1
|
Kaufman MJ, Meloni EG. Xenon gas as a potential treatment for opioid use disorder, alcohol use disorder, and related disorders. Med Gas Res 2025; 15:234-253. [PMID: 39812023 PMCID: PMC11918480 DOI: 10.4103/mgr.medgasres-d-24-00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/26/2024] [Indexed: 01/16/2025] Open
Abstract
Xenon gas is considered to be a safe anesthetic and imaging agent. Research on its other potentially beneficial effects suggests that xenon may have broad efficacy for treating health disorders. A number of reviews on xenon applications have been published, but none have focused on substance use disorders. Accordingly, we review xenon effects and targets relevant to the treatment of substance use disorders, with a focus on opioid use disorder and alcohol use disorder. We report that xenon inhaled at subsedative concentrations inhibits conditioned memory reconsolidation and opioid withdrawal symptoms. We review work by others reporting on the antidepressant, anxiolytic, and analgesic properties of xenon, which could diminish negative affective states and pain. We discuss research supporting the possibility that xenon could prevent analgesic- or stress-induced opioid tolerance and, by so doing could reduce the risk of developing opioid use disorder. The rapid kinetics, favorable safety and side effect profiles, and multitargeting capability of xenon suggest that it could be used as an ambulatory on-demand treatment to rapidly attenuate maladaptive memory, physical and affective withdrawal symptoms, and pain drivers of substance use disorders when they occur. Xenon may also have human immunodeficiency virus and oncology applications because its effects relevant to substance use disorders could be exploited to target human immunodeficiency virus reservoirs, human immunodeficiency virus protein-induced abnormalities, and cancers. Although xenon is expensive, low concentrations exert beneficial effects, and gas separation, recovery, and recycling advancements will lower xenon costs, increasing the economic feasibility of its therapeutic use. More research is needed to better understand the remarkable repertoire of effects of xenon and its potential therapeutic applications.
Collapse
Affiliation(s)
- Marc J Kaufman
- McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | | |
Collapse
|
2
|
Abouelnaga KH, Huff AE, Jardine KH, O'Neill OS, Winters BD. Reactivation-dependent transfer of fear memory between contexts requires M1 muscarinic receptor stimulation in dorsal hippocampus of male rats. Learn Mem 2024; 31:a054039. [PMID: 39384429 PMCID: PMC11472233 DOI: 10.1101/lm.054039.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024]
Abstract
Memory updating is essential for integrating new information into existing representations. However, this process could become maladaptive in conditions like post-traumatic stress disorder (PTSD), when fear memories generalize to neutral contexts. Previously, we have shown that contextual fear memory malleability in rats requires activation of M1 muscarinic acetylcholine receptors in the dorsal hippocampus. Here, we investigated the involvement of this mechanism in the transfer of contextual fear memories to other contexts using a novel fear memory updating paradigm. Following brief reexposure to a previously fear conditioned context, male rats (n = 8-10/group) were placed into a neutral context to evaluate the transfer of fear memory. We also infused the selective M1 receptor antagonist pirenzepine into the dorsal hippocampus before memory reactivation to try to block this effect. Results support the hypothesis that fear memory can be updated with novel contextual information, but only if rats are reexposed to the originally trained context relatively recently before the neutral context; evidence for transfer was not seen if the fear memory reactivation was omitted or if it occurred 6 h before neutral context exposure. The transferred fear persisted for 4 weeks, and the effect was blocked by M1 antagonism. These findings strongly suggest that fear transfer requires reactivation and destabilization of the original fear memory. The novel preclinical model introduced here, and its implication of muscarinic receptors in this process, could therefore inform therapeutic strategies for PTSD and similar conditions.
Collapse
Affiliation(s)
- Karim H Abouelnaga
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, N1G 2W1, Guelph ON, Canada
| | - Andrew E Huff
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, N1G 2W1, Guelph ON, Canada
| | - Kristen H Jardine
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, N1G 2W1, Guelph ON, Canada
| | - Olivia S O'Neill
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, N1G 2W1, Guelph ON, Canada
| | - Boyer D Winters
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, N1G 2W1, Guelph ON, Canada
| |
Collapse
|
3
|
Nascimento C, Guerreiro-Pinto V, Pawlak S, Caulino-Rocha A, Amat-Garcia L, Cunha-Reis D. Impaired Response to Mismatch Novelty in the Li 2+-Pilocarpine Rat Model of TLE: Correlation with Hippocampal Monoaminergic Inputs. Biomedicines 2024; 12:631. [PMID: 38540244 PMCID: PMC10968540 DOI: 10.3390/biomedicines12030631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 11/11/2024] Open
Abstract
Novelty detection, crucial to episodic memory formation, is impaired in epileptic patients with mesial temporal lobe resection. Mismatch novelty detection, that activates the hippocampal CA1 area in humans and is vital for memory reformulation and reconsolidation, is also impaired in patients with hippocampal lesions. In this work, we investigated the response to mismatch novelty, as occurs with the new location of known objects in a familiar environment, in the Li2+-pilocarpine rat model of TLE and its correlation with hippocampal monoaminergic markers. Animals showing spontaneous recurrent seizures (SRSs) for at least 4 weeks at the time of behavioural testing showed impaired spatial learning in the radial arm maze, as described. Concurrently, SRS rats displayed impaired exploratory responses to mismatch novelty, yet novel object recognition was not significantly affected in SRS rats. While the levels of serotonin and dopamine transporters were mildly decreased in hippocampal membranes from SRS rats, the levels on the norepinephrine transporter, tyrosine hydroxylase and dopamine-β-hydroxylase were enhanced, hinting for an augmentation, rather than an impairment in noradrenergic function in SRS animals. Altogether, this reveals that mismatch novelty detection is particularly affected by hippocampal damage associated to the Li2+-pilocarpine model of epilepsy 4-8 weeks after the onset of SRSs and suggests that deficits in mismatch novelty detection may substantially contribute to cognitive impairment in MTLE. As such, behavioural tasks based on these aspects of mismatch novelty may prove useful in the development of cognitive therapy strategies aiming to rescue cognitive deficits observed in epilepsy.
Collapse
Affiliation(s)
- Carlos Nascimento
- Unidade de Fisiologia Clínica e Translacional, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Vasco Guerreiro-Pinto
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Seweryn Pawlak
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ana Caulino-Rocha
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Laia Amat-Garcia
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Diana Cunha-Reis
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
4
|
Verma A, Mitra S, Khamaj A, Kant V, Asthana MK. Preventing fear return in humans: Music-based intervention during reactivation-extinction paradigm. PLoS One 2024; 19:e0293880. [PMID: 38381711 PMCID: PMC10881010 DOI: 10.1371/journal.pone.0293880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/23/2023] [Indexed: 02/23/2024] Open
Abstract
In several research studies, the reactivation extinction paradigm did not effectively prevent the return of fear if administered without any intervention technique. Therefore, in this study, the authors hypothesized that playing music (high valence, low arousal) during the reconsolidation window may be a viable intervention technique for eliminating fear-related responses. A three-day auditory differential fear conditioning paradigm was used to establish fear conditioning. Participants were randomly assigned into three groups, i.e., one control group, standard extinction (SE), and two experimental groups, reactivation extinction Group (RE) and music reactivation extinction (MRE), of twenty participants in each group. Day 1 included the habituation and fear acquisition phases; on Day 2 (after 24 hours), the intervention was conducted, and re-extinction took place on Day 3. Skin conductance responses were used as the primary outcome measure. Results indicated that the MRE group was more effective in reducing fear response than the RE and SE groups in the re-extinction phase. Furthermore, there was no significant difference observed between SE and RE groups. This is the first study known to demonstrate the effectiveness of music intervention in preventing the return of fear in a healthy individual. Therefore, it might also be employed as an intervention strategy (non-pharmacological approach) for military veterans, in emotion regulation, those diagnosed with post-traumatic stress disorder, and those suffering from specific phobias.
