1
|
Babaei MJ, Ebrahimi A, Heidari P, Azadvari E, Gharanjik S, Chaghakaboodi Z. Titanium dioxide -mediated regulation of enzymatic and non-enzymatic antioxidants, pigments, and diosgenin content promotes cold stress tolerance in Trigonella foenum-graecum L. Sci Rep 2025; 15:1837. [PMID: 39805881 PMCID: PMC11730625 DOI: 10.1038/s41598-024-84472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025] Open
Abstract
Abiotic stresses, notably cold stress, significantly influence various aspects of plant development and reproduction. Various approaches have been proposed to counteract the adverse impacts of cold stress on plant productivity. The unique properties of nanoparticles contribute to an enhanced tolerance of plants to challenging conditions. This study explores the impact of titanium dioxide nanoparticles (TiO2 NPs) on cold-stress tolerance in fenugreek, as well as genes expression involved in the diosgenin biosynthesis pathway. Varied concentrations of TiO2 NPs (0, 2, 5, and 10 ppm) were sprayed on fenugreek plants subjected to cold stress at 10 °C during 6, 24, and 48 h. Our findings revealed that the utilization of 2 and 5 ppm of TiO2 NPs, positively influenced pigments biosynthesis and enzymatic and non-enzymatic antioxidant activities. It also effectively reduced electrolyte leakage and malondialdehyde content, mitigating the adverse effects of cold stress. The study also highlighted TiO2 NPs' affirmative impact on defense signaling pathways, including abscisic acid, nitric oxide, and auxin, in fenugreek. Moreover, TiO2 NPs significantly influenced the expression of genes related to diosgenin biosynthesis. Simultaneous exposure to cold stress and TiO2 NPs led to a substantial increase in diosgenin content, with the upregulation of SEP, SQS, CAS, and SSR genes compared to control conditions. This research indicated that TiO2 NPs application could effectively stimulate fenugreek biosynthesis of primary and secondary metabolites, consequently enhancing plant tolerance to cold stress. The study's outcomes hold promise for potential applications in the metabolic engineering of diosgenin in fenugreek.
Collapse
Affiliation(s)
- Mohamad Javad Babaei
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Amin Ebrahimi
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
| | - Parviz Heidari
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| | - Elham Azadvari
- Horticultural Sciences Department, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Shahrokh Gharanjik
- Department of Plant Breeding and Biotechnology, Faculty of Agricultural Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Zeinab Chaghakaboodi
- Plant Production Engineering and Genetics Department, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| |
Collapse
|
2
|
Gupta R, Kumar V, Verma N, Tewari RK. Nitric oxide-mediated regulation of macronutrients in plants. Nitric Oxide 2024; 153:13-25. [PMID: 39389288 DOI: 10.1016/j.niox.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/08/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
In plant physiology, nitric oxide (NO) is a widely used signaling molecule. It is a free radical and an important component of the N-cycle. NO is produced endogenously inside plant cells, where it participates in multiple functions and provides protection against several abiotic and biotic stresses. NO and its interplay with macronutrients had remarkable effects on plant growth and development, the signaling pathway, and defense mechanisms. Its chemical properties, synthetic pathways, physiological effects, antioxidant action, signal transduction, and regulation of transporter genes and proteins have been studied. NO emerges as a key regulator under macronutrient deficiency. In plants, NO also affects reactive oxygen species (ROS), reactive nitrogen species (RNS), and post-translational modifications (PTMs). The function of NO and its significant control in the functions and adjustments of macronutrients under macronutrient deficit were summed up in this review. NO regulate functions of macronutrients and associated signaling events involved with macronutrient transporters in different plants.
Collapse
Affiliation(s)
- Roshani Gupta
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Vijay Kumar
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Nikita Verma
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | | |
Collapse
|
3
|
AbuEl-Leil EF, AbdelRahman MAE, Desoukey SF. Effect of kaolin on productivity, anatomical and biochemical responses to water deficit in Pelargonium graveolens grown in sandy soil. BMC PLANT BIOLOGY 2024; 24:1111. [PMID: 39574006 PMCID: PMC11583396 DOI: 10.1186/s12870-024-05814-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
The objective of this study was to examine the response of geranium plants to different irrigation levels (100%, 80%, and 60% based on ETo) and Kaolin application rates (0, 100, 200 and 300 ppm) during 2022 and 2023 seasons, at Aly Mobarak Experimental Farm, Horticulture Research Station, located at El-Bustan site, El-Behiera Governorate, Egypt, by using a two-way factorial analysis experimental design. The results revealed that water deficit significantly reduced most studied traits. Irrigation level at 60% based on ETo exhibited poorest performance on growth parameters and decreased fresh yield and essential oil yield by 27.77% 10.73%, respectively as compared with full irrigated plants. However, foliar application of kaolin at 200 and 300 ppm led to increasing biomass accumulation by 28.51, 26.16%, and essential oil yield by 79.51, 89.95%, respectively, as compared with untreated plants grown under the same level of water deficit (60% based on ETo). GC-MS analysis of essential oil showed that water deficit and kaolin application increased geraniol/citronellol ratio and consequently improved oil quality. Results highlight the positive influence of water deficit and kaolin rates on the development and performance of anatomical parameters. Enzymes assay in leaves revealed in an increase superoxide dismutase (SOD) and peroxidase (POD) activities, and decreased in catalase (CAT) activity under water deficit. As for WUE at 60%, followed by 80% based on ETo recorded excellent response for geranium plants which led to more water saving. So, it could be concluded that foliar application of kaolin at 200 and 300 ppm obtained the optimal characteristics of geranium plants under experimental conditions. In particular, essential oil yield and productivity.
Collapse
Affiliation(s)
- Eman F AbuEl-Leil
- Medicinal and Aromatic Plants Research Department, Horticulture Research Institute (HRI), Agricultural Research Centre (ARC), Cairo, Egypt
| | - Mohamed A E AbdelRahman
- Division of Environmental Studies and Land Use, National Authority for Remote Sensing and Space Sciences (NARSS), Cairo, 1564, Egypt.
| | - S F Desoukey
- Agricultural Botany Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Hussain I, Shehzad MA, Akhtar G, Shafique Ahmad K, Mubeen K, Hassan W, Faried HN, Ahmad S, Aziz M, Yasin S, Al-Abbadi GA, El-Sheikh MA, Elansary HO, Ullah F. Supplemental Sodium Nitroprusside and Spermidine Regulate Water Balance and Chlorophyll Pigments to Improve Sunflower Yield under Terminal Drought. ACS OMEGA 2024; 9:30478-30491. [PMID: 39035905 PMCID: PMC11256320 DOI: 10.1021/acsomega.4c02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024]
Abstract
Drought is an inevitable environmental stress that drastically hampers the growth, productivity, and quality of food crops. Exogenous sodium nitroprusside and spermidine have decisive functions in the growth enhancement of plants; nevertheless, their specific role in mediating stress responses to improve drought tolerance in sunflowers at the reproductive stage (terminal drought) remains largely unknown. In the present study, we explored the positive effects of sodium nitroprusside and spermidine on physiological responses to increase in sunflower yield during periods of terminal drought. Initially, various doses (50, 100, 150, 200, 400 μM) for each sodium nitroprusside or spermidine were foliar sprayed to improve water content, chlorophylls, and biomass accumulation in sunflower seedlings under control (100% FC) and drought (60% FC) conditions. Optimized rates (100 μM for sodium nitroprusside) and (100 μM for spermidine) were further tested alone and in combination to assess drought tolerance potential and their ultimate impact on yield under drought stress. Drought exposure caused a marked reduction in relative water content (26%) and chlorophyll a (31%) and b (35%) contents; however, sodium nitroprusside and spermidine at 100 μM significantly improved the growth of sunflower (13%). Furthermore, combined use of sodium nitroprusside and spermidine at 100 + 100 μM markedly improved the achenes per head (16%), 1000-achene weight (14%), and ultimately grain (28%) and oil (21%) yields of sunflowers under drought stress. A strong association was found between the 1000-achene weight and the achene yield of sunflower. Hence, combined sodium nitroprusside and spermidine upregulate water balance and chlorophyll contents to increase sunflower yield under terminal drought.
