1
|
Bedos M, Ponce E, Corona R, Paredes RG. Kisspeptin participates in the positive reward state induced by paced mating and modulates sexual receptivity and paced mating behavior in female rats. Horm Behav 2025; 167:105671. [PMID: 39637765 DOI: 10.1016/j.yhbeh.2024.105671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/01/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Kisspeptin (Kp), a potent regulator of the hypothalamic-pituitary-gonad axis, was recently shown to be involved in partner preference and sexual receptivity in females. Interestingly, Kp and its receptor (Kiss1r) are expressed in brain regions involved in the reward and motivation of reinforcing behaviors. Therefore, in the present study, we designed 3 experiments to determine the participation of Kp in female sexual behavior and the positive affective (PA) reward state induced by paced mating (PM). In all experiments, we used sexually naïve ovariectomized Wistar female rats primed with estradiol benzoate (EB, 2.5 μg/rat) 48 h before behavioral tests. In experiment 1 (n = 9), we tested the effect of Kp on PM. We demonstrated that Kp-10 (14 nmol) induced similar levels of receptivity to treatment with EB + progesterone and facilitated PM by reducing the return latency after intromissions. In experiment 2 (n = 8), we evaluated the effect of p234 penetratin, a Kiss1r antagonist, on PM. The administration of p234 in doses of 7.5 nmol and 15 nmol reduced the mean lordosis intensity and increased mount and intromission return latencies. Finally, in Experiment 3, we tested the capacity of Kp to induce a PA state or the antagonist to block the reward state induced by PM. Kp-10 (7 and 14 nmol) induced a clear conditioned place preference. This reward state and that produced by PM were blocked by p234 (15 nmol). Our findings underscore the critical role of Kp in modulating female sexual behavior and the PA state associated with PM, highlighting its potential to enhance sexual motivation.
Collapse
Affiliation(s)
- M Bedos
- Escuela Nacional de Estudios Superiores Unidad Juriquilla, Universidad Nacional Autonóma de México, Campus UNAM-Juriquilla, 76230 Querétaro, Mexico.
| | - E Ponce
- Instituto de Neurobiología, Universidad Nacional Autonóma de México, Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - R Corona
- Instituto de Neurobiología, Universidad Nacional Autonóma de México, Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - R G Paredes
- Escuela Nacional de Estudios Superiores Unidad Juriquilla, Universidad Nacional Autonóma de México, Campus UNAM-Juriquilla, 76230 Querétaro, Mexico; Instituto de Neurobiología, Universidad Nacional Autonóma de México, Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| |
Collapse
|
2
|
Maheshwari S, Um IH, Donachie S, Asghar N, McDade K, Millar T, Harrison DJ, Tello JA. Kisspeptin is elevated in the brain after intracerebral haemorrhagic stroke. Sci Rep 2024; 14:32046. [PMID: 39738446 PMCID: PMC11685885 DOI: 10.1038/s41598-024-83514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Intracerebral haemorrhage (ICH) is the most severe subtype of stroke, with a 2-year mortality of nearly 50% and the greatest rate of disability amongst stroke survivors. Whilst treatment options for ICH remain limited, the condition requires prompt identification and rapid intervention to reduce permanent brain damage, with diagnosis traditionally confirmed by CT imaging. Although imaging is excellent at determining the presence of an intracranial bleed, biomarkers may help to identify the type of stroke or when the stroke began. Kisspeptin is a neuropeptide best known for its functions in reproductive biology, but recent preclinical studies have demonstrated that kisspeptins are upregulated in rodent models of haemorrhagic stroke. Here we report for the first time that kisspeptin immunoreactivity is significantly higher in post-mortem human brain tissue after both ICH and ICH associated with cerebral amyloid angiopathy. Machine learning and artificial intelligence-enabled image analysis of multiplexed immunolabeled brain tissues demonstrated that kisspeptin immunoreactivity was higher in cells of the microvasculature (CD105+), but not in neurons or astrocytes when compared to controls. Further spatial analysis indicated that kisspeptin immunoreactivity was concentrated to the region of haemorrhage. These results indicate that following ICH, kisspeptin is significantly higher in the human brain, suggesting expression from local vasculature or recruitment to the haematoma. Further work is required to determine the biological mechanisms underlying kisspeptin elevation within the ICH microenvironment and its potential utility as a novel biomarker or therapeutic target for ICH.
Collapse
Affiliation(s)
- Saumya Maheshwari
- School of Medicine, University of St Andrews, Medical and Biological Sciences Building, North Haugh, St Andrews, UK
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - In Hwa Um
- School of Medicine, University of St Andrews, Medical and Biological Sciences Building, North Haugh, St Andrews, UK
| | - Struan Donachie
- School of Medicine, University of St Andrews, Medical and Biological Sciences Building, North Haugh, St Andrews, UK
| | - Nafeesa Asghar
- School of Medicine, University of St Andrews, Medical and Biological Sciences Building, North Haugh, St Andrews, UK
| | - Karina McDade
- Academic Neuropathology, The University of Edinburgh, Edinburgh, UK
| | - Tracey Millar
- Academic Neuropathology, The University of Edinburgh, Edinburgh, UK
| | - David J Harrison
- School of Medicine, University of St Andrews, Medical and Biological Sciences Building, North Haugh, St Andrews, UK
| | - Javier A Tello
- School of Medicine, University of St Andrews, Medical and Biological Sciences Building, North Haugh, St Andrews, UK.
- Biomedical Research Complex, University of St Andrews, St Andrews, UK.
- Centre for Biophotonics, University of St Andrews, North Haugh, St Andrews, UK.
| |
Collapse
|
3
|
Jászberényi M, Thurzó B, Jayakumar AR, Schally AV. The Aggravating Role of Failing Neuropeptide Networks in the Development of Sporadic Alzheimer's Disease. Int J Mol Sci 2024; 25:13086. [PMID: 39684795 DOI: 10.3390/ijms252313086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease imposes an increasing burden on aging Western societies. The disorder most frequently appears in its sporadic form, which can be caused by environmental and polygenic factors or monogenic conditions of incomplete penetrance. According to the authors, in the majority of cases, Alzheimer's disease represents an aggravated form of the natural aging of the central nervous system. It can be characterized by the decreased elimination of amyloid β1-42 and the concomitant accumulation of degradation-resistant amyloid plaques. In the present paper, the dysfunction of neuropeptide regulators, which contributes to the pathophysiologic acceleration of senile dementia, is reviewed. However, in the present review, exclusively those neuropeptides or neuropeptide families are scrutinized, and the authors' investigations into their physiologic and pathophysiologic activities have made significant contributions to the literature. Therefore, the pathophysiologic role of orexins, neuromedins, RFamides, corticotrope-releasing hormone family, growth hormone-releasing hormone, gonadotropin-releasing hormone, ghrelin, apelin, and natriuretic peptides are discussed in detail. Finally, the therapeutic potential of neuropeptide antagonists and agonists in the inhibition of disease progression is discussed here.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrew V Schally
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
4
|
Reda A, Hategan LA, McLean TAB, Creighton SD, Luo JQ, Chen SES, Hua S, Winston S, Reeves I, Padmanabhan A, Dahi TA, Ramzan F, Brimble MA, Murphy PJ, Walters BJ, Stefanelli G, Zovkic IB. Role of the histone variant H2A.Z.1 in memory, transcription, and alternative splicing is mediated by lysine modification. Neuropsychopharmacology 2024; 49:1285-1295. [PMID: 38366138 PMCID: PMC11224360 DOI: 10.1038/s41386-024-01817-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
Creating long-lasting memories requires learning-induced changes in gene expression, which are impacted by epigenetic modifications of DNA and associated histone proteins. Post-translational modifications (PTMs) of histones are key regulators of transcription, with different PTMs producing unique effects on gene activity and behavior. Although recent studies implicate histone variants as novel regulators of memory, effects of PTMs on the function of histone variants are rarely considered. We previously showed that the histone variant H2A.Z suppresses memory, but it is unclear if this role is impacted by H2A.Z acetylation, a PTM that is typically associated with positive effects on transcription and memory. To answer this question, we used a mutation approach to manipulate acetylation on H2A.Z without impacting acetylation of other histone types. Specifically, we used adeno-associated virus (AAV) constructs to overexpress mutated H2A.Z.1 isoforms that either mimic acetylation (acetyl-mimic) by replacing lysines 4, 7 and 11 with glutamine (KQ), or H2A.Z.1 with impaired acetylation (acetyl-defective) by replacing the same lysines with alanine (KA). Expressing the H2A.Z.1 acetyl-mimic (H2A.Z.1KQ) improved memory under weak learning conditions, whereas expressing the acetyl-defective H2A.Z.1KA generally impaired memory, indicating that the effect of H2A.Z.1 on memory depends on its acetylation status. RNA sequencing showed that H2A.Z.1KQ and H2A.Z.1KA uniquely impact the expression of different classes of genes in both females and males. Specifically, H2A.Z.1KA preferentially impacts genes involved in synaptic function, suggesting that acetyl-defective H2A.Z.1 impairs memory by altering synaptic regulation. Finally, we describe, for the first time, that H2A.Z is also involved in alternative splicing of neuronal genes, whereby H2A.Z depletion, as well as expression of H2A.Z.1 lysine mutants influence transcription and splicing of different gene targets, suggesting that H2A.Z.1 can impact behavior through effects on both splicing and gene expression. This is the first study to demonstrate that direct manipulation of H2A.Z post-translational modifications regulates memory, whereby acetylation adds another regulatory layer by which histone variants can fine tune higher brain functions through effects on gene expression and splicing.
