiliation(s)
- Shu Geng
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Yingzhu Zhou
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Gervase Ng
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia; Cluster for Advanced Macromolecular Design (CAMD), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Qingqing Fan
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Soshan Cheong
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia; Cluster for Advanced Macromolecular Design (CAMD), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Domagała A, Buda S, Baranska M, Zając G. Glutathione and its structural modifications recognized by Raman Optical Activity and Circularly Polarized Luminescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124995. [PMID: 39208544 DOI: 10.1016/j.saa.2024.124995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Raman Optical Activity combined with Circularly Polarized Luminescence (ROA-CPL) was used in the spectral recognition of glutathione peptide (GSH) and its model post-translational modifications (PTMs). We demonstrate the potential of ROA spectroscopy and CPL probes (EuCl3, Na3[Eu(DPA)3], NaEuEDTA) in the study of unmodified peptide, i.e. GSH, and its derivatives, i.e. glutathione oxidized (GSSG), S-acetylglutathione (GSAc) and S-nitrosoglutathione (GSNO). ROA spectral features of GSH, GSSG, and GSAc were determined along with thier changes upon the different pH conditions. Apart from the ROA, induced CPL signals of Eu(III) probes also proved to be sensitive to the structural modifications of GSH-based model PTMs, enabling their spectral recognition, especially by the NaEuEDTA probe.
Collapse
Affiliation(s)
- Agnieszka Domagała
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Prof. St. Łojasiewicza 11, 30-348 Krakow, Poland
| | - Szymon Buda
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland
| | - Malgorzata Baranska
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland; Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland
| | - Grzegorz Zając
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland.
| |
Collapse
|
3
|
Bagheri Azizabad Z, Shabani I, Shabani A. Hybrid thermosensitive hydrogel/amniotic membrane structure incorporating S-nitrosothiol microparticles: potential uses for controlled nitric oxide delivery. Int J Pharm 2025; 668:124953. [PMID: 39571770 DOI: 10.1016/j.ijpharm.2024.124953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/27/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024]
Abstract
Insufficient levels of nitric oxide may lead to chronic and acute wounds. Additionally, it is crucial that nitric oxide is prepared in a controlled-release manner due to its gaseous nature and short half-life. To address this issue, utilizing nitric oxide donors, particularly S-nitrosothiols such as S-nitrosoglutathione (GSNO), could efficiently overcome instability and aid in biomedical applications. Decellularized human amniotic membranes are also best known for their anti-inflammatory, angiogenic, and antimicrobial properties to promote wound epithelization. In this study, a novel nitric oxide-generated wound dressing based on an amniotic membrane was investigated. This construct consisted of a chitosan/β-glycerophosphate thermosensitive hydrogel covered with a decellularized human amniotic layer embedded with GSNO-loaded polylactic acid microparticles. The structure of GSNO was confirmed by spectrometric, elemental, and chemical analyses. The GSNO-loaded microparticles had a diameter of 40.66 ± 6.92 µm, and an encapsulation efficiency of 45.6 ± 6.74%. The hybrid construct and GSNO-loaded microparticles enhanced the long-term stable release of GSNO compared to free GSNO. The construct released nitric oxide ranging from 24 to 68 nM/mg during 7 days. The thermosensitive hydrogel was formed at 32.7 ± 1 °C and had a porous structure with a pore size of 41.76 ± 9.76 µm. The MTT and live/dead assays performed on human dermal fibroblast cells demonstrated suitable cell viability and adhesion to the final construct. Further, hemolysis analysis revealed less than a 5% hemolysis rate due to negligible blood cell adhesion. Overall, the prepared hybrid construct demonstrated suitable characteristics as a potential active wound dressing capable of controlled nitric oxide delivery.
Collapse
Affiliation(s)
| | - Iman Shabani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Azadeh Shabani
- Preventative Gynecology Research Center(PGRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Liu HC, Huang CH, Chiang MR, Hsu RS, Chou TC, Lu TT, Lee IC, Liao LD, Chiou SH, Lin ZH, Hu SH. Sustained Release of Nitric Oxide-Mediated Angiogenesis and Nerve Repair by Mussel-Inspired Adaptable Microreservoirs for Brain Traumatic Injury Therapy. Adv Healthc Mater 2024; 13:e2302315. [PMID: 37713592 DOI: 10.1002/adhm.202302315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Traumatic brain injury (TBI) triggers inflammatory response and glial scarring, thus substantially hindering brain tissue repair. This process is exacerbated by the accumulation of activated immunocytes at the injury site, which contributes to scar formation and impedes tissue repair. In this study, a mussel-inspired nitric oxide-release microreservoir (MINOR) that combines the features of reactive oxygen species (ROS) scavengers and sustained NO release to promote angiogenesis and neurogenesis is developed for TBI therapy. The injectable MINOR fabricated using a microfluidic device exhibits excellent monodispersity and gel-like self-healing properties, thus allowing the maintenance of its structural integrity and functionality upon injection. Furthermore, polydopamine in the MINOR enhances cell adhesion, significantly reduces ROS levels, and suppresses inflammation. Moreover, a nitric oxide (NO) donor embedded into the MINOR enables the sustained release of NO, thus facilitating angiogenesis and mitigating inflammatory responses. By harnessing these synergistic effects, the biocompatible MINOR demonstrates remarkable efficacy in enhancing recovery in mice. These findings benefit future therapeutic interventions for patients with TBI.
