1
|
Verma S, Sivanandam TM. Analysis of Differential microRNA Expression in the Hippocampus of Scopolamine-Induced Amnesic Mouse Model. Mol Neurobiol 2025; 62:4881-4898. [PMID: 39495226 DOI: 10.1007/s12035-024-04573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Amnesia is characterized by memory deficits linked to various neurodegenerative pathologies and can be induced by the administration of scopolamine, a cholinergic antagonist. Scopolamine-induced amnesia is a well-studied pharmacological animal model that simulates memory impairment caused by aging, brain illnesses, neuropathologies, and trauma. However, the molecular mechanism of amnesia, more importantly in terms of microRNA (miRNA) regulation, is not well understood. Therefore, this study aimed to analyze miRNA profiles in the hippocampus of both control mice and those treated with scopolamine (amnesic mice). Initially, a short cDNA library was prepared for each sample and then sequenced on the Illumina platform. Among the total differentially expressed miRNAs, 113 were significantly upregulated and 96 were downregulated in the scopolamine group in comparison to the control group. Ten upregulated and ten downregulated miRNAs were validated to confirm the reliability of the sequencing results using qRT-PCR (quantitative real-time PCR). Furthermore, we performed a target prediction analysis intersecting the results from TargetScan, miRDB (miRNA database), and Miranda to analyze the targets of the dysregulated miRNAs. We also conducted a pathway analysis to investigate the molecular, cellular, and biological functions of these targets. miRNA‒target interactions were found to play roles in various signaling pathways during amnesia. These results provide an initial insight for the contribution of miRNAs to scopolamine-induced amnesia, as well as their possible application as markers of disease pathology.
Collapse
Affiliation(s)
- Samita Verma
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Thamil Mani Sivanandam
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Solich J, Kolasa M, Faron-Górecka A, Pabian P, Latocha K, Korlatowicz A, Dziedzicka-Wasylewska M. Modulating Stress Susceptibility and Resilience: Insights from miRNA Manipulation and Neural Mechanisms in Mice. Mol Neurobiol 2024; 61:6135-6147. [PMID: 38280111 DOI: 10.1007/s12035-024-03922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2024]
Abstract
This study explored the impact of microRNAs, specifically mmu-miR-1a-3p and mmu-miR-155-5p, on stress susceptibility and resilience in mice of different strains. Previous research had established that C57BL/6J mice were stress-susceptible, while NET-KO and SWR/J mice displayed stress resilience. These strains also exhibited variations in the serum levels of mmu-miR-1a-3p and mmu-miR-155-5p. To investigate this further, we administered antagonistic sequences (Antagomirs) targeting these microRNAs to C57/BL/6J mice and their analogs (Agomirs) to NET-KO and SWR/J mice via intracerebroventricular (i.c.v) injection. The impact of this treatment was assessed using the forced swim test. The results showed that the stress-susceptible C57/BL/6J mice could be transformed into a stress-resilient phenotype through infusion of Antagomirs. Conversely, stress-resilient mice displayed altered behavior when treated with Ago-mmu-miR-1a-3p. The study also examined the expression of mmu-miR-1a-3p in various brain regions, revealing that changes in its expression in the cerebellum (CER) were associated with the stress response. In vitro experiments with the Neuro2a cell line indicated that the Antago/Ago-miR-1a-3p and Antago/Ago-miR-155-5p treatments affected mRNAs encoding genes related to cAMP and Ca2+ signaling, diacylglycerol kinases, and phosphodiesterases. The expression changes of genes such as Dgkq, Bdnf, Ntrk2, and Pde4b in the mouse cerebellum suggested a link between cerebellar function, synaptic plasticity, and the differential stress responses observed in susceptible and resilient mice. In summary, this research highlights the role of mmu-miR-1a-3p and mmu-miR-155-5p in regulating stress susceptibility and resilience in mice and suggests a connection between these microRNAs, cerebellar function, and synaptic plasticity in the context of stress response.
