1
|
Pérez-Boyero D, Hernández-Pérez C, Valero J, Cabedo VL, Alonso JR, Díaz D, Weruaga E. The eNOS isoform exhibits increased expression and activation in the main olfactory bulb of nNOS knock-out mice. Front Cell Neurosci 2023; 17:1120836. [PMID: 37006472 PMCID: PMC10061100 DOI: 10.3389/fncel.2023.1120836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
The main olfactory bulb (MOB) is a neural structure that processes olfactory information. Among the neurotransmitters present in the MOB, nitric oxide (NO) is particularly relevant as it performs a wide variety of functions. In this structure, NO is produced mainly by neuronal nitric oxide synthase (nNOS) but also by inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS). The MOB is considered a region with great plasticity and the different NOS also show great plasticity. Therefore, it could be considered that this plasticity could compensate for various dysfunctional and pathological alterations. We examined the possible plasticity of iNOS and eNOS in the MOB in the absence of nNOS. For this, wild-type and nNOS knock-out (nNOS-KO) mice were used. We assessed whether the absence of nNOS expression could affect the olfactory capacity of mice, followed by the analysis of the expression and distribution of the NOS isoforms using qPCR and immunofluorescence. NO production in MOB was examined using both the Griess and histochemical NADPH-diaphorase reactions. The results indicate nNOS-KO mice have reduced olfactory capacity. We observed that in the nNOS-KO animal, there is an increase both in the expression of eNOS and NADPH-diaphorase, but no apparent change in the level of NO generated in the MOB. It can be concluded that the level of eNOS in the MOB of nNOS-KO is related to the maintenance of normal levels of NO. Therefore, our findings suggest that nNOS could be essential for the proper functioning of the olfactory system.
Collapse
Affiliation(s)
- David Pérez-Boyero
- Institute for Neuroscience of Castilla and León (INCYL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Carlos Hernández-Pérez
- Institute for Neuroscience of Castilla and León (INCYL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Jorge Valero
- Institute for Neuroscience of Castilla and León (INCYL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Valeria Lorena Cabedo
- Institute for Neuroscience of Castilla and León (INCYL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - José Ramón Alonso
- Institute for Neuroscience of Castilla and León (INCYL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - David Díaz
- Institute for Neuroscience of Castilla and León (INCYL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- *Correspondence: David Díaz,
| | - Eduardo Weruaga
- Institute for Neuroscience of Castilla and León (INCYL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Eduardo Weruaga,
| |
Collapse
|
2
|
Mobley RB, Ray EJ, Maruska KP. Expression and localization of neuronal nitric oxide synthase in the brain and sensory tissues of the African cichlid fish Astatotilapia burtoni. J Comp Neurol 2022; 530:2901-2917. [PMID: 35781648 DOI: 10.1002/cne.25383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 11/06/2022]
Abstract
Nitric oxide (NO) produced by the enzyme neuronal nitric oxide synthase serves as an important neurotransmitter in the central nervous system that is involved in reproductive regulation, learning, sensory processing, and other forms of neural plasticity. Here, we map the distribution of nnos-expressing cells in the brain and retina of the cichlid fish Astatotilapia burtoni using in situ hybridization. In the brain, nnos-expressing cells are found from the olfactory bulbs to the hindbrain, including within specific nuclei involved in decision-making, sensory processing, neuroendocrine regulation, and the expression of social behaviors. In the retina, nnos-expressing cells are found in the inner nuclear layer, presumably in amacrine cells. We also used quantitative PCR to test for differences in nnos expression within the eye and olfactory bulbs of males and females of different reproductive states and social statuses. In the eye, males express more nnos than females, and socially dominant males express more nnos than subordinate males, but expression did not differ among female reproductive states. In the olfactory bulbs, dominant males had greater nnos expression than subordinate males. These results suggest a status-specific function for NO signaling in the visual and olfactory systems that may be important for sensory perception related to mating or territorial interactions to maintain the social hierarchy. The widespread distribution of nnos-expressing cells throughout the cichlid brain is similar to that in other teleosts, with some conserved localization patterns across vertebrates, suggesting diverse functions for this important neurotransmitter system.
Collapse
Affiliation(s)
- Robert B Mobley
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Emily J Ray
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
3
|
Schmidt SD, Zinn CG, Behling JAK, Furian AF, Furini CRG, de Carvalho Myskiw J, Izquierdo I. Inhibition of PACAP/PAC1/VPAC2 signaling impairs the consolidation of social recognition memory and nitric oxide prevents this deficit. Neurobiol Learn Mem 2021; 180:107423. [PMID: 33705861 DOI: 10.1016/j.nlm.2021.107423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022]
Abstract
Social recognition memory (SRM) forms the basis of social relationships of animals. It is essential for social interaction and adaptive behavior, reproduction and species survival. Evidence demonstrates that social deficits of psychiatric disorders such as autism and schizophrenia are caused by alterations in SRM processing by the hippocampus and amygdala. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and its receptors PAC1, VPAC1 and VPAC2 are highly expressed in these regions. PACAP is a pleiotropic neuropeptide that modulates synaptic function and plasticity and is thought to be involved in social behavior. PACAP signaling also stimulates the nitric oxide (NO) production and targets outcomes to synapses. In the present work, we investigate the effect of the infusion of PACAP-38 (endogenous neuropeptide and potent stimulator of adenylyl cyclase), PACAP 6-38 (PAC1/VPAC2 receptors antagonist) and S-Nitroso-N-acetyl-DL-penicillamine (SNAP, NO donor) in the CA1 region of the hippocampus and in the basolateral amygdala (BLA) on the consolidation of SRM. For this, male Wistar rats with cannulae implanted in CA1 or in BLA were subjected to a social discrimination paradigm, which is based on the natural ability of rodents to investigate unfamiliar conspecifics more than familiar one. In the sample phase (acquisition), animals were exposed to a juvenile conspecific for 1 h. Immediately, 60 or 150 min after, animals received one of different pharmacological treatments. Twenty-four hours later, they were submitted to a 5 min retention test in the presence of the previously presented juvenile (familiar) and a novel juvenile. Animals that received infusions of PACAP 6-38 (40 pg/side) into CA1 immediately after the sample phase or into BLA immediately or 60 min after the sample phase were unable to recognize the familiar juvenile during the retention test. This impairment was abolished by the coinfusion of PACAP 6-38 plus SNAP (5 μg/side). These results show that the blockade of PACAP/PAC1/VPAC2 signaling in the CA1 and BLA during a restricted post-acquisition time window impairs the consolidation of SRM and that the SNAP is able to abolish this deficit. Findings like this could potentially be used in the future to influence studies of psychiatric disorders involving social behavior.