Collapse
Affiliation(s)
- Hsiu-Ching Liu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Chu-Han Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Min-Ren Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Ru-Siou Hsu
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Tsu-Chin Chou
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, 300044, Hsinchu, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan, 320314, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - I-Chi Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35053, Miaoli County, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, National Yang Ming Chiao Tung University, Taipei Veterans General Hospital, 112304, Taipei, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Zhong-Hong Lin
- Department of Biomedical Engineering, National Taiwan University, 10617, Taipei, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| |
Collapse
|
5
|
Vieira de Almeida H, Escobar da Silva LC, Ganzarolli de Oliveira M. Nitric oxide-releasing photocrosslinked chitosan cryogels. Nitric Oxide 2024; 146:48-57. [PMID: 38579898 DOI: 10.1016/j.niox.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
The highly porous morphology of chitosan cryogels, with submicrometric-sized pore cell walls, provides a large surface area which leads to fast water absorption and elevated swelling degrees. These characteristics are crucial for the applications of nitric oxide (NO) releasing biomaterials, in which the release of NO is triggered by the hydration of the material. In the present study, we report the development of chitosan cryogels (CS) with a porous structure of interconnected cells, with wall thicknesses in the range of 340-881 nm, capable of releasing NO triggered by the rapid hydration process. This property was obtained using an innovative strategy based on the functionalization of CS with two previously synthesized S-nitrosothiols: S-nitrosothioglycolic acid (TGA(SNO)) and S-nitrosomercaptosuccinic acid (MSA(SNO)). For this purpose, CS was previously methacrylated with glycidyl methacrylate and subsequently submitted to photocrosslinking and freeze-drying processes. The photocrosslinked hydrogels thus obtained were then functionalized with TGA(SNO) and MSA(SNO) in reactions mediated by carbodiimide. After functionalization, the hydrogels were frozen and freeze-dried to obtain porous S-nitrosated chitosan cryogels with high swelling capacities. Through chemiluminescence measurements, we demonstrated that CS-TGA(SNO) and CS-MSA(SNO) cryogels spontaneously release NO upon water absorption at rates of 3.34 × 10-2 nmol mg-1 min-1 and 1.27 × 10-1 nmol mg-1 min-1, respectively, opening new perspectives for the use of CS as a platform for localized NO delivery in biomedical applications.
Collapse
|
6
|
Liang S, Xiao L, Fang Y, Chen T, Xie Y, Peng Z, Wu M, Liu Y, Xie J, Nie Y, Zhao X, Deng Y, Zhao C, Mai Y. A nanocomposite hydrogel for co-delivery of multiple anti-biofilm therapeutics to enhance the treatment of bacterial biofilm-related infections. Int J Pharm 2024; 649:123638. [PMID: 38008233 DOI: 10.1016/j.ijpharm.2023.123638] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/27/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
The characteristics of biofilms have exacerbated the issue of clinical antibiotic resistance, rendering it a pressing challenge in need of resolution. The combination of biofilm-dispersing agents and antibiotics can eliminate biofilms and promote healing synergistically in infected wounds. In this study, we developed a novel nanocomposite hydrogel (NC gel) comprised of the poly(lactic acid)-hyperbranched polyglycerol (PLA-HPG) based bioadhesive nanoparticles (BNPs) and a hydrophilic carboxymethyl chitosan (CS) network. The NC gel was designed to co-deliver two biofilm-dispersing agents (an NO-donor SNO, and an α-amylase Am) and an antibiotic, cefepime (Cef), utilizing a synergistic anti-biofilm mechanism in which Am loosens the matrix structure and NO promotes the release of biofilm bacteria via quorum sensing, and Cef kills bacteria. The drug-loaded NC gel (SNO/BNP/CS@Am-Cef) demonstrated sustained drug release, minimal cytotoxicity, and increased drug-bacterial interactions at the site of infection. When applied to mice infected with methicillin-resistant Staphylococcus aureus (MRSA) biofilms in vivo, SNO/BNP/CS@Am-Cef enhanced biofilm elimination and promoted wound healing compared to traditional antibiotic treatments. Our work demonstrates the feasibility of the co-delivery of biofilm-dispersing agents and antibiotics using the NC gel and presents a promising approach for the polytherapy of bacterial biofilm-related infections.