Collapse
Affiliation(s)
- Israr Hussain
- Department
of Agronomy, Muhammad Nawaz Shareef University
of Agriculture, Multan 66000, Pakistan
| | - Muhammad Asif Shehzad
- Institute
of Plant Breeding and Biotechnology, Muhammad
Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Gulzar Akhtar
- Department
of Horticulture, Muhammad Nawaz Shareef
University of Agriculture, Multan 66000, Pakistan
| | - Khawaja Shafique Ahmad
- Department
of Botany, University of Poonch Rawalakot
(UPR), Rawalakot 12350, Azad Jammu and Kashmir, Pakistan
| | - Khuram Mubeen
- Department
of Agronomy, Muhammad Nawaz Shareef University
of Agriculture, Multan 66000, Pakistan
| | - Waseem Hassan
- Department
of Soil and Environmental Sciences, Muhammad
Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Hafiz Nazar Faried
- Department
of Horticulture, Muhammad Nawaz Shareef
University of Agriculture, Multan 66000, Pakistan
| | - Shabbir Ahmad
- Department
of Food Science and Technology, Muhammad
Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Mudassir Aziz
- Department
of Agronomy, Muhammad Nawaz Shareef University
of Agriculture, Multan 66000, Pakistan
| | - Sanaullah Yasin
- Department
of Soil and Environmental Sciences, Ghazi
University, Dera Ghazi
Khan 32200, Pakistan
| | - Ghanim A. Al-Abbadi
- Department
of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait City 12037, Kuwait
| | - Mohamed A. El-Sheikh
- Botany
and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hosam O. Elansary
- Plant
Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fazal Ullah
- State
Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Singh P, Jaiswal S, Tripathi DK, Singh VP. Nitric oxide acts upstream of indole-3-acetic acid in ameliorating arsenate stress in tomato seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108461. [PMID: 38461754 DOI: 10.1016/j.plaphy.2024.108461] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024]
Abstract
After their discovery, nitric oxide (NO) and indole-3-acetic acid (IAA) have been reported as game-changing cellular messengers for reducing abiotic stresses in plants. But, information regarding their shared signaling in regulating metal stress is still unclear. Herein, we have investigated about the joint role of NO and IAA in mitigation of arsenate [As(V)] toxicity in tomato seedlings. Arsenate being a toxic metalloid increases the NPQ level and cell death while decreasing the biomass accumulation, photosynthetic pigments, chlorophyll a fluorescence, endogenous NO content in tomato seedlings. However, application of IAA or SNP to the As(V) stressed seedlings improved growth together with less accumulation of arsenic and thus, preventing cell death. Interestingly, addition of c-PTIO, {2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide, a scavenger of NO} and 2, 3, 5-triidobenzoic acid (TIBA, an inhibitor of polar auxin transport) further increased cell death and inhibited activity of GST, leading to As(V) toxicity. However, addition of IAA to SNP and TIBA treated seedlings reversed the effect of TIBA resulting into decreased As(V) toxicity. These findings demonstrate that IAA plays a crucial and advantageous function in NO-mediated reduction of As(V) toxicity in seedlings of tomato. Overall, this study concluded that IAA might be acting as a downstream signal for NO-mediated reduction of As(V) toxicity in tomato seedlings.
Collapse
Affiliation(s)
- Pooja Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Saumya Jaiswal
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India.
| |
Collapse
|
6
|
Sharma V, Garg N. Nitric oxide and AMF-mediated regulation of soil enzymes activities, cysteine-H 2S system and thiol metabolites in mitigating chromium (Cr (VI)) toxicity in pigeonpea genotypes. Biometals 2024; 37:185-209. [PMID: 37792256 DOI: 10.1007/s10534-023-00540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023]
Abstract
Cr (VI) hampers plant growth and yield by reducing essential nutrient uptake as it competes for phosphate and sulfate transporters. Nitric oxide (NO) and mycorrhization play important roles in mitigating Cr (VI) toxicity. Present study aimed to compare the potential of AMF (Arbuscular mycorrhizal fungi)-Rhizoglomus intraradices and NO (0.25 mM) in alleviating Cr (VI) stress (0, 10 and 20 mg/kg) in two differentially tolerant pigeonpea genotypes (Pusa 2001 and AL 201). Cr (VI) toxicity reduced growth, mycorrhizal colonization, nutrient uptake, and overall productivity by inducing reactive oxygen species (ROS) generation, with AL 201 more sensitive than Pusa 2001. NO and AM enhanced activities of soil enzymes, thereby increasing nutrients availability as well as their uptake, with AM more effective than NO. Both amendments reduced oxidative stress and restricted Cr (VI) uptake by increasing the activities of antioxidant and S- assimilatory enzymes, with Pusa 2001 more responsive than AL 201. NO was relatively more efficient in regulating cysteine-H2S system by increasing the activities of biosynthetic enzymes (ATP-sulfurylase (ATPS), O-acetylserine thiol lyase (OASTL), D-cysteine desulfhydrase (DCD) and L-cysteine desulfhydrase (LCD), while AM significantly increased glutathione reductase (GR), γ-glutamylcysteine synthetase (γ-ECS) enzymes activities and resultant glutathione (GSH), phytochelatins (PCs), and non-protein thiols (NP-SH) synthesis. Moreover, co-application of NO and AM proved to be highly beneficial in negating the toxic effects of Cr (VI) due to functional complementarity between them. Study suggested the combined use of NO and AM as a useful strategy in re-establishing pigeonpea plants growing in Cr (VI)-stressed environments.
Collapse
Affiliation(s)
- Vaishali Sharma
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
7
|
Alsubaie QD, Al-Amri AA, Siddiqui MH, Alamri S. Strigolactone and nitric oxide collaborate synergistically to boost tomato seedling resilience to arsenic toxicity via modulating physiology and antioxidant system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108412. [PMID: 38359557 DOI: 10.1016/j.plaphy.2024.108412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
Arsenic (As) poses a significant environmental threat as a metalloid toxin, adversely affecting the health of both plants and animals. Strigolactones (SL) and nitric oxide (NO) are known to play crucial roles in plant physiology. Therefore, the present experiment was designed to investigate the potential cumulative role of SL (GR24-0.20 μM) and NO (100 μM) in mitigating the adverse effect of AsV (53 μM) by modulating physiological mechanisms in two genotypes of tomato (Riogrand and Super Strain 8). A sample randomized design with four replicates was used to arrange the experimental pots in the growth chamber. 45-d old both tomato cultivars under AsV toxicity exhibited reduced morphological attributes (root and shoot length, root and shoot fresh weight, and root and shoot dry weight) and physiological and biochemical characteristics [chlorophyll (Chl) a and b content, activity of δ-aminolevulinic acid dehydratase activity (an enzyme responsible for Chl biosynthesis), and carbonic anhydrase activity (an enzyme responsible for photosynthesis), and enhanced Chl degradation, overproduction of reactive oxygen species (ROS) and lipid peroxidation due to enhanced malondialdehyde (MDA) content. However, the combined application of SL and NO was more effective in enhancing the tolerance of both varieties to AsV toxicity compared to individual application. The combined application of SL and NO improved growth parameters, biosynthesis of Chls, NO and proline. However, the combined application significantly suppressed cellular damage by inhibiting MDA and overproduction of ROS in leaves and roots, as confirmed by the fluorescent microscopy study and markedly upregulated the antioxidant enzymes (catalase, peroxidase, superoxide dismutase, ascorbate dismutase and glutathione reductase) activity. This study provides clear evidence that the combined application of SL and NO supplementation significantly improves the resilience of tomato seedlings against AsV toxicity. The synergistic effect of SL and NO was confirmed by the application of cPTIO (an NO scavenger) with SL and NO. However, further molecular studies could be imperative to conclusively validate the simultaneous role of SL and NO in enhancing plant tolerance to abiotic stress.