Collapse
Affiliation(s)
- Anas Reda
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, M5S 3G3, Canada
| | - Luca A Hategan
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, M5S 3G3, Canada
| | - Timothy A B McLean
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, M5S 3G3, Canada
| | - Samantha D Creighton
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Jian Qi Luo
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, M5S 3G3, Canada
| | - Sean En Si Chen
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, M5S 3G3, Canada
| | - Shan Hua
- Departments of Biology and Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Stephen Winston
- Department of Surgery and Graduate school of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Isaiah Reeves
- Department of Surgery and Graduate school of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Aditya Padmanabhan
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Tarkan A Dahi
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Firyal Ramzan
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Mark A Brimble
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Patrick J Murphy
- Departments of Biology and Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Brandon J Walters
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Gilda Stefanelli
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| | - Iva B Zovkic
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
5
|
Sinen O, Sinen AG, Derin N, Aslan MA. Nasal application of kisspeptin-54 mitigates motor deficits by reducing nigrostriatal dopamine loss in hemiparkinsonian rats. Behav Brain Res 2024; 468:115035. [PMID: 38703793 DOI: 10.1016/j.bbr.2024.115035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Parkinson's Disease is a progressive neurodegenerative disorder characterized by motor symptoms resulting from the loss of nigrostriatal dopaminergic neurons. Kisspeptins (KPs) are a family of neuropeptides that are encoded by the Kiss-1 gene, which exert their physiological effects through interaction with the GPR54 receptor. In the current investigation, we investigated the prospective protective effects of central KP-54 treatments on nigrostriatal dopaminergic neurons and consequent motor performance correlates in 6-hydroxydopamine (6-OHDA)-lesioned rats. Male adult Sprague Dawley rats underwent stereotaxic injection of 6-OHDA into the right medial forebrain bundle to induce hemiparkinsonism. Following surgery, rats received chronic central treatments of nasal or intracerebroventricular KP-54 (logarithmically increasing doses) for seven consecutive days. Motor performance was evaluated seven days post-surgery utilizing the open field test and catalepsy test. The levels of dopamine in the striatum were determined with mass spectrometry. Immunohistochemical analysis was conducted to assess the immunoreactivities of tyrosine hydroxylase (TH) and the GPR54 in the substantia nigra. The dose-response curve revealed a median effective dose value of ≈3 nmol/kg for both central injections. Due to its non-invasive and effective nature, nasal administration was utilized in the second phase of our study. Chronic administration of KP-54 (3nmol/kg, nasally) significantly protected 6-OHDA-induced motor deficits. Nasal KP-54 attenuated the loss of nigrostriatal dopaminergic neurons induced by 6-OHDA. Additionally, significant correlations were observed between motor performance and nigrostriatal dopamine levels. Immunohistochemical analysis demonstrated the localization of the GPR54 within TH-positive nigral cells. These findings suggest the potential efficacy of central KP-54 on motor impairments in hemiparkinsonism.
Collapse
Affiliation(s)
- Osman Sinen
- Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
| | - Ayşegül Gemici Sinen
- Department of Biophysics, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Narin Derin
- Department of Biophysics, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | - Mutay Aydın Aslan
- Department of Medical Biochemistry, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
6
|
Kovács A, Szabó E, László K, Kertes E, Zagorácz O, Mintál K, Tóth A, Gálosi R, Berta B, Lénárd L, Hormay E, László B, Zelena D, Tóth ZE. Brain RFamide Neuropeptides in Stress-Related Psychopathologies. Cells 2024; 13:1097. [PMID: 38994950 PMCID: PMC11240450 DOI: 10.3390/cells13131097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024] Open
Abstract
The RFamide peptide family is a group of proteins that share a common C-terminal arginine-phenylalanine-amide motif. To date, the family comprises five groups in mammals: neuropeptide FF, LPXRFamides/RFamide-related peptides, prolactin releasing peptide, QRFP, and kisspeptins. Different RFamide peptides have their own cognate receptors and are produced by different cell populations, although they all can also bind to neuropeptide FF receptors with different affinities. RFamide peptides function in the brain as neuropeptides regulating key aspects of homeostasis such as energy balance, reproduction, and cardiovascular function. Furthermore, they are involved in the organization of the stress response including modulation of pain. Considering the interaction between stress and various parameters of homeostasis, the role of RFamide peptides may be critical in the development of stress-related neuropathologies. This review will therefore focus on the role of RFamide peptides as possible key hubs in stress and stress-related psychopathologies. The neurotransmitter coexpression profile of RFamide-producing cells is also discussed, highlighting its potential functional significance. The development of novel pharmaceutical agents for the treatment of stress-related disorders is an ongoing need. Thus, the importance of RFamide research is underlined by the emergence of peptidergic and G-protein coupled receptor-based therapeutic targets in the pharmaceutical industry.
Collapse
Affiliation(s)
- Anita Kovács
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Evelin Szabó
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Kristóf László
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Erika Kertes
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Olga Zagorácz
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Kitti Mintál
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Attila Tóth
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Rita Gálosi
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Bea Berta
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - László Lénárd
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Edina Hormay
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Bettina László
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Dóra Zelena
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Zsuzsanna E. Tóth
- Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary
| |
Collapse
|
7
|
Radwańska P, Gałdyszyńska M, Piera L, Drobnik J. Kisspeptin-10 increases collagen content in the myocardium by focal adhesion kinase activity. Sci Rep 2023; 13:19977. [PMID: 37968564 PMCID: PMC10651918 DOI: 10.1038/s41598-023-47224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023] Open
Abstract
The aim of the study was to evaluate the role of kisspeptin-10 (KiSS-10) in the regulation of collagen content in cardiac fibroblasts. An attempt was also made to describe the mechanism of the effect of KiSS-10 on collagen metabolism. The studies indicate that kisspeptin-10 significantly increases the content of intracellular collagen in the myocardium. KiSS-10 also elevates the level of phosphorylated focal adhesion kinase (FAK) in human cardiac fibroblasts. The inhibition of FAK negates the stimulatory effect of KiSS-10 on collagen deposition in vitro. These changes correlate with an increase in the level of propeptides of procollagen type I (PICP) and III (PIIICP) in fibroblast culture medium and mouse PIIICP in serum. Moreover, this hormone inhibits the release of metalloproteinases (MMP-1,-2,-9) and elevates the secretion of their tissue inhibitors (TIMP-1,-2,-4). KiSS-10 also enhances the expression of α1 chains of procollagen type I and III in vitro. Thus, KiSS-10 is involved in the regulation of collagen metabolism and cardiac fibrosis. Augmentation of collagen deposition by KiSS-10 is dependent on the protein synthesis elevation, inhibition of MMPs activity (increase of TIMPs release) or decrease of MMPs concentration. The profibrotic activity of KiSS-10 is mediated by FAK and is not dependent on TGF-β1.