Collapse
Affiliation(s)
- Ankita Verma
- Department of Humanities & Social Sciences, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Sharmili Mitra
- Department of Humanities & Social Sciences, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Abdulrahman Khamaj
- Department of Industrial Engineering, College of Engineering, Jazan University, Jazan, Saudi Arabia
| | - Vivek Kant
- Department of Humanities & Social Sciences, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Manish Kumar Asthana
- Department of Humanities & Social Sciences, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
- Department of Design, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
5
|
Goal A, Raj K, Singh S, Arora R. Protective effects of Embelin in Benzo[α]pyrene induced cognitive and memory impairment in experimental model of mice. CURRENT RESEARCH IN NEUROBIOLOGY 2024; 6:100122. [PMID: 38616958 PMCID: PMC11015058 DOI: 10.1016/j.crneur.2023.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 04/16/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that affects the neurons in the hippocampus, resulting in cognitive and memory impairment. The most prominent clinical characteristics of AD are the production of amyloid-beta (Aβ) plaques, neurofibrillary tangles, and neuroinflammation in neurons. It has been proven that embelin (Emb) possesses antioxidant, anti-inflammatory, and neuroprotective properties. Therefore, we assessed the therapeutic potential of Emb in Benzo [α]pyrene (BaP)-induced cognitive impairment in experimental mice. BaP (5 mg/kg, i. p) was given to mice daily for 28 days, and Emb (2.5, 5, and 10 mg/kg, i. p) was given from 14 to 28 days of a protocol. In addition, locomotor activity was evaluated using open-field and spatial working, and non-spatial memory was evaluated using novel object recognition tasks (NORT), Morris water maze (MWM), and Y- maze. At the end of the study, the animal tissue homogenate was used to check biochemicals, neuroinflammation, and neurotransmitter changes. BaP-treated mice showed a significant decline in locomotor activity, learning and memory deficits and augmented oxidative stress (lipid peroxidation, nitrite, and GSH). Further, BaP promoted the release of inflammatory tissue markers, decreased acetylcholine, dopamine, GABA, serotonin, and norepinephrine, and increased glutamate concentration. However, treatment with Emb at dose-dependently prevented biochemical changes, improved antioxidant levels, reduced neuroinflammation, restored neurotransmitter concentration, and inhibited the NF-κB pathway. The current study's finding suggested that Emb improved cognitive functions through antioxidant, anti-inflammatory, and neuroprotective mechanisms and inhibition of acetylcholinesterase (AChE) enzyme activities and Aβ-42 accumulation.
Collapse
Affiliation(s)
- Akansh Goal
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001
| | - Khadga Raj
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001
| | - Rimpi Arora
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001
| |
Collapse
|
6
|
Tay KR, Bolt F, Wong HT, Vasileva S, Lee J. Reminder-dependent alterations in long-term declarative memory expression. Neurobiol Learn Mem 2023; 206:107858. [PMID: 37944636 DOI: 10.1016/j.nlm.2023.107858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The reminder of a previously-learned memory can render that memory vulnerable to disruption or change in expression. Such memory alterations have been viewed as supportive of the framework of memory reconsolidation. However, alternative interpretations and inconsistencies in the replication of fundamental findings have raised questions particularly in the domain of human declarative memory. Here we present a series of related experiments, all of which involve the learning of a declarative memory, followed 1-2 days later by memory reminder. Post-reminder learning of interfering material did result in modulation of subsequent recall at test, but the precise manifestation of that interference effect differed across experiments. With post-reminder performance of a visuospatial task, a quantitative impairment in test recall performance was observed within a visual list-learning paradigm, but not in a foreign vocabulary learning paradigm. These results support the existence of reminder-induced memory processes that can lead to the alteration of subsequent memory performance by interfering tasks. However, it remains unclear whether these effects are reflective of modulation or impairment of the putative memory reconsolidation process.
Collapse
Affiliation(s)
- Kai Rong Tay
- University of Birmingham, School of Psychology, Edgbaston, Birmingham B15 2TT, UK
| | - Francesca Bolt
- University of Birmingham, School of Psychology, Edgbaston, Birmingham B15 2TT, UK
| | - Hei Ting Wong
- University of Birmingham, School of Psychology, Edgbaston, Birmingham B15 2TT, UK
| | - Svetlina Vasileva
- University of Birmingham, School of Psychology, Edgbaston, Birmingham B15 2TT, UK
| | - Jonathan Lee
- University of Birmingham, School of Psychology, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
7
|
Yang D, Ye Y, Huang Y, Huang H, Sun J, Wang JS, Tang L, Gao Y, Sun X. Effects of FB1 and HFB1 on Autonomous Exploratory and Spatial Memory and Learning Abilities in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16752-16762. [PMID: 37822021 DOI: 10.1021/acs.jafc.3c05501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Fumonisin B1 (FB1) is a representative form of fumonisin and is widely present in food and feed. Hydrolyzed fumonisin B1 (HFB1) emerges as a breakdown product of FB1, which is accompanied by FB1 alterations. While previous studies have primarily focused on the liver or kidney toxicity of FB1, with limited studies existing on its neurotoxicity and even fewer on the toxicity of HFB1, this study focuses on the neurotoxicity of FB1 and HFB1 exposure in mice investigated by the open field test, Morris water maze test, histopathological analysis, and nontargeted metabolomics. Further, the levels of oxidative stress-related indices, neurotransmitters, and sphingolipids in the brain were measured to analyze their correlation with behavioral outcomes. The results showed that both FB1 (5 mg/kg) and HFB1 (2.8 mg/kg) reduced autonomous exploratory behavior in mice, impaired spatial learning and memory, and caused mild abnormalities in the brain structure. Quantitative analysis further indicated that exposure to FB1 and HFB1 disrupted neurotransmitter homeostasis, exacerbated oxidative stress, and significantly increased the sphinganine/sphingosine (Sa/So) ratio. Moreover, HFB1 exhibited neurotoxic effects similar to those of FB1, emphasizing the need to pay attention to the neurotoxicity effect of HFB1. These findings underscore the importance of understanding the risks and potential neurological damage associated with FB1 and HFB1 exposure, highlighting the necessity for further research in this crucial field.
Collapse
Affiliation(s)
- Diaodiao Yang
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Yongli Ye
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Yaoguang Huang
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Heyang Huang
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Jiadi Sun
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602, United States
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602, United States
| | - Yahui Gao
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiulan Sun
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| |
Collapse
|
8
|
Trofimova I. Anticipatory attractors, functional neurochemistry and "Throw & Catch" mechanisms as illustrations of constructivism. Rev Neurosci 2023; 34:737-762. [PMID: 36584323 DOI: 10.1515/revneuro-2022-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022]
Abstract
This review explores several rarely discussed examples illustrating constructivism principles, generative and selective features of neuronal regulation of behaviour. First, the review highlights Walter Freeman's experiments and mathematical analysis that uncovered the existence of anticipatory attractors, i.e. non-random dynamical patterns in neurodynamics. Since Freeman's work did not extend to neurochemistry, this paper then points to the proposed earlier neurochemical framework summarizing the managerial roles of monoaminergic, cholinergic and opioid receptor systems likely contributing to anticipatory attractors in line with functional constructivism. As a third example, neurochemistry's evidence points to the "Throw & Catch" (T&C) principle in neurodynamics. This principle refers to the pro-active, neurochemically expensive, massive but topical increase of potentials ("Throw") within electrodynamics and neurotransmission in the brain whenever there is an uncertainty in selection of degrees of freedom (DFs). The T&C also underlines the relay-like processes during the selection of DFs. The "Throw" works as an internally generated "flashlight" that, contrarily to the expectations of entropy reduction, increases entropy and variance observed in processes related to orientation and action-formation. The discussed examples highlight the deficiency of structures-oriented projects and excitation-inhibition concepts in neuroscience. The neural regulation of behaviour appears to be a fluid, constructive process, constantly upgrading the choice of behavioural DFs, to ensure the compatibility between the environmental and individual's individuals' needs and capacities.
Collapse
Affiliation(s)
- Irina Trofimova
- Laboratory of Collective Intelligence, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton L8S 2T6, ON, Canada
| |
Collapse
|
9
|
Wideman CE, Huff AE, Messer WS, Winters BD. Muscarinic receptor activation overrides boundary conditions on memory updating in a calcium/calmodulin-dependent manner. Neuropsychopharmacology 2023; 48:1358-1366. [PMID: 36928353 PMCID: PMC10354085 DOI: 10.1038/s41386-023-01564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/17/2023]
Abstract
Long-term memory storage is a dynamic process requiring flexibility to ensure adaptive behavioural responding in changing environments. Indeed, it is well established that memory reactivation can "destabilize" consolidated traces, leading to various forms of updating. However, the neurobiological mechanisms rendering long-term memories labile and modifiable remain poorly described. Moreover, boundary conditions, such as the age or strength of the memory, can reduce the likelihood of this destabilization; yet, intuitively, these most behaviourally influential of memories should also be modifiable under appropriate conditions. Here, we provide evidence that salient novelty at the time of memory reactivation promotes integrative updating of resistant object memories in rats. Furthermore, blockade of muscarinic acetylcholine receptors (mAChRs; with pirenzepine) or disruption of calcium/calmodulin (Ca2+/CaM) with KN-93, a Ca2+/CaM-binding molecule that inhibits calcium/calmodulin-dependent protein kinase II (CaMKII) activation, in perirhinal cortex (PRh) prevented novelty-induced destabilization and updating of resistant object memories. Finally, PRh M1 mAChR activation (with CDD-0102A) was sufficient to destabilize resistant object memories for updating, and this effect was blocked by KN-93, possibly via inhibition of CaMKII activity. Thus, mAChRs and activation of CaMKII appear to interact as part of a mechanism to override boundary conditions on resistant object memories to ensure integrative modification with novel information. These findings therefore have important implications for understanding the dynamic nature of long-term memory storage and potential treatments for conditions characterized by maladaptive and inflexible memories.