Collapse
Affiliation(s)
- J Solich
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland.
| | - M Kolasa
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - A Faron-Górecka
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - P Pabian
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - K Latocha
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - A Korlatowicz
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - M Dziedzicka-Wasylewska
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| |
Collapse
|
3
|
Fatahi N, Jafari-Sabet M, Vahabzadeh G, Komaki A. Role of hippocampal and prefrontal cortical cholinergic transmission in combination therapy valproate and cannabidiol in memory consolidation in rats: involvement of CREB- BDNF signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5029-5047. [PMID: 38189934 DOI: 10.1007/s00210-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
PURPOSE Cognitive disorders are associated with valproate and drugs used to treat neuropsychological diseases. Cannabidiol (CBD) has beneficial effects on cognitive function. This study examined the effects of co-administration of CBD and valproate on memory consolidation, cholinergic transmission, and cyclic AMP response element-binding protein (CREB)-brain-derived neurotrophic factor (BDNF) signaling pathway in the prefrontal cortex (PFC) and hippocampus (HPC). METHODS One-trial, step-through inhibitory test was used to evaluate memory consolidation in rats. The intra-CA1 injection of physostigmine and atropine was performed to assess the role of cholinergic transmission in this co-administration. Phosphorylated CREB (p-CREB)/CREB ratio and BDNF levels in the PFC and HPC were evaluated. RESULTS Post-training intraperitoneal (i.p.) valproate injection reduced memory consolidation; however, post-training co-administration of CBD with valproate ameliorated memory impairment induced by valproate. Post-training intra-CA1 injection of physostigmine at the ineffective doses in memory consolidation (0.5 and 1 µg/rat), plus injection of 10 mg/kg of CBD as an ineffective dose, improved memory loss induced by valproate, which was associated with BDNF and p-CREB level enhancement in the PFC and HPC. Conversely, post-training intra-CA1 injection of ineffective doses of atropine (1 and 2 µg/rat) reduced the positive effects of injection of CBD at a dose of 20 mg/kg on valproate-induced memory loss associated with BDNF and p-CREB level reduction in the PFC and HPC. CONCLUSION The results indicated a beneficial interplay between valproate and CBD in the process of memory consolidation, which probably creates this interaction through the BDNF-CREB signaling pathways in the cholinergic transmission of the PFC and HPC regions.
Collapse
Affiliation(s)
- Navid Fatahi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Gelareh Vahabzadeh
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
de Lourdes Signorini-Souza I, Tureck LV, Batistela MS, Coutinho de Almeida R, Monteiro de Almeida S, Furtado-Alle L, Lehtonen Rodrigues Souza R. The potential of five c-miRNAs as serum biomarkers for Late-Onset Alzheimer's disease diagnosis: miR-10a-5p, miR-29b-2-5p, miR-125a-5p, miR-342-3p, and miR-708-5p. Brain Res 2024; 1841:149090. [PMID: 38880411 DOI: 10.1016/j.brainres.2024.149090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The nervous system is rich in miRNAs, indicating an important role of these molecules in regulating processes associated with cognition, memory, and others. Therefore, qualitative and quantitative imbalances involving such miRNAs may be involved in dementia contexts, including Late-Onset Alzheimer's Disease (LOAD). To test the viability of circulating miRNAs (c-miRNAs) as biomarkers for LOAD, we proceed accordingly to the following reasoning. The first stage was to discover and identify profile of c-miRNAs by RNA sequencing (RNA-Seq). For this purpose, blood serum samples were used from LOAD patients (n = 5) and cognitively healthy elderly control group (CTRL_CH) (n = 5), all over 70 years old. We identified seven c-miRNAs differentially expressed (p ≤ 0.05) in the serum of LOAD patients compared to CTRL_CH (miR-10a-5p; miR-29b-2-5p; miR-125a-5p; miR-342-3p, miR-708-5p, miR-380-5p and miR-340-3p). Of these, five (p ≤ 0.01) were selected for in silico analysis (miR-10a-5p; miR-29b-2-5p; miR-125a-5p; miR-342-3p, miR-708-5p), for which 44 relevant target genes were found regulated by these c-miRNAs and related to LOAD. Through the analysis of these target genes in databases, it was possible to observe that they have functions related to the development and progress of LOAD, directly or indirectly connecting the different Alzheimer's pathways. Thus, this work found five promising serum c-miRNAs as options for biomarkers contributing to LOAD diagnosis. Our study shows the complex network between these molecules and LOAD, supporting the relevance of studies using c-miRNAs in dementia contexts.