Collapse
Affiliation(s)
- Paulina Radwańska
- Department of Pathophysiology, Institute of General and Experimental Pathology, Medical University of Lodz, Żeligowskiego 7/9, 90-752, Lodz, Poland.
| | - Małgorzata Gałdyszyńska
- Department of Pathophysiology, Institute of General and Experimental Pathology, Medical University of Lodz, Żeligowskiego 7/9, 90-752, Lodz, Poland
| | - Lucyna Piera
- Department of Pathophysiology, Institute of General and Experimental Pathology, Medical University of Lodz, Żeligowskiego 7/9, 90-752, Lodz, Poland
| | - Jacek Drobnik
- Department of Pathophysiology, Institute of General and Experimental Pathology, Medical University of Lodz, Żeligowskiego 7/9, 90-752, Lodz, Poland
| |
Collapse
|
8
|
Csabafi K, Ibos KE, Bodnár É, Filkor K, Szakács J, Bagosi Z. A Brain Region-Dependent Alteration in the Expression of Vasopressin, Corticotropin-Releasing Factor, and Their Receptors Might Be in the Background of Kisspeptin-13-Induced Hypothalamic-Pituitary-Adrenal Axis Activation and Anxiety in Rats. Biomedicines 2023; 11:2446. [PMID: 37760887 PMCID: PMC10525110 DOI: 10.3390/biomedicines11092446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Previously, we reported that intracerebroventricularly administered kisspeptin-13 (KP-13) induces anxiety-like behavior and activates the hypothalamic-pituitary-adrenal (HPA) axis in rats. In the present study, we aimed to shed light on the mediation of KP-13's stress-evoking actions. The relative gene expressions of the corticotropin-releasing factor (Crf, Crfr1, and Crfr2) and arginine vasopressin (Avp, Avpr1a, and Avpr1b) systems were measured in the amygdala and hippocampus of male Wistar rats after icv KP-13 treatment. CRF and AVP protein content were also determined. A different set of animals received CRF or V1 receptor antagonist pretreatment before the KP-13 challenge, after which either an open-field test or plasma corticosterone levels measurement was performed. In the amygdala, KP-13 induced an upregulation of Avp and Avpr1b expression, and a downregulation of Crf. In the hippocampus, the mRNA level of Crf increased and the level of Avpr1a decreased. A significant rise in AVP protein content was also detected in the amygdala. KP-13 also evoked anxiety-like behavior in the open field test, which the V1 receptor blocker antagonized. Both CRF and V1 receptor blockers reduced the KP-13-evoked rise in the plasma corticosterone level. This suggests that KP-13 alters the AVP and CRF signaling and that might be responsible for its effect on the HPA axis and anxiety-like behavior.
Collapse
Affiliation(s)
- Krisztina Csabafi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary (K.F.)
| | | | | | | | | | | |
Collapse
|
9
|
Masumi S, Lee EB, Dilower I, Upadhyaya S, Chakravarthi VP, Fields PE, Rumi MAK. The role of Kisspeptin signaling in Oocyte maturation. Front Endocrinol (Lausanne) 2022; 13:917464. [PMID: 36072937 PMCID: PMC9441556 DOI: 10.3389/fendo.2022.917464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
Kisspeptins (KPs) secreted from the hypothalamic KP neurons act on KP receptors (KPRs) in gonadotropin (GPN) releasing hormone (GnRH) neurons to produce GnRH. GnRH acts on pituitary gonadotrophs to induce secretion of GPNs, namely follicle stimulating hormone (FSH) and luteinizing hormone (LH), which are essential for ovarian follicle development, oocyte maturation and ovulation. Thus, hypothalamic KPs regulate oocyte maturation indirectly through GPNs. KPs and KPRs are also expressed in the ovarian follicles across species. Recent studies demonstrated that intraovarian KPs also act directly on the KPRs expressed in oocytes to promote oocyte maturation and ovulation. In this review article, we have summarized published reports on the role of hypothalamic and ovarian KP-signaling in oocyte maturation. Gonadal steroid hormones regulate KP secretion from hypothalamic KP neurons, which in turn induces GPN secretion from the hypothalamic-pituitary (HP) axis. On the other hand, GPNs secreted from the HP axis act on the granulosa cells (GCs) and upregulate the expression of ovarian KPs. While KPs are expressed predominantly in the GCs, the KPRs are in the oocytes. Expression of KPs in the ovaries increases with the progression of the estrous cycle and peaks during the preovulatory GPN surge. Intrafollicular KP levels in the ovaries rise with the advancement of developmental stages. Moreover, loss of KPRs in oocytes in mice leads to failure of oocyte maturation and ovulation similar to that of premature ovarian insufficiency (POI). These findings suggest that GC-derived KPs may act on the KPRs in oocytes during their preovulatory maturation. In addition to the intraovarian role of KP-signaling in oocyte maturation, in vivo, a direct role of KP has been identified during in vitro maturation of sheep, porcine, and rat oocytes. KP-stimulation of rat oocytes, in vitro, resulted in Ca2+ release and activation of the mitogen-activated protein kinase, extracellular signal-regulated kinase 1 and 2. In vitro treatment of rat or porcine oocytes with KPs upregulated messenger RNA levels of the factors that favor oocyte maturation. In clinical trials, human KP-54 has also been administered successfully to patients undergoing assisted reproductive technologies (ARTs) for increasing oocyte maturation. Exogenous KPs can induce GPN secretion from hypothalamus; however, the possibility of direct KP action on the oocytes cannot be excluded. Understanding the direct in vivo and in vitro roles of KP-signaling in oocyte maturation will help in developing novel KP-based ARTs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
10
|
Khonacha SE, Mirbehbahani SH, Rahdar M, Davoudi S, Borjkhani M, Khodaghli F, Motamedi F, Janahmadia M. Kisspeptin-13 prevented the electrophysiological alterations induced by Amyloid-Beta pathology in rat: Possible involvement of stromal interaction molecules and pCREB. Brain Res Bull 2022; 184:13-23. [PMID: 35272006 DOI: 10.1016/j.brainresbull.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurological disease that slowly causing memory impairments with no effective treatment. We have recently reported that kisspeptin-13 (KP-13) ameliorates Aβ toxicity-induced memory deficit in rats. Here, the possible cellular impact of kisspeptin receptor activation in a rat model of the early stage AD was assessed using whole-cell patch-clamp recording from CA1 pyramidal neurons and molecular approaches. Compared to neurons from the control group, cells from the Aβ-treated group displayed spontaneous and evoked hyperexcitability with lower spike frequency adaptation. These cells had also a lower sag ratio in response to hyperpolarizing prepulse current delivered before a depolarizing current injection. Neurons from the Aβ-treated group exhibited short spike onset latency, lower rheobase and short utilization time compared with those in the control group. Furthermore, phase plot analysis of action potential showed that Aβ treatment affected the action potential features. These electrophysiological changes induced by Aβ were associated with increased expression of stromal interaction molecules (STIMs), particularly (STIM2) and decreased pCREB/CREB ratio. Treatment with KP-13 following Aβ injection into the entorhinal cortex, however, prevented the excitatory effect of Aβ on spontaneous and evoked neuronal activity, increased the latency of onset, enhanced the sag ratio, increased the rheobase and utilization time, and prevented the changes induced Aβ on spike parameters. In addition, the KP-13 application after Aβ treatment reduced the expression of STIMs and increased the pCREB/CREB ratio compared to those receiving Aβ treatment alone. In summary, these results provide evidence that activation of kisspeptin receptor may be effective against pathology of Aβ.
Collapse
Affiliation(s)
- Shima Ebrahimi Khonacha
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mona Rahdar
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Davoudi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Borjkhani
- Department of Electrical Engineering, Urmia University of Technology, Urmia, Iran
| | - Fariba Khodaghli
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadia
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Sivalingam M, Ogawa S, Trudeau VL, Parhar IS. Conserved functions of hypothalamic kisspeptin in vertebrates. Gen Comp Endocrinol 2022; 317:113973. [PMID: 34971635 DOI: 10.1016/j.ygcen.2021.113973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022]
Abstract
Hypothalamic kisspeptin encoded by KISS1/Kiss1 gene emerged as a regulator of the reproductive axis in mammals following the discovery of the kisspeptin receptor (Kissr) and its role in reproduction. Kisspeptin-Kissr systems have been investigated in various vertebrates, and a conserved sequence of kisspeptin-Kissr has been identified in most vertebrate species except in the avian linage. In addition, multiple paralogs of kisspeptin sequences have been identified in the non-mammalian vertebrates. The allegedly conserved role of kisspeptin-Kissr in reproduction became debatable when kiss/kissr genes-deficient zebrafish and medaka showed no apparent effect on the onset of puberty, sexual development, maturation and reproductive capacity. Therefore, it is questionable whether the role of kisspeptin in reproduction is conserved among vertebrate species. Here we discuss from a comparative and evolutional aspect the diverse functions of kisspeptin and its receptor in vertebrates. Primarily this review focuses on the role of hypothalamic kisspeptin in reproductive and non-reproductive functions that are conserved in vertebrate species.
