1
|
Sonavane M, Alqallaf A, Mitchell RD, Almeida JR, Gilabadi S, Richards NJ, Adeyemi S, Williams J, Ritvos O, Vaiyapuri S, Patel K. Soluble Activin Receptor Type IIB Improves Muscle Regeneration Following Crotalus atrox Venom-Induced Damage. Toxins (Basel) 2025; 17:59. [PMID: 39998076 PMCID: PMC11861606 DOI: 10.3390/toxins17020059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Viper bite envenoming often results in prominent skeletal muscle damage. According to our previous studies, the prolonged presence of Crotalus atrox venom toxins induced extensive muscle damage, which mimicked the outcome of chronic muscle damage often seen in human muscular dystrophies. In the case of chronic muscle damage, two critical processes occur: muscle regeneration is impaired, and fibrosis develops. Myostatin/activin signalling is a key regulator of both of these processes. Myostatin and its closely related molecules, in particular activin, inhibit the proliferation and differentiation of myocytes while promoting proliferation of fibroblasts and expression of extracellular matrix proteins. Thus, attenuating myostatin/activin signalling offers an attractive means of promoting muscle development while decreasing fibrosis. Hence, we have used the soluble activin receptor type IIb, which acts as a ligand trap for both myostatin and activin, to dampen signalling and assessed whether this intervention could alter the pathological trajectory of C. atrox venom-induced muscle damage in mice. We report that the soluble activin receptor type IIb treatment increased the size of regenerating fibres while reducing the level of fibrotic tissues in venom-damaged muscle.
Collapse
Affiliation(s)
- Medha Sonavane
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (M.S.); (J.R.A.); (S.G.); (J.W.)
| | - Ali Alqallaf
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (A.A.); (N.J.R.); (S.A.)
- Medical Services Authority, Ministry of Defence, Kuwait City 13012, Kuwait
| | | | - José R. Almeida
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (M.S.); (J.R.A.); (S.G.); (J.W.)
| | - Soheil Gilabadi
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (M.S.); (J.R.A.); (S.G.); (J.W.)
| | - Nicholas J. Richards
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (A.A.); (N.J.R.); (S.A.)
| | - Sodiq Adeyemi
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (A.A.); (N.J.R.); (S.A.)
| | - Jarred Williams
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (M.S.); (J.R.A.); (S.G.); (J.W.)
| | - Olli Ritvos
- Department of Physiology, Medicum, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Sakthivel Vaiyapuri
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (M.S.); (J.R.A.); (S.G.); (J.W.)
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (A.A.); (N.J.R.); (S.A.)
| |
Collapse
|
2
|
Gartling G, Nakamura R, Sayce L, Zimmerman Z, Slater A, Wilson A, Bing R, Branski RC, Rousseau B. Acute In Vitro and In Vivo Effects of Dexamethasone in the Vocal Folds: a Pilot Study. Laryngoscope 2023; 133:2264-2270. [PMID: 36317801 PMCID: PMC10149570 DOI: 10.1002/lary.30461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES/HYPOTHESIS Glucocorticoids (GC)s are commonly employed to treat vocal fold (VF) pathologies. However, VF atrophy has been associated with intracordal GC injections. Dexamethasone-induced skeletal muscle atrophy is well-documented in other tissues and believed to be mediated by increased muscle proteolysis via upregulation of Muscle Ring Finger (MuRF)-1 and Atrogin-1. Mechanisms of dexamethasone-mediated VF atrophy have not been described. This pilot study employed in vitro and in vivo models to investigate the effects of dexamethasone on VF epithelium, thyroarytenoid (TA) muscle, and TA-derived myoblasts. We hypothesized that dexamethasone will increase atrophy-associated gene expression in TA muscle and myoblasts and decrease TA muscle fiber size and epithelial thickness. STUDY DESIGN In vitro, pre-clinical. METHODS TA myoblasts were isolated from a female Sprague-Dawley rat and treated with 1 μM dexamethasone for 24-h. In vivo, 15 New Zealand white rabbits were randomly assigned to three treatment groups: (1) bilateral intracordal injection of 40 μL dexamethasone (10 mg/ml; n = 5), (2) volume-matched saline (n = 5), and (3) untreated controls (n = 5). Larynges were harvested 7-days post-injection. Across in vivo and in vitro experimentation, MuRF-1 and Atrogin-1 mRNA expression were measured via RT-qPCR. TA muscle fiber cross-sectional area (CSA) and epithelial thickness were also quantified in vivo. RESULTS Dexamethasone increased MuRF-1 gene expression in TA myoblasts. Dexamethasone injection, however, did not alter atrophy-associated gene expression, TA CSA, or epithelial thickness in vivo. CONCLUSION Dexamethasone increased atrogene expression in TA myoblasts, providing foundational insight into GC induced atrophic gene transcription. Repeated dexamethasone injections may be required to elicit atrophy in vivo. LEVEL OF EVIDENCE NA Laryngoscope, 133:2264-2270, 2023.
Collapse
Affiliation(s)
- Gary Gartling
- Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Ryosuke Nakamura
- Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY
| | - Lea Sayce
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Zachary Zimmerman
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Alysha Slater
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Azure Wilson
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Renjie Bing
- Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY
| | - Ryan C. Branski
- Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY
- Department of Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, NY
| | - Bernard Rousseau
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA
- Doisy College of Health Sciences, Saint Louis University, St. Louis, MO
| |
Collapse
|
3
|
A New Method of Myostatin Inhibition in Mice via Oral Administration of Lactobacillus casei Expressing Modified Myostatin Protein, BLS-M22. Int J Mol Sci 2022; 23:ijms23169059. [PMID: 36012334 PMCID: PMC9409196 DOI: 10.3390/ijms23169059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Myostatin is a member of the transforming growth factor-beta superfamily and is an endogenous negative regulator of muscle growth. This study aimed to determine whether an oral administration of Lactobacillus casei expressing modified human myostatin (BLS-M22) could elicit sufficient levels of myostatin-specific antibody and improve the dystrophic features of an animal model of Duchenne muscular dystrophy (DMD; mdx mouse). BLS-M22 is a recombinant L. casei engineered to harbor the pKV vector and poly-gamma-glutamic acid gene linked to a modified human myostatin gene. Serological analysis showed that anti-myostatin IgG titers were significantly increased, and serum creatine kinase was significantly reduced in the BLS-M22-treated mdx mice compared to the control mice. In addition, treatment of BLS-M22 resulted in a significant increase in body weight and motor function (Rotarod behavior test). Histological analysis showed an improvement in the dystrophic features (fibrosis and muscle hypertrophy) of the mdx mice with the administration of BLS-M22. The circulating antibodies generated after BLS-M22 oral administration successfully lowered serum myostatin concentration. Myostatin blockade resulted in serological, histological, and functional improvements in mdx mice. Overall, the findings suggest the potential of BLS-M22 to treat DMD; however, further clinical trials are essential to ascertain its efficacy and safety in humans.