Collapse
Affiliation(s)
- Isadora de Lourdes Signorini-Souza
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil
| | - Luciane Viater Tureck
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil
| | - Meire Silva Batistela
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, LUMC, Leiden, the Netherlands
| | | | - Lupe Furtado-Alle
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil
| | - Ricardo Lehtonen Rodrigues Souza
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil.
| |
Collapse
|
5
|
Khesmakhi MV, Salimi Z, Pourmotabbed A, Moradpour F, Rezayof A, Nedaei SE. The role of glutamate NMDA receptors of the mediodorsal thalamus in scopolamine-induced amnesia in rats. Neurosci Lett 2024; 820:137595. [PMID: 38096972 DOI: 10.1016/j.neulet.2023.137595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The current study was designed to examine the role of glutamate NMDA receptors of the mediodorsal thalamus (MD) in scopolamine-induced memory impairment. Adult male rats were bilaterally cannulated into the MD. According to the results, intraperitoneal (i.p.) administration of scopolamine (1.5 mg/kg) immediately after the training phase (post-training) impaired memory consolidation. Bilateral microinjection of the glutamate NMDA receptors agonist, N-Methyl-D-aspartic acid (NMDA; 0.05 µg/rat), into the MD significantly improved scopolamine-induced memory consolidation impairment. Co-administration of D-AP5, a glutamate NMDA receptor antagonist (0.001-0.005 µg/rat, intra-MD) potentiated the response of an ineffective dose of scopolamine (0.5 mg/kg, i.p.) to impair memory consolidation, mimicking the response of a higher dose of scopolamine. Noteworthy, post-training intra-MD microinjections of the same doses of NMDA or D-AP5 alone had no effect on memory consolidation. Moreover, the blockade of the glutamate NMDA receptors by 0.003 ng/rat of D-AP5 prevented the improving effect of NMDA on scopolamine-induced amnesia. Thus, it can be concluded that the MD glutamatergic system may be involved in scopolamine-induced memory impairment via the NMDA receptor signaling pathway.
Collapse
Affiliation(s)
| | - Zahra Salimi
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Pourmotabbed
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farshad Moradpour
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Seyed Ershad Nedaei
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Vasiliev GV, Ovchinnikov VY, Lisachev PD, Bondar NP, Grinkevich LN. The Expression of miRNAs Involved in Long-Term Memory Formation in the CNS of the Mollusk Helix lucorum. Int J Mol Sci 2022; 24:ijms24010301. [PMID: 36613744 PMCID: PMC9820140 DOI: 10.3390/ijms24010301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Mollusks are unique animals with a relatively simple central nervous system (CNS) containing giant neurons with identified functions. With such simple CNS, mollusks yet display sufficiently complex behavior, thus ideal for various studies of behavioral processes, including long-term memory (LTM) formation. For our research, we use the formation of the fear avoidance reflex in the terrestrial mollusk Helix lucorum as a learning model. We have shown previously that LTM formation in Helix requires epigenetic modifications of histones leading to both activation and inactivation of the specific genes. It is known that microRNAs (miRNAs) negatively regulate the expression of genes; however, the role of miRNAs in behavioral regulation has been poorly investigated. Currently, there is no miRNAs sequencing data being published on Helix lucorum, which makes it impossible to investigate the role of miRNAs in the memory formation of this mollusk. In this study, we have performed sequencing and comparative bioinformatics analysis of the miRNAs from the CNS of Helix lucorum. We have identified 95 different microRNAs, including microRNAs belonging to the MIR-9, MIR-10, MIR-22, MIR-124, MIR-137, and MIR-153 families, known to be involved in various CNS processes of vertebrates and other species, particularly, in the fear behavior and LTM. We have shown that in the CNS of Helix lucorum MIR-10 family (26 miRNAs) is the most representative one, including Hlu-Mir-10-S5-5p and Hlu-Mir-10-S9-5p as top hits. Moreover, we have shown the involvement of the MIR-10 family in LTM formation in Helix. The expression of 17 representatives of MIR-10 differentially changes during different periods of LTM consolidation in the CNS of Helix. In addition, using comparative analysis of microRNA expression upon learning in normal snails and snails with deficient learning abilities with dysfunction of the serotonergic system, we identified a number of microRNAs from several families, including MIR-10, which expression changes only in normal animals. The obtained data can be used for further fundamental and applied behavioral research.