Collapse
Affiliation(s)
- Mageswary Sivalingam
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Petaling Jaya, Selangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Petaling Jaya, Selangor, Malaysia
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Ishwar S Parhar
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Petaling Jaya, Selangor, Malaysia.
| |
Collapse
|
12
|
Butler T, Goldberg JD, Galvin JE, Maloney T, Ravdin L, Glodzik L, de Leon MJ, Hochman T, Bowen RL, Atwood CS. Rationale, study design and implementation of the LUCINDA Trial: Leuprolide plus Cholinesterase Inhibition to reduce Neurologic Decline in Alzheimer's. Contemp Clin Trials 2021; 107:106488. [PMID: 34166841 PMCID: PMC8550816 DOI: 10.1016/j.cct.2021.106488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022]
Abstract
The LUCINDA Trial (Leuprolide plus Cholinesterase Inhibition to reduce Neurologic Decline in Alzheimer's) is a 52 week, randomized, placebo-controlled trial of leuprolide acetate (Eligard) in women with Alzheimer's disease (AD). Leuprolide acetate is a gonadotropin analogue commonly used for hormone-sensitive conditions such as prostate cancer and endometriosis. This repurposed drug demonstrated efficacy in a previous Phase II clinical trial in those women with AD who also received a stable dose of the acetylcholinesterase inhibitor donepezil (Bowen et al., 2015). Basic biological, epidemiological and clinical trial data suggest leuprolide acetate mediates improvement and stabilization of neuropathology and cognitive performance via the modulation of gonadotropin and/or gonadotropin-releasing hormone signaling. LUCINDA will enroll 150 women with mild-moderate AD who are receiving a stable dose of donepezil from three study sites in the United States. Cognition and function are the primary outcome measures as assessed by the Alzheimer's Disease Assessment Scale-Cognitive Subscale. Blood and MRI biomarkers are also measured to assess hormonal, inflammatory and AD biomarker changes. We present the protocol for LUCINDA and discuss trial innovations and challenges including changes necessitated by the covid-19 pandemic and study drug procurement issues.
Collapse
Affiliation(s)
- Tracy Butler
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Judith D Goldberg
- Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - James E Galvin
- Comprehensive Center for Brain Health, Departments of Neurology and Psychiatry, University of Miami, Miller School of Medicine, Boca Raton, FL 33433, USA
| | - Thomas Maloney
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lisa Ravdin
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lidia Glodzik
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mony J de Leon
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tsivia Hochman
- Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | - Craig S Atwood
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, and Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, WI 53705, USA
| |
Collapse
|
13
|
Huang Y, Guo Y, Huang L, Fang Y, Li D, Liu R, Lu Q, Ren R, Tang L, Lian L, Hu Y, Tang J, Chen G, Zhang JH. Kisspeptin-54 attenuates oxidative stress and neuronal apoptosis in early brain injury after subarachnoid hemorrhage in rats via GPR54/ARRB2/AKT/GSK3β signaling pathway. Free Radic Biol Med 2021; 171:99-111. [PMID: 33989759 PMCID: PMC8388553 DOI: 10.1016/j.freeradbiomed.2021.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Abstract
Oxidative stress-induced neuron apoptosis plays a crucial role in the early brain injury (EBI) after subarachnoid hemorrhage (SAH). Kisspeptin has been reported as antioxidant to reduce oxidative stress-induced neuronal cell death through G protein-coupled receptor 54 (GPR54). The goal of this study was to determine the neuroprotection of the Kisspeptin/GRP54 signaling pathway against EBI after SAH. Two hundred and ninety-two Sprague Dawley male rats were used and SAH was induced by the endovascular perforation. Exogenous Kisspeptin 54 (KP54) was delivered intranasally. Small interfering ribonucleic acid (siRNA) for endogenous KISS1, a selective GPR54 antagonist kisspeptin 234, or β-arrestin 2 siRNA for ARRB2 (a functional adaptor of GPR54) were administered intracerebroventricularly. Post-SAH evaluations included neurobehavioral tests, SAH grade, Western blot, immunofluorescence, Fluoro-Jade C, TUNEL, and Nissl staining. The results showed that endogenous KISS1 knockdown aggravated but exogenous KP54 (1.0 nmol/kg) treatment attenuated neurological deficits, brain oxidative stress, and neuronal apoptosis at 24 h after SAH. The benefits of KP54 persisted to 28 days after SAH, which significantly improved cognitive function in SAH rats. The GPR54 blockade or the ARRB2 knockout offset the neuroprotective effects of KP54 in SAH rats. In conclusion, our results suggested that administration of KP54 attenuated oxidative stress, neuronal apoptosis and neurobehavioral impairments through GPR54/ARRB2/AKT/GSK3β signaling pathway after SAH in rat. Thus, KP54 may provide an effective treatment strategy for SAH patients.
Collapse
Affiliation(s)
- Yi Huang
- Department of Neurosurgery, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, Zhejiang, 315010, China; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Yong Guo
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Cerebrovascular Center, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Dujuan Li
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Rui Liu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Qin Lu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Reng Ren
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Lihui Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Lifei Lian
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Yongmei Hu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Anesthesiology, Loma Linda University, Loma Linda, CA, 92350, USA.
| |
Collapse
|
14
|
Kisspeptin-1 regulates forebrain dopaminergic neurons in the zebrafish. Sci Rep 2020; 10:19361. [PMID: 33168887 PMCID: PMC7652893 DOI: 10.1038/s41598-020-75777-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/28/2020] [Indexed: 01/14/2023] Open
Abstract
The habenula is a phylogenetically conserved epithalamic structure, which conveys negative information via inhibition of mesolimbic dopamine neurons. We have previously shown the expression of kisspeptin (Kiss1) in the habenula and its role in the modulation of fear responses in the zebrafish. In this study, to investigate whether habenular Kiss1 regulates fear responses via dopamine neurons in the zebrafish, Kiss1 peptides were intracranially administered close to the habenula, and the expression of dopamine-related genes (th1, th2 and dat) were examined in the brain using real-time PCR and dopamine levels using LC–MS/MS. th1 mRNA levels and dopamine levels were significantly increased in the telencephalon 24-h and 30-min after Kiss1 administration, respectively. In fish administered with Kiss1, expression of neural activity marker gene, npas4a and kiss1 gene were significantly decreased in the ventral habenula. Application of neural tracer into the median raphe, site of habenular Kiss1 neural terminal projections showed tracer-labelled projections in the medial forebrain bundle towards the telencephalon where dopamine neurons reside. These results suggest that Kiss1 negatively regulates its own neuronal activity in the ventral habenula via autocrine action. This, in turn affects neurons of the median raphe via interneurons, which project to the telencephalic dopaminergic neurons.
Collapse
|
15
|
Billert M, Rak A, Nowak KW, Skrzypski M. Phoenixin: More than Reproductive Peptide. Int J Mol Sci 2020; 21:ijms21218378. [PMID: 33171667 PMCID: PMC7664650 DOI: 10.3390/ijms21218378] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Phoenixin (PNX) neuropeptide is a cleaved product of the Smim20 protein. Its most common isoforms are the 14- and 20-amino acid peptides. The biological functions of PNX are mediated via the activation of the GPR173 receptor. PNX plays an important role in the central nervous system (CNS) and in the female reproductive system where it potentiates LH secretion and controls the estrus cycle. Moreover, it stimulates oocyte maturation and increases the number of ovulated oocytes. Nevertheless, PNX not only regulates the reproduction system but also exerts anxiolytic, anti-inflammatory, and cell-protective effects. Furthermore, it is involved in behavior, food intake, sensory perception, memory, and energy metabolism. Outside the CNS, PNX exerts its effects on the heart, ovaries, adipose tissue, and pancreatic islets. This review presents all the currently available studies demonstrating the pleiotropic effects of PNX.
Collapse
Affiliation(s)
- Maria Billert
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (M.B.); (K.W.N.)
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, 30-387 Kraków, Poland;
| | - Krzysztof W. Nowak
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (M.B.); (K.W.N.)
| | - Marek Skrzypski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (M.B.); (K.W.N.)