Collapse
Affiliation(s)
- Shu Liang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Lingyun Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yixuan Fang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Tian Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yuan Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Zhangwen Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yang Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Julin Xie
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yichu Nie
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-sen University Foshan Hospital, Foshan 528000, China
| | - Xizhe Zhao
- Department of Chemistry, College of Staten Island, City University of New York, NY 10314, USA
| | - Yang Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Chao Zhao
- Department of Chemical and Biological Engineering, Center for Convergent Biosciences and Medicine, Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
7
|
Tian Y, Tian X, Li T, Wang W. Overview of the effects and mechanisms of NO and its donors on biofilms. Crit Rev Food Sci Nutr 2023; 65:647-666. [PMID: 37942962 DOI: 10.1080/10408398.2023.2279687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Microbial biofilm is undoubtedly a challenging problem in the food industry. It is closely associated with human health and life, being difficult to remove and antibiotic resistance. Therefore, an alternate method to solve these problems is needed. Nitric oxide (NO) as an antimicrobial agent, has shown great potential to disrupt biofilms. However, the extremely short half-life of NO in vivo (2 s) has facilitated the development of relatively more stable NO donors. Recent studies reported that NO could permeate biofilms, causing damage to cellular biomacromolecules, inducing biofilm dispersion by quorum sensing (QS) pathway and reducing intracellular bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) levels, and significantly improving the bactericidal effect without drug resistance. In this review, biofilm hazards and formation processes are presented, and the characteristics and inhibitory effects of NO donors are carefully discussed, with an emphasis on the possible mechanisms of NO resistance to biofilms and some advanced approaches concerning the remediation of NO donor deficiencies. Moreover, the future perspectives, challenges, and limitations of NO donors were summarized comprehensively. On the whole, this review aims to provide the application prospects of NO and its donors in the food industry and to make reliable choices based on these available research results.
Collapse
Affiliation(s)
- Yanan Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Teng Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
8
|
Chiang M, Lin Y, Zhao W, Liu H, Hsu R, Chou T, Lu T, Lee I, Liao L, Chiou S, Chu L, Hu S. In Situ Forming of Nitric Oxide and Electric Stimulus for Nerve Therapy by Wireless Chargeable Gold Yarn-Dynamos. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303566. [PMID: 37867218 PMCID: PMC10667856 DOI: 10.1002/advs.202303566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/14/2023] [Indexed: 10/24/2023]
Abstract
Endogenous signals, namely nitric oxide (NO) and electrons, play a crucial role in regulating cell fate as well as the vascular and neuronal systems. Unfortunately, utilizing NO and electrical stimulation in clinical settings can be challenging due to NO's short half-life and the invasive electrodes required for electrical stimulation. Additionally, there is a lack of tools to spatiotemporally control gas release and electrical stimulation. To address these issues, an "electromagnetic messenger" approach that employs on-demand high-frequency magnetic field (HFMF) to trigger NO release and electrical stimulation for restoring brain function in cases of traumatic brain injury is introduced. The system comprises a NO donor (poly(S-nitrosoglutathione), pGSNO)-conjugated on a gold yarn-dynamos (GY) and embedded in an implantable silk in a microneedle. When subjected to HFMF, conductive GY induces eddy currents that stimulate the release of NO from pGSNO. This process significantly enhances neural stem cell (NSC) synapses' differentiation and growth. The combined strategy of using NO and electrical stimulation to inhibit inflammation, angiogenesis, and neuronal interrogation in traumatic brain injury is demonstrated in vivo.
Collapse
Affiliation(s)
- Min‐Ren Chiang
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Ya‐Hui Lin
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu300044Taiwan
- Brain Research CenterNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Wei‐Jie Zhao
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Hsiu‐Ching Liu
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Ru‐Siou Hsu
- Department of ChemistryStanford UniversityStanfordCA94305USA
| | - Tsu‐Chin Chou
- Institute of Analytical and Environmental SciencesNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Tsai‐Te Lu
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchu300044Taiwan
- Department of ChemistryNational Tsing Hua UniversityHsinchu300044Taiwan
- Department of ChemistryChung Yuan Christian UniversityTaoyuan320314Taiwan
| | - I‐Chi Lee
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Lun‐De Liao
- Institute of Biomedical Engineering and NanomedicineNational Health Research InstitutesMiaoli County35053Taiwan
| | - Shih‐Hwa Chiou
- Institute of PharmacologyCollege of MedicineNational Yang Ming Chiao Tung UniversityTaipei112304Taiwan
- Department of Medical ResearchTaipei Veterans General HospitalTaipei112201Taiwan
| | - Li‐An Chu
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu300044Taiwan
- Brain Research CenterNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Shang‐Hsiu Hu
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu300044Taiwan
| |
Collapse
|
9
|
Catori DM, da Silva LCE, de Oliveira MF, Nguyen GH, Moses JC, Brisbois EJ, Handa H, de Oliveira MG. In Situ Photo-crosslinkable Hyaluronic Acid/Gelatin Hydrogel for Local Nitric Oxide Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48930-48944. [PMID: 37827196 PMCID: PMC11537030 DOI: 10.1021/acsami.3c10030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
An increasing number of studies have shown that the local release of nitric oxide (NO) from hydrogels stimulates tissue regeneration by modulating cell proliferation, angiogenesis, and inflammation. The potential biomedical uses of NO-releasing hydrogels can be expanded by enabling their application in a fluid state, followed by controlled gelation triggered by an external factor. In this study, we engineered a hydrogel composed of methacrylated hyaluronic acid (HAGMA) and thiolated gelatin (GELSH) with the capacity for in situ photo-cross-linking, coupled with localized NO release. To ensure a gradual and sustained NO release, we charged the hydrogels with poly(l-lactic-co-glycolic acid) (PLGA) nanoparticles functionalized with S-nitrosoglutathione (GSNO), safeguarding SNO group integrity during photo-cross-linking. The formation of thiol-ene bonds via the reaction between GELSH's thiol groups and HAGMA's vinyl groups substantially accelerated gelation (by a factor of 6) and increased the elastic modulus of hydrated hydrogels (by 1.9-2.4 times). HAGMA/GELSH hydrogels consistently released NO over a 14 day duration, with the release of NO depending on the hydrogels' equilibrium swelling degree, determined by the GELSH-to-HAGMA ratio. Biocompatibility assessments confirmed the suitability of these hydrogels for biological applications as they display low cytotoxicity and stimulated fibroblast adhesion and proliferation. In conclusion, in situ photo-cross-linkable HAGMA/GELSH hydrogels, loaded with PLGA-GSNO nanoparticles, present a promising avenue for achieving localized and sustained NO delivery in tissue regeneration applications.