Collapse
Affiliation(s)
- Gennady V. Vasiliev
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Vladimir Y. Ovchinnikov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Pavel D. Lisachev
- Federal Research Center for Information and Computational Technologies, 6 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Natalia P. Bondar
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Larisa N. Grinkevich
- The Federal State Budget Scientific Institution Pavlov Institute of Physiology, Russian Academy of Sciences, 6 nab. Makarova, St. Petersburg 199034, Russia
- Correspondence:
| |
Collapse
|
7
|
Fu P, Zhao Y, Dong C, Cai Z, Li R, Yung KKL. An integrative analysis of miRNA and mRNA expression in the brains of Alzheimer's disease transgenic mice after real-world PM 2.5 exposure. J Environ Sci (China) 2022; 122:25-40. [PMID: 35717088 DOI: 10.1016/j.jes.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) is associated with increased risks of Alzheimer's disease (AD), yet the toxicological mechanisms of PM2.5 promoting AD remain unclear. In this study, wild-type and APP/PS1 transgenic mice (AD mice) were exposed to either filtered air (FA) or PM2.5 for eight weeks with a real-world exposure system in Taiyuan, China (mean PM2.5 concentration in the cage was 61 µg/m3). We found that PM2.5 exposure could remarkably aggravate AD mice's ethological and brain ultrastructural damage, along with the elevation of the pro-inflammatory cytokines (IL-6 and TNF-α), Aβ-42 and AChE levels and the decline of ChAT levels in the brains. Based on high-throughput sequencing results, some differentially expressed (DE) mRNAs and DE miRNAs in the brains of AD mice after PM2.5 exposure were screened. Using RT-qPCR, seven DE miRNAs (mmu-miR-193b-5p, 122b-5p, 466h-3p, 10b-5p, 1895, 384-5p, and 6412) and six genes (Pcdhgb8, Unc13b, Robo3, Prph, Pter, and Tbata) were evidenced the and verified. Two miRNA-target gene pairs (miR-125b-Pcdhgb8 pair and miR-466h-3p-IL-17Rα/TGF-βR2/Aβ-42/AChE pairs) were demonstrated that they were more related to PM2.5-induced brain injury. Results of Gene Ontology (GO) pathways and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways predicted that synaptic and postsynaptic regulation, axon guidance, Wnt, MAPK, and mTOR pathways might be the possible regulatory mechanisms associated with pathological response. These revealed that PM2.5-elevated pro-inflammatory cytokine levels and PM2.5-altered neurotransmitter levels in AD mice could be the important causes of brain damage and proposed the promising miRNA and mRNA biomarkers and potential miRNA-mRNA interaction networks of PM2.5-promoted AD.
Collapse
Affiliation(s)
- Pengfei Fu
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China; Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yufei Zhao
- Institute of Environmental Science, Shanxi University, Taiyuan 237016, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 237016, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan 237016, China.