- Correspondence: ; Tel.: +48-6184-637-24
| |
Collapse
|
16
|
Dufort-Gervais J, Provost C, Charbonneau L, Norris CM, Calon F, Mongrain V, Brouillette J. Neuroligin-1 is altered in the hippocampus of Alzheimer's disease patients and mouse models, and modulates the toxicity of amyloid-beta oligomers. Sci Rep 2020; 10:6956. [PMID: 32332783 PMCID: PMC7181681 DOI: 10.1038/s41598-020-63255-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
Synapse loss occurs early and correlates with cognitive decline in Alzheimer's disease (AD). Synaptotoxicity is driven, at least in part, by amyloid-beta oligomers (Aβo), but the exact synaptic components targeted by Aβo remain to be identified. We here tested the hypotheses that the post-synaptic protein Neuroligin-1 (NLGN1) is affected early in the process of neurodegeneration in the hippocampus, and specifically by Aβo, and that it can modulate Aβo toxicity. We found that hippocampal NLGN1 was decreased in patients with AD in comparison to patients with mild cognitive impairment and control subjects. Female 3xTg-AD mice also showed a decreased NLGN1 level in the hippocampus at an early age (i.e., 4 months). We observed that chronic hippocampal Aβo injections initially increased the expression of one specific Nlgn1 transcript, which was followed by a clear decrease. Lastly, the absence of NLGN1 decreased neuronal counts in the dentate gyrus, which was not the case in wild-type animals, and worsens impairment in spatial learning following chronic hippocampal Aβo injections. Our findings support that NLGN1 is impacted early during neurodegenerative processes, and that Aβo contributes to this effect. Moreover, our results suggest that the presence of NLGN1 favors the cognitive prognosis during Aβo-driven neurodegeneration.
Collapse
Affiliation(s)
- Julien Dufort-Gervais
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal (Recherche CIUSSS-NIM), Montréal, Québec, Canada
| | - Chloé Provost
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal (Recherche CIUSSS-NIM), Montréal, Québec, Canada
| | | | - Christopher M Norris
- Department of Molecular and Biomedical Pharmacology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Frédéric Calon
- Neuroscience Unit, Research Center - CHU de Québec, Québec, QC, Canada
- Faculty of Pharmacy, Université Laval, Québec, QC, Canada
| | - Valérie Mongrain
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal (Recherche CIUSSS-NIM), Montréal, Québec, Canada.
- Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada.
| | - Jonathan Brouillette
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada.
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal (Recherche CIUSSS-NIM), Montréal, Québec, Canada.
| |
Collapse
|
17
|
Kissorphin improves spatial memory and cognitive flexibility impairment induced by ethanol treatment in the Barnes maze task in rats. Behav Pharmacol 2020; 31:272-282. [DOI: 10.1097/fbp.0000000000000557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Lei Z, Lu Y, Bai X, Jiang Z, Yu Q. Chemerin-9 Peptide Enhances Memory and Ameliorates Aβ 1–42-Induced Object Memory Impairment in Mice. Biol Pharm Bull 2020; 43:272-283. [DOI: 10.1248/bpb.b19-00510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- ZeLin Lei
- Key Laboratory of Biotherapy and Regenerative Medicine, the First Hospital of Lanzhou University
| | - YaQin Lu
- Department of Neurology, the First Hospital of Lanzhou University
| | - Xue Bai
- Key Laboratory of Biotherapy and Regenerative Medicine, the First Hospital of Lanzhou University
| | - ZhenXiu Jiang
- Department of Neurology, the First Hospital of Lanzhou University
| | - Qin Yu
- Key Laboratory of Biotherapy and Regenerative Medicine, the First Hospital of Lanzhou University
| |
Collapse
|
19
|
Jiang J, Wang Z, Liang X, Nie Y, Chang X, Xue H, Li S, Min C. Intranasal MMI-0100 Attenuates Aβ 1-42- and LPS-Induced Neuroinflammation and Memory Impairments via the MK2 Signaling Pathway. Front Immunol 2019; 10:2707. [PMID: 31849936 PMCID: PMC6901946 DOI: 10.3389/fimmu.2019.02707] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Accumulating evidence suggests inhibiting neuroinflammation as a potential target in therapeutic or preventive strategies for Alzheimer's disease (AD). MAPK-activated protein kinase II (MK2), downstream kinase of p38 mitogen activated protein kinase (MAPK) p38 MAPK, was unveiled as a promising option for the treatment of AD. Increasing evidence points at MK2 as involved in neuroinflammatory responses. MMI-0100, a cell-penetrating peptide inhibitor of MK2, exhibits anti-inflammatory effects and is in current clinical trials for the treatment of pulmonary fibrosis. Therefore, it is important to understand the actions of MMI-0100 in neuroinflammation. Methods: The mouse memory function was evaluated using novel object recognition (NOR) and object location recognition (OLR) tasks. Brain hippocampus tissue samples were analyzed by quantitative PCR, Western blotting, and immunostaining. Near-infrared fluorescent and confocal microscopy experiments were used to detect the brain uptake and distribution after intranasal MMI-0100 application. Results: Central MMI-0100 was able to ameliorate the memory deficit induced by Aβ1−42 or LPS in novel object and location memory tasks. MMI-0100 suppressed LPS-induced activation of astrocytes and microglia, and dramatically decreased a series of pro-inflammatory cytokines such as TNF-α, IL-6, IL-1β, COX-2, and iNOS via inhibiting phosphorylation of MK2, but not ERK, JNK, and p38 in vivo and in vitro. Importantly, one of the reasons for the failure of macromolecular protein or peptide drugs in the treatment of AD is that they cannot cross the blood–brain barrier. Our data showed that intranasal administration of MMI-0100 significantly ameliorates the memory deficit induced by Aβ1−42 or LPS. Near-infrared fluorescent and confocal microscopy experiment results showed that a strong fluorescent signal, coming from mouse brains, was observed at 2 h after nasal applications of Cy7.5-MMI-0100. However, brains from control mice treated with saline or Cy7.5 alone displayed no significant signal. Conclusions: MMI-0100 attenuates Aβ1−42- and LPS-induced neuroinflammation and memory impairments via the MK2 signaling pathway. Meanwhile, these data suggest that the MMI-0100/MK2 system may provide a new potential target for treatment of AD.
Collapse
Affiliation(s)
- JinHong Jiang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China.,Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Zhe Wang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China.,School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - XueYa Liang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - YaoYan Nie
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xin Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - HongXiang Xue
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shu Li
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chang Min
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
20
|
Zagorácz O, Ollmann T, Péczely L, László K, Kovács A, Berta B, Kállai V, Kertes E, Lénárd L. QRFP administration into the medial hypothalamic nuclei improves memory in rats. Brain Res 2019; 1727:146563. [PMID: 31765630 DOI: 10.1016/j.brainres.2019.146563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/31/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
Abstract
Even though several of RFamide peptides have been shown to modify memory and learning processes in different species, almost nothing is known regarding cognitive effects of recently discovered neuropeptide QRFP. Considering multiple physiological functions of QRFP, localization of QRFP-synthesizing neurons in the hypothalamus and its' widely spread binding sites within the CNS, the present study was designed to investigate the possible role of QRFP in the consolidation of spatial memory. As target area for microinjection, the medial hypothalamic area, including dorsomedial (DMN) and ventromedial (VMN) nuclei, has been chosen. At first, the effects of two doses (200 ng and 400 ng) of QRFP were investigated in Morris water maze. After that receptor antagonist BIBP3226 (equimolar amount to the effective dose of neuropeptide) was applied to elucidate whether it can prevent effects of QRFP. To reveal possible changes in anxiety level, animals were tested in Elevated plus maze. The higher dose of QRFP (400 ng) improved short-term memory consolidation in Morris water maze. Pretreatment with antagonist BIBP3226 abolished cognitive effects of QRFP. The neuropeptide did not affect anxiety level of rats. This study provides unique evidence regarding the role of QRFP in the consolidation of memory and gives the basis for further investigations of neuropeptide's cognitive effects.