Collapse
Affiliation(s)
- Qasi D Alsubaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdullah A Al-Amri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
8
|
Sharma S, Rai P, Prakash V, Tripathi S, Tiwari K, Gahlawat N, Tripathi DK, Sharma S. Ameliorative effects of Si-SNP synergy to mitigate chromium induced stress in Brassica juncea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122031. [PMID: 37419203 DOI: 10.1016/j.envpol.2023.122031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 05/07/2023] [Accepted: 06/12/2023] [Indexed: 07/09/2023]
Abstract
Hyperaccumulation of heavy metal in agricultural land has hampered yield of important crops globally. It has consequently deepened concerns regarding the burning issue of food security in the world. Among heavy metals, Chromium (Cr) is not needed for plant growth and found to pose detrimental effects on plants. Present study highlights the role of exogenous application of sodium nitroprusside (SNP, exogenous donor of NO) and silicon (Si) in alleviating detrimental ramification of Cr toxicity in Brassica juncea. The exposure of B. juncea to Cr (100 μM) under hydroponic system hampered the morphological parameters of plant growth like length and biomass and physiological parameters like carotenoid and chlorophyll contents. It also resulted in oxidative stress by disrupting the equilibrium between ROS production and antioxidant quenching leading to accumulation of ROS such as hydrogen peroxide (H2O2) and superoxide (O2•‾) radicle which causes lipid peroxidation. However, application of Si and SNP both individually and in combination counteracted oxidative stress due to Cr by regulating ROS accumulation and enhancing antioxidant metabolism by upregulation of antioxidant genes of DHAR, MDHAR, APX and GR. As the alleviatory effects were more pronounced in plants treated with combined application of Si and SNP; therefore, our findings suggest that dual application of these two alleviators can be used to mitigate Cr stress.
Collapse
Affiliation(s)
- Samarth Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | - Padmaja Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | - Ved Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | - Sneha Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | - Kavita Tiwari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | | | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India.
| |
Collapse
|
9
|
Romera FJ, García MJ, Lucena C, Angulo M, Pérez-Vicente R. NO Is Not the Same as GSNO in the Regulation of Fe Deficiency Responses by Dicot Plants. Int J Mol Sci 2023; 24:12617. [PMID: 37628796 PMCID: PMC10454737 DOI: 10.3390/ijms241612617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Iron (Fe) is abundant in soils but with a poor availability for plants, especially in calcareous soils. To favor its acquisition, plants develop morphological and physiological responses, mainly in their roots, known as Fe deficiency responses. In dicot plants, the regulation of these responses is not totally known, but some hormones and signaling molecules, such as auxin, ethylene, glutathione (GSH), nitric oxide (NO) and S-nitrosoglutathione (GSNO), have been involved in their activation. Most of these substances, including auxin, ethylene, GSH and NO, increase their production in Fe-deficient roots while GSNO, derived from GSH and NO, decreases its content. This paradoxical result could be explained with the increased expression and activity in Fe-deficient roots of the GSNO reductase (GSNOR) enzyme, which decomposes GSNO to oxidized glutathione (GSSG) and NH3. The fact that NO content increases while GSNO decreases in Fe-deficient roots suggests that NO and GSNO do not play the same role in the regulation of Fe deficiency responses. This review is an update of the results supporting a role for NO, GSNO and GSNOR in the regulation of Fe deficiency responses. The possible roles of NO and GSNO are discussed by taking into account their mode of action through post-translational modifications, such as S-nitrosylation, and through their interactions with the hormones auxin and ethylene, directly related to the activation of morphological and physiological responses to Fe deficiency in dicot plants.
Collapse
Affiliation(s)
- Francisco Javier Romera
- Department of Agronomy (DAUCO María de Maeztu Unit of Excellence 2021–2023), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (F.J.R.); (M.A.)
| | - María José García
- Department of Agronomy (DAUCO María de Maeztu Unit of Excellence 2021–2023), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (F.J.R.); (M.A.)
| | - Carlos Lucena
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (C.L.); (R.P.-V.)
| | - Macarena Angulo
- Department of Agronomy (DAUCO María de Maeztu Unit of Excellence 2021–2023), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (F.J.R.); (M.A.)
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (C.L.); (R.P.-V.)
| |
Collapse
|
10
|
Basit F, Bhat JA, Alyemeni MN, Shah T, Ahmad P. Nitric oxide mitigates vanadium toxicity in soybean (Glycine max L.) by modulating reactive oxygen species (ROS) and antioxidant system. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131085. [PMID: 36870130 DOI: 10.1016/j.jhazmat.2023.131085] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/12/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Vanadium (V) induced hazardous effects posturing a serious concern on crop production as well as food security. However, the nitric oxide (NO)-mediated alleviation of V-induced oxidative stress in soybean seedlings is still unknown. Therefore, this research was designed to explore the effects of exogenous NO to mitigate the V-induced phytotoxicity in soybean plants. Our upshots disclosed that NO supplementation considerably improved the plant biomass, growth, and photosynthetic attributes by regulating the carbohydrates, and plants biochemical composition, which further improved the guard cells, and stomatal aperture of soybean leaves. Additionally, NO regulated the plant hormones, and phenolic profile which restricted the V contents absorption (65.6%), and translocation (57.9%) by maintaining the nutrient acquisition. Furthermore, it detoxified the excessive V contents, and upsurged the antioxidants defense mechanism to lower the MDA, and scavenge ROS production. The molecular analysis further verified the NO-based regulation of lipid, sugar production, and degradation as well as detoxification mechanism in the soybean seedlings. Exclusively, we elaborated very first time the behind mechanism of V-induced oxidative stress alleviation by exogenous NO, hence illustrating the NO supplementation role as a stress alleviating agent for soybean grown in V contaminated areas to elevate the crop development and production.
Collapse
Affiliation(s)
- Farwa Basit
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | | | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tariq Shah
- Plant Science Research Unit, United States Department for Agriculture (USDA), ARS, Raleigh, NC, USA
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, Jammu and Kashmir 192301, India.
| |
Collapse
|
11
|
Villamil Carvajal JE, Garnica Montaña JP, Pinzón Sandoval EH, Almanza Merchán PJ, Atencio Solano LM. Macronutrient omission influences morphological parameters, growth, and yield in Arracacia xanthorrhiza Bancroft. Heliyon 2023; 9:e13062. [PMID: 36785829 PMCID: PMC9918744 DOI: 10.1016/j.heliyon.2023.e13062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
Mineral nutrition in arracacha is a critical production factor that conditions harvest yield. Few studies have been developed in nutrition and physiology, this does not allow to the design of ideal fertilization programs; consequences are increased production costs, soil degradation, and low-quality storage roots. Therefore, this study aimed to characterize the symptoms associated with macronutrient deficiency in arracacha plants and its effect on morphological parameters, the accumulation of fresh and dry biomass, and the distribution of dry matter in the different organs. Under greenhouse conditions, the experiment was conducted in Cajamarca, Tolima, Colombia. A completely randomized design was implemented, with seven treatments and six replicates (6 solutions lacking N, P, K, Ca, Mg, and S and Hoagland complete solution). Forty-two seedlings were transplanted, to which the complete solution was applied for 75 days, increasing the concentrations from 0.25 M to 1 M, and then nutritional deficiencies were induced. Deficiencies caused by macronutrients in arracacha plants exhibited visual symptoms and changes in their morphology. The omission of N, Ca, and S generated the most severe symptoms, drastically affecting plant height, leaf width, number of leaves, and plant mass accumulation. In the case of P, leaves became small and intense green with a violet margin. The Mg and K generated leaves with interveinal and margin chlorosis. Plants with the omission of macronutrients allocated dry mass in the following order: stem, storage roots, propagules, and leaves.