Collapse
Affiliation(s)
- Cassidy E Wideman
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| | - Andrew E Huff
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - William S Messer
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toldeo, OH, USA
| | - Boyer D Winters
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
10
|
Wang F, Jia T, Wang Y, Hu H, Wang Y, Chang L, Shen X, Liu G. Polycyclic aromatic hydrocarbons exposure was associated with microRNA differential expression and neurotransmitter changes: a cross-sectional study in coal miners. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:14838-14848. [PMID: 36161575 DOI: 10.1007/s11356-022-23230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) may cause neurobehavioral changes. This study aimed to explore the underlying mechanism of PAH neurotoxicity in coal miners. Urinary PAH metabolites, neurotransmitters, and oxidative stress biomarkers of 652 coal miners were examined. Subjects were divided into high and low-exposure groups based on the median of total urinary PAH metabolites. Differentially expressed miRNAs were screened from 5 samples in the low-exposure group (≤ 4.88 μmol/mol Cr) and 5 samples in the high-exposure group (> 4.88 μmol/mol Cr) using microarray technology, followed by bioinformatics analysis of the potential molecular functions of miRNA target genes. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was used to validate differentially expressed miRNAs. Restricted cubic splines (RCS) were applied to assess the possible dose-response relationships. Compared to the low PAH exposure group, the high-exposure group had higher levels of 5-hydroxytryptamine (5-HT), epinephrine (E), and acetylcholine (ACh), and lower levels of acetylcholinesterase (AChE). 1-OHP had a dose-response relationship with malondialdehyde (MDA), dopamine (DA), 5-HT, and AChE (P for overall associations < 0.05). There were 19 differentially expressed microRNAs in microarray analysis, significantly enriched in the cell membrane, molecular binding to regulate transcription, and several signaling pathways such as PI3K-Akt. And in the validation stage, miR-885-5p, miR-20a-5p, and let-7i-3p showed differences in the low and high-exposure groups (P < 0.05). Changes in neurotransmitters and microRNA expression levels among the coal miners were associated with PAH exposure. Their biological functions are mainly related to the transcriptional regulation of nervous system diseases or signaling pathways of disorders. These findings provide new insights for future research of PAH neurotoxicity.
Collapse
Affiliation(s)
- Fang Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, Shanxi, China.
| | - Teng Jia
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, Shanxi, China
| | - Yu Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, Shanxi, China
| | - Haiyuan Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, Shanxi, China
| | - Yuying Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, Shanxi, China
| | - Li Chang
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, Shanxi, China
| | - Xiaojun Shen
- Xishan Coal and Electricity (Group) Co., Ltd. Occupational Disease Prevention and Control Center, Taiyuan, China
| | - Gaisheng Liu
- Xishan Coal and Electricity (Group) Co., Ltd. Occupational Disease Prevention and Control Center, Taiyuan, China
| |
Collapse
|
11
|
Sardoo AM, Zhang S, Ferraro TN, Keck TM, Chen Y. Decoding brain memory formation by single-cell RNA sequencing. Brief Bioinform 2022; 23:6713514. [PMID: 36156112 PMCID: PMC9677489 DOI: 10.1093/bib/bbac412] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/10/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022] Open
Abstract
To understand how distinct memories are formed and stored in the brain is an important and fundamental question in neuroscience and computational biology. A population of neurons, termed engram cells, represents the physiological manifestation of a specific memory trace and is characterized by dynamic changes in gene expression, which in turn alters the synaptic connectivity and excitability of these cells. Recent applications of single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) are promising approaches for delineating the dynamic expression profiles in these subsets of neurons, and thus understanding memory-specific genes, their combinatorial patterns and regulatory networks. The aim of this article is to review and discuss the experimental and computational procedures of sc/snRNA-seq, new studies of molecular mechanisms of memory aided by sc/snRNA-seq in human brain diseases and related mouse models, and computational challenges in understanding the regulatory mechanisms underlying long-term memory formation.
Collapse
Affiliation(s)
- Atlas M Sardoo
- Department of Biological & Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Shaoqiang Zhang
- College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China
| | - Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Thomas M Keck
- Department of Biological & Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA,Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Yong Chen
- Corresponding author. Yong Chen, Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA. Tel.: +1 856 256 4500; E-mail:
| |
Collapse
|
12
|
Gao Y, Sun C, Gao T, Liu Z, Yang Z, Deng H, Fan P, Gao J. Taurine ameliorates volatile organic compounds-induced cognitive impairment in young rats via suppressing oxidative stress, regulating neurotransmitter and activating NMDA receptor. Front Vet Sci 2022; 9:999040. [PMID: 36187803 PMCID: PMC9523873 DOI: 10.3389/fvets.2022.999040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Long-term exposure to volatile organic compounds (VOCs) in children leads to intellectual and cognitive impairment. Taurine is an essential nutritional amino acid for children, which can improve neurological development in children. However, the neuroprotective effect of taurine on VOCs-induced cognitive impairment in children remains unclear. The aim of this study was to investigate the neuroprotective effects of taurine on VOCs-induced cognitive impairment in young rats. The rats were nose-only exposed to VOCs for a period of 4 weeks to create a model of cognitive impairment, and 0.5% and 1% taurine in tap water were administered throughout the trial period, respectively. Our results showed that young rats adjusted the recovery of their physiological functions by voluntarily increasing the intake of taurine in tap water when exposed to excessive VOCs by inhalation. In addition, taurine enhanced grasp, shortened the latency period of escape, and improved the learning and memory function of young rats. Moreover, taurine decreased malondialdehyde (MDA), γ-aminobutyric acid (GABA), Aspartate aminotransferase (AST), Alanine aminotransferase (ALT), Urea, Creatinine (CREA) and injury biomarker level, enhanced superoxide dismutase (SOD), reduced glutathione (GSH) and glutamic acid (Glu) activities, up-regulated the protein expression of brain derived neurotrophic factor (BDNF) and N-Methyl-d-aspartate receptor 1 (NMDAR1) in model rats, and in most of cases 1% but not 0.5%, ameliorated the defects induced by VOCs. Collectively, these findings suggested that taurine protected against VOCs-induced cognitive-behavioral impairment in young rats through inhibiting oxidative stress and regulating neurotransmitter homeostasis. In addition, taurine were capable of restoring abilities of learning and memory in young rats exposed to VOCs by activating the N-Methyl-d-aspartate (NMDA) receptor. The findings suggest taurine as a potential novel drug for the treatment of cognitive behavioral disorders in children.
Collapse
Affiliation(s)
- Yongchao Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Chao Sun
- Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ting Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Zhiyong Liu
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Zhao Yang
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Hui Deng
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Peng Fan
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Junhong Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, Xi'an, China
| |
Collapse
|
13
|
Ahmed H, Leyrolle Q, Koistinen V, Kärkkäinen O, Layé S, Delzenne N, Hanhineva K. Microbiota-derived metabolites as drivers of gut-brain communication. Gut Microbes 2022; 14:2102878. [PMID: 35903003 PMCID: PMC9341364 DOI: 10.1080/19490976.2022.2102878] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Alterations in the gut microbiota composition have been associated with a range of neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. The gut microbes transform and metabolize dietary- and host-derived molecules generating a diverse group of metabolites with local and systemic effects. The bi-directional communication between brain and the microbes residing in the gut, the so-called gut-brain axis, consists of a network of immunological, neuronal, and endocrine signaling pathways. Although the full variety of mechanisms of the gut-brain crosstalk is yet to be established, the existing data demonstrates that a single metabolite or its derivatives are likely among the key inductors within the gut-brain axis communication. However, more research is needed to understand the molecular mechanisms underlying how gut microbiota associated metabolites alter brain functions, and to examine if different interventional approaches targeting the gut microbiota could be used in prevention and treatment of neurological disorders, as reviewed herein.Abbreviations:4-EPS 4-ethylphenylsulfate; 5-AVA(B) 5-aminovaleric acid (betaine); Aβ Amyloid beta protein; AhR Aryl hydrocarbon receptor; ASD Autism spectrum disorder; BBB Blood-brain barrier; BDNF Brain-derived neurotrophic factor; CNS Central nervous system; GABA ɣ-aminobutyric acid; GF Germ-free; MIA Maternal immune activation; SCFA Short-chain fatty acid; 3M-4-TMAB 3-methyl-4-(trimethylammonio)butanoate; 4-TMAP 4-(trimethylammonio)pentanoate; TMA(O) Trimethylamine(-N-oxide); TUDCA Tauroursodeoxycholic acid; ZO Zonula occludens proteins.