Collapse
|
4
|
Song L, Wu F, Li C, Zhang S. Dietary intake of GDF11 delays the onset of several biomarkers of aging in male mice through anti-oxidant system via Smad2/3 pathway. Biogerontology 2022; 23:341-362. [PMID: 35604508 PMCID: PMC9125541 DOI: 10.1007/s10522-022-09967-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/02/2022] [Indexed: 11/08/2022]
Abstract
Current studies have generated controversy over the age-related change in concentration of growth differentiation factor 11 (GDF11) and its role in the genesis of rejuvenation conditions. In this study, we displayed rGDF11 on the surface of Yarrowic Lipolytica (Y. lipolytica), and proved the bioavailability of the yeast-displayed rGDF11 by oral delivery in aged male mice. On the basis of these findings, we started to explore the anti-aging activity and underlying mechanisms of displayed rGDF11. It was found that dietary intake of displayed rGDF11 had little influence on the body weight and biochemical parameters of aged male mice, but delayed the occurrence and development of age-related biomarkers such as lipofuscin (LF) and senescence-associated-β-galactosidase, and to some extent, prolonged the lifespan of aged male mice. Moreover, we demonstrated once again that dietary intake of displayed rGDF11 enhanced the activity of anti-oxidant enzymes, including catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPX), reduced the reactive oxygen species (ROS) level, and slowed down the protein oxidation and lipid peroxidation. Importantly, we showed for the first time that rGDF11 enhanced the activity of CAT, SOD and GPX through activation of the Smad2/3 signaling pathway. Our study also provided a simple and safe route for delivery of recombinant GDF11, facilitating its therapeutic application in the future.
Collapse
Affiliation(s)
- Lili Song
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Fei Wu
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Congjun Li
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| |
Collapse
|
5
|
Zschüntzsch J, Meyer S, Shahriyari M, Kummer K, Schmidt M, Kummer S, Tiburcy M. The Evolution of Complex Muscle Cell In Vitro Models to Study Pathomechanisms and Drug Development of Neuromuscular Disease. Cells 2022; 11:1233. [PMID: 35406795 PMCID: PMC8997482 DOI: 10.3390/cells11071233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
Many neuromuscular disease entities possess a significant disease burden and therapeutic options remain limited. Innovative human preclinical models may help to uncover relevant disease mechanisms and enhance the translation of therapeutic findings to strengthen neuromuscular disease precision medicine. By concentrating on idiopathic inflammatory muscle disorders, we summarize the recent evolution of the novel in vitro models to study disease mechanisms and therapeutic strategies. A particular focus is laid on the integration and simulation of multicellular interactions of muscle tissue in disease phenotypes in vitro. Finally, the requirements of a neuromuscular disease drug development workflow are discussed with a particular emphasis on cell sources, co-culture systems (including organoids), functionality, and throughput.
Collapse
Affiliation(s)
- Jana Zschüntzsch
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Stefanie Meyer
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Mina Shahriyari
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| | - Karsten Kummer
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Matthias Schmidt
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| | - Susann Kummer
- Risk Group 4 Pathogens–Stability and Persistence, Biosafety Level-4 Laboratory, Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany;
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| |
Collapse
|
6
|
Jaikumar IM, Periyakali SB, Rajendran U, Joen-Rong S, Thanasekaran J, Tsorng-Harn F. Effects of Microplastics, Polystyrene, and Polyethylene on Antioxidants, Metabolic Enzymes, HSP-70, and Myostatin Expressions in the Giant River Prawn Macrobrachium rosenbergii: Impact on Survival and Growth. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:645-658. [PMID: 33772631 DOI: 10.1007/s00244-021-00833-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
This study was conducted to understand the biological effects of microplastics (MPs), polystyrene microspheres (PSM), and polyethylene microparticles (PEM) in the juveniles of the giant river prawn, Macrobrachium rosenbergii. The PSM (0.5-1.0 µm) and PEM (30.0-150.0 µm) were separately incorporated into the artificial diets with concentrations of 1, 5, and 10 mg per 100 g. The prawns were fed with these diets for a period of 60 days. Compared with control, the following dose-dependent changes have been recorded in PSM and PEM incorporated feeds fed prawns: declines in the survival rate, length and weight gains; increase in activities of antioxidant enzymes, such as superoxide dismutase, catalase, glutathione s-transferase, and glutathione peroxidase (GPx); elevated concentrations of reduced glutathione (GSH) and malondialdehyde; decreased activities of metabolic enzymes, such as glutamic oxaloacetic transaminase and glutamic pyruvic transaminase; higher total RNA in hepatopancreas (HP) of PSM fed prawns compared with that of PEM; higher total RNA in muscle (MU) of PEM-fed prawns compared with that of PSM; prominent cDNA bands in 150 bp regions; up-regulated heat shock protein (HSP70) gene in HP; down-regulation of HSP70 gene in MU of PSM-fed prawns only; down-regulated myostatin (MSTN) gene. These results suggest that these MPs have affected the survival and growth, activated the antioxidant defense, inhibit the metabolic enzymes, positively regulated the HSP70 gene, and negatively regulated the MSTN gene in M. rosenbergii. Therefore, exposures to PSM and PEM caused biological effects in this species of prawn.
Collapse
Affiliation(s)
| | | | | | - Sheu Joen-Rong
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Jayakumar Thanasekaran
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Fong Tsorng-Harn
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| |
Collapse
|
7
|
GDF11 alleviates secondary brain injury after intracerebral hemorrhage via attenuating mitochondrial dynamic abnormality and dysfunction. Sci Rep 2021; 11:3974. [PMID: 33597668 PMCID: PMC7889617 DOI: 10.1038/s41598-021-83545-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 02/03/2021] [Indexed: 02/05/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a serious public health problem with high rates of death and disability. The neuroprotective effect of Growth Differentiation Factor 11 (GDF11) in ICH has been initially proved by our previous study. Oxidative stress (OS) plays crucial roles in mediating subsequent damage of ICH. However, whether and how mitochondrial dynamic events and function participated in ICH pathophysiology, and how mitochondrial function and OS interreacted in the neuroprotective process of GDF11 in ICH remains unclarified. Based on the rat model of ICH and in vitro cell model, we demonstrated that GDF11 could alleviate ICH induced neurological deficits, brain edema, OS status, neuronal apoptosis and inflammatory reaction. In addition, mitochondrial functional and structural impairments were obviously restored by GDF11. Treatment with antioxidant protected against erythrocyte homogenate (EH) induced cell injury by restoring OS status and mitochondrial fusion fission imbalance, which was similar to the effect of GDF11 treatment. Further, inhibition of mitochondrial division with Mdivi-1 attenuated mitochondrial functional defects and neuronal damages. In conclusion, our results for the first time proposed that GDF11 protected the post-ICH secondary injury by suppressing the feedback loop between mitochondrial ROS production and mitochondrial dynamic alteration, resulting in attenuated mitochondrial function and amelioration of neural damage.
Collapse
|
8
|
Vaughan D, Kretz O, Alqallaf A, Mitchell R, Von der Heide JL, Vaiyapuri S, Matsakas A, Pasternack A, Collins-Hooper H, Ritvos O, Ballesteros R, Huber TB, Amthor H, Mukherjee A, Patel K. Diminution in sperm quantity and quality in mouse models of Duchenne Muscular Dystrophy induced by a myostatin-based muscle growth-promoting intervention. Eur J Transl Myol 2020. [DOI: 10.4081/ejtm.2020.8904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Duchenne Muscular Dystrophy is a devastating disease caused by the absence of a functional rod-shaped cytoplasmic protein called dystrophin. Several avenues are being developed aimed to restore dystrophin expression in boys affected by this X-linked disease. However, its complete cure is likely to need combinational approaches which may include regimes aimed at restoring muscle mass. Augmenting muscle growth through the manipulation of the Myostatin/Activin signalling axis has received much attention. However, we have recently shown that while manipulation of this axis in wild type mice using the sActRIIB ligand trap indeed results in muscle growth, it also had a detrimental impact on the testis. Here we examined the impact of administering a powerful Myostatin/Activin antagonist in two mouse models of Duchenne Muscular Dystrophy. We report that whilst the impact on muscle growth was not always positive, both models showed attenuated testis development. Sperm number, motility and ultrastructure were significantly affected by the sActRIIB treatment. Our report suggests that interventions based on Myostatin/Activin should investigate off-target effects on tissues as well as muscle.