Collapse
Affiliation(s)
- Jorge Enrique Villamil Carvajal
- Facultad de Ciencias Agropecuarias, Programa Maestría Ciencias Agrarias. Universidad Pedagógica y Tecnológica de Colombia, Colombia,Corporación Colombiana de Investigación Agropecuaria - Agrosavia, Centro de Investigación Nataima, Tolima, Colombia,Corresponding author. Facultad de Ciencias Agropecuarias, Programa Maestría Ciencias Agrarias, Universidad Pedagógica y Tecnológica de Colombia, Colombia.
| | | | - Elberth Hernando Pinzón Sandoval
- Facultad de Ciencias Agropecuarias, Grupo de Investigación en Desarrollo y Producción Agraria Sostenible-GIPSO Universidad Pedagógica y Tecnológica de Colombia, Colombia
| | - Pedro José Almanza Merchán
- Facultad de Ciencias Agropecuarias, Grupo de Investigación en Desarrollo y Producción Agraria Sostenible-GIPSO Universidad Pedagógica y Tecnológica de Colombia, Colombia
| | | |
Collapse
|
12
|
Kumar D, Ohri P. Say "NO" to plant stresses: Unravelling the role of nitric oxide under abiotic and biotic stress. Nitric Oxide 2023; 130:36-57. [PMID: 36460229 DOI: 10.1016/j.niox.2022.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Nitric oxide (NO) is a diatomic gaseous molecule, which plays different roles in different strata of organisms. Discovered as a neurotransmitter in animals, NO has now gained a significant place in plant signaling cascade. NO regulates plant growth and several developmental processes including germination, root formation, stomatal movement, maturation and defense in plants. Due to its gaseous state, it is unchallenging for NO to reach different parts of cell and counterpoise antioxidant pool. Various abiotic and biotic stresses act on plants and affect their growth and development. NO plays a pivotal role in alleviating toxic effects caused by various stressors by modulating oxidative stress, antioxidant defense mechanism, metal transport and ion homeostasis. It also modulates the activity of some transcriptional factors during stress conditions in plants. Besides its role during stress conditions, interaction of NO with other signaling molecules such as other gasotransmitters (hydrogen sulfide), phytohormones (abscisic acid, salicylic acid, jasmonic acid, gibberellin, ethylene, brassinosteroids, cytokinins and auxin), ions, polyamines, etc. has been demonstrated. These interactions play vital role in alleviating plant stress by modulating defense mechanisms in plants. Taking all these aspects into consideration, the current review focuses on the role of NO and its interaction with other signaling molecules in regulating plant growth and development, particularly under stressed conditions.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
13
|
Liu P, Wu X, Gong B, Lü G, Li J, Gao H. Review of the Mechanisms by Which Transcription Factors and Exogenous Substances Regulate ROS Metabolism under Abiotic Stress. Antioxidants (Basel) 2022; 11:2106. [PMID: 36358478 PMCID: PMC9686556 DOI: 10.3390/antiox11112106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 10/03/2023] Open
Abstract
Reactive oxygen species (ROS) are signaling molecules that regulate many biological processes in plants. However, excess ROS induced by biotic and abiotic stresses can destroy biological macromolecules and cause oxidative damage to plants. As the global environment continues to deteriorate, plants inevitably experience abiotic stress. Therefore, in-depth exploration of ROS metabolism and an improved understanding of its regulatory mechanisms are of great importance for regulating cultivated plant growth and developing cultivars that are resilient to abiotic stresses. This review presents current research on the generation and scavenging of ROS in plants and summarizes recent progress in elucidating transcription factor-mediated regulation of ROS metabolism. Most importantly, the effects of applying exogenous substances on ROS metabolism and the potential regulatory mechanisms at play under abiotic stress are summarized. Given the important role of ROS in plants and other organisms, our findings provide insights for optimizing cultivation patterns and for improving plant stress tolerance and growth regulation.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of North China Water-Saving Irrigation Engineering, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
- Institute of Vegetables Research, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiaolei Wu
- Key Laboratory of North China Water-Saving Irrigation Engineering, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Binbin Gong
- Key Laboratory of North China Water-Saving Irrigation Engineering, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Guiyun Lü
- Key Laboratory of North China Water-Saving Irrigation Engineering, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Jingrui Li
- Key Laboratory of North China Water-Saving Irrigation Engineering, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Hongbo Gao
- Key Laboratory of North China Water-Saving Irrigation Engineering, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
14
|
Baniasadi F, Arghavani M, Saffari VR, Mansouri M. Multivariate analysis of morpho-physiological traits in Amaranthus tricolor as affected by nitric oxide and cadmium stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49092-49104. [PMID: 35217955 DOI: 10.1007/s11356-022-19430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Edible amaranth (Amaranthus tricolor L.) is used as a food-medicine or ornamental plant, and despite its importance, there are few reports associated with cadmium (Cd) stress. This study aimed to appraise the crosstalk between sodium nitroprusside (SNP), as a source of nitric oxide (NO), and cadmium toxicity on growth and physiological traits in edible amaranth by using different multivariate statistical methods. The results showed that growth-related traits of A. tricolor were significantly reduced under Cd stress. Contrarily, Cd treatments increased lipid peroxidation and reduced total protein content. Delving on the results of SNP application showed the suitability of its medium level (100 µM) on increasing the growth-related traits and also plant tolerance to Cd stress via lowering the lipid peroxidation and radical molecules production due to the higher activities of superoxide dismutase and catalase. Increasing the amount of Cd in roots and shoots, as the result of Cd treatment, reduced the growth and production of A. tricolor plants by high rates (over 50% in 60 mg kg-1 Cd level), indicating its susceptibility to high Cd toxicity. Contrarily, treating plants with SNP showed no effect on shoot Cd content, while it significantly increased Cd allocation in the root, which might be attributable to the protective effect of NO on Cd toxicity by trapping Cd in the root. Subsequently, the application of a medium level of SNP (around 100 µM) is recommendable for A. tricolor plant to overcome the negative impacts of Cd toxicity. Moreover, according to the results of heatmap and biplot, under no application of Cd, the application of 100 µM SNP showed a great association with growth-related traits indicating the effectiveness of SNP on the productivity of this species even under no stress situations.
Collapse
Affiliation(s)
- Fatemeh Baniasadi
- Department of Horticultural Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Masoud Arghavani
- Department of Horticultural Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
| | - Vahid Reza Saffari
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Mansouri
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
15
|
Shah AA, Riaz L, Siddiqui MH, Nazar R, Ahmed S, Yasin NA, Ali A, Mukherjee S, Hussaan M, Javad S, Chaudhry O. Spermine-mediated polyamine metabolism enhances arsenic-stress tolerance in Phaseolus vulgaris by expression of zinc-finger proteins related genes and modulation of mineral nutrient homeostasis and antioxidative system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118941. [PMID: 35121016 DOI: 10.1016/j.envpol.2022.118941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/15/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
The contamination of groundwater and agricultural land by metalloids especially arsenic (As) is one of the most serious threats to people and plants worldwide. Therefore, the present study was design to explore the role of spermine (Spm)- mediated polyamine metabolism in the alleviation of arsenic (As) toxicity in common bean (Phaseolus vulgaris L.). It was noted that As stress caused reduction in the intracellular CO2 concentration, stomatal conductivity and transpiration rate as compared to the control treatment and also impairedplant growth attributes and mineral nutrient homeostasis (sulfur, phosphorus, potassium and calcium). However, the exogenous application of Spm resulted in a considerable enhance in the content of glutathione and nitric oxide, and the activity of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione-reductase (GR), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR) in P. vulgaris seedlings grown As-contaminated soil. In addition, Spm application significantly improved the endogenous production of putrescine and spermidine accompanied along with reduction in malondialdehyde, electrolyte leakage, hydrogen peroxide, superoxide level besides enhanced methylglyoxal (MG) detoxification. Moreover, Spm treatment elevated the expression level of zinc-finger proteins related genes (PvC3H24, PvC3H25, PvC3H26 and PvC3H27) involved in abiotic stress response. The study concluded that Spm acted as an enhancing agent and improved tolerance to As-toxicity by upregulating the expression of zinc-finger proteins related genes, polyamine metabolism, Mg detoxification and antioxidant system in P. vulgaris.