| | - Ken Kin Lam Yung
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China; Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
8
|
Hosseinzadeh Sahafi O, Rezayof A, Ghasemzadeh Z, Alijanpour S, Rahimian S. Ameliorating effect offluoxetine on tamoxifen-induced memory loss: The role of corticolimbic NMDA receptors and CREB/BDNF/cFos signaling pathways in rats. Brain Res 2022; 1794:148058. [PMID: 36007581 DOI: 10.1016/j.brainres.2022.148058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022]
Abstract
Tamoxifen-induced cognitive dysfunction may lead to fluoxetine consumption in patients with breast cancer. Since the brain mechanisms are unclear in tamoxifen/fluoxetine therapy, the blockade effect of hippocampal/amygdala/prefrontal cortical NMDA receptors was examined in fluoxetine/tamoxifen-induced memory retrieval. We also assessed the corticolimbic signaling pathways in memory retrieval under the drug treatment in adult male Wistar rats. Using the Western blot technique, the expression levels of the cAMP response element-binding protein (CREB), brain-derived neurotrophic factor (BDNF), and cFos were evaluated in the corticolimbic regions. The results showed that pre-test administration of fluoxetine (3 and 5 mg/kg, i.p.) improved tamoxifen-induced memory impairment in the passive avoidance learning task. Pre-test bilateral microinjection of D-AP5, a selective NMDA receptor antagonist, into the dorsal hippocampal CA1 regions and the central amygdala (CeA), but not the medial prefrontal cortex (mPFC), inhibited the improving effect of fluoxetine on tamoxifen response. It is important to note that the microinjection of D-AP5 into the different sites by itself did not affect memory retrieval. Memory retrieval increased the signaling pathway of pCREB/CREB/BDNF/cFos in the corticolimbic regions. Tamoxifen-induced memory impairment decreased the hippocampal/PFC BDNF level and the amygdala level of pCREB/CREB/cFos. The improving effect of fluoxetine on tamoxifen significantly increased the hippocampal/PFC expression levels of BDNF, the PFC/amygdala expression levels of cFos, and the ratio of pCREB/CREB in all targeted areas. Thus, NMDA receptors' activity in the different corticolimbic regions mediates fluoxetine/tamoxifen memory retrieval. The corticolimbic synaptic plasticity changes likely accompany the improving effect of fluoxetine on tamoxifen response.
Collapse
Affiliation(s)
- Oveis Hosseinzadeh Sahafi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Sepehrdad Rahimian
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Alizadeh K, Moghimi H, Golbabaei A, Alijanpour S, Rezayof A. Post-Weaning Treatment with Probiotic Inhibited Stress-Induced Amnesia in Adulthood Rats: The Mediation of GABAergic System and BDNF/c-Fos Signaling Pathways. Neurochem Res 2022; 47:2357-2372. [PMID: 35618945 DOI: 10.1007/s11064-022-03625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
The current study aimed to examine the effect of post-weaning treatment with probiotics on memory formation under stress during the adult period in male Wistar rats. Considering GABA is a potential mediator between probiotics and the host, the present study also investigated the involvement of the GABAergic system in the probiotic response. The hippocampal and prefrontal cortical (PFC) expression levels of BDNF and c-Fos were also assessed to show whether the treatments affect the memory-related signaling pathway. Three weeks after birth, the post-weaning rats were fed with probiotic water (PW) or tap water (TW) for 2, 3, 4, or 5 weeks. Exposure to acute stress impaired memory formation in a passive avoidance learning task. Feeding the post-weaning animals with probiotic strains (3, 4, or 5 weeks) inhibited stress-induced amnesia of the adult period. Post-training intracerebroventricular (ICV) microinjection of muscimol improved stress-induced amnesia in the animals fed with TW. ICV microinjection of muscimol inhibited probiotic treatment's significant effect on the stress response in the memory task. The expression levels of BDNF and c-Fos in the PFC and the hippocampus were significantly decreased in the stress animal group. The levels of BDNF and c-Fos were increased in the PW/stress animal group. The muscimol response was compounded with the decreased levels of BDNF and c-Fos in the PFC and the hippocampus. Thus, the GABA-A receptor mechanism may mediate the inhibitory effect of this probiotic mixture on stress-induced amnesia, which may be associated with the PFC and hippocampal BDNF/c-Fos signaling changes.
Collapse
Affiliation(s)
- Kimia Alizadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, P. O. Box, Tehran, 4155-6455, Iran
| | - Hamid Moghimi
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ali Golbabaei
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, P. O. Box, Tehran, 4155-6455, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, P. O. Box, Tehran, 4155-6455, Iran.
| |
Collapse
|
10
|
Zhang GJ, Zheng D, Yu H, Luo XP, Wu W. Ginkgo Biloba Extract Ameliorates Scopolamine-induced Memory Deficits via Rescuing Synaptic Damage. Curr Med Sci 2022; 42:474-482. [DOI: 10.1007/s11596-022-2582-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022]
Abstract
Abstract
Objective
Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder. Emerging evidence suggests that synaptic dysfunction is associated with the onset and progression of AD. Interestingly, Ginkgo biloba extract (EGb) is one of the most frequently investigated herbal medicines for enhancing cognition and alleviating neurodegenerative dementia. This study aimed to investigate the effect and the mechanism of EGb on AD-like synaptic disorders.