Collapse
Affiliation(s)
- Scheila Daiane Schmidt
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil.
| | - Carolina Garrido Zinn
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Jonny Anderson Kielbovicz Behling
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Ana Flávia Furian
- Laboratory of Neurotoxicity, Federal University of Santa Maria (UFSM), Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Cristiane Regina Guerino Furini
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Jociane de Carvalho Myskiw
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| | - Ivan Izquierdo
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690-2nd Floor, 90610-000 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Chong PS, Poon CH, Fung ML, Guan L, Steinbusch HWM, Chan YS, Lim WL, Lim LW. Distribution of neuronal nitric oxide synthase immunoreactivity in adult male Sprague-Dawley rat brain. Acta Histochem 2019; 121:151437. [PMID: 31492421 DOI: 10.1016/j.acthis.2019.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/22/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022]
Abstract
Neuronal NOS (nNOS) accounts for most of the NO production in the nervous system that modulates synaptic transmission and neuroplasticity. Although previous studies have selectively described the localisation of nNOS in specific brain regions, a comprehensive distribution profile of nNOS in the brain is lacking. Here we provided a detailed morphological characterization on the rostro-caudal distribution of neurons and fibres exhibiting positive nNOS-immunoreactivity in adult Sprague-Dawley rat brain. Our results demonstrated that neurons and fibres in the brain regions that exhibited high nNOS immunoreactivity include the olfactory-related areas, intermediate endopiriform nucleus, Islands of Calleja, subfornical organ, ventral lateral geniculate nucleus, parafascicular thalamic nucleus, superior colliculus, lateral terminal nucleus, pedunculopontine tegmental nucleus, periaqueductal gray, dorsal raphe nucleus, supragenual nucleus, nucleus of the trapezoid body, and the cerebellum. Moderate nNOS immunoreactivity was detected in the cerebral cortex, caudate putamen, hippocampus, thalamus, hypothalamus, amygdala, and the spinal cord. Finally, low NOS immunoreactivity were found in the corpus callosum, fornix, globus pallidus, anterior commissure, and the dorsal hippocampal commissure. In conclusion, this study provides a comprehensive view of the morphology and localisation of nNOS immunoreactivity in the brain that would contribute to a better understanding of the role played by nNOS in the brain.
Collapse
Affiliation(s)
- Pit Shan Chong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Chi Him Poon
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Man Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Li Guan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Harry W M Steinbusch
- Department of Neuroscience and European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Wei Ling Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China; Department of Biological Sciences, Sunway University, Selangor, Malaysia.
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China; Department of Biological Sciences, Sunway University, Selangor, Malaysia.
| |
Collapse
|
5
|
Lyons LC, Gardner JS, Gandour CE, Krishnan HC. Role of proteasome-dependent protein degradation in long-term operant memory in Aplysia. ACTA ACUST UNITED AC 2016; 24:59-64. [PMID: 27980077 PMCID: PMC5159658 DOI: 10.1101/lm.043794.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/24/2016] [Indexed: 01/26/2023]
Abstract
We investigated the in vivo role of protein degradation during intermediate (ITM) and long-term memory (LTM) in Aplysia using an operant learning paradigm. The proteasome inhibitor MG-132 inhibited the induction and molecular consolidation of LTM with no effect on ITM. Remarkably, maintenance of steady-state protein levels through inhibition of protein synthesis using either anisomycin or rapamycin in conjunction with proteasome inhibition permitted the formation of robust 24 h LTM. Our studies suggest a primary role for proteasomal activity in facilitation of gene transcription for LTM and raise the possibility that synaptic mechanisms are sufficient to sustain 24 h memory.
Collapse
Affiliation(s)
- Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Jacob S Gardner
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Catherine E Gandour
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Harini C Krishnan
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306-4295, USA
| |
Collapse
|
6
|
Lachén-Montes M, Fernández-Irigoyen J, Santamaría E. Deconstructing the molecular architecture of olfactory areas using proteomics. Proteomics Clin Appl 2016; 10:1178-1190. [PMID: 27226001 DOI: 10.1002/prca.201500147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/02/2016] [Accepted: 05/22/2016] [Indexed: 11/07/2022]
Abstract
The anatomy of the olfactory system is highly complex, comprising a system of olfactory receptors, pathways for the transmission of olfactory information, and structures for the recognition, discrimination, and memorization of odors. During the last years, proteomics has emerged as a large-scale comprehensive approach to characterize and quantify specific olfactory-related proteomes in different biological conditions such as olfactory learning, neurodegeneration, and ageing between others. The current work reviews recent applications of proteomics to olfaction with particular focus on quantitative proteome profiling studies performed on olfactory areas from laboratory animal models as well as proteomic characterizations performed on specific brain structures and fluids involved in human smell. Finally, we will also discuss the potential application of proteomics to study global proteome dynamics and posttranslationally modified proteomes in order to unravel cell-signaling networks that occur from peripheral structures to olfactory cortical areas during odor processing.