Collapse
Affiliation(s)
- Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Luqman Riaz
- Department of Environmental Sciences, University of Narowal, 51750, Punjab, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rabia Nazar
- Department of Botany, University of Narowal, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Nasim Ahmad Yasin
- Senior Superintendent Garden, RO-II Office, University of the Punjab, Lahore, Pakistan
| | - Aamir Ali
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, 742213, India
| | - Muhammad Hussaan
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Sumera Javad
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Ozair Chaudhry
- Biology and Environmental Science, Albert Campbell Collegiate Institute (NS), Scarborough, Ontario, Canada
| |
Collapse
|
16
|
Yin X, Hu Y, Zhao Y, Meng L, Zhang X, Liu H, Wang L, Cui G. Effects of exogenous nitric oxide on wild barley ( Hordeum brevisubulatum) under salt stress. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2041096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Xiujie Yin
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Yao Hu
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Yihang Zhao
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Lingdong Meng
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Xiaomeng Zhang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Haoyue Liu
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Lina Wang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Guowen Cui
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| |
Collapse
|
17
|
Liu H, Wang C, Li C, Zhao Z, Wei L, Liu Z, Hu D, Liao W. Nitric oxide is involved in hydrogen sulfide-induced adventitious rooting in tomato ( Solanum lycopersicum). FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:245-258. [PMID: 34991782 DOI: 10.1071/fp21288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/02/2021] [Indexed: 05/27/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2 S) are signalling molecules that regulate adventitious rooting in plants. However, little is known about the cross-talk between NO and H2 S during adventitious rooting. Tomato (Solanum lycopersicum L.) explants were used to investigate the roles of and relationships between NO and H2 S during rooting. Effects of the NO donor sodium nitroprusside (SNP) and the H2 S donor sodium hydrosulfide (NaHS) on adventitious rooting were dose-dependent, and the greatest biological responses were observed under 25μM SNP and 50μM NaHS. The positive effect of NaHS was reversed by the NO scavenger 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), indicating that the H2 S-induced response was partially NO-dependent. Peroxidase (POD), polyphenol oxidase (PPO), and superoxide dismutase (SOD) activities significantly increased by SNP and NaHS treatment, and indoleacetic acid oxidase (IAAO) activity and the O2 - and H2 O2 content significantly decreased by SNP and NaHS treatment. SNP and NaHS treatment also increased the content of soluble sugar and protein and indole-3-acetic acid (IAA). cPTIO significantly mitigated the increases in POD, PPO and SOD activity and soluble sugar, protein and IAA content induced by NaHS. SNP and NaHS upregulated the expression of auxin-related genes (ARF4 and ARF16 ), cell cycle-related genes (CYCD3 , CYCA3 and CDKA1 ), and antioxidant-related genes (TPX2 , SOD and POD ); whereas cPTIO significantly inhibited the increase in the expression of these genes induced by NaHS. Overall, these results show that NO may be involved in H2 S-induced adventitious rooting by regulating the activity of rooting-related enzymes, the expression of related genes, and the content of various nutrients.
Collapse
Affiliation(s)
- Huwei Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Changxia Li
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Zongxi Zhao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Lijuan Wei
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Zhiya Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Dongliang Hu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| |
Collapse
|
18
|
Alamri S, Siddiqui MH, Mukherjee S, Kumar R, Kalaji HM, Irfan M, Minkina T, Rajput VD. Molybdenum-induced endogenous nitric oxide (NO) signaling coordinately enhances resilience through chlorophyll metabolism, osmolyte accumulation and antioxidant system in arsenate stressed-wheat (Triticum aestivum L.) seedlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118268. [PMID: 34610411 DOI: 10.1016/j.envpol.2021.118268] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
There is little information available to decipher the interaction between molybdenum (Mo) and nitric oxide (NO) in mitigating arsenic (AsV) stress in plants. The present work highlights the associative role of exogenous Mo and endogenous NO signaling in regulating AsV tolerance in wheat seedlings. Application of Mo (1 μM) on 25-day-old wheat seedlings grown in the presence (5 μM) or absence of AsV stress caused improvement of photosynthetic pigment metabolism, reduction of electrolytic leakage and reactive oxygen species (ROS), and higher accumulation of osmolytes (proline and total soluble sugars). The molybdenum treatment upregulated antioxidative enzymes, such as superoxide dismutase, ascorbate peroxidase and glutathione reductase. In addition, the accumulation of nonenzymatic antioxidants (ascorbate and glutathione) was correlated with an increase in ascorbate peroxidase and glutathione reductase activity. The application of cPTIO (endogenous NO scavenger; 100 μM) reversed the Mo-mediated effects, thus indicating that endogenous NO may accompany Mo-induced mitigation of AsV stress. Mo treatment stimulated the accumulation of endogenous NO in the presence of AsV stress. Thus, it is evident that Mo and NO-mediated AsV stress tolerance in wheat seedlings are primarily operative through chlorophyll restoration, osmolytes accumulation, reduced electrolytic leakage, and ROS homeostasis.
Collapse
Affiliation(s)
- Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia.
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, 742213, India
| | - Ritesh Kumar
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| |
Collapse
|
19
|
Can Bottom Sediments Be a Prospective Fertilizing Material? A Chemical Composition Analysis for Potential Reuse in Agriculture. MATERIALS 2021; 14:ma14247685. [PMID: 34947283 PMCID: PMC8706414 DOI: 10.3390/ma14247685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
Every year, huge amounts of bottom sediments are extracted worldwide, which need to be disposed. The recycling of bottom sediments for soil fertilization is in line with the long-promoted circular economy policy and enables the use of micro and macronutrients accumulated in sediments for soil fertilization. When considering potential agricultural reuse of the dredge sediments, the first necessary step should be to analyze whether the heavy metal content meets the obligatory criteria. Then, the contents of valuable elements required for plant growth and their ratios should be assessed. In this study, the content of nitrogen, organic carbon, phosphorus, and potassium was tested and iron, sulfur, calcium, and magnesium were also analyzed along vertical profiles of sediments extracted from four urban retention tanks in Gdańsk (Poland). The sediments were indicated to have a low content of nutrients (Ntot 0.01–0.52%, Corg 0.1–8.4%, P2O5 0.00–0.65%, K 0.0–1.0%), while being quite rich in Fe and S (0.2–3.3%, 0.0–2.5%, respectively). The C/N ratio changed in the range of 17.4–28.4, which proved good nitrogen availability for plants. The mean values of the Fe/P ratio were above 2.0, which confirms that phosphorus in the sediments would be available to the plants in the form of iron phosphate. To summarize, the bottom sediments from municipal retention reservoirs are not a perfect material for soil fertilization, but they are a free waste material which, when enriched with little cost, can be a good fertilizer. Future research should focus on cultivation experiments with the use of sediments enriched with N, P, Corg.
Collapse
|
20
|
Alamri S, Alsubaie QD, Al-Amri AA, Al-Munqedi B, Ali HM, Kushwaha BK, Singh VP, Siddiqui MH. Priming of tomato seedlings with 2-oxoglutarate induces arsenic toxicity alleviatory responses by involving endogenous nitric oxide. PHYSIOLOGIA PLANTARUM 2021; 173:45-57. [PMID: 32656764 DOI: 10.1111/ppl.13168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/04/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Metal toxicity in crop plants is a matter of scientific concern. Therefore, in recent years efforts have been made to minimize metal toxicity in crop plants. Out of various strategies, priming of seedlings with certain chemicals, like e.g. donors of signaling molecules, nutrients, metabolites or plant hormones has shown encouraging results. However, mechanisms related with the priming-induced mitigation of metal toxicity are still poorly known. Hence, we have tested the potential of 2-oxoglutarate (2-OG) priming in enhancing the arsenate (AsV ) toxicity tolerance in tomato seedlings along with deciphering the probable role of nitric oxide (NO) in accomplishing this task. Arsenate decreased growth, endogenous NO and nitric oxide synthase-like activity but enhanced the accumulation of As, which collectively led to root cell death. Arsenate toxicity also decreased some photosynthetic characteristics (i.e. Fv /Fm, qP, Fv /F0 and Fm /F0 , and total chlorophyll content) but enhanced NPQ. However, priming with 2-OG alleviated the toxic effect of AsV on growth, endogenous NO, cell death and photosynthesis. Moreover, arsenate inhibited the activities of enzymes of nitrogen metabolism (i.e. nitrate reductase, nitrite reductase, glutamine synthetase and glutamine 2-oxoglutarate aminotransferase) but increased the activity of glutamate dehydrogenase and NH4 + content. Superoxide radicals, hydrogen peroxide, lipid peroxidation, protein oxidation and membrane damage increased upon AsV exposure, but the antioxidant enzymes (i.e. superoxide dismutase, catalase and glutathione-S-transferase) showed differential responses. Overall, our results showed that 2-OG is capable of alleviating AsV toxicity in tomato seedlings but the involvement of endogenous NO is probably required.