Collapse
|
9
|
Vaughan D, Kretz O, Alqallaf A, Mitchell R, von der Heide JL, Vaiyapuri S, Matsakas A, Pasternack A, Collins-Hooper H, Ritvos O, Ballesteros R, Huber TB, Amthor H, Mukherjee A, Patel K. Diminution in sperm quantity and quality in mouse models of Duchenne Muscular Dystrophy induced by a myostatin-based muscle growth-promoting intervention. Eur J Transl Myol 2020; 30:8904. [PMID: 32782759 PMCID: PMC7385695 DOI: 10.4081/ejtm.2019.8904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Duchenne Muscular Dystrophy is a devastating disease caused by the absence of a functional rod-shaped cytoplasmic protein called dystrophin. Several avenues are being developed aimed to restore dystrophin expression in boys affected by this X-linked disease. However, its complete cure is likely to need combinational approaches which may include regimes aimed at restoring muscle mass. Augmenting muscle growth through the manipulation of the Myostatin/Activin signalling axis has received much attention. However, we have recently shown that while manipulation of this axis in wild type mice using the sActRIIB ligand trap indeed results in muscle growth, it also had a detrimental impact on the testis. Here we examined the impact of administering a powerful Myostatin/Activin antagonist in two mouse models of Duchenne Muscular Dystrophy. We report that whilst the impact on muscle growth was not always positive, both models showed attenuated testis development. Sperm number, motility and ultrastructure were significantly affected by the sActRIIB treatment. Our report suggests that interventions based on Myostatin/Activin should investigate off-target effects on tissues as well as muscle.
Collapse
Affiliation(s)
| | - Oliver Kretz
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ali Alqallaf
- School of Biological Sciences, University of Reading, UK
| | | | - Jennie L von der Heide
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombosis & Metabolic Disease, Hull York Medical School, Hull, UK
| | - Arja Pasternack
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | | | - Olli Ritvos
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | | | - Tobias B Huber
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Helge Amthor
- Versailles Saint-Quentin-en-Yvelines University, INSERM U1179, LIA BAHN CSM, Montigny-le-Bretonneux, France
| | | | - Ketan Patel
- School of Biological Sciences, University of Reading, UK
| |
Collapse
|
10
|
Effects of exosome-mediated delivery of myostatin propeptide on functional recovery of mdx mice. Biomaterials 2020; 236:119826. [DOI: 10.1016/j.biomaterials.2020.119826] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 12/30/2019] [Accepted: 01/25/2020] [Indexed: 01/08/2023]
|
11
|
Butcher JT, Ali MI, Ma MW, McCarthy CG, Islam BN, Fox LG, Mintz JD, Larion S, Fulton DJ, Stepp DW. Effect of myostatin deletion on cardiac and microvascular function. Physiol Rep 2018; 5. [PMID: 29192067 PMCID: PMC5727279 DOI: 10.14814/phy2.13525] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/13/2017] [Accepted: 10/20/2017] [Indexed: 12/20/2022] Open
Abstract
The objective of this study is to test the hypothesis that increased muscle mass has positive effects on cardiovascular function. Specifically, we tested the hypothesis that increases in lean body mass caused by deletion of myostatin improves cardiac performance and vascular function. Echocardiography was used to quantify left ventricular function at baseline and after acute administration of propranolol and isoproterenol to assess β‐adrenergic reactivity. Additionally, resistance vessels in several beds were removed, cannulated, pressurized to 60 mmHg and reactivity to vasoactive stimuli was assessed. Hemodynamics were measured using in vivo radiotelemetry. Myostatin deletion results in increased fractional shortening at baseline. Additionally, arterioles in the coronary and muscular microcirculations are more sensitive to endothelial‐dependent dilation while nonmuscular beds or the aorta were unaffected. β‐adrenergic dilation was increased in both coronary and conduit arteries, suggesting a systemic effect of increased muscle mass on vascular function. Overall hemodynamics and physical characteristics (heart weight and size) remained unchanged. Myostatin deletion mimics in part the effects of exercise on cardiovascular function. It significantly increases lean muscle mass and results in muscle‐specific increases in endothelium‐dependent vasodilation. This suggests that increases in muscle mass may serve as a buffer against pathological states that specifically target cardiac function (heart failure), the β‐adrenergic system (age), and nitric oxide bio‐availability (atherosclerosis). Taken together, pharmacological inhibition of the myostatin pathway could prove an excellent mechanism by which the benefits of exercise can be conferred in patients that are unable to exercise.
Collapse
Affiliation(s)
- Joshua T Butcher
- Department of Pharmacology, Department of Physiology, Vascular Biology Center, Augusta University, Augusta, Georgia
| | - M Irfan Ali
- Department of Pharmacology, Department of Physiology, Vascular Biology Center, Augusta University, Augusta, Georgia
| | - Merry W Ma
- Department of Pharmacology, Department of Physiology, Vascular Biology Center, Augusta University, Augusta, Georgia
| | - Cameron G McCarthy
- Department of Pharmacology, Department of Physiology, Vascular Biology Center, Augusta University, Augusta, Georgia
| | - Bianca N Islam
- Department of Pharmacology, Department of Physiology, Vascular Biology Center, Augusta University, Augusta, Georgia
| | - Lauren G Fox
- Department of Pharmacology, Department of Physiology, Vascular Biology Center, Augusta University, Augusta, Georgia
| | - James D Mintz
- Department of Pharmacology, Department of Physiology, Vascular Biology Center, Augusta University, Augusta, Georgia
| | - Sebastian Larion
- Department of Pharmacology, Department of Physiology, Vascular Biology Center, Augusta University, Augusta, Georgia
| | - David J Fulton
- Department of Pharmacology, Department of Physiology, Vascular Biology Center, Augusta University, Augusta, Georgia
| | - David W Stepp
- Department of Pharmacology, Department of Physiology, Vascular Biology Center, Augusta University, Augusta, Georgia
| |
Collapse
|
12
|
Ismail HM, Dorchies OM, Scapozza L. The potential and benefits of repurposing existing drugs to treat rare muscular dystrophies. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1452733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hesham M. Ismail
- Pharmaceutical Biochemistry, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Olivier M. Dorchies
- Pharmaceutical Biochemistry, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| |
Collapse
|
13
|
Kristina Parr M, Müller-Schöll A. Pharmacology of doping agents—mechanisms promoting muscle hypertrophy. AIMS MOLECULAR SCIENCE 2018. [DOI: 10.3934/molsci.2018.2.131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
14
|
Augustin H, Adcott J, Elliott CJH, Partridge L. Complex roles of myoglianin in regulating adult performance and lifespan. Fly (Austin) 2017; 11:284-289. [PMID: 28837401 PMCID: PMC5721940 DOI: 10.1080/19336934.2017.1369638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Myoglianin, the Drosophila homolog of the secreted vertebrate proteins Myostatin and GDF-11, is an important regulator of neuronal modeling, and synapse function and morphology. While Myoglianin suppression during development elicits positive effects on the neuromuscular system, genetic manipulations of myoglianin expression levels have a varied effect on the outcome of performance tests in aging flies. Specifically, Myoglianin preserves jumping ability, has no effect on negative geotaxis, and negatively regulates flight performance in aging flies. In addition, Myoglianin exhibits a tissue-specific effect on longevity, with myoglianin upregulation in glial cells increasing the median lifespan. These findings indicate complex role for this TGF-β-like protein in governing neuromuscular signaling and consequent behavioral outputs and lifespan in adult flies.