Collapse
Affiliation(s)
- Mercedes Lachén-Montes
- Clinical Neuroproteomics Group, Navarrabiomed, Instituto de investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Group, Navarrabiomed, Instituto de investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,Proteomics Unit, Navarrabiomed, Proteored-ISCIII, Instituto de investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Group, Navarrabiomed, Instituto de investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,Proteomics Unit, Navarrabiomed, Proteored-ISCIII, Instituto de investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
7
|
Kähne T, Richter S, Kolodziej A, Smalla KH, Pielot R, Engler A, Ohl FW, Dieterich DC, Seidenbecher C, Tischmeyer W, Naumann M, Gundelfinger ED. Proteome rearrangements after auditory learning: high-resolution profiling of synapse-enriched protein fractions from mouse brain. J Neurochem 2016; 138:124-38. [PMID: 27062398 PMCID: PMC5089584 DOI: 10.1111/jnc.13636] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 03/23/2016] [Accepted: 04/01/2016] [Indexed: 01/09/2023]
Abstract
Learning and memory processes are accompanied by rearrangements of synaptic protein networks. While various studies have demonstrated the regulation of individual synaptic proteins during these processes, much less is known about the complex regulation of synaptic proteomes. Recently, we reported that auditory discrimination learning in mice is associated with a relative down-regulation of proteins involved in the structural organization of synapses in various brain regions. Aiming at the identification of biological processes and signaling pathways involved in auditory memory formation, here, a label-free quantification approach was utilized to identify regulated synaptic junctional proteins and phosphoproteins in the auditory cortex, frontal cortex, hippocampus, and striatum of mice 24 h after the learning experiment. Twenty proteins, including postsynaptic scaffolds, actin-remodeling proteins, and RNA-binding proteins, were regulated in at least three brain regions pointing to common, cross-regional mechanisms. Most of the detected synaptic proteome changes were, however, restricted to individual brain regions. For example, several members of the Septin family of cytoskeletal proteins were up-regulated only in the hippocampus, while Septin-9 was down-regulated in the hippocampus, the frontal cortex, and the striatum. Meta analyses utilizing several databases were employed to identify underlying cellular functions and biological pathways. Data are available via ProteomeExchange with identifier PXD003089. How does the protein composition of synapses change in different brain areas upon auditory learning? We unravel discrete proteome changes in mouse auditory cortex, frontal cortex, hippocampus, and striatum functionally implicated in the learning process. We identify not only common but also area-specific biological pathways and cellular processes modulated 24 h after training, indicating individual contributions of the regions to memory processing.
Collapse
Affiliation(s)
- Thilo Kähne
- Institute of Experimental Internal Medicine, Medical School, Otto von Guericke University, Magdeburg, Germany
| | - Sandra Richter
- Institute of Experimental Internal Medicine, Medical School, Otto von Guericke University, Magdeburg, Germany
| | - Angela Kolodziej
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany.,Institute of Biology, Otto von Guericke University, Magdeburg, Germany
| | - Karl-Heinz Smalla
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Rainer Pielot
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | | | - Frank W Ohl
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany.,Institute of Biology, Otto von Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Daniela C Dieterich
- Center for Behavioral Brain Sciences, Magdeburg, Germany.,Institute of Pharmacology and Toxicology, Medical School, Otto von Guericke University, Magdeburg, Germany
| | - Constanze Seidenbecher
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Wolfgang Tischmeyer
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical School, Otto von Guericke University, Magdeburg, Germany
| | - Eckart D Gundelfinger
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Molecular Neuroscience, Medical School, Otto von Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases, Magdeburg, Germany
| |
Collapse
|
8
|
Sase A, Nawaratna G, Hu S, Wu G, Lubec G. Decreased hippocampal homoarginine and increased nitric oxide and nitric oxide synthase levels in rats parallel training in a radial arm maze. Amino Acids 2016; 48:2197-204. [PMID: 27178025 DOI: 10.1007/s00726-016-2251-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/02/2016] [Indexed: 12/22/2022]
Abstract
L-homoarginine (hArg) is derived from enzymatic guanidination of lysine. It was demonstrated that hArg is a substrate for nitric oxide (NO) synthesis, blocks lysine transport and inhibits the uptake of arginine into synaptosomes and modulates GABA responses ex vivo. As there is limited information on its physiological roles in the brain, the aim of the study was to show whether hippocampal or frontal lobe (FL) hArg is paralleling training in the radial arm maze (RAM) or NO formation. Hippocampi and FL of male Sprague-Dawley rats were taken from trained or yoked in a RAM. Then hArg and metabolites, NO and NO synthase (NOS) were determined by standard methods. The animals learned the task in the RAM showing significant reduction of working memory errors. hArg showed decreased levels in both brain regions of trained animals as compared to yoked animals. Nitrate plus nitrite (NOx) concentrations and NOS activity were significantly increased in hippocampi, F(1,36) = 170.5; P ≤ 0.0001 and FL, F(1,36) = 74.67; P ≤ 0.0001 of trained animals as compared to yoked animals. Levels of hArg were negatively correlated with NOx in hippocampus (r = -0.6355; P = 0.0483) but not in FL and with lysine in the FL (r = -0.6650; P = 0.0358). NOx levels were positively correlated with NOS in both the hippocampus (r = 0.7474; P = 0.0129) and FL (r = 0.9563; P ≤ 0.0001). These novel findings indicate that hArg is linked to NO formation in hippocampus but not in FL and is paralleling spatial memory in the RAM.