Collapse
Affiliation(s)
- Daniele M Catori
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas 13083-970, São Paulo, Brazil
| | - Laura C E da Silva
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas 13083-970, São Paulo, Brazil
| | - Matheus F de Oliveira
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas 13083-970, São Paulo, Brazil
| | - Grace H Nguyen
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Joseph C Moses
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Elizabeth J Brisbois
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens 30602, Georgia, United States
- Pharmaceutical and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens 30602, Georgia, United States
| | - Marcelo G de Oliveira
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas 13083-970, São Paulo, Brazil
| |
Collapse
|
10
|
Li W, Wang D, Lao KU, Wang X. Inclusion Complexation of S-Nitrosoglutathione for Sustained Nitric Oxide Release from Catheter Surfaces: A Strategy to Prevent and Treat Device-Associated Infections. ACS Biomater Sci Eng 2023; 9:1694-1705. [PMID: 36542753 DOI: 10.1021/acsbiomaterials.2c01284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
S-Nitrosoglutathione (GSNO) is a nontoxic nitric oxide (NO)-donating compound that occurs naturally in the human body. The use of GSNO to deliver exogenous NO for therapeutic and protective applications is limited by the high lability of dissolved GSNO in aqueous formulations. In this paper, we report a host-guest chemistry-based strategy to modulate the GSNO reactivity and NO release kinetics for the design of anti-infective catheters and hydrogels. Cyclodextrins (CDs) are host molecules that are typically used to encapsulate hydrophobic guest molecules into their hydrophobic cavities. However, we found that CDs form inclusion complexes with GSNO, an extremely hydrophilic molecule with a solubility of over 1 M at physiological pH. More interestingly, the host-guest complexation reduces the decomposition reactivity of GSNO in the order of αCD > γCD > hydroxypropyl βCD. The lifetime of 0.1 M GSNO is increased to up to 15 days in the presence of CDs at 37 °C, which is more than twice the lifetime of free GSNO. Quantum chemistry calculations indicate that GSNO in αCD undergoes a conformational change that significantly reduces the S-NO bond distance and increases its stability. The calculated S-NO bond dissociation enthalpies of free and complexed GSNO well agree with the experimentally observed GSNO decomposition kinetics. The NO release from GSNO-CD solutions, compared to GSNO solutions, has suppressed initial bursts and extended durations, enhancing the safety and efficacy of NO-based therapies and device protections. In an example application as an anti-infective lock solution for intravascular catheters, the GSNO-αCD solution exhibits potent antibacterial activities for both planktonic and biofilm bacteria, both intraluminal and extraluminal environments, both prevention and treatment of infections, and against multiple bacterial strains, including a multidrug-resistant strain. In addition to solutions, the inclusion complexation also enables the preparation of GSNO hydrogels with enhanced stability and improved antibacterial efficacy. Since methods to suppress and control the GSNO decomposition rate are rare, this supramolecular strategy provides new opportunities for the formulation and application of this natural NO donor.
Collapse
Affiliation(s)
- Wuwei Li
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, Virginia 23284, United States
| | - Danyang Wang
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, Virginia 23284, United States
| | - Ka Un Lao
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, Virginia 23284, United States
| | - Xuewei Wang
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, Virginia 23284, United States
| |
Collapse
|
11
|
Arikan B, Alp FN, Ozfidan-Konakci C, Balci M, Elbasan F, Yildiztugay E, Cavusoglu H. Fe 2O 3-modified graphene oxide mitigates nanoplastic toxicity via regulating gas exchange, photosynthesis, and antioxidant system in Triticum aestivum. CHEMOSPHERE 2022; 307:136048. [PMID: 35987272 DOI: 10.1016/j.chemosphere.2022.136048] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The ever-increasing plastic pollution in soil and water resources raises concerns about its effects on terrestrial plants and agroecosystems. Although there are many reports about the contamination with nanoplastics on plants, the presence of magneto-assisted nanomaterials enabling the removal of their adverse impacts still remains unclear. Therefore, the purpose of the current study is to evaluate the potential of nanomaterial Fe2O3-modified graphene oxide (FGO, 50-250 mg L-1) to eliminate the adverse effects of nanoplastics in plants. Wheat plants exposed to polystyrene nanoplastics concentrations (PS, 10, 50 and 100 mg L-1) showed decreased growth, water content and loss of photosynthetic efficiency. PS toxicity negatively altered gas exchange, antenna structure and electron transport in photosystems. Although the antioxidant system was partially activated (only superoxide dismutase (SOD), NADPH oxidase (NOX) and glutathione reductase (GR)) in plants treated with PS, it failed to prevent PS-triggered oxidative damage, as showing lipid peroxidation and hydrogen peroxide (H2O2) levels. FGOs eliminated the adverse impacts of PS pollution on growth, water status, gas exchange and oxidative stress markers. In addition, FGOs preserve the biochemical reactions of photosynthesis by actively increasing chlorophyll fluorescence parameters in the stressed-wheat leaves. The activities of all enzymatic antioxidants increased, and the H2O2 and TBARS contents decreased. GSH-mediated detoxifying antioxidants such as glutathione S-transferase (GST) and glutathione peroxidase (GPX) were stimulated by FGOs against PS pollution. FGOs also triggered the enzymes and non-enzymes related to the Asada-Halliwell cycle and protected the regeneration of ascorbate (AsA) and glutathione (GSH). Our findings indicated that FGO had the potential to mitigate nanoplastic-induced damage in wheat by regulating water relations, protecting photosynthesis reactions and providing efficient ROS scavenging with high antioxidant capacity. This is the first report on removing PS-induced damage by FGO applications in wheat leaves.