Methods
Scopolamine (SCO)-induced rats were used to mimic AD-like memory deficits. Morris water maze test and fear conditioning test were conducted to evaluate the memory status of rats in response to different treatments. Then, the synapse alterations were assessed by Golgi staining, and Western blotting was conducted to assess the protein expression of PSD95, GluN2B, synapsin-1, and synaptophysin. Reverse transcription quantitative polymerase chain reaction was applied to detect the mRNA expression of PSD95 and the levels of miR-1-3p/miR-206-3p.
Results
EGb supplement alleviated the learning and memory deficits induced by SCO in behavioral experiments. Moreover, EGb treatment attenuated synaptic damage elicited by SCO, manifested as increased dendritic spine density and the proportion of mushroom-type spines in hippocampal neurons. Further investigation indicated that EGb rescued the expression of synaptic-related proteins, especially PSD95, and decreased the levels of miR-1-3p/miR-206-3p in the rat hippocampus.
Conclusion
The application of EGb effectively treats SCO-induced memory impairments probably by suppressing miR-1-3p/miR-206-3p and elevating the expression of PSD95.
Collapse
|
11
|
Role of Cholinergic Signaling in Alzheimer's Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061816. [PMID: 35335180 PMCID: PMC8949236 DOI: 10.3390/molecules27061816] [Citation(s) in RCA: 272] [Impact Index Per Article: 90.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 12/27/2022]
Abstract
Acetylcholine, a neurotransmitter secreted by cholinergic neurons, is involved in signal transduction related to memory and learning ability. Alzheimer’s disease (AD), a progressive and commonly diagnosed neurodegenerative disease, is characterized by memory and cognitive decline and behavioral disorders. The pathogenesis of AD is complex and remains unclear, being affected by various factors. The cholinergic hypothesis is the earliest theory about the pathogenesis of AD. Cholinergic atrophy and cognitive decline are accelerated in age-related neurodegenerative diseases such as AD. In addition, abnormal central cholinergic changes can also induce abnormal phosphorylation of ttau protein, nerve cell inflammation, cell apoptosis, and other pathological phenomena, but the exact mechanism of action is still unclear. Due to the complex and unclear pathogenesis, effective methods to prevent and treat AD are unavailable, and research to explore novel therapeutic drugs is various and active in the world. This review summaries the role of cholinergic signaling and the correlation between the cholinergic signaling pathway with other risk factors in AD and provides the latest research about the efficient therapeutic drugs and treatment of AD.
Collapse
|
12
|
Zhang R, Gao Y, Li Y, Geng D, Liang Y, He Q, Wang L, Cui H. Nrf2 improves hippocampal synaptic plasticity, learning and memory through the circ-Vps41/miR-26a-5p/CaMKIV regulatory network. Exp Neurol 2022; 351:113998. [PMID: 35143833 DOI: 10.1016/j.expneurol.2022.113998] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/24/2022]
Abstract
Antioxidant response transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2/Nfe2l2) is a neuroprotective agent in learning and memory impairment. This study provides a new perspective to explore the regulatory mechanisms of Nrf2. Here, we found that Nrf2 regulated circular RNA circ-Vps41 to increase hippocampal synaptic plasticity; Nrf2 bound the Vps41 promoter to activate transcription of the Vps41 gene and promote expression of circ-Vps41; circ-Vps41 positively correlated with Nrf2, synaptic plasticity, and learning and memory but negatively correlated with reactive oxygen species; and Nrf2 promoted CaMKIV expression by increasing levels of circ-Vps41, which can absorb miR-26a-5p that targets CaMKIV. Our findings revealed a new circRNA-based regulatory network regulated by Nrf2 and provided novel insights into the potential mechanism involved in the improvement of learning and memory impairment.