Collapse
Affiliation(s)
- Ajinkya Sase
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Room 212, Kleberg Bldg., Althanstraße 14, 1090, Vienna, Austria
| | - Gayan Nawaratna
- Departments of Animal Science and Medical Physiology, Texas A&M University, 2471 TAMU, College Station, TX, 77843-2471, USA
| | - Shengdi Hu
- Departments of Animal Science and Medical Physiology, Texas A&M University, 2471 TAMU, College Station, TX, 77843-2471, USA
| | - Guoyao Wu
- Departments of Animal Science and Medical Physiology, Texas A&M University, 2471 TAMU, College Station, TX, 77843-2471, USA.
| | - Gert Lubec
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Room 212, Kleberg Bldg., Althanstraße 14, 1090, Vienna, Austria.
| |
Collapse
|
9
|
Raju K, Doulias PT, Evans P, Krizman EN, Jackson JG, Horyn O, Daikhin Y, Nissim I, Yudkoff M, Nissim I, Sharp KA, Robinson MB, Ischiropoulos H. Regulation of brain glutamate metabolism by nitric oxide and S-nitrosylation. Sci Signal 2015; 8:ra68. [PMID: 26152695 DOI: 10.1126/scisignal.aaa4312] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO) is a signaling intermediate during glutamatergic neurotransmission in the central nervous system (CNS). NO signaling is in part accomplished through cysteine S-nitrosylation, a posttranslational modification by which NO regulates protein function and signaling. In our investigation of the protein targets and functional impact of S-nitrosylation in the CNS under physiological conditions, we identified 269 S-nitrosocysteine residues in 136 proteins in the wild-type mouse brain. The number of sites was significantly reduced in the brains of mice lacking endothelial nitric oxide synthase (eNOS(-/-)) or neuronal nitric oxide synthase (nNOS(-/-)). In particular, nNOS(-/-) animals showed decreased S-nitrosylation of proteins that participate in the glutamate/glutamine cycle, a metabolic process by which synaptic glutamate is recycled or oxidized to provide energy. (15)N-glutamine-based metabolomic profiling and enzymatic activity assays indicated that brain extracts from nNOS(-/-) mice converted less glutamate to glutamine and oxidized more glutamate than those from mice of the other genotypes. GLT1 [also known as EAAT2 (excitatory amino acid transporter 2)], a glutamate transporter in astrocytes, was S-nitrosylated at Cys(373) and Cys(561) in wild-type and eNOS(-/-) mice, but not in nNOS(-/-) mice. A form of rat GLT1 that could not be S-nitrosylated at the equivalent sites had increased glutamate uptake compared to wild-type GLT1 in cells exposed to an S-nitrosylating agent. Thus, NO modulates glutamatergic neurotransmission through the selective, nNOS-dependent S-nitrosylation of proteins that govern glutamate transport and metabolism.
Collapse
Affiliation(s)
- Karthik Raju
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paschalis-Thomas Doulias
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Perry Evans
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Elizabeth N Krizman
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Joshua G Jackson
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Oksana Horyn
- Division of Genetic and Metabolic Disease, Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Yevgeny Daikhin
- Division of Genetic and Metabolic Disease, Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Ilana Nissim
- Division of Genetic and Metabolic Disease, Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Marc Yudkoff
- Division of Genetic and Metabolic Disease, Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Itzhak Nissim
- Division of Genetic and Metabolic Disease, Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA. Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kim A Sharp
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael B Robinson
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA. Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA. Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Harry Ischiropoulos
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA. Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA. Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
James BM, Li Q, Luo L, Kendrick KM. Aged neuronal nitric oxide knockout mice show preserved olfactory learning in both social recognition and odor-conditioning tasks. Front Cell Neurosci 2015; 9:105. [PMID: 25870540 PMCID: PMC4375995 DOI: 10.3389/fncel.2015.00105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/09/2015] [Indexed: 12/27/2022] Open
Abstract
There is evidence for both neurotoxic and neuroprotective roles of nitric oxide (NO) in the brain and changes in the expression of the neuronal isoform of NO synthase (nNOS) gene occur during aging. The current studies have investigated potential support for either a neurotoxic or neuroprotective role of NO derived from nNOS in the context of aging by comparing olfactory learning and locomotor function in young compared to old nNOS knockout (nNOS−/−) and wildtype control mice. Tasks involving social recognition and olfactory conditioning paradigms showed that old nNOS−/− animals had improved retention of learning compared to similar aged wildtype controls. Young nNOS−/− animals showed superior reversal learning to wildtypes in a conditioned learning task, although their performance was weakened with age. Interestingly, whereas young nNOS−/− animals were impaired in long term memory for social odors compared to wildtype controls, in old animals this pattern was reversed, possibly indicating beneficial compensatory changes influencing olfactory memory may occur during aging in nNOS−/− animals. Possibly such compensatory changes may have involved increased NO from other NOS isoforms since the memory deficit in young nNOS−/− animals could be rescued by the NO-donor, molsidomine. Both nNOS−/− and wildtype animals showed an age-associated decline in locomotor activity although young nNOS−/− animals were significantly more active than wildtypes, possibly due to an increased interest in novelty. Overall our findings suggest that lack of NO release via nNOS may protect animals to some extent against age-associated cognitive decline in memory tasks typically involving olfactory and hippocampal regions, but not against declines in reversal learning or locomotor activity.