Collapse
Affiliation(s)
- Olga Zagorácz
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - Tamás Ollmann
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - László Péczely
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - Anita Kovács
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - Beáta Berta
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - Veronika Kállai
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - Erika Kertes
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary; Molecular Neurophysiology Research Group, Pécs University, Szentágothai Research Center, Pécs, Hungary.
| |
Collapse
|
21
|
The influence of a new derivate of kisspeptin-10 - Kissorphin (KSO) on the rewarding effects of morphine in the conditioned place preference (CPP) test in male rats. Behav Brain Res 2019; 372:112043. [PMID: 31226311 DOI: 10.1016/j.bbr.2019.112043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/17/2019] [Accepted: 06/16/2019] [Indexed: 12/29/2022]
Abstract
Kissorphin (KSO) is a new peptide derived from kisspeptin-10. Previous study has indicated that this peptide displays neuropeptide FF (NPFF)-like anti-opioid activity. Herein, we examined the influence of KSO (1; 3, and 10 nmol, intravenously [i.v.]), on the rewarding action of morphine (5 mg/kg, intraperitoneally [i.p.]), using the unbiased design of the conditioned place preference (CPP) paradigm in rats. To test the effect of KSO on the acquisition of morphine-induced CPP, KSO and morphine were co-injected during conditioning with no drugs treatment on the test day. To investigate the effect of KSO on the expression of morphine-induced CPP, morphine alone was given during the conditioning phase (1 × 3 days) and KSO was administered 5 min prior to the placement in the CPP apparatus on the test day. To estimate the influence of KSO on the reinstatement of morphine-induced CPP, KSO was given 5 min before a priming dose of morphine (5 mg/kg, i.p.) on the reinstatement test day. The results show that KSO inhibited the acquisition, expression and reinstatement of morphine-induced CPP. The strongest effect of KSO was observed at the dose of 10 nmol (acquisition and reinstatement) or 1 nmol (expression). KSO given alone, neither induced place preference, nor aversion. Furthermore, the morphine-modulating effects of KSO were markedly antagonized by pretreatment with RF9 (10 nmol, i.v.), the NPFF receptors selective antagonist. Thus, KSO inhibited the morphine-induced CPP mainly by involving specific activation of NPFF receptors. Overall, these data further support the anti-opioid character of KSO.
Collapse
|
22
|
Lei Z, Bai X, Ma J, Yu Q. Kisspeptin‑13 inhibits bleomycin‑induced pulmonary fibrosis through GPR54 in mice. Mol Med Rep 2019; 20:1049-1056. [PMID: 31173221 PMCID: PMC6625411 DOI: 10.3892/mmr.2019.10341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
Kisspeptin (KP) is an amidated neurohormone that is encoded by the KiSS-1 metastasis suppressor (KISS1) gene and serves as the endogenous ligand for G protein-coupled receptor 54 (GPR54). KP is involved in the regulation of several biological functions, such as reproduction, cancer and atherogenesis. Recent data suggested that KP may induce atherosclerotic plaque progression and instability, which may be reversed by the GPR54 antagonist KP-234. Despite the KISS1 gene being previously reported as a downstream target of the classic transforming growth factor (TGF)/Smad2 signaling pathway, its role in fibrosis remains elusive. The purpose of the present study was to evaluate the role of KP-13 (a product of the KISS1 gene) in a bleomycin (BLM)-induced idiopathic pulmonary fibrosis model. Lung tissue samples were evaluated by quantitative PCR analysis, western blotting and ELISA. Daily intraperitoneal administration of KP-13 significantly ameliorated body weight loss, histopathological lung abnormalities and pulmonary collagen deposition induced by BLM. Furthermore, KP-13 downregulated the expression levels of tumor necrosis factor-α, TGF-β, collagen type I α1, actin α2 and matrix metalloproteinase 2 in BLM-treated lungs compared with BLM group. Notably, the production of α-smooth muscle actin in lung tissues, as well as the pulmonary levels of TGF-β1 and phosphorylated-Smad2/3, was reduced following treatment with KP-13. The anti-fibrotic effects of KP-13 were reversed by KP-234 (an antagonist of GPR54), but not by Cetrorelix (an antagonist of the gonadotropin-releasing hormone receptor). Furthermore, apoptosis-related proteins, such as Bax and caspase-3, were decreased, whereas Bcl-2 was markedly increased as determined by western blotting. Collectively, these data suggested that the KP/GPR54 signaling pathway may be a promising target for the treatment of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Zelin Lei
- Department of Respiration, Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xue Bai
- Department of Respiration, Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jianxiu Ma
- Medical College, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Qin Yu
- Department of Respiration, Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
23
|
Harter CJL, Kavanagh GS, Smith JT. The role of kisspeptin neurons in reproduction and metabolism. J Endocrinol 2018; 238:R173-R183. [PMID: 30042117 DOI: 10.1530/joe-18-0108] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023]
Abstract
Kisspeptin is a neuropeptide with a critical role in the function of the hypothalamic-pituitary-gonadal (HPG) axis. Kisspeptin is produced by two major populations of neurons located in the hypothalamus, the rostral periventricular region of the third ventricle (RP3V) and arcuate nucleus (ARC). These neurons project to and activate gonadotrophin-releasing hormone (GnRH) neurons (acting via the kisspeptin receptor, Kiss1r) in the hypothalamus and stimulate the secretion of GnRH. Gonadal sex steroids stimulate kisspeptin neurons in the RP3V, but inhibit kisspeptin neurons in the ARC, which is the underlying mechanism for positive- and negative feedback respectively, and it is now commonly accepted that the ARC kisspeptin neurons act as the GnRH pulse generator. Due to kisspeptin's profound effect on the HPG axis, a focus of recent research has been on afferent inputs to kisspeptin neurons and one specific area of interest has been energy balance, which is thought to facilitate effects such as suppressing fertility in those with under- or severe over-nutrition. Alternatively, evidence is building for a direct role for kisspeptin in regulating energy balance and metabolism. Kiss1r-knockout (KO) mice exhibit increased adiposity and reduced energy expenditure. Although the mechanisms underlying these observations are currently unknown, Kiss1r is expressed in adipose tissue and potentially brown adipose tissue (BAT) and Kiss1rKO mice exhibit reduced energy expenditure. Recent studies are now looking at the effects of kisspeptin signalling on behaviour, with clinical evidence emerging of kisspeptin affecting sexual behaviour, further investigation of potential neuronal pathways are warranted.
Collapse
Affiliation(s)
- Campbell J L Harter
- School of Human SciencesThe University of Western Australia, Perth, Western Australia, Australia
| | - Georgia S Kavanagh
- School of Human SciencesThe University of Western Australia, Perth, Western Australia, Australia
| | - Jeremy T Smith
- School of Human SciencesThe University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
24
|
Jiang J, Peng Y, Liang X, Li S, Chang X, Li L, Chang M. Centrally Administered Cortistation-14 Induces Antidepressant-Like Effects in Mice via Mediating Ghrelin and GABA A Receptor Signaling Pathway. Front Pharmacol 2018; 9:767. [PMID: 30072893 PMCID: PMC6060333 DOI: 10.3389/fphar.2018.00767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022] Open
Abstract
Cortistatin-14 (CST-14), a recently discovered cyclic neuropeptide, can bind to all five cloned somatostatin receptors (SSTRs) and ghrelin receptor to exert its biological activities and co-exists with GABA within the cortex and hippocampus. However, the role of CST-14 in the control of depression processes is not still clarified. Here, we tested the behavioral effects of CST-14 in the in a variety of classical rodent models of depression [forced swimming test (FST), tail suspension test (TST) and novelty-suppressed feeding test]. In the models of depression, CST-14 produced antidepressant-like effects, and does not altered locomotor activity levels. And, we found that CST-14 mRNA and BDNF mRNA were significantly decreased in the hippocampus and cortex after mice exposed to stress. Further data show that i.c.v. administration of CST-14 produce rapid antidepressant effects, and does not altered locomotor activity levels. Then these antidepressant-like effects were significantly reversed by [D-Lys3]GHRP-6 (ghrelin receptor antagonist), but not c-SOM (SSTRs antagonist). Meanwhile, the effects of some neurotransmitter blockers indicates that only GABAA system, but not CRF1 receptor, α/β-adrenergic receptor, is involved in the antidepressant effect of CST-14. The effects of the mTOR inhibitor (rapamycin), the PI3K inhibitor (LY294002) and the p-ERK1/2 inhibitor (U0126) suggesting that the ERK/mTOR or PI3K/Akt/mTOR signaling pathway is not involved in the antidepressant effects of CST-14. Interestingly, intranasal administration of CST-14 led to reducing depressive-like behavior, and near-infrared fluorescent experiments showed the real-time in vivo bio-distribution in brain after intranasal infusion of Cy7.5-CST-14. Taken all together, the results of present study point to a role for CST-14 in the modulation of depression processes via the ghrelin and GABAA receptor, and suggest cortistation may represent a novel strategy for the treatment of depression disorders. Highlights:CST-14 and BDNF mRNA are decreased in hippocampus and cortex once mice exposed to stress. i.c.v. or intranasal administration of CST-14 produce rapid antidepressant effects. NIR fluorescence imaging detected the brain uptake and distribution after intranasal CST-14. Antidepressant effects of CST-14 were only related to ghrelin and GABAA system. Co-injection of CST-14 and NPS produce antidepressant effect, and do not impair memory.