Collapse
Affiliation(s)
- Hrvoje Augustin
- a Institute of Healthy Ageing, and the Department of Genetics, Evolution, and Environment , University College London , Darwin Building, Gower Street, London , UK.,b Max Planck Institute for Biology of Ageing , Cologne , Germany
| | - Jennifer Adcott
- a Institute of Healthy Ageing, and the Department of Genetics, Evolution, and Environment , University College London , Darwin Building, Gower Street, London , UK.,b Max Planck Institute for Biology of Ageing , Cologne , Germany
| | | | - Linda Partridge
- a Institute of Healthy Ageing, and the Department of Genetics, Evolution, and Environment , University College London , Darwin Building, Gower Street, London , UK.,b Max Planck Institute for Biology of Ageing , Cologne , Germany
| |
Collapse
|
15
|
Fan X, Gaur U, Sun L, Yang D, Yang M. The Growth Differentiation Factor 11 (GDF11) and Myostatin (MSTN) in tissue specific aging. Mech Ageing Dev 2017; 164:108-112. [PMID: 28472635 DOI: 10.1016/j.mad.2017.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 01/24/2023]
Abstract
Growth differentiation factor 11 (GDF11) and myostatin (MSTN) are evolutionarily conserved homologues proteins which are closely related members of the transforming growth factor β superfamily. They are often perceived to serve similar or overlapping roles. Recently, GDF11 has been identified as playing a role during aging, however there are conflicting reports as to the nature of this role. In this review, we will discuss the literature regarding functions of GDF11 and myostatin in the heart, brain, and skeletal muscle during aging. Consequently we expect to develop a deeper understanding about the function of these two proteins in organismal aging and disease.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University Chengdu, 611130, PR China
| | - Uma Gaur
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University Chengdu, 611130, PR China
| | - Lin Sun
- Jiangsu Vocational College of Medicine, Yancheng, 224000, PR China
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University Chengdu, 611130, PR China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University Chengdu, 611130, PR China.
| |
Collapse
|
16
|
Singh P, Rong H, Gordi T, Bosley J, Bhattacharya I. Translational Pharmacokinetic/Pharmacodynamic Analysis of MYO-029 Antibody for Muscular Dystrophy. Clin Transl Sci 2016; 9:302-310. [PMID: 27700008 PMCID: PMC5351001 DOI: 10.1111/cts.12420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/29/2016] [Indexed: 12/30/2022] Open
Abstract
Suppression of the myostatin (GDF‐8) pathway has emerged as an important therapeutic paradigm for muscle‐wasting disorders. In this study, we conducted a translational pharmacokinetic/pharmacodynamic (PK/PD) analysis of MYO‐029, an anti‐myostatin monoclonal antibody, using PK data in mice, rats, monkeys, humans, mouse tissue distribution data with 125I‐labeled MYO‐029, muscle weight increase in SCID mice, and muscle circumference changes in monkeys. This analysis revealed significant in vivo potency shift between mice and monkeys (72 nM vs. 1.3 μM for 50% effect on quadriceps). Estimated central clearance of MYO‐029 (0.38 mL/h/kg) in humans was greater than twofold higher than typical IgG mAbs. Peak and trough steady‐state exposures of MYO‐029 in patients at biweekly intravenous doses of 10 mg/kg MYO‐029 are predicted to achieve only 50% and 10% of the maximum effect seen in monkeys, respectively. These retrospective analyses results suggest that the MYO‐029 exposures in this trial had a low probability of producing robust efficacy.
Collapse
Affiliation(s)
- P Singh
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer, Inc, Cambridge, Massachusetts, USA
| | - H Rong
- Shire Pharmaceutical, Lexington, Massachusetts, USA
| | - T Gordi
- Nektar Therapeutics, Inc, San Francisco, California, USA
| | - J Bosley
- Clermont Bosley LLC, Kennett Square, Pennsylvania, USA
| | - I Bhattacharya
- Clinical Pharmacology, Pfizer, Inc, Cambridge, Massachusetts, USA
| |
Collapse
|
17
|
Yang Y, Yang Y, Wang X, Du J, Hou J, Feng J, Tian Y, He L, Li X, Pei H. Does growth differentiation factor 11 protect against myocardial ischaemia/reperfusion injury? A hypothesis. J Int Med Res 2016; 45:1629-1635. [PMID: 27565745 PMCID: PMC5805180 DOI: 10.1177/0300060516658984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis of myocardial ischaemia/reperfusion injury is multifactorial. Understanding the mechanisms of myocardial ischaemia/reperfusion will benefit patients with ischaemic heart disease. Growth differentiation factor 11 (GDF11), a member of the secreted transforming growth factor-β superfamily, has been found to reverse age-related hypertrophy, revealing the important role of GDF11 in cardiovascular disease. However, the functions of GDF11 in myocardial ischaemia/reperfusion have not been elucidated yet. A number of signalling molecules are known to occur downstream of GDF11, including mothers against decapentaplegic homolog 3 (SMAD3) and forkhead box O3a (FOXO3a). A hypothesis is presented that GDF11 has protective effects in acute myocardial ischaemia/reperfusion injury through suppression of oxidative stress, prevention of calcium ion overload and promotion of the elimination of abnormal mitochondria via both canonical (SMAD3) and non-canonical (FOXO3a) pathways. Since circulating GDF11 may mainly derive from the spleen, the lack of a spleen may make the myocardium susceptible to damaging insults. Administration of GDF11 may be an efficacious therapy to protect against cardiovascular diseases in splenectomized patients.