Collapse
Affiliation(s)
- Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Fatma Nur Alp
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090, Konya, Turkey.
| | - Melike Balci
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Fevzi Elbasan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Halit Cavusoglu
- Department of Physics, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| |
Collapse
|
12
|
Synthesis and Chromatographic Determination of S-Nitrosopantetheine: Exploring Reactivity and Stability in Different Aqueous Solutions. SEPARATIONS 2022. [DOI: 10.3390/separations9090237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
S-nitrosothiols (RSNOs) are a group of sulfur-containing compounds biologically involved in nitric oxide (NO˙) release and signalling pathway. NO˙ plays important physiological and pharmacological activities, particularly in vasodilation and in inducing muscle relaxation. Several RSNO compounds have been detected in biological systems, and many of them have been chemically synthesized in the laboratory. To date, no works describing the synthesis of the S-nitrosopantetheine (SNOPANT) are reported in the literature. Taking into account that pantetheine is a biological thiol with a crucial function in metabolism, its nitrosylation in vivo could play a role in various metabolic signalling pathways. In this paper, the synthesis and the chromatographic determination of SNOPANT is reported for the first time, as well as a brief investigation of its reactivity in aqueous solutions in the presence of factors known to affect its stability.
Collapse
|
13
|
da Silva LCE, Gonçalves MC, de Oliveira MG. Nitric oxide-releasing supramolecular cellulose nanocrystals/silsesquioxane foams. Macromol Rapid Commun 2022; 43:e2100930. [PMID: 35267220 DOI: 10.1002/marc.202100930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/13/2022] [Indexed: 11/09/2022]
Abstract
Cellulose nanocrystals (CNC)-based foams are promising tissue engineering materials that may facilitate implant-tissue integration and allow localized and controlled drug delivery. Herein, hybrid CNC-based foams, which are ultralightweight (30 to 100 mg cm-3 ), highly porous (> 95%), ominiphilic and superabsorbent (1500 to 3000 wt% of water and/or toluene uptake) are obtained by the in-situ condensation of poly(ethylene glycol) ditriethoxysilyl (TES-PEG-TES) into a three-dimensional network, where silsesquioxane nanoparticles (SS-NP) are the cross-linking nodes, and CNC are entangled and forming ionic interactions, resulting in a supramolecular structure. In a new approach, using 3-mercaptopropyltrimethoxysilane, sulfhydryl groups are inserted on the SS-NP periphery and S-nitrosated to enable the functionalization of SS-NP with S-nitrosothiol groups, which are capable of releasing nitric oxide (NO), in a process triggered by the hydration of the foams and modulated by the supramolecular structure of the foams. CNC-SS-PEG foams exhibit elevated thermal and structural stability, compressive strength compatible with various soft human tissues, and NO release rates (1 - 18 pmol mg-1 min-1 ) within the range of the beneficial NO actions. Thus, the CNC-SS-PEG foams herein described represent a new platform of supramolecular hybrid materials for localized delivery of NO, with potential uses in tissue engineering and other biomedical applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Laura C E da Silva
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. box 6154, Campinas, SP, 13083-970, Brazil
| | - Maria C Gonçalves
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. box 6154, Campinas, SP, 13083-970, Brazil
| | - Marcelo G de Oliveira
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. box 6154, Campinas, SP, 13083-970, Brazil
| |
Collapse
|
14
|
Poh WH, Rice SA. Recent Developments in Nitric Oxide Donors and Delivery for Antimicrobial and Anti-Biofilm Applications. Molecules 2022; 27:molecules27030674. [PMID: 35163933 PMCID: PMC8839391 DOI: 10.3390/molecules27030674] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/10/2022] Open
Abstract
The use of nitric oxide (NO) is emerging as a promising, novel approach for the treatment of antibiotic resistant bacteria and biofilm infections. Depending on the concentration, NO can induce biofilm dispersal, increase bacteria susceptibility to antibiotic treatment, and induce cell damage or cell death via the formation of reactive oxygen or reactive nitrogen species. The use of NO is, however, limited by its reactivity, which can affect NO delivery to its target site and result in off-target effects. To overcome these issues, and enable spatial or temporal control over NO release, various strategies for the design of NO-releasing materials, including the incorporation of photo-activable, charge-switchable, or bacteria-targeting groups, have been developed. Other strategies have focused on increased NO storage and delivery by encapsulation or conjugation of NO donors within a single polymeric framework. This review compiles recent developments in NO drugs and NO-releasing materials designed for applications in antimicrobial or anti-biofilm treatment and discusses limitations and variability in biological responses in response to the use of NO for bacterial eradiation.