Collapse
Affiliation(s)
- Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Qasi D Alsubaie
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdullah A Al-Amri
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Bandar Al-Munqedi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Bishwajit K Kushwaha
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Vijay P Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
21
|
Naz R, Batool S, Shahid M, Keyani R, Yasmin H, Nosheen A, Hassan MN, Mumtaz S, Siddiqui MH. Exogenous silicon and hydrogen sulfide alleviates the simultaneously occurring drought stress and leaf rust infection in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:558-571. [PMID: 34174661 DOI: 10.1016/j.plaphy.2021.06.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 05/28/2023]
Abstract
Silicon (Si) and hydrogen sulfide (H2S) are known to enhance plant defense against multiple stresses. Current study was conducted to investigate the application of Si and H2S alone as well as in combination, improved physiological resilience of wheat plants to drought stress (DS) and pathogen-Puccinia triticina (Pt) infection. We aimed to increase the wheat plant growth and to enhance the DS tolerance and Pt resistance with the concurrent applications of H2S and Si. In the first experiment, we selected the best growth enhancing concentration of H2S (0.3 mM) and Si (6 mM) to further investigate their tolerance and resistance potential in the pot experiment under DS and pathogen infection conditions. The obtained results reveal that DS has further increased the susceptibility of wheat plants to leaf rust pathogen infection while, the sole application of Si and the simultaneous exogenous treatments of H2S + Si enhanced the plant growth, decreased disease incidence, and significantly improved tolerance and defense mechanisms of wheat under individual and interactive stress conditions. The exogenous treatment of H2S + Si improved the growth criteria, photosynthetic pigments, osmoprotectants, and defense related enzyme activities. The same treatment also reinforced the endogenous H2S, Si, ABA and SA contents while decreased the disease incidence and oxidative stress indicators under individual and combined stress conditions. Overall, results from this study presents the influence of combined drought and P. triticina stress in wheat and reveal the beneficial impacts of concurrent exogenous treatment of H2S + Si to mitigate the drought and pathogen (P. triticina) induced adverse effects.
Collapse
Affiliation(s)
- Rabia Naz
- Department of Biosciences, COMSATS University, Islamabad, Pakistan.
| | - Sana Batool
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University, Vehari Campus, Islamabad, Pakistan
| | - Rumana Keyani
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Asia Nosheen
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | | | - Saqib Mumtaz
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Manzer Hussain Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Saudi Arabia
| |
Collapse
|
22
|
Kaya C. Nitrate reductase is required for salicylic acid-induced water stress tolerance of pepper by upraising the AsA-GSH pathway and glyoxalase system. PHYSIOLOGIA PLANTARUM 2021; 172:351-370. [PMID: 32542778 DOI: 10.1111/ppl.13153] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/18/2020] [Accepted: 06/11/2020] [Indexed: 05/07/2023]
Abstract
A trial was conducted to evaluate whether nitrate reductase (NR) participates in salicylic acid (SA)-improved water stress (WS) tolerance in pepper (Capsicum annuum L.) plants. Before starting WS treatment, 0.5 mM SA was applied to half of the well-watered (WW) plants as well as to WS-plants as a foliar spray once a day for a week. The soil water holding capacity was maintained at 40 and 80% of the full water storing capacity for WS and and well-watered (WW) plants, respectively. Water stress caused substantial decreases in total plant dry weight, Fv /Fm , chlorophyll a and b, relative water content, leaf water potential (ΨI) by 53, 37, 49, 21, 36 and 33%, respectively relative to control, but significant increases in malondialdehyde (MDA), hydrogen peroxide (H2 O2 ), electrolyte leakage (EL), methylglyoxal (MG), proline, key antioxidant enzymes' activities, NO and NR activity. The SA reduced oxidative stress, but improved antioxidant defence system, ascorbate-glutathione (AsA-GSH) cycle enzymes, glyoxalase system-related enzymes, glyoxalase I (Gly I) and glyoxalase II (Gly II), plant growth, photosynthetic traits, NO, NR and proline. SA-induced WS tolerance was further improved by supplementation of sodium nitroprusside (SNP), a donor of NO. NR inhibitor, sodium tungstate (ST) was applied in conjunction with SA and SA + SNP to the WW and WS-plants to assess whether NR contributes to SA-improved WS tolerance. ST abolished the beneficial effects of SA by reducing NO and NR activity in WS-pepper, but the application of SNP along with SA + ST reversed negative effects of ST, showing that NO and NR are jointly needed for SA-induced WS tolerance of pepper plants.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| |
Collapse
|
23
|
Genetic Diversity Analysis of Tomato (Solanum lycopersicum L.) with Morphological, Cytological, and Molecular Markers under Heat Stress. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7040065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tomatoes are usually consumed daily in the human diet. High temperatures reduce the number of tomato yields per year. Heat stress has been considered one of the most prominent causes of alterations in morphological and molecular characteristics in crops that decrease normal growth, production, and yield in diverse plants, including tomatoes (Solanum lycopersicum L.). In this study, we evaluated six tomato lines, namely G1, G2, G3, G4, G5, and G6, at morphological, molecular, and cytological levels under heat stress. The average results of two seasons (2018 and 2019) clarified that the G6, G1, and G2 lines recorded the highest flowering values, as well as some fruit and vegetative growth traits. Furthermore, G6 and G2 had the maximum number of fruits/plant, whereas G2 and G1 produced the highest yield/plant under high temperatures. The number of chromosomes in all lines was 2n = 24, except for G5, in which the number was 2n = 26, whereas chromosome sizes were small, ranging from 323.08 to 464.48 µm. The G1 cultivar was a symmetrical cultivar (primitive), having the highest total form percentage (TF%) and symmetry index (Syi) values and the minimum karyotype asymmetry index (ASK) value, whereas G4 was asymmetrical (advanced). Molecular marker analysis demonstrated that intersimple sequence repeat (ISSR) primers 49A, HB-14, 49A, 49B, and 89B presented the highest values for polymorphism percentage P%, marker index (MI), effective multiplex ratio (EMR), and polymorphism information content (PIC), respectively. In contrast, OP-A3, OP-B3, SCoT 2, and SCoT 12 primers showed the highest PIC, EMR, MI, P%, and resolving power (Rp) values across the studied random amplified polymorphic DNA (RAPD) and start codon-targeted (SCoT) primers. Moreover, ISSR revealed the highest number of unique specific markers (6), followed by RAPD (4) and SCoT (3) markers. Cluster analysis of combined cytological data and data relating to molecular marker attributes separated the G1, G2, and G3 lines into one group, whereas the other lines were clustered in another group. On the whole, the application of combined analysis using morphological, cytological, and molecular genetics techniques could be considered to provide suitable parameters for studying the evolution of the genetic divergence between the studied tomato lines.
Collapse
|
24
|
Alamri S, Siddiqui MH, Kushwaha BK, Singh VP, Ali HM. Mitigation of arsenate toxicity by indole-3-acetic acid in brinjal roots: Plausible association with endogenous hydrogen peroxide. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124336. [PMID: 33153795 DOI: 10.1016/j.jhazmat.2020.124336] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/31/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
The role of indole-3-acetic acid (IAA) and hydrogen peroxide (H2O2) crosstalk in regulating metal stress is still less known. Herein, role of IAA in alleviating arsenate (AsV) toxicity in brinjal seedlings along with its probable relation with endogenous H2O2 was investigated. Arsenate hampered root growth due to greater accumulation of As and decrease in phosphorus uptake that resulted into inhibited photosynthesis and cell death. Further, AsV induced oxidative stress markers and damage to macromolecules (lipids and proteins) due to alterations in redox status of glutathione as a result of inhibition in activity of glutathione synthetase and glutathione reductase. However, application of IAA with AsV improved root growth by significantly declining As accumulation and oxidative stress markers, sequestrating As into vacuoles, and improving redox status of glutathione which collectively protected roots from cell death. Interestingly, addition of diphenylene iodonium (DPI, an inhibitor of NADPH oxidase) further increased AsV toxicity even in the presence of IAA. However, application of H2O2 rescued negative effect of DPI. Overall, the results suggested that in IAA-mediated mitigation of AsV toxicity in brinjal roots, endogenous H2O2 might have acted as a downstream signal.