Collapse
Affiliation(s)
- Yongjian Yang
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Yi Yang
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Xiong Wang
- 2 Department of Cardiology, Fourth Military Medical University, Xi'an, China
| | - Jin Du
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Juanni Hou
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Juan Feng
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Yue Tian
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Lei He
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Xiuchuan Li
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Haifeng Pei
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| |
Collapse
|
18
|
Rinaldi F, Zhang Y, Mondragon-Gonzalez R, Harvey J, Perlingeiro RCR. Treatment with rGDF11 does not improve the dystrophic muscle pathology of mdx mice. Skelet Muscle 2016; 6:21. [PMID: 27303621 PMCID: PMC4906773 DOI: 10.1186/s13395-016-0092-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 05/06/2016] [Indexed: 11/23/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is an inherited lethal muscle wasting disease characterized by cycles of degeneration and regeneration, with no effective therapy. Growth differentiation factor 11 (GDF11), a member of the TGF-β superfamily and myostatin homologous, has been reported to have the capacity to reverse age-related skeletal muscle loss. These initial findings led us to investigate the ability of GDF11 to promote regeneration in the context of muscular dystrophy and determine whether it could be a candidate to slow down or reverse the disease progression in DMD. Results Here, we delivered recombinant GDF11 (rGDF11) to dystrophin-deficient mice using the intra-peritoneal route for 30 days and evaluated histology and function in both steady-state and cardiotoxin-injured muscles. Our data confirmed that treatment with rGDF11 resulted in elevated levels of this factor in the circulation. However, this had no effect on muscle contractility nor on muscle histology. Moreover, no difference was found in the number of regenerating myofibers displaying centrally located nuclei. On the other hand, we did observe increased collagen content, which denotes fibrosis, in the muscles of rGDF11-treated dystrophic mice. Conclusions Taken together, our findings indicate no beneficial effect of treating dystrophic mice with rGDF11 and raise caution to a potential harmful effect, as shown by the pro-fibrotic outcome. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0092-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fabrizio Rinaldi
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455 USA
| | - Yu Zhang
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455 USA.,Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ricardo Mondragon-Gonzalez
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455 USA.,Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), México, D.F. Mexico
| | | | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455 USA
| |
Collapse
|
19
|
Zhang X, Wang L, Wu Y, Li W, An J, Zhang F, Liu M. Knockout of Myostatin by Zinc-finger Nuclease in Sheep Fibroblasts and Embryos. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:1500-7. [PMID: 27189642 PMCID: PMC5003977 DOI: 10.5713/ajas.16.0130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/30/2016] [Accepted: 04/22/2016] [Indexed: 02/07/2023]
Abstract
Myostatin (MSTN) can negatively regulate the growth and development of skeletal muscle, and natural mutations can cause "double-muscling" trait in animals. In order to block the inhibiting effect of MSTN on muscle growth, we transferred zinc-finger nucleases (ZFN) which targeted sheep MSTN gene into cultured fibroblasts. Gene targeted colonies were isolated from transfected fibroblasts by serial dilution culture and screened by sequencing. Two colonies were identified with mono-allele mutation and one colony with bi-allelic deletion. Further, we introduced the MSTN-ZFN mRNA into sheep embryos by microinjection. Thirteen of thirty-seven parthenogenetic embryos were targeted by ZFN, with the efficiency of 35%. Our work established the technical foundation for generation of MSTN gene editing sheep by somatic cloning and microinjection ZFN into embryos.
Collapse
Affiliation(s)
- Xuemei Zhang
- Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.,Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Animal, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang 830026, China.,Institute of animal biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang 830026, China
| | - Liqin Wang
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Animal, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang 830026, China.,Institute of animal biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang 830026, China
| | - Yangsheng Wu
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Animal, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang 830026, China.,Institute of animal biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang 830026, China
| | - Wenrong Li
- Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.,Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Animal, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang 830026, China.,Institute of animal biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang 830026, China
| | - Jing An
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Animal, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang 830026, China.,Institute of animal biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang 830026, China
| | - Fuchun Zhang
- Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Mingjun Liu
- Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.,Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Animal, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang 830026, China.,Institute of animal biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang 830026, China
| |
Collapse
|
20
|
Kornegay JN, Bogan DJ, Bogan JR, Dow JL, Wang J, Fan Z, Liu N, Warsing LC, Grange RW, Ahn M, Balog-Alvarez CJ, Cotten SW, Willis MS, Brinkmeyer-Langford C, Zhu H, Palandra J, Morris CA, Styner MA, Wagner KR. Dystrophin-deficient dogs with reduced myostatin have unequal muscle growth and greater joint contractures. Skelet Muscle 2016; 6:14. [PMID: 27047655 PMCID: PMC4819282 DOI: 10.1186/s13395-016-0085-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/24/2016] [Indexed: 09/02/2023] Open
Abstract
Background Myostatin (Mstn) is a negative regulator of muscle growth whose inhibition promotes muscle growth and regeneration. Dystrophin-deficient mdx mice in which myostatin is knocked out or inhibited postnatally have a less severe phenotype with greater total mass and strength and less fibrosis and fatty replacement of muscles than mdx mice with wild-type myostatin expression. Dogs with golden retriever muscular dystrophy (GRMD) have previously been noted to have increased muscle mass and reduced fibrosis after systemic postnatal myostatin inhibition. Based partly on these results, myostatin inhibitors are in development for use in human muscular dystrophies. However, persisting concerns regarding the effects of long-term and profound myostatin inhibition will not be easily or imminently answered in clinical trials. Methods To address these concerns, we developed a canine (GRippet) model by crossbreeding dystrophin-deficient GRMD dogs with Mstn-heterozygous (Mstn+/−) whippets. A total of four GRippets (dystrophic and Mstn+/−), three GRMD (dystrophic and Mstn wild-type) dogs, and three non-dystrophic controls from two litters were evaluated. Results Myostatin messenger ribonucleic acid (mRNA) and protein levels were downregulated in both GRMD and GRippet dogs. GRippets had more severe postural changes and larger (more restricted) maximal joint flexion angles, apparently due to further exaggeration of disproportionate effects on muscle size. Flexors such as the cranial sartorius were more hypertrophied on magnetic resonance imaging (MRI) in the GRippets, while extensors, including the quadriceps femoris, underwent greater atrophy. Myostatin protein levels negatively correlated with relative cranial sartorius muscle cross-sectional area on MRI, supporting a role in disproportionate muscle size. Activin receptor type IIB (ActRIIB) expression was higher in dystrophic versus control dogs, consistent with physiologic feedback between myostatin and ActRIIB. However, there was no differential expression between GRMD and GRippet dogs. Satellite cell exhaustion was not observed in GRippets up to 3 years of age. Conclusions Partial myostatin loss may exaggerate selective muscle hypertrophy or atrophy/hypoplasia in GRMD dogs and worsen contractures. While muscle imbalance is not a feature of myostatin inhibition in mdx mice, findings in a larger animal model could translate to human experience with myostatin inhibitors. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0085-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joe N Kornegay
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ; Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458 USA
| | - Daniel J Bogan
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Janet R Bogan
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Jennifer L Dow
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Jiahui Wang
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Zheng Fan
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Naili Liu
- The Hugo W. Moser Research Institute at Kennedy Krieger Institute and Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Leigh C Warsing
- The Hugo W. Moser Research Institute at Kennedy Krieger Institute and Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Robert W Grange
- Department of Human Nutrition, Foods and Exercise, Virginia Tech University, Blacksburg, VA 24061 USA
| | - Mihye Ahn
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Cynthia J Balog-Alvarez
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458 USA
| | - Steven W Cotten
- Department of Pathology, The Ohio State University, Columbus, OH 43210 USA
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Candice Brinkmeyer-Langford
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458 USA
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Joe Palandra
- Rare Disease Research Unit, Pfizer, Inc., Cambridge Park Drive, Cambridge, MA USA
| | - Carl A Morris
- Rare Disease Research Unit, Pfizer, Inc., Cambridge Park Drive, Cambridge, MA USA
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ; Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Kathryn R Wagner
- The Hugo W. Moser Research Institute at Kennedy Krieger Institute and Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
21
|
Rochette L, Zeller M, Cottin Y, Vergely C. Growth and differentiation factor 11 (GDF11): Functions in the regulation of erythropoiesis and cardiac regeneration. Pharmacol Ther 2015; 156:26-33. [DOI: 10.1016/j.pharmthera.2015.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Rao S, Fujimura T, Matsunari H, Sakuma T, Nakano K, Watanabe M, Asano Y, Kitagawa E, Yamamoto T, Nagashima H. Efficient modification of the myostatin gene in porcine somatic cells and generation of knockout piglets. Mol Reprod Dev 2015; 83:61-70. [PMID: 26488621 DOI: 10.1002/mrd.22591] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/16/2015] [Indexed: 02/04/2023]
Abstract
Myostatin (MSTN) is a negative regulator of myogenesis, and disruption of its function causes increased muscle mass in various species. Here, we report the generation of MSTN-knockout (KO) pigs using genome editing technology combined with somatic-cell nuclear transfer (SCNT). Transcription activator-like effector nuclease (TALEN) with non-repeat-variable di-residue variations, called Platinum TALEN, was highly efficient in modifying genes in porcine somatic cells, which were then used for SCNT to create MSTN KO piglets. These piglets exhibited a double-muscled phenotype, possessing a higher body weight and longissimus muscle mass measuring 170% that of wild-type piglets, with double the number of muscle fibers. These results demonstrate that loss of MSTN increases muscle mass in pigs, which may help increase pork production for consumption in the future.