Collapse
Affiliation(s)
- Bronwen M James
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China Chengdu, Sichuan, China ; Department of Medicine, St Bernard's Hospital Gibraltar, UK
| | - Qin Li
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China Chengdu, Sichuan, China
| | - Lizhu Luo
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China Chengdu, Sichuan, China
| | - Keith M Kendrick
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China Chengdu, Sichuan, China
| |
Collapse
|
11
|
Reichenbach N, Herrmann U, Kähne T, Schicknick H, Pielot R, Naumann M, Dieterich DC, Gundelfinger ED, Smalla KH, Tischmeyer W. Differential effects of dopamine signalling on long-term memory formation and consolidation in rodent brain. Proteome Sci 2015; 13:13. [PMID: 25852303 PMCID: PMC4387680 DOI: 10.1186/s12953-015-0069-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/25/2015] [Indexed: 12/01/2022] Open
Abstract
Background Using auditory discrimination learning in gerbils, we have previously shown that activation of auditory-cortical D1/D5 dopamine receptors facilitates mTOR-mediated, protein synthesis-dependent mechanisms of memory consolidation and anterograde memory formation. To understand molecular mechanisms of this facilitatory effect, we tested the impact of local pharmacological activation of different D1/D5 dopamine receptor signalling modes in the auditory cortex. To this end, protein patterns in soluble and synaptic protein-enriched fractions from cortical, hippocampal and striatal brain regions of ligand- and vehicle-treated gerbils were analysed by 2D gel electrophoresis and mass spectrometry 24 h after intervention. Results After auditory-cortical injection of SKF38393 – a D1/D5 dopamine receptor-selective agonist reported to activate the downstream effectors adenylyl cyclase and phospholipase C – prominent proteomic alterations compared to vehicle-treated controls appeared in the auditory cortex, striatum, and hippocampus, whereas only minor changes were detectable in the frontal cortex. In contrast, auditory-cortical injection of SKF83959 – a D1/D5 agonist reported to preferentially stimulate phospholipase C – induced pronounced changes in the frontal cortex. At the molecular level, we detected altered regulation of cytoskeletal and scaffolding proteins, changes in proteins with functions in energy metabolism, local protein synthesis, and synaptic signalling. Interestingly, abundance and/or subcellular localisation of the predominantly presynaptic protein α-synuclein displayed dopaminergic regulation. To assess the role of α-synuclein for dopaminergic mechanisms of memory modulation, we tested the impact of post-conditioning systemic pharmacological activation of different D1/D5 dopamine receptor signalling modes on auditory discrimination learning in α-synuclein-mutant mice. In C57BL/6JOlaHsd mice, bearing a spontaneous deletion of the α-synuclein-encoding gene, but not in the related substrains C57BL/6JCrl and C57BL/6JRccHsd, adenylyl cyclase-mediated signalling affected acquisition rates over future learning episodes, whereas phospholipase C-mediated signalling affected final memory performance. Conclusions Dopamine signalling modes via D1/D5 receptors in the auditory cortex differentially impact protein profiles related to rearrangement of cytomatrices, energy metabolism, and synaptic neurotransmission in cortical, hippocampal, and basal brain structures. Altered dopamine neurotransmission in α-synuclein-deficient mice revealed that distinct D1/D5 receptor signalling modes may control different aspects of memory consolidation. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0069-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole Reichenbach
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany ; Present address: Research Group Neurovascular Diseases, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, Bonn, 53175 Germany
| | - Ulrike Herrmann
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany ; Present address: Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, 38106 Germany
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Medical School, Otto von Guericke University, Magdeburg, 39120 Germany
| | - Horst Schicknick
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany
| | - Rainer Pielot
- Department Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical School, Otto von Guericke University, Magdeburg, 39120 Germany
| | - Daniela C Dieterich
- Research Group Neuralomics, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany ; Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, 39120 Germany ; Center for Behavioral Brain Sciences, Magdeburg, 39106 Germany
| | - Eckart D Gundelfinger
- Department Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany ; Center for Behavioral Brain Sciences, Magdeburg, 39106 Germany ; Molecular Neurobiology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, 39120 Germany
| | - Karl-Heinz Smalla
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany ; Center for Behavioral Brain Sciences, Magdeburg, 39106 Germany
| | - Wolfgang Tischmeyer
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany ; Center for Behavioral Brain Sciences, Magdeburg, 39106 Germany
| |
Collapse
|
12
|
Kedracka-Krok S, Swiderska B, Jankowska U, Skupien-Rabian B, Solich J, Buczak K, Dziedzicka-Wasylewska M. Clozapine influences cytoskeleton structure and calcium homeostasis in rat cerebral cortex and has a different proteomic profile than risperidone. J Neurochem 2015; 132:657-76. [DOI: 10.1111/jnc.13007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/18/2014] [Accepted: 11/25/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Sylwia Kedracka-Krok
- Department of Physical Biochemistry; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
- Malopolska Centre of Biotechnology; Department of Structural Biology; Krakow Poland
| | - Bianka Swiderska
- Department of Physical Biochemistry; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
- Malopolska Centre of Biotechnology; Department of Structural Biology; Krakow Poland
| | - Urszula Jankowska
- Department of Physical Biochemistry; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
- Malopolska Centre of Biotechnology; Department of Structural Biology; Krakow Poland
| | - Bozena Skupien-Rabian
- Department of Physical Biochemistry; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
- Malopolska Centre of Biotechnology; Department of Structural Biology; Krakow Poland
| | - Joanna Solich
- Institute of Pharmacology; Polish Academy of Sciences; Krakow Poland
| | - Katarzyna Buczak
- Department of Physical Biochemistry; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
- Institute of Pharmacology; Polish Academy of Sciences; Krakow Poland
| |
Collapse
|
13
|
Redox signal regulation via nNOS phosphorylation at Ser847 in PC12 cells and rat cerebellar granule neurons. Biochem J 2014; 459:251-63. [PMID: 24499461 DOI: 10.1042/bj20131262] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phosphorylation is considered a main mechanism modulating nNOS (neuronal nitric oxide synthase) function to reduce NO production. In the present study, the effects of nNOS phosphorylation on redox signalling, including that of NO, ROS (reactive oxygen species), and 8-nitro-cGMP (8-nitroguanosine 3',5'-cyclic monophosphate), a downstream messenger of redox signalling, were investigated. In vitro experiments revealed that a phosphorylation-mimic mutant of nNOS (Ser847 replaced with aspartic acid, 847D) increased uncoupling to produce a superoxide. In addition, nicotine, which triggers an influx of Ca2+, induced more ROS and 8-nitro-cGMP production in 847D-expressing PC12 cells than WT (wild-type)-expressing cells. Additionally, nicotine-induced phosphorylation of nNOS at Ser847 and increased ROS and 8-nitro-cGMP production in rat CGNs (cerebellar granule neurons). In CGNs, the NOS (nitric oxide synthase) inhibitor L-NAME (NG-nitro-L-arginine methyl ester) and superoxide dismutase completely inhibited ROS and 8-nitro-cGMP production, whereas the CaMK (Ca2+/calmodulin-dependent protein kinase) inhibitor KN93 mildly reduced this effect. Nicotine induced HO-1 (haem oxygenase 1) expression in CGNs and showed cytoprotective effects against apoptosis. Moreover, 8-nitro-cGMP treatment showed identical effects that were attenuated by KN93 pre-treatment. The present paper provides the first substantial corroboration for the biological effects of nNOS phosphorylation at Ser847 on redox signalling, including ROS and intracellular 8-nitro-cGMP generation in neurons, which possibly play roles in neuroprotection.