Collapse
Affiliation(s)
- Runjiao Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Yanjing Gao
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Yibo Li
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Dandan Geng
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Yuxiang Liang
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Qingwen He
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Lei Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China.
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China.
| |
Collapse
|
13
|
Ruan Z, Li Y, He R, Li X. Inhibition of microRNA-10b-5p up-regulates HOXD10 to attenuate Alzheimer's disease in rats via the Rho/ROCK signalling pathway. J Drug Target 2021; 29:531-540. [PMID: 33307856 DOI: 10.1080/1061186x.2020.1864739] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE It is believed that microRNAs (miRNAs) participate in the pathogenesis of Alzheimer's disease (AD), but the specified function of miR-10b-5p in the disease has not been thoroughly understood. Thereafter, this research aimed to assess the function of miR-10b-5p in AD. METHODS Rat AD models were established by injected with amyloid-β1-42 (Aβ1-42), which were mainly treated with lentivirus-miR-10b-5p inhibitor, or lentivirus-overexpressed homeobox D10 (HOXD10). MiR-10b-5p, HOXD10, RhoA, ROCK1 and ROCK2 expression in rat hippocampal tissues were determined. Afterwards, the behaviour of rats was tested, and neuronal apoptosis, pathological injury, and inflammatory factors and oxidative stress-related factors were all assessed. Finally, the target relation between miR-10b-5p and HOXD10 was detected. RESULTS MiR-10b-5p was upregulated while HOXD10 was downregulated, and the Rho/ROCK signalling pathway was activated in hippocampal tissues of rats with AD. Inhibition of miR-10b-5p could attenuate the neuronal apoptosis, pathological injury, inflammation reaction, and oxidative stress by elevating HOXD10 and inhibiting the Rho/ROCK signalling pathway in AD rats. Moreover, HOXD10 was targeted by miR-10b-5p. CONCLUSION Inhibited miR-10b-5p decelerated the development of AD by promoting HOXD10 and inactivating the Rho/ROCK signalling pathway, and our findings may contribute to the exploration of AD treatment.
Collapse
Affiliation(s)
- Zhongfan Ruan
- Department of Neurology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Yan Li
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
| | - Rongzhang He
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, Collaborative Research Center for Post-doctoral Mobile Stations of Central South University, Affiliated the First People's Hospital of Chenzhou of University of South China, Chenzhou, Hunan, China
| | - Xuewei Li
- Department of Neurology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
14
|
Abbasi-Habashi S, Ghasemzadeh Z, Rezayof A. Morphine improved stress-induced amnesia and anxiety through interacting with the ventral hippocampal endocannabinoid system in rats. Brain Res Bull 2020; 164:407-414. [PMID: 32937186 DOI: 10.1016/j.brainresbull.2020.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/28/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022]
Abstract
The present study aimed to investigate the possible role of the ventral hippocampal (VH) cannabinoid CB1 receptors in the improving effect of morphine on stress-induced memory formation impairment and anxiety. A step-through type passive avoidance task and a hole-board test were used to measure memory formation and anxiety-like exploratory behavior, respectively. The results showed that the exposure to 10-min stress immediately after the successful training phase impaired memory formation and also produced anxiogenic-like exploratory behaviour in adult male Wistar rats. Moreover, morphine administration before stress exposure improved the adverse effects of stress on memory formation and exploratory behaviour. After training, intra-VH microinjection of cannabinoid CB1/CB2 receptor agonist, WIN 55,212-2 (0.01-0.05 μg/rat) enhanced the response of an ineffective dose of morphine (0.5 mg/kg for memory; 5 mg/kg for anxiety, i.p.) on memory impairment and anxiogenic-like exploratory behaviour induced by acute stress. Intra-VH microinjection of the higher dose of WIN 55,212-2 alone impaired memory formation. Post-training microinjection of a cannabinoid CB1 receptor antagonist/inverse agonist, AM-251 (100-150 ng/rat) into the VH attenuated the response of an effective dose of morphine (5 mg/kg for memory; 6 mg/kg for anxiety, i.p.) in stress-exposed rats. Taken together, the present results showed that morphine administration could improve stress-induced memory impairment and anxiety in the rats exposed to the inescapable acute stress. Interestingly, the improving effect of morphine on the adverse effect of stress on memory formation and anxiety-like exploratory behaviour may be mediated through the VH endocannabinoid CB1/CB2 receptors mechanism.