Collapse
Affiliation(s)
- Shengbin Rao
- Research and Development Center, NH Foods Ltd., Tsukuba, Japan
| | | | - Hitomi Matsunari
- Department of Life Sciences, Laboratory of Development Engineering, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kazuaki Nakano
- Department of Life Sciences, Laboratory of Development Engineering, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Masahito Watanabe
- Department of Life Sciences, Laboratory of Development Engineering, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Yoshinori Asano
- Department of Life Sciences, Laboratory of Development Engineering, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Eri Kitagawa
- Research and Development Center, NH Foods Ltd., Tsukuba, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hiroshi Nagashima
- Department of Life Sciences, Laboratory of Development Engineering, School of Agriculture, Meiji University, Kawasaki, Japan
| |
Collapse
|
23
|
Luo J, Lei H, Shen L, Yang R, Pu Q, Zhu K, Li M, Tang G, Li X, Zhang S, Zhu L. Estimation of Growth Curves and Suitable Slaughter Weight of the Liangshan Pig. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1252-8. [PMID: 26194218 PMCID: PMC4554864 DOI: 10.5713/ajas.15.0010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/17/2015] [Accepted: 04/08/2015] [Indexed: 11/27/2022]
Abstract
The Liangshan pig is a traditional Chinese small-sized breed; it has a relatively long feeding period and low meat production ability but superior meat quality. This study utilized three non-linear growth models (Von Bertalanffy, Gompertz, and logistic) to fit the growth curve of Liangshan pigs from an unselected, random-bred pig population and estimate the pigs most suitable slaughter weight. The growth development data at 20 time points of 275 Liangshan pigs (from birth to 250 d) were collected. To analyze the relative gene expression related to development, seven slaughter weight phases (50, 58, 66, 74, 82, 90, and 98 kg) (20 pigs per phase) were examined. We found that the Liangshan pig growth curve fit the typical S-curve well and that their growth turning point was 193.4 days at a weight of 62.5 kg, according to the best fit Von Bertalanffy model based on the goodness of fit criteria. Furthermore, we estimated that the most suitable slaughter weight was 62.5 to 74.9 kg based on the growth curve and the relative expression levels of growth-related genes.
Collapse
Affiliation(s)
- Jia Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an 625014, China
| | - Huaigang Lei
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an 625014, China ; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an 625014, China
| | - Runlin Yang
- Mabian Gold LiangShan Agricultural Development Co., LTD, Mabian, Sichuan 614600, China
| | - Qiang Pu
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an 625014, China
| | - Kangping Zhu
- Sichuan Tequ Investment Group Ltd Co., Chengdou 610200, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an 625014, China
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an 625014, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an 625014, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an 625014, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
24
|
Dutt V, Gupta S, Dabur R, Injeti E, Mittal A. Skeletal muscle atrophy: Potential therapeutic agents and their mechanisms of action. Pharmacol Res 2015; 99:86-100. [DOI: 10.1016/j.phrs.2015.05.010] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/24/2015] [Accepted: 05/24/2015] [Indexed: 12/11/2022]
|
25
|
Tong C, Zhang C, Shi J, Qi H, Zhang R, Tang Y, Li G, Feng C, Zhao K. Characterization of two paralogous myostatin genes and evidence for positive selection in Tibet fish: Gymnocypris przewalskii. Gene 2015; 565:201-10. [DOI: 10.1016/j.gene.2015.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/13/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
|
26
|
Peiris HN, Ashman K, Vaswani K, Kvaskoff D, Rice GE, Mitchell MD. Method Development for the Detection of Human Myostatin by High-Resolution and Targeted Mass Spectrometry. J Proteome Res 2014; 13:3802-3809. [PMID: 24949862 DOI: 10.1021/pr5004642] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Myostatin, a highly conserved secretory protein, negatively regulates muscle development, affecting both the proliferation and differentiation of muscle cells. Proteolytic processing of the myostatin precursor protein generates a myostatin pro-peptide and mature protein. Dimerization of the mature myostatin protein creates the active form of myostatin. Myostatin dimer activity can be inhibited by noncovalent binding of two monomeric myostatin pro-peptides. This ability for myostatin to self-regulate as well as the altered expression of myostatin in states of abnormal health (e.g., muscle wasting) support the need for specific detection of myostatin forms. Current protein detection methods (e.g., Western blot) rely greatly on antibodies and are semiquantitative at best. Tandem mass spectometry (as in this study) provides a highly specific method of detection, enabling the characterization of myostatin protein forms through the analysis of discrete peptides fragments. Utilizing the scheduled high-resolution multiple reaction monitoring paradigm (sMRMHR; AB SCIEX 5600 TripleTOF) we identified the lower limit of quantitation (LLOQ) of both mature (DFGLDCDEHSTESR) and pro-peptide regions (ELIDQYDVQR) as 0.19 nmol/L. Furthermore, scheduled multiple reaction monitoring (sMRM; AB SCIEX QTRAP 5500) identified a LLOQ for a peptide of the pro-peptide region (LETAPNISK) as 0.16 nmol/L and a peptide of the mature region (EQIIYGK) as 0.25 nmol/L.