Collapse
Affiliation(s)
- Wee Han Poh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore;
- Correspondence:
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore;
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- The iThree Institute, The University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
15
|
Li W, Wang D, Lao KU, Wang X. Buffer concentration dramatically affects the stability of S-nitrosothiols in aqueous solutions. Nitric Oxide 2022; 118:59-65. [PMID: 34848361 DOI: 10.1016/j.niox.2021.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 01/17/2023]
Abstract
S-nitrosothiols (RSNOs) are an important group of nitric oxide (NO)-donating compounds with low toxicity and wide biomedical applications. In this paper, we, for the first time, demonstrate that the concentration of buffer remarkably affects the stability of RSNOs including naturally occurring S-nitrosoglutathione (GSNO) and synthetic S-nitroso-N-acetylpenicillamine (SNAP). For a solution with a high concentration of GSNO (e.g., 50 mM) and an initial near-neutral pH, the optimal buffer concentration is close to the GSNO concentration under our experimental conditions. A lower buffer concentration does not have adequate buffer capacity to resist the pH drop caused by GSNO decomposition. The decreased solution pH further accelerates GSNO decomposition because GSNO is most stable at near-neutral pH according to our density functional theory (DFT) calculations. A higher-than-optimal buffer concentration also reduces the GSNO stability because buffer ingredients including phosphate, Tris base, and HEPES consume NO/N2O3. In contrast to GSNO, the highest SNAP stability is obtained when the starting solution at a neutral pH does not contain buffer species, and the stability decreases as the buffer concentration increases. This is because SNAP is more stable at mildly acidic pH and the SNAP decomposition-induced pH drop stabilizes the donor. When the RSNO concentration is low (e.g., 1 mM), the buffer concentration also matters because any excess buffer accelerates the donor decomposition. Since the effect of buffer concentration was previously overlooked and suboptimal buffer concentrations were often used, this paper will aid in the formulation of RSNO solutions to obtain the maximum stability for prolonged storage and sustained NO release.
Collapse
Affiliation(s)
- Wuwei Li
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA
| | - Danyang Wang
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA
| | - Ka Un Lao
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA
| | - Xuewei Wang
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA.
| |
Collapse
|
16
|
Muniz Carvalho E, Silva Sousa EH, Bernardes‐Génisson V, Gonzaga de França Lopes L. When NO
.
Is not Enough: Chemical Systems, Advances and Challenges in the Development of NO
.
and HNO Donors for Old and Current Medical Issues. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edinilton Muniz Carvalho
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
- CNRS Laboratoire de Chimie de Coordination LCC UPR 8241 205 Route de Narbonne, 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse Université Paul Sabatier UPS 118 Route de Narbonne 31062 Toulouse, Cedex 9 France
| | - Eduardo Henrique Silva Sousa
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
| | - Vania Bernardes‐Génisson
- CNRS Laboratoire de Chimie de Coordination LCC UPR 8241 205 Route de Narbonne, 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse Université Paul Sabatier UPS 118 Route de Narbonne 31062 Toulouse, Cedex 9 France
| | - Luiz Gonzaga de França Lopes
- Bioinorganic Group Department of Organic and Inorganic Chemistry Center of Sciences Federal University of Ceará Pici Campus Fortaleza 60455-760 Brazil
| |
Collapse
|
17
|
Yang T, Zhou Y, Cheong S, Kong C, Mazur F, Liang K, Chandrawati R. Modulating nitric oxide-generating activity of zinc oxide by morphology control and surface modification. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112428. [PMID: 34702513 DOI: 10.1016/j.msec.2021.112428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022]
Abstract
Zinc oxide (ZnO) has emerged as a promising material for nitric oxide (NO) delivery owing to its intrinsic enzyme-mimicking activities to catalyze NO prodrugs S-nitrosoglutathione (GSNO) and β-gal-NONOate for NO generation. The catalytic performance of enzyme mimics is strongly dependent on their size, shape, and surface chemistry; however, no studies have evaluated the influence of the aforementioned factors on the NO-generating activity of ZnO. Understanding these factors will provide an opportunity to tune NO generation profiles to accommodate diverse biomedical applications. In this paper, for the first time, we demonstrate that the activity of ZnO towards catalytic NO generation is shape-dependent, resulting from the different crystal growth directions of these particles. We modified the surfaces of ZnO particles with zeolitic imidazolate framework (ZIF-8) by in situ synthesis and observed that ZnO/ZIF-8 retained 60% of its NO-generating potency. The newly formed ZnO/ZIF-8 particles were shown to catalytically decompose both endogenous (GSNO) and exogenous (β-gal-NONOate and S-nitroso-N-acetylpenicillamine (SNAP)) prodrugs to generate NO at physiological conditions. In addition, we design the first platform that combines NO-generating and superoxide radical scavenging properties by encapsulating a natural enzyme, superoxidase dismutase (SOD), into ZnO/ZIF-8 particles, which holds great promise towards combinatorial therapy.