Collapse
Affiliation(s)
- Hany Ahmed
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland,CONTACT Hany Ahmed Food Chemistry and Food Development Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Quentin Leyrolle
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Ville Koistinen
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland,School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Olli Kärkkäinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Sophie Layé
- Laboratoire NutriNeuro, UMR INRAE 1286, Bordeaux INP, Université de Bordeaux, Bordeaux, France
| | - Nathalie Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Kati Hanhineva
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland,School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland,Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
14
|
Polley DB, Schiller D. The promise of low-tech intervention in a high-tech era: Remodeling pathological brain circuits using behavioral reverse engineering. Neurosci Biobehav Rev 2022; 137:104652. [PMID: 35385759 DOI: 10.1016/j.neubiorev.2022.104652] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
As an academic pursuit, neuroscience is enjoying a golden age. From a clinical perspective, our field is failing. Conventional 20th century drugs and devices are not well-matched to the heterogeneity, scale, and connectivity of neural circuits that produce aberrant mental states and behavior. Laboratory-based methods for editing neural genomes and sculpting activity patterns are exciting, but their applications for hundreds of millions of people with mental health disorders is uncertain. We argue that mechanisms for regulating adult brain plasticity and remodeling pathological activity are substantially pre-wired, and we suggest new minimally invasive strategies to harness and direct these endogenous systems. Drawing from studies across the neuroscience literature, we describe approaches that identify neural biomarkers more closely linked to upstream causes-rather than downstream consequences-of disordered behavioral states. We highlight the potential for innovation and discovery in reverse engineering approaches that refine bespoke behavioral "agonists" to drive upstream neural biomarkers in normative directions and reduce clinical symptoms for select classes of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA.
| | - Daniela Schiller
- Department of Psychiatry, Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
15
|
Blokland A. Cholinergic models of memory impairment in animals and man: scopolamine vs. biperiden. Behav Pharmacol 2022; 33:231-237. [PMID: 35621168 DOI: 10.1097/fbp.0000000000000670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Scopolamine has been used as a pharmacologic model for cognitive impairments in dementia and Alzheimer's disease. The validity of this model seems to be limited because findings in animals do not readily translate to novel treatments in humans. Biperiden is also a cholinergic deficit model for cognitive impairments but specifically blocks muscarinic M1 receptors. The effects of scopolamine and biperiden (and pirenzepine) are compared in animal studies and related to findings in humans. It is concluded that the effects on cognitive functions are different for scopolamine and biperiden, and they should be considered as different cognitive deficit models. Scopolamine may model more advanced stages of Alzheimer's disease whereas biperiden may model the early deficits in declarative memory in aging and mild cognitive impairment.
Collapse
Affiliation(s)
- Arjan Blokland
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
16
|
Abu-Taweel GM, Al-Mutary MG, Albetran HM. Yttrium Oxide Nanoparticles Moderate the Abnormal Cognitive Behaviors in Male Mice Induced by Silver Nanoparticles. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9059371. [PMID: 35528526 PMCID: PMC9072030 DOI: 10.1155/2022/9059371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022]
Abstract
Silver nanoparticles (Ag-NPs) have been used in medical, agricultural, and industrial purposes. Furthermore, NPs can cross the blood-brain barrier and encourage some effects on spatial learning and memory in organism. Here, we investigate the possible neurotoxicity of Ag-NPs with special emphasis on the neuroprotective impacts of yttrium-oxide nanoparticles (YO-NPs) in male mice. Male mice (n = 24) were weekly intraperitoneally injected for 35 days as the following; groups I, II, III, and IV received tap water (control), Ag-NPs (40 mg/kg), YO-NPs (40 mg/kg), and Ag-NPs/YO-NPs (40 mg/kg each), respectively. After that, animals were tested in shuttle box, Morris water-maze, and T-maze devices to evaluate the spatial learning and memory competence. Neurotransmitters and oxidative indices in the forebrain were estimated. According to behavioral studies, the male animals from the Ag-NP group presented worse memory than those in the control group. The biochemical changes after Ag-NP exposure were observed through increasing TBARS levels and decline in oxidative biomarkers (SOD, CAT, GST, and GSH) and neurotransmitters (DOP, SER, and AChE) in the forebrain of male mice compared to untreated animals. Interestingly, the animals treated with mixed doses of Ag-NPs and YO-NPs displayed improvements in behavioral tests, oxidative parameters, and neurotransmitters compared to males treated with Ag-NPs alone. In conclusion, the abnormal behavior related to learning and memory in male mice induced by Ag-NPs was significantly alleviated by YO-NPs. Specifically, the coinjection of YO-NPs with Ag-NPs moderates the disruption in neurotransmitters, oxidative indices of mice brains, which reflects on their cognitive behaviors.
Collapse
Affiliation(s)
- Gasem Mohammad Abu-Taweel
- Department of Biology, College of Sciences, Jazan University, P.O. Box 2079, Jazan 45142, Saudi Arabia
| | - Mohsen Ghaleb Al-Mutary
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P. O. Box 383, Dammam 31113, Saudi Arabia
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Hani Manssor Albetran
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
17
|
Song C, Li S, Duan F, Liu M, Shan S, Ju T, Zhang Y, Lu W. The Therapeutic Effect of Acanthopanax senticosus Components on Radiation-Induced Brain Injury Based on the Pharmacokinetics and Neurotransmitters. Molecules 2022; 27:1106. [PMID: 35164373 PMCID: PMC8839712 DOI: 10.3390/molecules27031106] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 11/30/2022] Open
Abstract
Acanthopanax senticosus (AS) is a medicinal and food homologous plant with many biological activities. In this research, we generated a brain injury model by 60Co -γ ray radiation at 4 Gy, and gavaged adult mice with the extract with AS, Acanthopanax senticocus polysaccharides (ASPS), flavones, syringin and eleutheroside E (EE) to explore the therapeutic effect and metabolic characteristics of AS on the brain injury. Behavioral tests and pathological experiments showed that the AS prevented the irradiated mice from learning and memory ability impairment and protected the neurons of irradiated mice. Meanwhile, the functional components of AS increased the antioxidant activity of irradiated mice. Furthermore, we found the changes of neurotransmitters, especially in the EE and syringin groups. Finally, distribution and pharmacokinetic analysis of AS showed that the functional components, especially EE, could exert their therapeutic effects in brain of irradiated mice. This lays a theoretical foundation for the further research on the treatment of radiation-induced brain injury by AS.
Collapse
Affiliation(s)
- Chen Song
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (C.S.); (S.L.); (F.D.); (M.L.); (S.S.); (T.J.); (Y.Z.)
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150001, China
| | - Sijia Li
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (C.S.); (S.L.); (F.D.); (M.L.); (S.S.); (T.J.); (Y.Z.)
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150001, China
| | - Fangyuan Duan
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (C.S.); (S.L.); (F.D.); (M.L.); (S.S.); (T.J.); (Y.Z.)
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150001, China
| | - Mengyao Liu
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (C.S.); (S.L.); (F.D.); (M.L.); (S.S.); (T.J.); (Y.Z.)
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150001, China
| | - Shan Shan
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (C.S.); (S.L.); (F.D.); (M.L.); (S.S.); (T.J.); (Y.Z.)
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150001, China
| | - Ting Ju
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (C.S.); (S.L.); (F.D.); (M.L.); (S.S.); (T.J.); (Y.Z.)
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150001, China
| | - Yingchun Zhang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (C.S.); (S.L.); (F.D.); (M.L.); (S.S.); (T.J.); (Y.Z.)
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150001, China
| | - Weihong Lu
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (C.S.); (S.L.); (F.D.); (M.L.); (S.S.); (T.J.); (Y.Z.)
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
18
|
Liu T, Song J, Zhou Q, Chu S, Liu Y, Zhao X, Ma Z, Xia T, Gu X. The role of 5-HT 7R in the memory impairment of mice induced by long-term isoflurane anesthesia. Neurobiol Learn Mem 2022; 188:107584. [PMID: 35032676 DOI: 10.1016/j.nlm.2022.107584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
General anesthesia is widely utilized in the clinic for surgical and diagnostic procedures. However, growing evidence suggests that anesthetic exposure may affect cognitive function negatively. Unfortunately, little is known about the underlying mechanisms and efficient prevention and therapeutic strategies for the anesthesia-induced cognitive dysfunction. 5-HT7R, a serotonin receptor family member, is functionally associated with learning and memory. It has recently become a potential therapeutic target in various neurological diseases as its ligands have a wide range of neuropharmacological effects. However, it remains unknown the role of 5-HT7R in the long-term isoflurane anesthesia-induced memory impairment and whether prior activation or blockade of 5-HT7R before anesthesia has modulating effects on this memory impairment. In this study, 5-HT7R selective agonist LP-211 and 5-HT7R selective antagonist SB-269970 were pretreated intraperitoneally to mice before anesthesia; their effects on the cognitive performance of mice were assessed using fear conditioning test and novel object recognition test. Furthermore, the transcriptional level of 5-HT7R in the hippocampus was detected using qRT-PCR, and proteomics was conducted to probe the underlying mechanisms. As a result, long-term exposure to isoflurane anesthesia caused memory impairment and an increase in hippocampal 5-HT7R mRNA expression, which could be attenuated by SB-269970 pretreatment but not LP-211pretreatment. According to the proteomics results, the antiamnestic effect of SB-269970 pretreatment was probably attributed to its action on the gene expression of Slc6a11, Itpka, Arf3, Srcin1, and Epb41l2, and synapse organization in the hippocampus. In conclusion, 5-HT7R is involved in the memory impairment induced by long-term isoflurane anesthesia, and the prior blockade of 5-HT7R with SB-269970 protects the memory impairment. This finding may help to improve the understanding of the long-term isoflurane anesthesia-induced memory impairment and to construct potential preventive and therapeutic strategies for the adverse effects after long-term isoflurane exposure.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Jia Song
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Qingyun Zhou
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Shuaishuai Chu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yujia Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Xin Zhao
- Nanjing Stomatology Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China.