Collapse
Affiliation(s)
- Hassendrini Nileishika Peiris
- The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital , Herston, Brisbane QLD 4029, Australia
| | - Keith Ashman
- The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital , Herston, Brisbane QLD 4029, Australia
| | - Kanchan Vaswani
- The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital , Herston, Brisbane QLD 4029, Australia
| | - David Kvaskoff
- The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital , Herston, Brisbane QLD 4029, Australia
| | - Gregory Edward Rice
- The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital , Herston, Brisbane QLD 4029, Australia
| | - Murray David Mitchell
- The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital , Herston, Brisbane QLD 4029, Australia
| |
Collapse
|
27
|
Facioscapulohumeral muscular dystrophy. Biochim Biophys Acta Mol Basis Dis 2014; 1852:607-14. [PMID: 24882751 DOI: 10.1016/j.bbadis.2014.05.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 12/18/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is characterized by a typical and asymmetric pattern of muscle involvement and disease progression. Two forms of FSHD, FSHD1 and FSHD2, have been identified displaying identical clinical phenotype but different genetic and epigenetic basis. Autosomal dominant FSHD1 (95% of patients) is characterized by chromatin relaxation induced by pathogenic contraction of a macrosatellite repeat called D4Z4 located on the 4q subtelomere (FSHD1 patients harbor 1 to 10 D4Z4 repeated units). Chromatin relaxation is associated with inappropriate expression of DUX4, a retrogene, which in muscles induces apoptosis and inflammation. Consistent with this hypothesis, individuals carrying zero repeat on chromosome 4 do not develop FSHD1. Not all D4Z4 contracted alleles cause FSHD. Distal to the last D4Z4 unit, a polymorphic site with two allelic variants has been identified: 4qA and 4qB. 4qA is in cis with a functional polyadenylation consensus site. Only contractions on 4qA alleles are pathogenic because the DUX4 transcript is polyadenylated and translated into stable protein. FSHD2 is instead a digenic disease. Chromatin relaxation of the D4Z4 locus is caused by heterozygous mutations in the SMCHD1 gene encoding a protein essential for chromatin condensation. These patients also harbor at least one 4qA allele in order to express stable DUX4 transcripts. FSHD1 and FSHD2 may have an additive effect: patients harboring D4Z4 contraction and SMCHD1 mutations display a more severe clinical phenotype than with either defect alone. Knowledge of the complex genetic and epigenetic defects causing these diseases is essential in view of designing novel therapeutic strategies. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
|
28
|
Knockdown of endogenous myostatin promotes sheep myoblast proliferation. In Vitro Cell Dev Biol Anim 2013; 50:94-102. [PMID: 24052475 DOI: 10.1007/s11626-013-9689-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 09/06/2013] [Indexed: 02/06/2023]
Abstract
Myostatin (MSTN), is a known negative regulator of myogenesis. Silencing of the function of MSTN could result in increasing muscle mass in mice. To determine the function of endogenous MSTN expression on proliferation of sheep myoblasts, a short-hairpin RNA-targeting sheep MSTN was constructed into lentiviral vector to silence endogenous MSTN expression. We demonstrated that silencing of endogenous MSTN gene with up to approximately 73.3% reduction by short hairpin RNA (shRNA) resulted in significant increase (overall 28.3%) of proliferation of primary ovine myoblasts. The upregulation of proliferation was accompanied by the decrease expression of MyoD (-37.6%, p = 0.025), myogenin (-33.1%, p = 0.049), p21 (-49.3%, p = 0.046), and Smad3 (-50.0%, p = 0.007). Silencing of myostatin using shRNA may provide a feasible approach to improve meat productivity in farm animals.
Collapse
|
29
|
Tu PA, Lo LL, Chen YC, Hsu CC, Shiau JW, Lin EC, Lin RS, Wang PH. Polymorphisms in the promoter region of myostatin gene are associated with carcass traits in pigs. J Anim Breed Genet 2013; 131:116-22. [PMID: 24628723 DOI: 10.1111/jbg.12053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 07/19/2013] [Indexed: 11/29/2022]
Abstract
Higher average daily gain, more lean meat yield and less fat yield of porcine carcass increase selling profits for animal producers. Myostatin (MSTN), previously called GDF8, is a member of transforming growth factor-β (TGF-β) superfamily. It is a negative regulator for both embryonic development and adult homeostasis of skeletal muscle. In this study, the genotypes of the previously described SNPs MSTN g.435G>A and g.447A>G SNPs in 66 Duroc pigs, 33 Landrace pigs, 180 Duroc × Landrace (DL) pigs and 155 Duroc × Yorkshire × Landrace (DYL) pigs were determined by Taqman SNP Genotyping Assays. For Duroc and Landrace pigs, MSTN g.435GG/g.447AA individual had greater backfat thickness (p < 0.05) than g.435AA/g.447GG individual, whereas MSTN g.435AA/g.447GG had greater meat (p < 0.05) and meat percentage (p < 0.05) than g.435GA/g.447AG individual. For DL and DYL pigs, the MSTN g.435GG/g.447AA animals were greater in backfat at ultrasound 10th rib (p < 0.05) and carcass 10th rib (p < 0.01) than g.435AA/g.447GG individual. The MSTN g.435AA/g.447GG individual also had higher values than g.435GG/g.447AA for anterior-end meat (p < 0.05), posterior-end meat (p < 0.01), total meat weight (p < 0.01) and meat percentage (p < 0.01). This study confirmed evidence that MSTN g.435G>A and g.447A>G affected carcass traits in pigs. The effects of the mutated alleles were additive with the maximal effects resulting from two copies of the mutated allele. Selection for MSTN g.435A/g.447G allele is expected to increase muscle of limb and total meat production and decrease backfat thickness.
Collapse
Affiliation(s)
- P-A Tu
- Hengchun Branch, Livestock Research Institute, Council of Agriculture, Executive Yuan, Hengchun, Taiwan; Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Tu PA, Shiau JW, Ding ST, Lin EC, Wu MC, Wang PH. The association of genetic variations in the promoter region of myostatin gene with growth traits in Duroc pigs. Anim Biotechnol 2013; 23:291-8. [PMID: 23134308 DOI: 10.1080/10495398.2012.709205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Average daily gain (ADG) and feed efficiency (FE) are important factors for assessing productivity in farm animals. Myostatin (MSTN), previously called GDF8, is a member of transforming growth factor β (TGFβ) superfamily. It is a negative regulator for both embryonic development and adult homeostasis of skeletal muscle. In this study, the genotypes of MSTN g.435G > A and g.447A > G SNPs in Duroc pigs were determined. The 435GG/447AA individually had significantly higher ADG (P < 0.01), body weight at 70 d (P < 0.05) and 150 d (P < 0.01), and a lower age at 110 kg (P < 0.01) than 435AA/447GG individuals. Dose dependent genetic additive effects were found for the negative effects of the 435A/447 G allele for ADG and body weight on 70 d and 150 d. The 435A/447 G allele also increased the age at 110 kg about 1.47 and 4.53% for 1 and 2 copies, respectively. The MSTN 435 G/447A allele increased the age at 110 kg about 1.41 and 4.47% for 1 and 2 copies, respectively. Overall, the two mutated MSTN 435A/447G allele had negative effects on ADG (P < 0.01), body weight at 70 d (P < 0.05), and 150 d (P < 0.001) and increased the age at 110 kg (P < 0.001). The present study provided evidence that MSTN g.435G > A and g.447A > G affected growth in Duroc pigs. The effects of the mutated alleles were additive with the maximal effects resulting from two copies of the wild-type allele. Selection for the 435 G/447A allele is expected to increase ADG, body weight and decrease the age at 110 kg in Duroc pigs and might be used in porcine breeding programs.