Collapse
Affiliation(s)
- Tao Yang
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Yingzhu Zhou
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Soshan Cheong
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Charlie Kong
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia; Graduate School of Biomedical Engineering, The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| |
Collapse
|
18
|
Synthesis, characterization and in vitro evaluation of a gelatin-based platform with antioxidant and nitric oxide releasing property. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Zhou Y, Yang T, Namivandi-Zangeneh R, Boyer C, Liang K, Chandrawati R. Copper-doped metal–organic frameworks for the controlled generation of nitric oxide from endogenous S-nitrosothiols. J Mater Chem B 2021; 9:1059-1068. [DOI: 10.1039/d0tb02709j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report the synthesis of a catalyst, copper-doped zeolitic imidazolate framework ZIF-8, that generates nitric oxide from naturally occurring endogenous nitric oxide donors, S-nitrosoglutathione and S-nitrosocysteine.
Collapse
Affiliation(s)
- Yingzhu Zhou
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney)
- Sydney
- Australia
| | - Tao Yang
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney)
- Sydney
- Australia
| | - Rashin Namivandi-Zangeneh
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney)
- Sydney
- Australia
- Cluster for Advanced Macromolecular Design (CAMD), The University of New South Wales (UNSW Sydney)
- Sydney
| | - Cyrille Boyer
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney)
- Sydney
- Australia
- Cluster for Advanced Macromolecular Design (CAMD), The University of New South Wales (UNSW Sydney)
- Sydney
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney)
- Sydney
- Australia
- Graduate School of Biomedical Engineering, The University of New South Wales (UNSW Sydney)
- Sydney
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney)
- Sydney
- Australia
| |
Collapse
|
20
|
Doverspike JC, Mack SJ, Lou A, Stringer B, Reno S, Cornell MS, Rojas-Pena A, Wu J, Xi C, Yevzlin A, Meyerhoff ME. Nitric Oxide-Releasing Insert for Disinfecting the Hub Region of Tunnel Dialysis Catheters. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44475-44484. [PMID: 32931236 PMCID: PMC8394517 DOI: 10.1021/acsami.0c13230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The use of tunneled dialysis catheters (TDCs) for patients in need of hemodialysis treatments (HDs) causes a significant number of bloodstream infections (BSIs), with very few viable preventative/treatment methods. Use of antibiotics is relatively ineffective due to the development of multidrug-resistant bacterial strains and the inability to penetrate bacterial biofilms. Nitric oxide (NO) is an endogenous gas molecule that has broad-spectrum antimicrobial/antibiofilm activity. In this study, the potential of creating a NO-releasing insert device that is attached onto the hub region cap of TDCs and locally releases NO within the TDC hub is evaluated for its antimicrobial/antibiofilm effectiveness. The NO-releasing insert contains the natural NO donor S-nitrosoglutathione (GSNO), along with zinc oxide (ZnO) nanoparticles to accelerate NO release from the GSNO, within a short silicone tube that is sealed at both ends and attached to the catheter cap. An in vitro 3-d-long antimicrobial study using catheter hubs yielded >6.6 log reductions of both Pseudomonas aeruginosa and Staphylococcus aureus for the NO-releasing insert device compared to controls. Two 14-d-long sheep studies demonstrated that the NO-releasing insert devices are exceptionally potent at preventing bacteria/biofilm growth on the inner lumen walls of TDCs compared to controls that have no preventative treatment devices as well as implanted TDCs that have commercially available chlorhexidine-treated insert devices placed within the hub regions.
Collapse
Affiliation(s)
- Joshua C. Doverspike
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Shale J. Mack
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Amy Lou
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Blake Stringer
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Shelby Reno
- Department of Surgery, Extracorporeal Life Support Laboratory, University of Michigan, Ann Arbor, MI 48109, United States
| | - Marie S. Cornell
- Department of Surgery, Extracorporeal Life Support Laboratory, University of Michigan, Ann Arbor, MI 48109, United States
| | - Alvaro Rojas-Pena
- Department of Surgery, Extracorporeal Life Support Laboratory, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Surgery, Section of Transplantation, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jianfeng Wu
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Chuanwu Xi
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Alexander Yevzlin
- Department of Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - Mark E. Meyerhoff
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
- Corresponding author, , 930 N. University, Ann Arbor, MI, 48109, USA
| |
Collapse
|
21
|
S-nitrosothiol-terminated Pluronic F127: Influence of microstructure on nitric oxide release. J Colloid Interface Sci 2020; 576:457-467. [DOI: 10.1016/j.jcis.2020.05.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 01/18/2023]
|
22
|
Yang T, Fruergaard AS, Winther AK, Zelikin AN, Chandrawati R. Zinc Oxide Particles Catalytically Generate Nitric Oxide from Endogenous and Exogenous Prodrugs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906744. [PMID: 32141238 DOI: 10.1002/smll.201906744] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/25/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Nitric oxide (NO) is a potent biological molecule that contributes to a wide spectrum of physiological processes. However, the full potential of NO as a therapeutic agent is significantly complicated by its short half-life and limited diffusion distance in human tissues. Current strategies for NO delivery focus on encapsulation of NO donors into prefabricated scaffolds or an enzyme-prodrug therapy approach. The former is limited by the finite pool of NO donors available, while the latter is challenged by the inherent low stability of natural enzymes. Zinc oxide (ZnO) particles with innate glutathione peroxidase and glycosidase activities, a combination that allows to catalytically decompose both endogenous (S-nitrosoglutathione) and exogenous (β-gal-NONOate) donors to generate NO at physiological conditions are reported. By tuning the concentration of ZnO particles and NO prodrugs, physiologically relevant NO levels are achieved. ZnO preserves its catalytic property for at least 6 months and the activity of ZnO in generating NO from prodrugs in human serum is demonstrated. The ZnO catalytic activity will be beneficial toward generating stable NO release for long-term biomedical applications.