Collapse
Affiliation(s)
- Sima Abbasi-Habashi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
15
|
Ghasemzadeh Z, Sardari M, Javadi P, Rezayof A. Expression analysis of hippocampal and amygdala CREB-BDNF signaling pathway in nicotine-induced reward under stress in rats. Brain Res 2020; 1741:146885. [PMID: 32417176 DOI: 10.1016/j.brainres.2020.146885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
Abstract
Extensive research has shown that individuals are more sensitive to develop addiction and drug taking under stress state. The present study includes an expression analysis to identify the possible role of hippocampal and amygdala CREB (cAMP response element-binding protein) and BDNF (Brain-derived neurotrophic factor) activation in nicotine-induced conditioned place preference (CPP) under exposure to acute or sub-chronic stress. Using western-blot technique, CREB phosphorylation was shown to increase in the hippocampus and the amygdala following nicotine-induced CPP. The hippocampal level of BDNF was increased following nicotine administration and in the nicotine-treated animals exposed to acute stress. In animals exposed to acute stress, the amygdala ratios of the pCREB/CREB decreased, while pre-treatment of the animals with nicotine (0.1 mg/kg) decreased this ratio only in the hippocampus. Sub-chronic stress decreased the pCREB/CREB ratios in the hippocampus and the amygdala. Interestingly, sub-chronic stress-induced increase of nicotine reward only decreased the hippocampal pCREB/CREB ratio. The levels of BDNF in the hippocampus and the amygdala decreased under acute stress. Acute stress-induced increase of nicotine reward increased BDNF levels in the hippocampus. Moreover, the animals' exposure to the CPP apparatus without any drug administration increased the ratios of pCREB/tCREB and BDNF/β-actin in the targeted sites. In summary, the present study indicate that the alterations of the ratio of pCREB/CREB and also the level of BDNF in the hippocampus may be critical for enhancing nicotine reward under stress condition. The evidence from this study suggests the distinct roles of the hippocampus and the amygdala in mediating nicotine reward under stress.
Collapse
Affiliation(s)
- Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Sardari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Parastoo Javadi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
16
|
Solich J, Kuśmider M, Faron-Górecka A, Pabian P, Kolasa M, Zemła B, Dziedzicka-Wasylewska M. Serum Level of miR-1 and miR-155 as Potential Biomarkers of Stress-Resilience of NET-KO and SWR/J Mice. Cells 2020; 9:cells9040917. [PMID: 32283635 PMCID: PMC7226811 DOI: 10.3390/cells9040917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/26/2022] Open
Abstract
In the present study, we used three strains of mice with various susceptibility to stress: mice with knock-out of the gene encoding norepinephrine transporter (NET-KO), which are well characterized as displaying a stress-resistant phenotype, as well as two strains of mice displaying two different stress-coping strategies, i.e., C57BL/6J (WT in the present study) and SWR/J. The procedure of restraint stress (RS, 4 h) was applied, and the following behavioral experiments (the forced swim test and sucrose preference test) indicated that NET-KO and SWR/J mice were less sensitive to RS than WT mice. Then, we aimed to find the miRNAs which changed in similar ways in the serum of NET-KO and SWR/J mice subjected to RS, being at the same time different from the miRNAs found in the serum of WT mice. Using Custom TaqMan Array MicroRNA Cards, with primers for majority of miRNAs expressed in the serum (based on a preliminary experiment using the TaqMan Array Rodent MicroRNA A + B Cards Set v3.0, Thermo Fisher Scientific, Waltham, MA, USA) allowed the identification of 21 such miRNAs. Our further analysis focused on miR-1 and miR-155 and their targets—these two miRNAs are involved in the regulation of BDNF expression and can be regarded as biomarkers of stress-resilience.
Collapse
|