Collapse
|
14
|
Involvement of opioidergic and nitrergic systems in memory acquisition and exploratory behaviors in cholestatic mice. Behav Pharmacol 2013; 24:180-94. [PMID: 23604167 DOI: 10.1097/fbp.0b013e3283618aab] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bile duct ligation (BDL) is an animal model used in cholestatic disease research. Both opioidergic and nitrergic systems are known to be involved in cholestasis. The aim of this study was to investigate the possible interaction between these two systems in BDL-induced memory formation and exploratory behaviors in mice. Male mice weighing 25-30 g were divided into nonoperated controls, sham-operated, and BDL groups. One-trial step-down and hole-board paradigms were used to assess memory acquisition and exploratory behaviors, respectively. Cholestasis did not alter memory acquisition while increasing exploratory behaviors 7 days after BDL. A pretraining intraperitoneal injection of L-arginine (50, 100, and 200 mg/kg), L-NG-nitroarginine methyl ester (L-NAME) (5, 10, 20, and 40 mg/kg), or naloxone (0.125, 0.25, and 0.5 mg/kg) did not alter memory acquisition or exploratory behaviors, whereas morphine (5 and 7.5 mg/kg) decreased memory acquisition in sham-operated animals. Moreover, although injection of L-NAME and naloxone exerted no effect on memory acquisition in the 7 days post-BDL mice, L-arginine (100 and 200 mg/kg) and morphine (2.5, 5, and 7.5 mg/kg) injection reduced it. In contrast, L-NAME and naloxone, but not morphine or L-arginine, reduced the BDL-induced exploratory behaviors. Coadministration of subthreshold doses of morphine (1.25 mg/kg) and L-arginine (50 mg/kg) caused a memory deficit in 7 days post-BDL mice. However, the memory deficit induced by the effective doses of morphine (2.5 mg/kg) or L-arginine (200 mg/kg) in these mice was restored by the administration of either naloxone (0.5 mg/kg) or L-NAME (40 mg/kg). In addition, naloxone and L-NAME reduced the exploratory behaviors in L-arginine-pretreated mice but not in morphine-pretreated mice. We conclude that there appears to be a synergistic effect between opioidergic and nitrergic systems on memory acquisition and exploratory behaviors in cholestatic mice.
Collapse
|
15
|
Pavesi E, Heldt SA, Fletcher ML. Neuronal nitric-oxide synthase deficiency impairs the long-term memory of olfactory fear learning and increases odor generalization. Learn Mem 2013; 20:482-90. [DOI: 10.1101/lm.031450.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Nasehi M, Piri M, Abdollahian M, Zarrindast MR. Involvement of nitrergic system of CA1in harmane induced learning and memory deficits. Physiol Behav 2013; 109:23-32. [DOI: 10.1016/j.physbeh.2012.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/18/2012] [Accepted: 10/19/2012] [Indexed: 01/09/2023]
|
17
|
Nitric oxide signaling modulates cholinergic synaptic input to projection neurons in Drosophila antennal lobes. Neuroscience 2012; 219:1-9. [DOI: 10.1016/j.neuroscience.2012.05.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 05/29/2012] [Accepted: 05/29/2012] [Indexed: 11/19/2022]
|
18
|
Reierson GW, Guo S, Mastronardi C, Licinio J, Wong ML. cGMP Signaling, Phosphodiesterases and Major Depressive Disorder. Curr Neuropharmacol 2012; 9:715-27. [PMID: 22654729 PMCID: PMC3263465 DOI: 10.2174/157015911798376271] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 09/09/2010] [Accepted: 09/24/2010] [Indexed: 12/13/2022] Open
Abstract
Deficits in neuroplasticity are hypothesized to underlie the pathophysiology of major depressive disorder (MDD): the effectiveness of antidepressants is thought to be related to the normalization of disrupted synaptic transmission and neurogenesis. The cyclic adenosine monophosphate (cAMP) signaling cascade has received considerable attention for its role in neuroplasticity and MDD. However components of a closely related pathway, the cyclic guanosine monophosphate (cGMP) have been studied with much lower intensity, even though this signaling transduction cascade is also expressed in the brain and the activity of this pathway has been implicated in learning and memory processes. Cyclic GMP acts as a second messenger; it amplifies signals received at postsynaptic receptors and activates downstream effector molecules resulting in gene expression changes and neuronal responses. Phosphodiesterase (PDE) enzymes degrade cGMP into 5’GMP and therefore they are involved in the regulation of intracellular levels of cGMP. Here we review a growing body of evidence suggesting that the cGMP signaling cascade warrants further investigation for its involvement in MDD and antidepressant action.