Collapse
Affiliation(s)
- Tao Yang
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Anne Sofie Fruergaard
- Department of Chemistry and iNANO Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, C 8000, Denmark
| | - Anna K Winther
- Department of Chemistry and iNANO Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, C 8000, Denmark
| | - Alexander N Zelikin
- Department of Chemistry and iNANO Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, C 8000, Denmark
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| |
Collapse
|
23
|
Pelegrino MT, Paganotti A, Seabra AB, Weller RB. Photochemistry of nitric oxide and S-nitrosothiols in human skin. Histochem Cell Biol 2020; 153:431-441. [PMID: 32162135 PMCID: PMC7300104 DOI: 10.1007/s00418-020-01858-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) is related to a wide range of physiological processes such as vasodilation, macrophages cytotoxicity and wound healing. The human skin contains NO precursors (NOx). Those are mainly composed of nitrite (NO2-), nitrate (NO3-), and S-nitrosothiols (RSNOs) which forms a large NO store. These NOx stores in human skin can mobilize NO to blood stream upon ultraviolet (UV) light exposure. The main purpose of this study was to evaluate the most effective UV light wavelength to generate NO and compare it to each NO precursor in aqueous solution. In addition, the UV light might change the RSNO content on human skin. First, we irradiated pure aqueous solutions of NO2- and NO3- and mixtures of NO2- and glutathione and NO3- and S-nitrosoglutathione (GSNO) to identify the NO release profile from those species alone. In sequence, we evaluated the NO generation profile on human skin slices. Human skin was acquired from redundant plastic surgical samples and the NO and RSNO measurements were performed using a selective NO electrochemical sensor. The data showed that UV light could trigger the NO generation in skin with a peak at 280-285 nm (UVB range). We also observed a significant RSNO formation in irradiated human skin, with a peak at 320 nm (UV region) and at 700 nm (visible region). Pre-treatment of the human skin slice using NO2- and thiol (RSHs) scavengers confirmed the important role of these molecules in RSNO formation. These findings have important implications for clinical trials with potential for new therapies.
Collapse
Affiliation(s)
- Milena T Pelegrino
- Center for Natural and Human Sciences, Universidade Federal Do ABC, Av. dos Estados 5001, Santo André, SP, CEP 09210-580, Brazil
| | - André Paganotti
- Laboratory of Materials and Mechanical Manufacture, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal Do ABC, Av. dos Estados 5001, Santo André, SP, CEP 09210-580, Brazil
| | - Richard B Weller
- Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
24
|
Nitric oxide releasing two-part creams containing S-nitrosoglutathione and zinc oxide for potential topical antimicrobial applications. Nitric Oxide 2019; 90:1-9. [DOI: 10.1016/j.niox.2019.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/19/2019] [Accepted: 05/28/2019] [Indexed: 12/23/2022]
|
25
|
S-Nitrosoglutathione exhibits greater stability than S-nitroso-N-acetylpenicillamine under common laboratory conditions: A comparative stability study. Nitric Oxide 2019; 92:18-25. [PMID: 31398487 DOI: 10.1016/j.niox.2019.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/20/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
Abstract
S-Nitrosothiols (RSNOs) such as S-nitrosoglutathione (GSNO) and S-nitroso-N-acetylpenicillamine (SNAP) are susceptible to decomposition by stimuli including heat, light, and trace metal ions. Using stepwise isothermal thermogravimetric analysis (TGA), we observed that NO-forming homolytic cleavage of the S-N bond occurs at 134.7 ± 0.8 °C in GSNO and 132.8 ± 0.9 °C in SNAP, contrasting with the value of 150 °C that has been previously reported for both RSNOs. Using mass spectrometry (MS), nuclear magnetic resonance (NMR), and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), we analyzed the decomposition products from TGA experiments. The organic product of GSNO decomposition was glutathione disulfide, while SNAP decomposed to form N-acetylpenicillamine disulfide as well as other products, including tri- and tetrasulfides. In addition, we assessed the relative solution stabilities of GSNO and SNAP under common laboratory conditions, which include variable temperature, pH, and light exposure with rigorous exclusion of trace metal ions by chelation. GSNO exhibited greater stability than SNAP over a 7-day period except in one instance. Both RSNOs demonstrated an inverse relationship between solution stability and temperature, with refrigeration considerably extending shelf life. A decrease in pH from 7.4 to 5.0 also enhanced the stability of both RSNOs. A further decrease in pH from 5.0 to 3.0 resulted in decreased stability for both RSNOs, and is notably the only occasion in which SNAP proved more stable than GSNO. After 1 h of exposure to overhead fluorescent lighting, both RSNOs displayed high susceptibility to light-induced decomposition. After 7 h, GSNO and SNAP decomposed 19.3 ± 0.5% and 30 ± 2%, respectively.
Collapse
|