Collapse
Affiliation(s)
- Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia.
| | - Bishwajit Kumar Kushwaha
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj 211002, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj 211002, India
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia
| |
Collapse
|
25
|
García MJ, Angulo M, García C, Lucena C, Alcántara E, Pérez-Vicente R, Romera FJ. Influence of Ethylene Signaling in the Crosstalk Between Fe, S, and P Deficiency Responses in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:643585. [PMID: 33859661 PMCID: PMC8042388 DOI: 10.3389/fpls.2021.643585] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/22/2021] [Indexed: 05/09/2023]
Abstract
To cope with P, S, or Fe deficiency, dicot plants, like Arabidopsis, develop several responses (mainly in their roots) aimed to facilitate the mobilization and uptake of the deficient nutrient. Within these responses are the modification of root morphology, an increased number of transporters, augmented synthesis-release of nutrient solubilizing compounds and the enhancement of some enzymatic activities, like ferric reductase activity (FRA) or phosphatase activity (PA). Once a nutrient has been acquired in enough quantity, these responses should be switched off to minimize energy costs and toxicity. This implies that they are tightly regulated. Although the responses to each deficiency are induced in a rather specific manner, crosstalk between them is frequent and in such a way that P, S, or Fe deficiency can induce responses related to the other two nutrients. The regulation of the responses is not totally known but some hormones and signaling substances have been involved, either as activators [ethylene (ET), auxin, nitric oxide (NO)], or repressors [cytokinins (CKs)]. The plant hormone ET is involved in the regulation of responses to P, S, or Fe deficiency, and this could partly explain the crosstalk between them. In spite of these crosslinks, it can be hypothesized that, to confer the maximum specificity to the responses of each deficiency, ET should act in conjunction with other signals and/or through different transduction pathways. To study this latter possibility, several responses to P, S, or Fe deficiency have been studied in the Arabidopis wild-type cultivar (WT) Columbia and in some of its ethylene signaling mutants (ctr1, ein2-1, ein3eil1) subjected to the three deficiencies. Results show that key elements of the ET transduction pathway, like CTR1, EIN2, and EIN3/EIL1, can play a role in the crosstalk among nutrient deficiency responses.
Collapse
Affiliation(s)
- María José García
- Department of Botany, Ecology and Plant Physiology, Edificio Celestino Mutis, Campus de Rabanales CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Macarena Angulo
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Edificio Celestino Mutis, Campus de Rabanales CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Carlos García
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Edificio Celestino Mutis, Campus de Rabanales CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Carlos Lucena
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Edificio Celestino Mutis, Campus de Rabanales CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Esteban Alcántara
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Edificio Celestino Mutis, Campus de Rabanales CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Edificio Celestino Mutis, Campus de Rabanales CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Francisco Javier Romera
- Department of Agronomy (DAUCO-María de Maeztu Unit of Excellence), Edificio Celestino Mutis, Campus de Rabanales CeiA3, Universidad de Córdoba, Córdoba, Spain
- *Correspondence: Francisco Javier Romera
| |
Collapse
|
26
|
Alamri S, Hu Y, Mukherjee S, Aftab T, Fahad S, Raza A, Ahmad M, Siddiqui MH. Silicon-induced postponement of leaf senescence is accompanied by modulation of antioxidative defense and ion homeostasis in mustard (Brassica juncea) seedlings exposed to salinity and drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:47-59. [PMID: 33075710 DOI: 10.1016/j.plaphy.2020.09.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 05/25/2023]
Abstract
Soil salinity and drought stress (DS) are the massive problem for worldwide agriculture. Both stresses together become more toxic to the plant growth and development. Silicon (Si) being the second most abundant element in the earth's crust, exerts beneficial effects on plants under both stress and non-stress conditions. However, limited information is available to substantiate the beneficial role of Si in delaying the premature leaf senescence and imparting tolerance of mustard (Brassica juncea L.) plants to salinity and DS. Therefore, the present study aimed to explore the role of Si (source K2SiO3) in chlorophyll (Chl) biosynthesis, nutrients uptake, relative water content (RWC), proline (Pro) metabolism, antioxidant system and delaying of premature leaf senescence in mustard plants under sodium chloride (NaCl) and DS conditions. Results of this study show that exogenous Si (1.7 mM) significantly delayed the salt plus DS-induced premature leaf senescence. This was further accompanied by the enhanced nutrients accumulation and activity of chlorophyll metabolizing enzymes [δ-aminolevulinic acid (δ-ALA) dehydratase and porphobilinogen deaminase] and levels of δ-ALA, and Chls a and b and also by decreased the Chl degradation and Chl degrading enzymes (Chlorophyllase, Chl-degrading peroxidase, pheophytinase) activity. Exogenous Si treatment induced redox homoeostasis in B. juncea L. plants, which is evident by a reduced generation of reactive oxygen species (ROS) resulting due to suppressed activity of their generating enzymes (glycolate oxidase and NADPH oxidase) and enhanced defence system. Furthermore, application of Si inhibited the activity of protease and triggered the activity of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) and plasma membrane H+-ATPase activity. In conclusion, all these results reveal that Si could help in the modulation of Chl metabolism, redox hemostasis, and the regulation of nutrients (nitrogen, phosphorus, Si and potassium) uptake in the mustard plants that lead to the postponement of premature leaf senescence under salinity plus DS.
Collapse
Affiliation(s)
- Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Yanbo Hu
- Northeast Forestry University, 26# Hexing Road, Xiangfang District, Harbin City, 150040, PR China
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, 742213, India
| | - Tariq Aftab
- Department of Botany, Plant Physiology Section, Aligarh Muslim University, Aligarh, 202002, India
| | - Shah Fahad
- Department of Agronomy, The University of Haripur, 22620, Haripur, Pakistan; Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Ali Raza
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Manzoor Ahmad
- Department of Agriculture, Bacha Khan University, Charsadda, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia.
| |
Collapse
|
27
|
Farouk S, Elhindi KM, Alotaibi MA. Silicon supplementation mitigates salinity stress on Ocimum basilicum L. via improving water balance, ion homeostasis, and antioxidant defense system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111396. [PMID: 33039852 DOI: 10.1016/j.ecoenv.2020.111396] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 05/25/2023]
|
28
|
Mitigation of Nickel Toxicity and Growth Promotion in Sesame through the Application of a Bacterial Endophyte and Zeolite in Nickel Contaminated Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17238859. [PMID: 33260516 PMCID: PMC7730600 DOI: 10.3390/ijerph17238859] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
Nickel (Ni) bioavailable fraction in the soil is of utmost importance because of its involvement in plant growth and environmental feedbacks. High concentrations of Ni in the soil environment, especially in the root zone, may retard plant growth that ultimately results in reduced plant biomass and yield. However, endophytic microorganisms have great potential to reduce the toxicity of Ni, especially when applied together with zeolite. The present research work was conducted to evaluate the potential effects of an endophytic bacterium Caulobacter sp. MN13 in combination with zeolite on the physiology, growth, quality, and yield of sesame plant under normal and Ni stressed soil conditions through possible reduction of Ni uptake. Surface sterilized sesame seeds were sown in pots filled with artificially Ni contaminated soil amended with zeolite. Results revealed that plant agronomic attributes such as shoot root dry weight, total number of pods, and 1000-grains weight were increased by 41, 45, 54, and 65%, respectively, over control treatment, with combined application of bacteria and zeolite in Ni contaminated soil. In comparison to control, the gaseous exchange parameters (CO2 assimilation rate, transpiration rate, stomatal- sub-stomatal conductance, chlorophyll content, and vapor pressure) were significantly enhanced by co-application of bacteria and zeolite ranging from 20 to 49% under Ni stress. Moreover, the combined utilization of bacteria and zeolite considerably improved water relations of sesame plant, in terms of relative water content (RWC) and relative membrane permeability (RMP) along with improvement in biochemical components (protein, ash, crude fiber, fat), and micronutrients in normal as well as in Ni contaminated soil. Moreover, the same treatment modulated the Ni-stress in plants through improvement in antioxidant enzymes (AEs) activities along with improved Ni concentration in the soil and different plant tissues. Correlation and principal component analysis (PCA) further revealed that combined application of metal-tolerant bacterium Caulobacter sp. MN13 and zeolite is the most influential strategy in alleviating Ni-induced stress and subsequent improvement in growth, yield, and physio-biochemical attributes of sesame plant.