Collapse
|
19
|
Higgins M, Miller M, Nighorn A. Nitric oxide has differential effects on currents in different subsets of Manduca sexta antennal lobe neurons. PLoS One 2012; 7:e42556. [PMID: 22880032 PMCID: PMC3411793 DOI: 10.1371/journal.pone.0042556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/10/2012] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide has been shown to regulate many biological systems including olfaction. In the moth olfactory system nitric oxide is produced in the antennal lobe in response to odor stimulation and has complex effects on the activity of both projection neurons and local interneurons. To examine the cell autonomous effects of nitric oxide on these cells, we used patch-clamp recording in conjunction with pharmacological manipulation of nitric oxide to test the hypothesis that nitric oxide differentially regulates the channel properties of these different antennal lobe neuron subsets. We found that nitric oxide caused increasing inward currents in a subset of projection neurons while the effects on local neurons were variable but consistent within identifiable morphological subtypes.
Collapse
Affiliation(s)
| | | | - Alan Nighorn
- Department of Neuroscience, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
20
|
Fernández-Irigoyen J, Corrales FJ, Santamaría E. Proteomic atlas of the human olfactory bulb. J Proteomics 2012; 75:4005-4016. [PMID: 22609191 DOI: 10.1016/j.jprot.2012.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 11/28/2022]
Abstract
The olfactory bulb (OB) is the first site for the processing of olfactory information in the brain and its deregulation is associated with neurodegenerative disorders. Although different efforts have been made to characterize the human brain proteome in depth, the protein composition of the human OB remains largely unexplored. We have performed a comprehensive analysis of the human OB proteome employing protein and peptide fractionation methods followed by LC-MS/MS, identifying 1529 protein species, corresponding to 1466 unique proteins, which represents a 7-fold increase in proteome coverage with respect to previous OB proteome descriptions from translational models. Bioinformatic analyses revealed that protein components of the OB participated in a plethora of biological process highlighting hydrolase and phosphatase activities and nucleotide and RNA binding activities. Interestingly, 631 OB proteins identified were not previously described in protein datasets derived from large-scale Human Brain Proteome Project (HBPP) studies. In particular, a subset of these differential proteins was mainly involved in axon guidance, opioid signaling, neurotransmitter receptor binding, and synaptic plasticity. Taken together, these results increase our knowledge about the molecular composition of the human OB and may be useful to understand the molecular basis of the olfactory system and the etiology of its disorders.
Collapse
|
21
|
Ferrando S, Gallus L, Gambardella C, Amaroli A, Cutolo A, Masini MA, Vallarino M, Vacchi M. Neuronal nitric oxide synthase (nNOS) immunoreactivity in the olfactory system of a cartilaginous fish. J Chem Neuroanat 2012; 43:133-40. [PMID: 22469920 DOI: 10.1016/j.jchemneu.2012.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/14/2012] [Accepted: 03/05/2012] [Indexed: 11/16/2022]
Abstract
Nitric oxide is a regulative molecule with important roles in the olfactory system of vertebrates. Chondrichtyans have a key position in vertebrate evolution and nothing is known about nitric oxide in their olfactory system. Aim of this work was to investigate the neuronal nitric oxide synthase (nNOS) immunoreactivity in the olfactory system of the shark Scyliorhinus canicula. Because nitric oxide is often related to GABA in the olfactory system, also the distribution of GABA and its synthesis enzyme GAD has been investigated. In the olfactory epithelium scattered cells in the basal and medial zone of the epithelium thickness presented nNOS-like immunoreactivity. In the olfactory bulb the nNOS-like immunoreactivity has been highlighted in nerve fibers around some blood vessels and in scattered GABAergic granule cells. The presence of nNOS in the olfactory system of S. canicula is overall lesser than that described in other vertebrates, even if nitric oxide probably keeps some essential functions.
Collapse
|
22
|
Li L, Boddul SV, Patil SS, Zheng JF, An G, Höger H, Lubec G. Proteins linked to extinction in contextual fear conditioning in the C57BL/6J mouse. Proteomics 2011; 11:3706-24. [DOI: 10.1002/pmic.201000444] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 06/27/2011] [Accepted: 07/01/2011] [Indexed: 12/23/2022]
|
23
|
Engelmann M, Hädicke J, Noack J. Testing declarative memory in laboratory rats and mice using the nonconditioned social discrimination procedure. Nat Protoc 2011; 6:1152-62. [PMID: 21799485 DOI: 10.1038/nprot.2011.353] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Testing declarative memory in laboratory rodents can provide insights into the fundamental mechanisms underlying this type of learning and memory processing, and these insights are likely to be applicable to humans. Here we provide a detailed description of the social discrimination procedure used to investigate recognition memory in rats and mice, as established during the last 20 years in our laboratory. The test is based on the use of olfactory signals for social communication in rodents; this involves a direct encounter between conspecifics, during which the investigatory behavior of the experimental subject serves as an index for learning and memory performance. The procedure is inexpensive, fast and very reliable, but it requires well-trained human observers. We include recent modifications to the procedure that allow memory extinction to be investigated by retroactive and proactive interference, and that enable the dissociated analysis of the central nervous processing of the volatile fraction of an individual's olfactory signature. Depending on the memory retention interval under study (short-term memory, intermediate-term memory, long-term memory or long-lasting memory), the protocol takes ~10 min or up to several days to complete.