Collapse
Affiliation(s)
- JinHong Jiang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Life Sciences, Institute of Biochemistry and Molecular Biology, Lanzhou University, Lanzhou, China
| | - YaLi Peng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Life Sciences, Institute of Biochemistry and Molecular Biology, Lanzhou University, Lanzhou, China
| | - XueYa Liang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Life Sciences, Institute of Biochemistry and Molecular Biology, Lanzhou University, Lanzhou, China
| | - Shu Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Life Sciences, Institute of Biochemistry and Molecular Biology, Lanzhou University, Lanzhou, China
| | - Xin Chang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Life Sciences, Institute of Biochemistry and Molecular Biology, Lanzhou University, Lanzhou, China
| | - LongFei Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Life Sciences, Institute of Biochemistry and Molecular Biology, Lanzhou University, Lanzhou, China
| | - Min Chang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Life Sciences, Institute of Biochemistry and Molecular Biology, Lanzhou University, Lanzhou, China
| |
Collapse
|
25
|
Jiang J, Jin W, Peng Y, Liang X, Li S, Wei L, Lei Z, Li L, Chang M. The role of Cortistatin-14 in the gastrointestinal motility in mice. Pharmacol Rep 2018; 70:355-363. [DOI: 10.1016/j.pharep.2017.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/24/2017] [Accepted: 09/15/2017] [Indexed: 11/28/2022]
|
26
|
Altered aspects of anxiety-related behavior in kisspeptin receptor-deleted male mice. Sci Rep 2018; 8:2794. [PMID: 29434234 PMCID: PMC5809376 DOI: 10.1038/s41598-018-21042-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/29/2018] [Indexed: 12/24/2022] Open
Abstract
The roles of kisspeptin signaling outside the hypothalamus in the brain are unknown. We examined here the impact of Kiss1r-deletion on hippocampus-related behaviors of anxiety and spatial learning in adult male mice using two mouse models. In the first, global Kiss1r-null and control mice were gonadectomized (GDX KISS1R-KO). In the second, KISS1R signalling was rescued selectively in gonadotropin-releasing hormone neurons to generate Kiss1r-null mice with normal testosterone levels (intact KISS1R-KO). Intact KISS1R-KO rescue mice were found to spend twice as much time in the open arms of the elevated plus maze (EPM) compared to controls (P < 0.01). GDX KISS1R-KO mice showed a similar but less pronounced trend. No differences were detected between intact KISS1R-KO mice and controls in the open field test (OFT), although a marked reduction in time spent in the centre quadrant was observed for all GDX mice (P < 0.001). No effects of KISS1R deletion or gonadectomy were detected in the Morris water maze. These observations demonstrate that KISS1R signalling impacts upon anxiogenic neural circuits operative in the EPM, while gonadal steroids appear important for anxiety behaviour observed in the OFT. The potential anxiogenic role of kisspeptin may need to be considered in the development of kisspeptin analogs for the clinic.
Collapse
|
27
|
Peineau S, Rabiant K, Pierrefiche O, Potier B. Synaptic plasticity modulation by circulating peptides and metaplasticity: Involvement in Alzheimer's disease. Pharmacol Res 2018; 130:385-401. [PMID: 29425728 DOI: 10.1016/j.phrs.2018.01.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 10/18/2022]
Abstract
Synaptic plasticity is a cellular process involved in learning and memory whose alteration in its two main forms (Long Term Depression (LTD) and Long Term Potentiation (LTP)), is observed in most brain pathologies, including neurodegenerative disorders such as Alzheimer's disease (AD). In humans, AD is associated at the cellular level with neuropathological lesions composed of extracellular deposits of β-amyloid (Aβ) protein aggregates and intracellular neurofibrillary tangles, cellular loss, neuroinflammation and a general brain homeostasis dysregulation. Thus, a dramatic synaptic environment perturbation is observed in AD patients, involving changes in brain neuropeptides, cytokines, growth factors or chemokines concentration and diffusion. Studies performed in animal models demonstrate that these circulating peptides strongly affect synaptic functions and in particular synaptic plasticity. Besides this neuromodulatory action of circulating peptides, other synaptic plasticity regulation mechanisms such as metaplasticity are altered in AD animal models. Here, we will review new insights into the study of synaptic plasticity regulatory/modulatory mechanisms which could influence the process of synaptic plasticity in the context of AD with a particular attention to the role of metaplasticity and peptide dependent neuromodulation.
Collapse
Affiliation(s)
- Stéphane Peineau
- GRAP UMR1247, INSERM, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France; Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK.
| | - Kevin Rabiant
- GRAP UMR1247, INSERM, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Olivier Pierrefiche
- GRAP UMR1247, INSERM, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France.
| | - Brigitte Potier
- Laboratoire Aimé Cotton, CNRS-ENS UMR9188, Université Paris-Sud, Orsay, France.
| |
Collapse
|
28
|
Jiang JH, Peng YL, Zhang PJ, Xue HX, He Z, Liang XY, Chang M. The ventromedial hypothalamic nucleus plays an important role in anxiolytic-like effect of neuropeptide S. Neuropeptides 2018; 67:36-44. [PMID: 29195839 DOI: 10.1016/j.npep.2017.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 02/08/2023]
Abstract
Neuropeptide S (NPS), the endogenous neuropeptide ligand of NPSR, has been reported to regulate anxiety-related behavior involved in multiple brain regions, including amygdale, locus coeruleus and Barrington's nucleus. However, little research has been conducted on the anxiolytic-like behaviors of NPS on the hypothalamus, which was an important area in defensive behavior. Here, we investigated a role of hypothalamus in anxiolytic-like behaviors of NPS. We found that NPSR protein of mouse distributed mainly in the ventromedial hypothalamus (VMH). And in the single prolonged stress model (SPS), the results showed that NPS mRNA of the mice exposed to SPS was significantly higher than control, while NPSR mRNA was remarkable lower than control in hypothalamus. Further studies found that NPS intra-VMH infusion dose-dependently (1, 10 and 100pmol) induced anxiolytic effects, using elevated plus maze and open field tests. These anxiolytic effects could be blocked by NPSR antagonist (SHA68), but not by picrotoxin (a GABAA receptor antagonist) and sacolfen (a GABAB receptor antagonist). Meanwhile, our data showed that the expression of c-Fos was significantly increased in VMH after NPS delivered into the lateral ventricles. These results cast a new light on the hypothalamic nucleus in the anxiolytic-like effect of NPS system.
Collapse
Affiliation(s)
- Jin Hong Jiang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Ya Li Peng
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Pei Jiang Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Hong Xiang Xue
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Zhen He
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Xue Ya Liang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - M Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
29
|
Alavi MS, Shamsizadeh A, Azhdari-Zarmehri H, Roohbakhsh A. Orphan G protein-coupled receptors: The role in CNS disorders. Biomed Pharmacother 2017; 98:222-232. [PMID: 29268243 DOI: 10.1016/j.biopha.2017.12.056] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022] Open
Abstract
There are various types of receptors in the central nervous system (CNS). G protein-coupled receptors (GPCRs) have the highest expression with a wide range of physiological functions. A newer sub group of these receptors namely orphan GPCRs have been discovered. GPR3, GPR6, GPR17, GPR26, GPR37, GPR39, GPR40, GPR50, GPR52, GPR54, GPR55, GPR85, GPR88, GPR103, and GPR139 are the selected orphan GPCRs for this article. Their roles in the central nervous system have not been understood well so far. However, recent studies show that they may have very important functions in the CNS. Hence, in the present study, we reviewed most recent findings regarding the physiological roles of the selected orphan GPCRs in the CNS. After a brief presentation of each receptor, considering the results from genetic and pharmacological manipulation of the receptors, their roles in the pathophysiology of different diseases and disorders including anxiety, depression, schizophrenia, epilepsy, Alzheimer's disease, Parkinson's disease, and substance abuse will be discussed. At present, our knowledge regarding the role of GPCRs in the brain is very limited. However, previous limited studies show that orphan GPCRs have an important place in psychopharmacology and these receptors are potential new targets for the treatment of major CNS diseases.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hassan Azhdari-Zarmehri
- Department of Basic Medical Sciences and Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Intrahippocampal injection of Cortistatin-14 impairs recognition memory consolidation in mice through activation of sst 2 , ghrelin and GABA A/B receptors. Brain Res 2017; 1666:38-47. [DOI: 10.1016/j.brainres.2017.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 02/03/2023]
|
31
|
He C, Li H, Zhang J, Kang Y, Jia F, Dong S, Zhou L. Supraspinal inhibitory effects of chimeric peptide MCRT on gastrointestinal motility in mice. J Pharm Pharmacol 2017. [DOI: 10.1111/jphp.12761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Objectives
Chimeric peptide MCRT, based on morphiceptin and PFRTic-NH2, was a bifunctional ligand of μ- and δ-opioid receptors (MOR-DOR) and produced potent analgesia in tail-withdrawal test. The study focused on the supraspinal effects of morphiceptin, PFRTic-NH2 and MCRT on gastrointestinal motility. Moreover, opioid receptor antagonists, naloxone (non-selective), cyprodime (MOR selective) and naltrindole (DOR selective) were utilized to explore the mechanisms.