| | - Tianjiao Xia
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China.
| |
Collapse
|
19
|
Prediction errors disrupt hippocampal representations and update episodic memories. Proc Natl Acad Sci U S A 2021; 118:2117625118. [PMID: 34911768 DOI: 10.1073/pnas.2117625118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
The brain supports adaptive behavior by generating predictions, learning from errors, and updating memories to incorporate new information. Prediction error, or surprise, triggers learning when reality contradicts expectations. Prior studies have shown that the hippocampus signals prediction errors, but the hypothesized link to memory updating has not been demonstrated. In a human functional MRI study, we elicited mnemonic prediction errors by interrupting familiar narrative videos immediately before the expected endings. We found that prediction errors reversed the relationship between univariate hippocampal activation and memory: greater hippocampal activation predicted memory preservation after expected endings, but memory updating after surprising endings. In contrast to previous studies, we show that univariate activation was insufficient for understanding hippocampal prediction error signals. We explain this surprising finding by tracking both the evolution of hippocampal activation patterns and the connectivity between the hippocampus and neuromodulatory regions. We found that hippocampal activation patterns stabilized as each narrative episode unfolded, suggesting sustained episodic representations. Prediction errors disrupted these sustained representations and the degree of disruption predicted memory updating. The relationship between hippocampal activation and subsequent memory depended on concurrent basal forebrain activation, supporting the idea that cholinergic modulation regulates attention and memory. We conclude that prediction errors create conditions that favor memory updating, prompting the hippocampus to abandon ongoing predictions and make memories malleable.
Collapse
|
20
|
Yu XD, Mo YX, He Z, Reilly J, Tian SW, Shu X. Urocanic acid enhances memory consolidation and reconsolidation in novel object recognition task. Biochem Biophys Res Commun 2021; 579:62-68. [PMID: 34587556 DOI: 10.1016/j.bbrc.2021.09.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Urocanic acid (UCA) is an endogenous small molecule that is elevated in skin, blood and brain after sunlight exposure, mainly playing roles in the periphery systems. Few studies have investigated the role of UCA in the central nervous system. In particular, its role in memory consolidation and reconsolidation is still unclear. In the present study, we investigated the effect of intraperitoneal injection of UCA on memory consolidation and reconsolidation in a novel object recognition memory (ORM) task. In the consolidation version of the ORM task, the protocol involved three phases: habituation, sampling and test. UCA injection immediately after the sampling period enhanced ORM memory performance; UCA injection 6 h after sampling did not affect ORM memory performance. In the reconsolidation version of the ORM task, the protocol involved three phases: sampling, reactivation and test. UCA injection immediately after reactivation enhanced ORM memory performance; UCA injection 6 h after reactivation did not affect ORM memory performance; UCA injection 24 h after sampling without reactivation did not affect ORM memory performance. This UCA-enhanced memory performance was not due to its effects on nonspecific responses such as locomotor activity and exploratory behavior. The results suggest that UCA injection enhances consolidation and reconsolidation of an ORM task, which further extends previous research on UCA effects on learning and memory.
Collapse
Affiliation(s)
- Xu-Dong Yu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, 422000, PR China; Hunan Engineering Research Center of Development and Utilization of Traditional Chinese Medicine in Southwest Hunan, Shaoyang University, Shaoyang, 422000, PR China; Department of Physiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Yan-Xin Mo
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, 422000, PR China; Hunan Engineering Research Center of Development and Utilization of Traditional Chinese Medicine in Southwest Hunan, Shaoyang University, Shaoyang, 422000, PR China
| | - Zhiming He
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, 422000, PR China; Hunan Engineering Research Center of Development and Utilization of Traditional Chinese Medicine in Southwest Hunan, Shaoyang University, Shaoyang, 422000, PR China
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, UK
| | - Shao-Wen Tian
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi, 541199, PR China.
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, 422000, PR China; Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, UK; Department of Vision Science, Glasgow Caledonian University, Glasgow, G4 0BA, UK.
| |
Collapse
|
21
|
Gazarini L, Stern CA, Takahashi RN, Bertoglio LJ. Interactions of Noradrenergic, Glucocorticoid and Endocannabinoid Systems Intensify and Generalize Fear Memory Traces. Neuroscience 2021; 497:118-133. [PMID: 34560200 DOI: 10.1016/j.neuroscience.2021.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022]
Abstract
Systemic administration of drugs that activate the noradrenergic or glucocorticoid system potentiates aversive memory consolidation and reconsolidation. The opposite happens with the stimulation of endocannabinoid signaling under certain conditions. An unbalance of these interacting neurotransmitters can lead to the formation and maintenance of traumatic memories, whose strength and specificity attributes are often maladaptive. Here we aimed to investigate whether originally low-intensity and precise contextual fear memories would turn similar to traumatic ones in rats systemically administered with adrenaline, corticosterone, and/or the cannabinoid type-1 receptor antagonist/inverse agonist AM251 during consolidation or reconsolidation. The high dose of each pharmacological agent evaluated significantly increased freezing times at test in the conditioning context one and nine days later when given alone post-acquisition or post-retrieval. Their respective low dose produced no relative changes when given separately, but co-treatment of adrenaline with corticosterone or AM251 and the three drugs combined, but not corticosterone with AM251, produced results equivalent to those mentioned initially. Neither the high nor the low dose of adrenaline, corticosterone, or AM251 altered freezing times at test in a novel, neutral context two and ten days later. In contrast, animals receiving the association of their low dose exhibited significantly higher freezing times than controls. Together, the results indicate that newly acquired and destabilized threat memory traces become more intense and generalized after a combined interference acting synergistically and mimicking that reported in patients presenting stress-related psychiatric conditions.
Collapse
Affiliation(s)
- Lucas Gazarini
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Universidade Federal de Mato Grosso do Sul, Três Lagoas, MS, Brazil.
| | - Cristina A Stern
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Reinaldo N Takahashi
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Leandro J Bertoglio
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
22
|
Viscardi LH, Imparato DO, Bortolini MC, Dalmolin RJS. Ionotropic Receptors as a Driving Force behind Human Synapse Establishment. Mol Biol Evol 2021; 38:735-744. [PMID: 32986821 PMCID: PMC7947827 DOI: 10.1093/molbev/msaa252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The origin of nervous systems is a main theme in biology and its mechanisms are largely underlied by synaptic neurotransmission. One problem to explain synapse establishment is that synaptic orthologs are present in multiple aneural organisms. We questioned how the interactions among these elements evolved and to what extent it relates to our understanding of the nervous systems complexity. We identified the human neurotransmission gene network based on genes present in GABAergic, glutamatergic, serotonergic, dopaminergic, and cholinergic systems. The network comprises 321 human genes, 83 of which act exclusively in the nervous system. We reconstructed the evolutionary scenario of synapse emergence by looking for synaptic orthologs in 476 eukaryotes. The Human–Cnidaria common ancestor displayed a massive emergence of neuroexclusive genes, mainly ionotropic receptors, which might have been crucial to the evolution of synapses. Very few synaptic genes had their origin after the Human–Cnidaria common ancestor. We also identified a higher abundance of synaptic proteins in vertebrates, which suggests an increase in the synaptic network complexity of those organisms.
Collapse
Affiliation(s)
- Lucas Henriques Viscardi
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Danilo Oliveira Imparato
- Bioinformatics Multidisciplinary Environment-BioME, IMD, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Maria Cátira Bortolini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rodrigo Juliani Siqueira Dalmolin
- Bioinformatics Multidisciplinary Environment-BioME, IMD, Federal University of Rio Grande do Norte, Natal, RN, Brazil.,Department of Biochemistry, CB, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
23
|
Wu D, Liu H, Liu Y, Wei W, Sun Q, Wen D, Jia L. Protective effect of alpha-lipoic acid on bisphenol A-induced learning and memory impairment in developing mice: nNOS and keap1/Nrf2 pathway. Food Chem Toxicol 2021; 154:112307. [PMID: 34058234 DOI: 10.1016/j.fct.2021.112307] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022]
Abstract
The adverse effects of bisphenol A (BPA) on learning and memory may be related with oxidative stress, but the mechanisms are unclear. This study aimed to investigate the mechanism of damaged learning and memory caused by BPA through inducing oxidative stress, as well as to explore whether alpha-lipoic acid (ALA) show a protective action. Female mice were exposed to 0.1 μg/mL BPA, 0.2 μg/mL BPA, 0.6 mg/mL ALA, and 0.2 BPA + ALA through drinking water for 8 weeks. The results showed that ALA protected against the impairment of spatial, recognition, and avoidance memory caused by BPA. ALA replenished the reduce of hippocampus coefficient, serum estradiol (E2) level, and hippocampal neurotransmitters levels induced by BPA. ALA alleviated BPA-induced oxidative stress and hippocampal histological changes. BPA exposure reduced the levels of synaptic structural proteins and PKC/ERK/CREB pathway proteins, and ALA improved these reductions. ALA altered the protein levels of nNOS and keap1/Nrf2 pathway affected by BPA. Our results suggested that impairments of learning and memory caused by BPA was related to the damage of hippocampal synapses mediated by oxidative stress, and ALA protected learning and memory by reducing the oxidative stress induced by BPA through regulating the nNOS and keap1/Nrf2 pathway.