Collapse
Affiliation(s)
- Mario Engelmann
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-Universität, Magdeburg, Germany.
| | | | | |
Collapse
|
24
|
Crow T, Xue-Bian JJ. Proteomic analysis of short- and intermediate-term memory in Hermissenda. Neuroscience 2011; 192:102-11. [PMID: 21736919 DOI: 10.1016/j.neuroscience.2011.06.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 12/20/2022]
Abstract
Changes in cellular and synaptic plasticity related to learning and memory are accompanied by both upregulation and downregulation of the expression levels of proteins. Both de novo protein synthesis and post-translational modification of existing proteins have been proposed to support the induction and maintenance of memory underlying learning. However, little is known regarding the identity of proteins regulated by learning that are associated with the early stages supporting the formation of memory over time. In this study we have examined changes in protein abundance at two different times following one-trial in vitro conditioning of Hermissenda using two-dimensional difference gel electrophoresis (2D-DIGE), quantification of differences in protein abundance between conditioned and unpaired controls, and protein identification with tandem mass spectrometry. Significant regulation of protein abundance following one-trial in vitro conditioning was detected 30 min and 3 h post-conditioning. Proteins were identified that exhibited statistically significant increased or decreased abundance at both 30 min and 3 h post-conditioning. Proteins were also identified that exhibited a significant increase in abundance only at 30 min, or only at 3 h post-conditioning. A few proteins were identified that expressed a significant decrease in abundance detected at both 30 min and 3 h post-conditioning, or a significant decrease in abundance only at 3 h post-conditioning. The proteomic analysis indicates that proteins involved in diverse cellular functions such as translational regulation, cell signaling, cytoskeletal regulation, metabolic activity, and protein degradation contribute to the formation of memory produced by one-trial in vitro conditioning. These findings support the view that changes in protein abundance over time following one-trial in vitro conditioning involve dynamic and complex interactions of the proteome.
Collapse
Affiliation(s)
- T Crow
- Department of Neurobiology and Anatomy, University of Texas Medical School, 6431 Fannin Street, Houston, TX 77030, USA.
| | | |
Collapse
|
25
|
Patil SS, Li K, Heo S, Höger H, Lubec G. Proteins linked to spatial memory formation of CD1 mice in the multiple T-maze. Hippocampus 2011; 22:1075-86. [PMID: 21618641 DOI: 10.1002/hipo.20956] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Indexed: 12/24/2022]
Abstract
In own previous work CD1 mice were tested in the Multiple T-maze (MTM), a robust land maze allowing determination of latency to reach the goal box with food reward and to evaluate correct decisions made on the way to the goal box. Herein, hippocampi of these animals were used for the current study with the aim to investigate differences in protein levels between trained and yoked mice and, moreover, to determine differences in protein levels between trained and yoked mice with and without memory formation in the MTM. Three training sessions were carried out for four training days each, followed by probe trials on Days 5 and 12. Good and no-performers in the MTM were separated based on means and median of latency to reach the goal box on probe trial Day 12. Six hours following the probe trial on Day 12, animals were sacrificed and hippocampi were taken. Proteins were extracted and run on two-dimensional gel electrophoresis, spots were quantified and differentially expressed proteins were identified by mass spectrometry using an ion trap. Levels of 17 proteins were significantly different in trained vs. yoked mice. Seven proteins were differentially expressed comparing trained vs. yoked mice from good and no-performers. A series of proteins were significantly correlated with latency and may link these proteins to spatial memory formation. Differential protein expression in trained vs. yoked mice and in good and no-performers may allow insight into spatial memory formation as well as represent tentative pharmacological targets.
Collapse
Affiliation(s)
- Sudarshan S Patil
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
26
|
Tovar-Díaz J, González-Sánchez H, Roldán-Roldán G. Association of stimuli at long intervals in conditioned odor aversion. Physiol Behav 2011; 103:144-7. [DOI: 10.1016/j.physbeh.2011.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/09/2011] [Accepted: 02/09/2011] [Indexed: 01/12/2023]
|
27
|
Patil SS, Boddul SV, Schlick K, Kang SU, Zehetmayer S, Höger H, Lubec G. Differences in hippocampal protein levels between C57Bl/6J, PWD/PhJ, and Apodemus sylvaticus are paralleled by differences in spatial memory. Hippocampus 2010; 21:714-23. [DOI: 10.1002/hipo.20788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2010] [Indexed: 01/15/2023]
|
28
|
Olfactory bulb proteins linked to olfactory memory in C57BL/6J mice. Amino Acids 2010; 39:871-86. [DOI: 10.1007/s00726-010-0543-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 02/24/2010] [Indexed: 01/02/2023]
|
29
|
O'Tuathaigh CMP, Kirby BP, Moran PM, Waddington JL. Mutant mouse models: genotype-phenotype relationships to negative symptoms in schizophrenia. Schizophr Bull 2010; 36:271-88. [PMID: 19934211 PMCID: PMC2833123 DOI: 10.1093/schbul/sbp125] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Negative symptoms encompass diminution in emotional expression and motivation, some of which relate to human attributes that may not be accessible readily in animals. Additionally, their refractoriness to treatment precludes therapeutic validation of putative models. This review considers critically the application of mutant mouse models to the study of the pathobiology of negative symptoms. It focuses on 4 main approaches: genes related to the pathobiology of schizophrenia, genes associated with risk for schizophrenia, neurodevelopmental-synaptic genes, and variant approaches from other areas of neurobiology. Despite rapid advances over the past several years, it is clear that we continue to face substantive challenges in applying mutant models to better understand the pathobiology of negative symptoms: the majority of evidence relates to impairments in social behavior, with only limited data relating to anhedonia and negligible data concerning avolition and other features; even for the most widely examined feature, social behavior, studies have used diverse assessments thereof; modelling must proceed in cognizance of increasing evidence that genes and pathobiologies implicated in schizophrenia overlap with other psychotic disorders, particularly bipolar disorder. Despite the caveats and challenges, several mutant lines evidence a phenotype for at least one index of social behavior. Though this may suggest superficially some shared relationship to negative symptoms, it is not yet possible to specify either the scope or the pathobiology of that relationship for any given gene. The breadth and depth of ongoing studies in mutants hold the prospect of addressing these shortcomings.
Collapse
Affiliation(s)
- Colm M. P. O'Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, St Stephen's Green, Dublin 2, Ireland,To whom correspondence should be addressed; tel: +353-1-402-2377, fax: +353-1-402-2453, e-mail:
| | - Brian P. Kirby
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paula M. Moran
- School of Psychology, University of Nottingham, Nottingham, UK
| | - John L. Waddington
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, St Stephen's Green, Dublin 2, Ireland
| |
Collapse
|