Methods
Intracerebroventricular administration was achieved via the implanted cannula. Gastric emptying and intestinal transit were measured to evaluate gastrointestinal motility.
Key findings
(1) At supraspinal level, morphiceptin, PFRTic-NH2 and MCRT significantly decreased gastric emptying and intestinal transit; (2) MCRT at 1 nmol/mouse, far higher than its analgesic dose (ED50 = 29.8 pmol/mouse), failed to regulate the gastrointestinal motility; (3) MCRT-induced gastrointestinal dysfunction could be completely blocked by naloxone and naltrindole, but not affected by cyprodime.
Conclusions
(1) Morphiceptin and PFRTic-NH2 played important roles in the regulation of gastrointestinal motility; (2) MCRT possessed higher bioactivity of pain relief than gastrointestinal regulation, suggesting its promising analgesic property; (3) MCRT-induced motility disorders were sensitive to DOR but not to MOR blockade, indicating the pain-relieving specificity of speculated MOR subtype or splice variant or MOR-DOR heterodimer.
Collapse
Affiliation(s)
- Chunbo He
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hailan Li
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jing Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yanping Kang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Fang Jia
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shouliang Dong
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, China
| | - Lanxia Zhou
- The Core Laboratory of the First Affiliated Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou, China
| |
Collapse
|
32
|
Jiang J, Jin W, Peng Y, He Z, Wei L, Li S, Wang X, Chang M, Wang R. In vivo and vitro characterization of the effects of kisspeptin-13, endogenous ligands for GPR54, on mouse gastrointestinal motility. Eur J Pharmacol 2016; 794:216-223. [PMID: 27890710 DOI: 10.1016/j.ejphar.2016.11.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/24/2016] [Accepted: 11/24/2016] [Indexed: 12/14/2022]
Abstract
Kisspeptin (KP), the endogenous ligand of GPR54, is a mammalian amidated neurohormone, which belongs to the RF-amide peptide family. However, in contrast with the related members of the RF-amide family, little information is available regarding its role in the gastrointestinal motility. With regard to the recent data suggesting KP play an important role in food intake, and while gastrointestinal motility are closely related to it. Thus, in the present work, effects of central administration of KP-13, one of the endogenous active isoforms, on gastrointestinal motility were investigated. The results indicated that intracerebroventricular (i.c.v.) infused of KP-13 significantly facilitated gastrointestinal transit, bead expulsion and fecal pellet output, respectively, while has no effect on gastric emptying. The effects were significantly reversed by GPR54 antagonist 234, but not GnRH receptor antagonist Cetrorelix. However, i.p. injected of KP-13 or compound 5 (10mg/kg), a high metabolic stability kisspeptin analog, did not affect gastrointestinal transit, suggesting that KP-13 or compound 5 facilitated gastrointestinal transit through the activation of central GPR54. Then the gastrointestinal motility-enhancing effects were also presented after infusion of KP-13 into the hypothalamus. In vitro, KP-13 (10-6M) also modulated colonic contraction, but not in the stomach and small intestine. Similarly, KP-13 (10-6M)-induced contractions of circular and longitudinal colonic muscle were significantly attenuated by antagonist 234 (10-6M). In conclusion, all the results indicated that KP-13 promoted gastrointestinal motility through the activation of GPR54, which implicate that KP/GPR54 system might be a new target to treat gastrointestinal function disorder.
Collapse
Affiliation(s)
- Jinhong Jiang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Weidong Jin
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Yali Peng
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Zhen He
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Lijuan Wei
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Shu Li
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Xiaoli Wang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Min Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China.
| | - Rui Wang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
33
|
Liu X, Herbison AE. Kisspeptin Regulation of Neuronal Activity throughout the Central Nervous System. Endocrinol Metab (Seoul) 2016; 31:193-205. [PMID: 27246282 PMCID: PMC4923402 DOI: 10.3803/enm.2016.31.2.193] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/14/2016] [Accepted: 04/22/2016] [Indexed: 12/30/2022] Open
Abstract
Kisspeptin signaling at the gonadotropin-releasing hormone (GnRH) neuron is now relatively well characterized and established as being critical for the neural control of fertility. However, kisspeptin fibers and the kisspeptin receptor (KISS1R) are detected throughout the brain suggesting that kisspeptin is involved in regulating the activity of multiple neuronal circuits. We provide here a review of kisspeptin actions on neuronal populations throughout the brain including the magnocellular oxytocin and vasopressin neurons, and cells within the arcuate nucleus, hippocampus, and amygdala. The actions of kisspeptin in these brain regions are compared to its effects upon GnRH neurons. Two major themes arise from this analysis. First, it is apparent that kisspeptin signaling through KISS1R at the GnRH neuron is a unique, extremely potent form or neurotransmission whereas kisspeptin actions through KISS1R in other brain regions exhibit neuromodulatory actions typical of other neuropeptides. Second, it is becoming increasingly likely that kisspeptin acts as a neuromodulator not only through KISS1R but also through other RFamide receptors such as the neuropeptide FF receptors (NPFFRs). We suggest likely locations of kisspeptin signaling through NPFFRs but note that only limited tools are presently available for examining kisspeptin cross-signaling within the RFamide family of neuropeptides.
Collapse
Affiliation(s)
- Xinhuai Liu
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, Dunedin, New Zealand.
| |
Collapse
|
34
|
Phoenixin-14 enhances memory and mitigates memory impairment induced by Aβ1-42 and scopolamine in mice. Brain Res 2015; 1629:298-308. [DOI: 10.1016/j.brainres.2015.10.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/27/2022]
|
35
|
Li MS, Peng YL, Jiang JH, Xue HX, Wang P, Zhang PJ, Han RW, Chang M, Wang R. Neuropeptide S Increases locomotion activity through corticotropin-releasing factor receptor 1 in substantia nigra of mice. Peptides 2015; 71:196-201. [PMID: 26239581 DOI: 10.1016/j.peptides.2015.07.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/30/2015] [Accepted: 07/30/2015] [Indexed: 11/26/2022]
Abstract
Neuropeptide S (NPS), the endogenous ligand of NPS receptor (NPSR), was reported to be involved in the regulation of arousal, anxiety, locomotion, learning and memory. The basal ganglia play a crucial role in regulating of locomotion-related behavior. Here, we found that NPSR protein of mouse was distributed in the substantia nigra (SN) and globus pallidus (LGP) by immunohistochemical analysis. However, less is known about the direct locomotion-related effects of NPS in both SN and LGP. Therefore, we investigated the role of NPS in locomotion processes, using the open field test. The results showed that NPS infused into the SN (0.03, 0.1, 1nmol) or LGP (0.01, 0.03, 0.1nmol) dose-dependently increased the locomotor activity in mice. SHA 68 (50mg/kg), an antagonist of NPSR, blocked the locomotor stimulant effect of NPS in both nuleus. Meanwhile, these effects of NPS were also counteracted by the CRF1 receptor antagonist antalarmin (30mg/kg, i.p.). In addition, we found that the expression of c-Fos was significantly increased after NPS was delivered into SN. In conclusion, these results indicate that NPS-NPSR system may regulate locomotion together with the CRF1 system in SN.
Collapse
Affiliation(s)
- M S Li
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Y L Peng
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - J H Jiang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - H X Xue
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - P Wang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - P J Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - R W Han
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - M Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China.
| | - R Wang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|