Collapse
Affiliation(s)
- Dan Wu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, 110122, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China.
| | - Hezuo Liu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, 110122, China.
| | - Yang Liu
- Institute of Health Science, China Medical University, Shenyang, 110122, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China.
| | - Wei Wei
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, 110122, China.
| | - Qi Sun
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, 110122, China.
| | - Deliang Wen
- Institute of Health Science, China Medical University, Shenyang, 110122, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China.
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, 110122, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China.
| |
Collapse
|
24
|
Understanding the dynamic and destiny of memories. Neurosci Biobehav Rev 2021; 125:592-607. [PMID: 33722616 DOI: 10.1016/j.neubiorev.2021.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 01/16/2023]
Abstract
Memory formation enables the retention of life experiences overtime. Based on previously acquired information, organisms can anticipate future events and adjust their behaviors to maximize survival. However, in an ever-changing environment, a memory needs to be malleable to maintain its relevance. In fact, substantial evidence suggests that a consolidated memory can become labile and susceptible to modifications after being reactivated, a process termed reconsolidation. When an extinction process takes place, a memory can also be temporarily inhibited by a second memory that carries information with opposite meaning. In addition, a memory can fade and lose its significance in a process known as forgetting. Thus, following retrieval, new life experiences can be integrated with the original memory trace to maintain its predictive value. In this review, we explore the determining factors that regulate the fate of a memory after its reactivation. We focus on three post-retrieval memory destinies (reconsolidation, extinction, and forgetting) and discuss recent rodent studies investigating the biological functions and neural mechanisms underlying each of these processes.
Collapse
|
25
|
Chen W, Li J, Xu L, Zhao S, Fan M, Zheng X. Destabilizing Different Strengths of Fear Memories Requires Different Degrees of Prediction Error During Retrieval. Front Behav Neurosci 2021; 14:598924. [PMID: 33488366 PMCID: PMC7820768 DOI: 10.3389/fnbeh.2020.598924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/26/2020] [Indexed: 11/13/2022] Open
Abstract
Reactivation of consolidated memories can induce a labile period, in which these reactivated memories might be susceptible to change and need reconsolidation. Prediction error (PE) has been recognized as a necessary boundary condition for memory destabilization. Moreover, memory strength is also widely accepted as an essential boundary condition to destabilize fear memory. This study investigated whether different strengths of conditioned fear memories require different degrees of PE during memory reactivation in order for the memories to become destabilized. Here, we assessed the fear-potentiated startle and skin conductance response, using the post-retrieval extinction procedure. A violation of expectancy (PE) was induced during retrieval to reactivate enhanced (unpredictable-shock) or ordinary (predictable-shock) fear memories that were established the day before. Results showed that a PE retrieval before extinction can prevent the return of predictable-shock fear memory but cannot prevent the return of unpredictable-shock fear memory, indicating that a single PE is insufficient to destabilize enhanced fear memory. Therefore, we further investigated whether increasing the degree of PE could destabilize enhanced fear memory using different retrieval strategies (multiple PE retrieval and unreinforced CS retrieval). We found that spontaneous recovery of enhanced fear memory was prevented in both retrieval strategies, but reinstatement was only prevented in the multiple PE retrieval group, suggesting that a larger amount of PE is needed to destabilize enhanced fear memory. The findings suggest that behavioral updating during destabilization requires PE, and the degree of PE needed to induce memory destabilization during memory retrieval depends on the strength of fear memory. The study indicates that memory reconsolidation inference can be used to destabilize stronger memories, and the findings shed lights on the treatment of posttraumatic stress disorders and anxiety disorders.
Collapse
Affiliation(s)
- Wei Chen
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China.,School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Junjiao Li
- College of Teacher Education, Guangdong University of Education, Guangzhou, China
| | - Liang Xu
- Guangdong Communication Polytechnic, Guangzhou, China
| | - Shaochen Zhao
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China.,School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.,China People's Police University, Guangzhou, China
| | - Min Fan
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China.,School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Xifu Zheng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China.,School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| |
Collapse
|
26
|
Wideman CE, Nguyen J, Jeffries SD, Winters BD. Fluctuating NMDA Receptor Subunit Levels in Perirhinal Cortex Relate to Their Dynamic Roles in Object Memory Destabilization and Reconsolidation. Int J Mol Sci 2020; 22:ijms22010067. [PMID: 33374645 PMCID: PMC7793502 DOI: 10.3390/ijms22010067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 01/22/2023] Open
Abstract
Reminder cues can destabilize consolidated memories, rendering them modifiable before they return to a stable state through the process of reconsolidation. Older and stronger memories resist this process and require the presentation of reminders along with salient novel information in order to destabilize. Previously, we demonstrated in rats that novelty-induced object memory destabilization requires acetylcholine (ACh) activity at M1 muscarinic receptors. Other research predominantly has focused on glutamate, which modulates fear memory destabilization and reconsolidation through GluN2B- and GluN2A-containing NMDARs, respectively. In the current study, we demonstrate the same dissociable roles of GluN2B- and N2A-containing NMDARs in perirhinal cortex (PRh) for object memory destabilization and reconsolidation when boundary conditions are absent. However, neither GluN2 receptor subtype was required for novelty-induced destabilization of remote, resistant memories. Furthermore, GluN2B and GluN2A subunit proteins were upregulated selectively in PRh 24 h after learning, but returned to baseline by 48 h, suggesting that NMDARs, unlike muscarinic receptors, have only a temporary role in object memory destabilization. Indeed, activation of M1 receptors in PRh at the time of reactivation effectively destabilized remote memories despite inhibition of GluN2B-containing NMDARs. These findings suggest that cholinergic activity at M1 receptors overrides boundary conditions to destabilize resistant memories when other established mechanisms are insufficient.
Collapse
|
27
|
Postreactivation mifepristone impairs generalization of strongly conditioned contextual fear memories. ACTA ACUST UNITED AC 2020; 27:483-487. [PMID: 33199472 PMCID: PMC7670861 DOI: 10.1101/lm.052167.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/01/2020] [Indexed: 11/25/2022]
Abstract
The efficacy of pharmacological disruption of fear memory reconsolidation depends on several factors, including memory strength and age. We built on previous observations that systemic treatment with the nootropic nefiracetam potentiates cued fear memory destabilization to facilitate mifepristone-induced reconsolidation impairment. Here, we applied nefiratecam and mifepristone to strongly conditioned, 1-wk-old contextual fear memories in male rats. Unexpectedly, the combined treatment did not result in impairment of contextual fear expression. However, mifepristone did reduce freezing to a novel context. These observations suggest that strong and established contextual fear memories do undergo destabilization without the need for pharmacological facilitation, and that impairments in strong context fear memory reconsolidation can manifest as a reduction in generalization.
Collapse
|
28
|
Steliga A, Kowiański P, Czuba E, Waśkow M, Moryś J, Lietzau G. Neurovascular Unit as a Source of Ischemic Stroke Biomarkers-Limitations of Experimental Studies and Perspectives for Clinical Application. Transl Stroke Res 2020; 11:553-579. [PMID: 31701356 PMCID: PMC7340668 DOI: 10.1007/s12975-019-00744-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/13/2023]
Abstract
Cerebral stroke, which is one of the most frequent causes of mortality and leading cause of disability in developed countries, often leads to devastating and irreversible brain damage. Neurological and neuroradiological diagnosis of stroke, especially in its acute phase, is frequently uncertain or inconclusive. This results in difficulties in identification of patients with poor prognosis or being at high risk for complications. It also makes difficult identification of these stroke patients who could benefit from more aggressive therapies. In contrary to the cardiovascular disease, no single biomarker is available for the ischemic stroke, addressing the abovementioned issues. This justifies the need for identifying of effective diagnostic measures characterized by high specificity and sensitivity. One of the promising avenues in this area is studies on the panels of biomarkers characteristic for processes which occur in different types and phases of ischemic stroke and represent all morphological constituents of the brains' neurovascular unit (NVU). In this review, we present the current state of knowledge concerning already-used or potentially applicable biomarkers of the ischemic stroke. We also discuss the perspectives for identification of biomarkers representative for different types and phases of the ischemic stroke, as well as for different constituents of NVU, which concentration levels correlate with extent of brain damage and patients' neurological status. Finally, a critical analysis of perspectives on further improvement of the ischemic stroke diagnosis is presented.