Collapse
|
29
|
Khan MN, Siddiqui MH, AlSolami MA, Alamri S, Hu Y, Ali HM, Al-Amri AA, Alsubaie QD, Al-Munqedhi BMA, Al-Ghamdi A. Crosstalk of hydrogen sulfide and nitric oxide requires calcium to mitigate impaired photosynthesis under cadmium stress by activating defense mechanisms in Vigna radiata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:278-290. [PMID: 32987258 DOI: 10.1016/j.plaphy.2020.09.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/08/2020] [Indexed: 05/12/2023]
Abstract
Hydrogen sulfide (H2S) and nitric oxide (NO) have been known to affect vast number of processes in plants under abiotic stresses. Also, calcium (Ca) works as a second messenger in plants, which underpins the abiotic stress-induced damage. However, the sequence of action of these signaling molecules against cadmium (Cd)-induced cellular oxidative damage remains unidentified. Therefore, we studied the synergistic actions and/or relationship of signaling molecules and Ca-dependent activation of tolerance mechanisms in Vigna radiata seedlings under Cd stress. The present study shows that exogenous Ca supplemented to Cd-stressed V. radiata seedlings reduced Cd accumulation and improved the activity of nitrate reductase, and L/D-cysteine desulfhydrase (LCD/DCD) that resulted in improved synthesis of NO and H2S content. Application of Ca also elevated the level of cysteine (Cys) by upregulating the activity of Cys-synthesizing enzymes serine acetyltransferase and O-acetylserine(thiol)lyase in Cd-stressed seedlings. Maintenance of Cys pool under Cd stress contributed to improved H2S content which together with Ca and NO improved antioxidant enzymes and components of ascorbate-glutathione (AsA-GSH) cycle. All these collectively regulated the activity of NADPH oxidase and glycolate oxidase, resulting in the inhibition of Cd-induced generation of reactive oxygen species. The elevated level of Cys also assisted the Cd-stressed seedlings in maintaining GSH pool which retained normal functioning of AsA-GSH cycle and led to enhanced content of phytochelatins coupled with reduced Cd content. The positive effect of these events manifested in an enhanced rate of photosynthesis, carbohydrate accumulation, and growth attributes of the plants. On the contrary, addition of NO scavenger cPTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide], H2S scavenger HT (Hypotaurine) and Ca-chelator EGTA (Ethylene glycol-bis(b-aminoethylether)-N,N,N',N'-tetraacetic acid) again developed a condition similar to stress and positive effect of the signaling molecules was abolished. The findings of the study postulate that Ca in association with NO and H2S mitigates Cd-induced impairment and enhances the tolerance of the V. radiata plants against Cd stress. The results of the study also substantiate that Ca acts both upstream as well as downstream of NO signals whereas, H2S acts downstream of Ca and NO during Cd-stress responses of the plants.
Collapse
Affiliation(s)
- M Nasir Khan
- Department of Biology, Environmental Research Unit, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia.
| | - Mazen A AlSolami
- Department of Biology, Environmental Research Unit, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Yanbo Hu
- Northeast Forestry University, 26# Hexing Road, Xiangfang District, Harbin City, 150040, PR China
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Abdullah A Al-Amri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Qasi D Alsubaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Bander M A Al-Munqedhi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Abdullah Al-Ghamdi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| |
Collapse
|
30
|
Alamri S, Ali HM, Khan MIR, Singh VP, Siddiqui MH. Exogenous nitric oxide requires endogenous hydrogen sulfide to induce the resilience through sulfur assimilation in tomato seedlings under hexavalent chromium toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:20-34. [PMID: 32738579 DOI: 10.1016/j.plaphy.2020.07.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 05/24/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S), versatile signaling molecules, play multiple roles in plant growth, physiological and biochemical processes under heavy metal stress. However, the mechanisms through which NO in association with endogenous H2S mediated hexavalent chromium Cr(VI) toxicity mitigation are still not fully understood. Therefore, we investigated the role of NO and H2S in sulfur (S)-assimilation and the effect of NO on endogenous H2S, and cysteine (Cys) biosynthesis and maintenance of cellular glutathione (GSH) pool in tomato seedlings under Cr(VI) stress. Cr(VI) toxicity caused an increase in reactive oxygen species (ROS; O2•- and H2O2) formation and activity of chlorophyll (Chl) degrading enzyme [Chlorophyllase (Chlase)] and decrease in seedlings growth attributes, Chl a and b content, and activity of Chl synthesizing enzyme [δ-aminolevulinic acid dehydratase (δ-ALAD)], gas exchange parameters, S-assimilation, and Cys and H2S metabolism. An increase in the content of glycinebetaine (GB), total soluble carbohydrates (TSCs) and total phenols (TPls), and decrease in DNA damage and ROS in NO treated seedlings conferred Cr(VI) toxicity tolerance. Under Cr(VI) toxicity conditions, the inclusion of H2S scavenger hypotaurine (HT) in growth medium containing NO validated the role of endogenous H2S in S-assimilation, H2S and Cys and GSH metabolism by withdrawing activity of enzymes involved in S-assimilation [adenosine 5-phosphosulfatereductase (APS-R), ATP-sulfurylase (ATP-S)], in the biosynthesis of H2S [L-cysteine desulfhydrase (L-CD) and D-cysteine desulfhydrase (D-CD)], Cys [O-acetylserin (thiol) lyase (OAST-L)], and GSH [glutamylcysteine synthetase (γ-GCS) and glutathione synthetase (GS)], and in antioxidant system. On the other hand, application of cPTIO [2-(4-32 carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide], a NO scavenger and HT diminished the effect of NO on internal H2S levels, Cys and glutathione homeostasis, and S-assimilation, which resulted in poor immunity against oxidative stress induced by Cr(VI) toxicity. The obtained results postulate that NO-induced internal H2S conferred tolerance of tomato seedlings to Cr(VI) toxicity and maintained better photosynthesis process and plant growth.
Collapse
Affiliation(s)
- Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - M Iqbal R Khan
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India.
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
31
|
Al-Huqail AA, Ali HM, Kushwaha BK, AL-Huqail AA, Singh VP, Siddiqui MH. Ascorbic acid is essential for inducing chromium (VI) toxicity tolerance in tomato roots. J Biotechnol 2020; 322:66-73. [DOI: 10.1016/j.jbiotec.2020.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 02/04/2023]
|
32
|
Khan MN, AlSolami MA, Basahi RA, Siddiqui MH, Al-Huqail AA, Abbas ZK, Siddiqui ZH, Ali HM, Khan F. Nitric oxide is involved in nano-titanium dioxide-induced activation of antioxidant defense system and accumulation of osmolytes under water-deficit stress in Vicia faba L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110152. [PMID: 31927357 DOI: 10.1016/j.ecoenv.2019.110152] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/26/2019] [Accepted: 12/29/2019] [Indexed: 05/22/2023]
Abstract
Nano-titanium dioxide (nTiO2) has been reported to improve tolerance of plants against different environmental stresses by modulating various physiological and biochemical processes. Nitric oxide (NO) has been shown to act as an important stress signaling molecule during plant responses to abiotic stresses. The present work was planned to investigate the involvement of endogenous NO in nTiO2-induced activation of defense system of fava bean (Vicia faba L.) plants under water-deficit stress (WDS) conditions. Water-suffered plants showed increased concentration of hydrogen peroxide (H2O2) and superoxide (O2-) content coupled with increased electrolyte leakage and lipid peroxidation which adversely affected nitrate reductase (NR) activity, chlorophyll content and growth of the plants. However, application of 15 mg L-1 nTiO2 to stressed plants significantly induced NR activity and synthesis of NO which elevated enzymatic and non-enzymatic defense system of the stressed plants and suppressed the generation of H2O2 and O2- content, leakage of electrolytes, and lipid peroxidation. Application of nTiO2, in association with NO, also enhanced the accumulation of osmolytes (proline and glycine betaine) that assisted the stressed plants in osmotic adjustment as witnessed by improved hydration level of the plants. Involvement of NO in nTiO2-induced activation of defense system was confirmed with NO scavenger cPTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide] which caused recurrence of WDS.
Collapse
Affiliation(s)
- M Nasir Khan
- Department of Biology, Faculty of Science, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Mazen A AlSolami
- Department of Biology, Faculty of Science, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Riyadh A Basahi
- Department of Biology, Faculty of Science, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Manzer H Siddiqui
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Asma A Al-Huqail
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Zahid Khorshid Abbas
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Zahid H Siddiqui
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Hayssam M Ali
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Faheema Khan
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|