Collapse
Affiliation(s)
- Aleksandra Steliga
- Faculty of Health Sciences, Pomeranian University of Slupsk, 64 Bohaterów Westerplatte St., 76-200, Slupsk, Poland
| | - Przemysław Kowiański
- Faculty of Health Sciences, Pomeranian University of Slupsk, 64 Bohaterów Westerplatte St., 76-200, Slupsk, Poland.
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland.
| | - Ewelina Czuba
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland
| | - Monika Waśkow
- Faculty of Health Sciences, Pomeranian University of Slupsk, 64 Bohaterów Westerplatte St., 76-200, Slupsk, Poland
| | - Janusz Moryś
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland
| | - Grażyna Lietzau
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
29
|
Activation of cortical M 1 muscarinic receptors and related intracellular signaling is necessary for reactivation-induced object memory updating. Sci Rep 2020; 10:9209. [PMID: 32514039 PMCID: PMC7280228 DOI: 10.1038/s41598-020-65836-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/08/2020] [Indexed: 01/26/2023] Open
Abstract
Reactivated long-term memories can become labile and sensitive to modification. Memories in this destabilized state can be weakened or strengthened, but there is limited research characterizing the mechanisms underlying retrieval-induced qualitative updates (i.e., information integration). We have previously implicated cholinergic transmission in object memory destabilization. Here we present a novel rodent paradigm developed to assess the role of this cholinergic mechanism in qualitative object memory updating. The post-reactivation object memory modification (PROMM) task exposes rats to contextual information following object memory reactivation. Subsequent object exploratory performance suggests that the contextual information is integrated with the original memory in a reactivation- and time-dependent manner. This effect is blocked by interference with M1 muscarinic receptors and several downstream signals in perirhinal cortex. These findings therefore demonstrate a hitherto unacknowledged cognitive function for acetylcholine with important implications for understanding the dynamic nature of long-term memory storage in the normal and aging brain.
Collapse
|
30
|
Mao JH, Kim YM, Zhou YX, Hu D, Zhong C, Chang H, Brislawn CJ, Fansler S, Langley S, Wang Y, Peisl BYL, Celniker SE, Threadgill DW, Wilmes P, Orr G, Metz TO, Jansson JK, Snijders AM. Genetic and metabolic links between the murine microbiome and memory. MICROBIOME 2020; 8:53. [PMID: 32299497 PMCID: PMC7164142 DOI: 10.1186/s40168-020-00817-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/02/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Recent evidence has linked the gut microbiome to host behavior via the gut-brain axis [1-3]; however, the underlying mechanisms remain unexplored. Here, we determined the links between host genetics, the gut microbiome and memory using the genetically defined Collaborative Cross (CC) mouse cohort, complemented with microbiome and metabolomic analyses in conventional and germ-free (GF) mice. RESULTS A genome-wide association analysis (GWAS) identified 715 of 76,080 single-nucleotide polymorphisms (SNPs) that were significantly associated with short-term memory using the passive avoidance model. The identified SNPs were enriched in genes known to be involved in learning and memory functions. By 16S rRNA gene sequencing of the gut microbial community in the same CC cohort, we identified specific microorganisms that were significantly correlated with longer latencies in our retention test, including a positive correlation with Lactobacillus. Inoculation of GF mice with individual species of Lactobacillus (L. reuteri F275, L. plantarum BDGP2 or L. brevis BDGP6) resulted in significantly improved memory compared to uninoculated or E. coli DH10B inoculated controls. Untargeted metabolomics analysis revealed significantly higher levels of several metabolites, including lactate, in the stools of Lactobacillus-colonized mice, when compared to GF control mice. Moreover, we demonstrate that dietary lactate treatment alone boosted memory in conventional mice. Mechanistically, we show that both inoculation with Lactobacillus or lactate treatment significantly increased the levels of the neurotransmitter, gamma-aminobutyric acid (GABA), in the hippocampus of the mice. CONCLUSION Together, this study provides new evidence for a link between Lactobacillus and memory and our results open possible new avenues for treating memory impairment disorders using specific gut microbial inoculants and/or metabolites. Video Abstract.
Collapse
Affiliation(s)
- Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Young-Mo Kim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Yan-Xia Zhou
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Marine College, Shandong University, Weihai, 264209 China
| | - Dehong Hu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Chenhan Zhong
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Colin J. Brislawn
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Sarah Fansler
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Sasha Langley
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Yunshan Wang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033 Shandong China
| | - B. Y. Loulou Peisl
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Susan E. Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - David W. Threadgill
- Department of Veterinary Pathobiology, A&M University, College Station, Texas, USA
- Department of Molecular and Cellular Medicine Texas, A&M University, College Station, Texas, USA
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Galya Orr
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Thomas O. Metz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Janet K. Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Antoine M. Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
31
|
Nikitin V, Solntseva S, Kozyrev S, Nikitin P. Long-term memory consolidation or reconsolidation impairment induces amnesia with key characteristics that are similar to key learning characteristics. Neurosci Biobehav Rev 2020; 108:542-558. [DOI: 10.1016/j.neubiorev.2019.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/16/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
|
32
|
Zhang H, Kuang H, Luo Y, Liu S, Meng L, Pang Q, Fan R. Low-dose bisphenol A exposure impairs learning and memory ability with alterations of neuromorphology and neurotransmitters in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134036. [PMID: 31476513 DOI: 10.1016/j.scitotenv.2019.134036] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
To investigate the developmental neurotoxicity of environmental bisphenol A (BPA) exposure for infants and children, postnatal rats were used as the animal model and were divided into four groups. Then, they were treated with different concentrations of BPA (i.e., 0, 0.5, 50, or 5000 μg/kg·bw/day of BPA as the control, low-, medium- and high-exposed group) from postnatal days 7 to 21. Y-maze tests, Golgi-Cox assays and liquid chromatography-tandem mass spectrometry (LC/MS/MS) were performed to test the changes of learning and memory ability, hippocampal neuromorphology and neurotransmitter levels, respectively. The results showed that the BPA-exposed rats, especially the low- and high-exposed rats, needed more trials and longer times to qualify for the learned criterion than the control rats. Additionally, rats after low- or high-exposure to BPA exhibited decreased DG dendritic complexity and reduced CA1 and DG dendritic spine densities in the hippocampus. Low-dosage BPA treatment could significantly alter the neurotransmitter contents in the hippocampus. In male rats, the levels of glutamic acid (Glu) and acetylcholine increased, while the 5-hydroxytryptamine (5-HT) and γ-aminobutyric acid (GABA) levels decreased, which lead to an unbalanced Glu/GABA ratio. However, in female rats, only 5-HT levels decreased. In conclusion, postnatal exposure to BPA could sex- and dose-dependently disrupt dendritic development and neurotransmitter homeostasis in the rat hippocampus. The impaired spatial learning and memory ability of rats induced by low-dose BPA is associated with both disrupted dendritic development and neurotransmitter homeostasis in the hippocampus.
Collapse
Affiliation(s)
- Haibin Zhang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hongxuan Kuang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yifan Luo
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shuhua Liu
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lingxue Meng
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qihua Pang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruifang Fan
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
33
|
Colucci P, Mancini GF, Santori A, Zwergel C, Mai A, Trezza V, Roozendaal B, Campolongo P. Amphetamine and the Smart Drug 3,4-Methylenedioxypyrovalerone (MDPV) Induce Generalization of Fear Memory in Rats. Front Mol Neurosci 2019; 12:292. [PMID: 31849606 PMCID: PMC6895769 DOI: 10.3389/fnmol.2019.00292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/14/2019] [Indexed: 11/13/2022] Open
Abstract
Human studies have consistently shown that drugs of abuse affect memory function. The psychostimulants amphetamine and the "bath salt" 3,4-methylenedioxypyrovalerone (MDPV) increase brain monoamine levels through a similar, yet not identical, mechanism of action. Findings indicate that amphetamine enhances the consolidation of memory for emotional experiences, but still MDPV effects on memory function are underinvestigated. Here, we tested the effects induced by these two drugs on generalization of fear memory and their relative neurobiological underpinnings. To this aim, we used a modified version of the classical inhibitory avoidance task, termed inhibitory avoidance discrimination task. According to such procedure, adult male Sprague-Dawley rats were first exposed to one inhibitory avoidance apparatus and, with a 1-min delay, to a second apparatus where they received an inescapable footshock. Forty-eight hours later, retention latencies were tested, in a randomized order, in the two training apparatuses as well as in a novel contextually modified apparatus to assess both strength and generalization of memory. Our results indicated that both amphetamine and MDPV induced generalization of fear memory, whereas only amphetamine enhanced memory strength. Co-administration of the β-adrenoceptor antagonist propranolol prevented the effects of both amphetamine and MDPV on the strength and generalization of memory. The dopaminergic receptor blocker cis-flupenthixol selectively reversed the amphetamine effect on memory generalization. These findings indicate that amphetamine and MDPV induce generalization of fear memory through different modulations of noradrenergic and dopaminergic neurotransmission.
Collapse
Affiliation(s)
- Paola Colucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Neurobiology of Behavior Laboratory, Santa Lucia Foundation, Rome, Italy
| | - Giulia Federica Mancini
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Neurobiology of Behavior Laboratory, Santa Lucia Foundation, Rome, Italy
| | - Alessia Santori
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Neurobiology of Behavior Laboratory, Santa Lucia Foundation, Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy.,Department of Medicine of Precision, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Antonello Mai
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University Roma Tre, Rome, Italy
| | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Neurobiology of Behavior Laboratory, Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
34
|
Junjiao L, Wei C, Jingwen C, Yanjian H, Yong Y, Liang X, Jing J, Xifu Z. Role of prediction error in destabilizing fear memories in retrieval extinction and its neural mechanisms. Cortex 2019; 121:292-307. [PMID: 31669978 DOI: 10.1016/j.cortex.2019.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/06/2019] [Accepted: 09/12/2019] [Indexed: 01/15/2023]
Abstract
Memory reconsolidation interference has been shown to be an effective way to neutralize conditioned fear memory and prevent relapse. The critical factor to utilize this paradigm is inducing a labile state of the long-term memory. Novel information is viewed as a driving factor to update memory; however, it is unknown whether different forms of novelty play the same role. In addition, although pharmacological intervention studies have confirmed that prediction error (PE) during reactivation is a necessary condition in memory destabilization, the role of PE in retrieval extinction has remained under debate; furthermore, the neural mechanisms underlying the process are largely unknown. In this study, we isolated two forms of novelty: PE and stimulus novelty without PE during reactivation to compare their role in memory lability. Skin conductance responses (SCR) and functional magnetic resonance imaging (fMRI) were used to clarify their role at the behavioural and neural mechanism levels. A total of 54 healthy adults were tested in a three-day retrieval extinction protocol. The results showed that PE, the novelty of CS-US combinations, was a critical condition to destabilize memory. The novelty of the stimulus itself with the absence of PE was insufficient for retrieving the memory. The neural mechanisms that distinguished standard extinction from retrieval extinction were that the latter was associated with a diminished recruitment of the inferior temporal cortex (IT) and dorsolateral prefrontal cortex (dlPFC) and decreased functional connectivity of the dlPFC-anterior cingulate cortex (ACC) and IT-dlPFC. Possible interpretations were discussed.
Collapse
Affiliation(s)
- Li Junjiao
- School of Psychology, South China Normal University, Guangzhou, China; School of Teacher Education, Guangdong University of Education, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Chen Wei
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Caoyang Jingwen
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Hu Yanjian
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Yang Yong
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Xu Liang
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jie Jing
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Zheng Xifu
- School of Psychology, South China Normal University, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
35
|
Nikitin VP, Solntseva SV, Kozyrev SA, Nikitin PV. Proteins or RNA synthesis inhibitors suppressed induction of amnesia developing under impairment of memory reconsolidation by serotonin receptors antagonist. Neurochem Int 2019; 131:104520. [PMID: 31400436 DOI: 10.1016/j.neuint.2019.104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 10/26/2022]
Abstract
Studies have shown that retrieval of long-term memory can cause memory reconsolidation, and impaired reconsolidation leads to amnesia development. However, the mechanisms of amnesia induction due to impaired memory reconsolidation remains poorly described. Using experiments involving grape snails trained to conditioned food aversion, we studied the role of translation and transcription processes and the role of serotonin receptors in the mechanisms of amnesia induction. We found that administration of a serotonin receptor antagonist or a protein synthesis inhibitor before the administration of a reminder using a conditioned food stimulus induced amnesia development, whereas injections of mRNA synthesis inhibitor did not affect memory safety. Moreover, combined injections of an antagonist of serotonin receptor and inhibitors of protein or mRNA synthesis before reminder administration completely prevented amnesia development. In addition, inhibitors of protein or mRNA synthesis prevented amnesia development 3 h but not 9 h after the administration of a serotonin receptor antagonist/reminder. We hypothesize that the mechanisms of amnesia induction caused by impaired memory reconsolidation depend on protein and mRNA syntheses within a certain time window, similar to the mechanisms of induction of other long-term plastic brain rearrangements.
Collapse
Affiliation(s)
- Vladimir P Nikitin
- P.K. Anokhin Research Institute of Normal Physiology, Laboratory of Functional Neurochemistry, Baltiyskala Str. 8, 125315, Moscow, Russian Federation.
| | - Svetlana V Solntseva
- P.K. Anokhin Research Institute of Normal Physiology, Laboratory of Functional Neurochemistry, Baltiyskala Str. 8, 125315, Moscow, Russian Federation
| | - Sergey A Kozyrev
- P.K. Anokhin Research Institute of Normal Physiology, Laboratory of Functional Neurochemistry, Baltiyskala Str. 8, 125315, Moscow, Russian Federation
| | - Pavel V Nikitin
- P.K. Anokhin Research Institute of Normal Physiology, Laboratory of Functional Neurochemistry, Baltiyskala Str. 8, 125315, Moscow, Russian Federation; N.N. Burdenko National Medical Research Center of Neurosurgery, Department of Neuropathology and Molecular Diagnostics, Moscow, Russian Federation
| |
Collapse
|
36
|
Ortiz V, Calfa GD, Molina VA, Martijena ID. Resistance to fear memory destabilization triggers exaggerated emotional-like responses following memory reactivation. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:197-204. [PMID: 30978427 DOI: 10.1016/j.pnpbp.2019.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/12/2019] [Accepted: 04/08/2019] [Indexed: 01/23/2023]
Abstract
Fear memory reactivation does not always lead to memory destabilization-reconsolidation. For instance, fear memories formed following withdrawal from chronic ethanol consumption or a stressful event are less likely to become destabilized after reactivation, with the effect of recall of these memories on the affective state still requiring elucidation. Here, we investigated the negative emotional-like responses following fear memory reactivation in ethanol-withdrawn (ETOH) rats by focusing on the possible role played by destabilization. Our findings indicated that ETOH rats displayed an increased freezing in a novel context and an anxiogenic-like response in the elevated plus maze (EPM) following memory reactivation, whereas the behavior of CON animals was not affected. The destabilization blockade by pre-reactivation nimodipine (16 mg/kg, s.c) administration promoted in CON animals a similar behavior in the EPM and in a novel environment as that exhibited by ETOH rats after the reminder. Moreover, facilitating destabilization by pre-reactivation d-cycloserine (5 mg/kg, i.p) administration prevented the emotional-like disturbances observed in ETOH rats. Finally, using restraint stress, which is also an inductor of a fear memory resistant to destabilization, an increased fear response in an unconditioned environment and an anxiogenic-like state was also found after the presentation of the fear reminder in stressed rats. Our results suggest that, in the context of resistant fear memories, the occurrence of destabilization influences how animals respond to subsequent environmental challenges following reactivation.
Collapse
Affiliation(s)
- Vanesa Ortiz
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Farmacología, IFEC-CONICET, Córdoba, Argentina
| | - Gastón Diego Calfa
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Farmacología, IFEC-CONICET, Córdoba, Argentina
| | - Víctor Alejandro Molina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Farmacología, IFEC-CONICET, Córdoba, Argentina
| | - Irene Delia Martijena
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Farmacología, IFEC-CONICET, Córdoba, Argentina.
| |
Collapse
|
37
|
Flavell CR, Lee JLC. Dopaminergic D1 receptor signalling is necessary, but not sufficient for cued fear memory destabilisation. Psychopharmacology (Berl) 2019; 236:3667-3676. [PMID: 31392356 PMCID: PMC6892761 DOI: 10.1007/s00213-019-05338-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/16/2019] [Indexed: 01/26/2023]
Abstract
RATIONALE Pharmacological targeting of memory reconsolidation is a promising therapeutic strategy for the treatment of fear memory-related disorders. However, the success of reconsolidation-based approaches depends upon the effective destabilisation of the fear memory by memory reactivation. OBJECTIVES Here, we aimed to determine the functional involvement of dopamine D1 receptors in cued fear memory destabilisation, using systemic drug administration. RESULTS We observed that direct D1 receptor agonism was not sufficient to stimulate tone fear memory destabilisation to facilitate reconsolidation disruption by the glucocorticoid receptor antagonist mifepristone. Instead, administration of the nootropic nefiracetam did facilitate mifepristone-induced amnesia, in a manner that was dependent upon dopamine D1 receptor activation. Finally, while the combined treatment with nefiracetam and mifepristone did not confer fear-reducing effects under conditions of extinction learning, there was some evidence that mifepristone reduces fear expression irrespective of memory reactivation parameters. CONCLUSIONS The use of combination pharmacological treatment to stimulate memory destabilisation and impair reconsolidation has potential therapeutic benefits, without risking a maladaptive increase of fear.
Collapse
Affiliation(s)
- Charlotte R. Flavell
- School of Psychology, University of Birmingham, Hills Building, Edgbaston, Birmingham B15 2TT UK
| | - Jonathan L. C. Lee
- School of Psychology, University of Birmingham, Hills Building, Edgbaston, Birmingham B15 2TT UK
| |
Collapse
|