Collapse
Affiliation(s)
- Po-An Tu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
31
|
Yasaka N, Suzuki K, Kishioka Y, Wakamatsu JI, Nishimura T. Laminin binds to myostatin and attenuates its signaling. Anim Sci J 2013; 84:663-8. [DOI: 10.1111/asj.12052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/16/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Naofumi Yasaka
- Meat Science Laboratory; Division of Bioresources and Bioproduction; Research Faculty of Agriculture; Hokkaido University; Sapporo; Japan
| | - Keisuke Suzuki
- Meat Science Laboratory; Division of Bioresources and Bioproduction; Research Faculty of Agriculture; Hokkaido University; Sapporo; Japan
| | - Yasuhiro Kishioka
- Meat Science Laboratory; Division of Bioresources and Bioproduction; Research Faculty of Agriculture; Hokkaido University; Sapporo; Japan
| | - Jun-ichi Wakamatsu
- Meat Science Laboratory; Division of Bioresources and Bioproduction; Research Faculty of Agriculture; Hokkaido University; Sapporo; Japan
| | - Takanori Nishimura
- Meat Science Laboratory; Division of Bioresources and Bioproduction; Research Faculty of Agriculture; Hokkaido University; Sapporo; Japan
| |
Collapse
|
32
|
GLPG0492, a novel selective androgen receptor modulator, improves muscle performance in the exercised-mdx mouse model of muscular dystrophy. Pharmacol Res 2013; 72:9-24. [PMID: 23523664 DOI: 10.1016/j.phrs.2013.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 11/22/2022]
Abstract
Anabolic drugs may counteract muscle wasting and dysfunction in Duchenne muscular dystrophy (DMD); however, steroids have unwanted side effects. We focused on GLPG0492, a new non-steroidal selective androgen receptor modulator that is currently under development for musculo-skeletal diseases such as sarcopenia and cachexia. GLPG0492 was tested in the exercised mdx mouse model of DMD in a 4-week trial at a single high dose (30 mg/kg, 6 day/week s.c.), and the results were compared with those from the administration of α-methylprednisolone (PDN; 1 mg/kg, i.p.) and nandrolone (NAND, 5 mg/kg, s.c.). This assessment was followed by a 12-week dose-dependence study (0.3-30 mg/kg s.c.). The outcomes were evaluated in vivo and ex vivo on functional, histological and biochemical parameters. Similar to PDN and NAND, GLPG0492 significantly increased mouse strength. In acute exhaustion tests, a surrogate of the 6-min walking test used in DMD patients, GLPG0492 preserved running performance, whereas vehicle- or comparator-treated animals showed a significant increase in fatigue (30-50%). Ex vivo, all drugs resulted in a modest but significant increase of diaphragm force. In parallel, a decrease in the non-muscle area and markers of fibrosis was observed in GLPG0492- and NAND-treated mice. The drugs exerted minor effects on limb muscles; however, electrophysiological biomarkers were ameliorated in extensor digitorum longus muscle. The longer dose-dependence study confirmed the effect on mdx mouse strength and resistance to fatigue and demonstrated the efficacy of lower drug doses on in vivo and ex vivo functional parameters. These results support the interest of further studies of GLPG0492 as a potential treatment for DMD.
Collapse
|
33
|
Malerba A, Kang JK, McClorey G, Saleh AF, Popplewell L, Gait MJ, Wood MJ, Dickson G. Dual Myostatin and Dystrophin Exon Skipping by Morpholino Nucleic Acid Oligomers Conjugated to a Cell-penetrating Peptide Is a Promising Therapeutic Strategy for the Treatment of Duchenne Muscular Dystrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2012; 1:e62. [PMID: 23250360 PMCID: PMC3528303 DOI: 10.1038/mtna.2012.54] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The knockdown of myostatin, a negative regulator of skeletal muscle mass may have
important implications in disease conditions accompanied by muscle mass loss like cancer,
HIV/AIDS, sarcopenia, muscle atrophy, and Duchenne muscular dystrophy (DMD). In DMD
patients, where major muscle loss has occurred due to a lack of dystrophin, the
therapeutic restoration of dystrophin expression alone in older patients may not be
sufficient to restore the functionality of the muscles. We recently demonstrated that
phosphorodiamidate morpholino oligomers (PMOs) can be used to re-direct myostatin splicing
and promote the expression of an out-of-frame transcript so reducing the amount of the
synthesized myostatin protein. Furthermore, the systemic administration of the same PMO
conjugated to an octaguanidine moiety (Vivo-PMO) led to a significant increase in the mass
of soleus muscle of treated mice. Here, we have further optimized the use of Vivo-PMO in
normal mice and also tested the efficacy of the same PMO conjugated to an arginine-rich
cell-penetrating peptide (B-PMO). Similar experiments conducted in mdx dystrophic mice
showed that B-PMO targeting myostatin is able to significantly increase the tibialis
anterior (TA) muscle weight and when coadministered with a B-PMO targeting the dystrophin
exon 23, it does not have a detrimental interaction. This study confirms that myostatin
knockdown by exon skipping is a potential therapeutic strategy to counteract muscle
wasting conditions and dual myostatin and dystrophin skipping has potential as a therapy
for DMD.
Collapse
Affiliation(s)
- Alberto Malerba
- 1] School of Biological Sciences, Royal Holloway, University of London, Surrey, UK [2] Department of Veterinary basic sciences, Royal Veterinary College, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
34
|
[cDNA cloning and expression analysis of MSTN gene from Schizopygopsis pylzovi]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2012; 33:473-80. [PMID: 23019028 DOI: 10.3724/sp.j.1141.2012.05473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Myostatin (MSTN) is a member of the TGF-β superfamily that acts as a negative regulator of skeletal muscle growth. A full-length, 2 180 bp, cDNA sequence of the myostatin gene from Schizopygopisis pylzovi was cloned with RT-PCR,5'-RACE and 3'-RACE and the cDNA clone included a 1 128 bp ORF, encoding a 375 amino acid peptide. Using PCR, we obtained the sequences of two introns of the MSTN gene and found that its structure in Schizopygopsis pylzovi was similar to that of other vertebrates, including three exons and two introns. Likewise, the putative MSTN peptide of Schizopygopsis pylzovi contains a conserved RXXR proteolytic cleavage domain, and 8 conserved cysteine residues in the C terminal of the protein, similar to other vertebrates. Phylogenetic analysis showed that the MSTN of Schizopygopsis pylzovi has high homology with other cyprinid fishes, but a low homology with mammals and birds. In the 9 examined tissues, the MSTN gene was highly expressed in heart, kidney, intestine and spermary, while weakly expressed in muscle, brain, fat, gill and hepatopancreas. Quantitative real-time PCR analysis showed that the expression of MSTN gene was different during embryo development, suggesting that the fish MSTN may not only play roles in muscle development but also contribute to other biological functions.
Collapse
|
35
|
Peiris HN, Mitchell MD. The expression and potential functions of placental myostatin. Placenta 2012; 33:902-7. [PMID: 22818745 DOI: 10.1016/j.placenta.2012.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 06/25/2012] [Accepted: 06/27/2012] [Indexed: 01/09/2023]
Abstract
Myostatin (growth differentiation factor-8; GDF-8) is a potent negative regulator of muscle development affecting both proliferation and differentiation. Myostatin has been reported to enhance the release of cytokines, including TNF-α (a pro-inflammatory cytokine involved in implantation). In the human placenta, myostatin production is negatively correlated with gestational age and has been implicated in the control of glucose uptake. Preliminary data indicate its expression is primarily localized to cytotrophoblast and syncytiotrophoblast. The role of myostatin in the placenta, however, remains to be fully elucidated. We speculate that myostatin is key regulator that contributes to placentation and the regulation of placental function throughout pregnancy.
Collapse
Affiliation(s)
- H N Peiris
- The University of Queensland Centre for Clinical Research, Queensland, Australia
| | | |
Collapse
|
36
|
Kornegay JN, Childers MK, Bogan DJ, Bogan JR, Nghiem P, Wang J, Fan Z, Howard JF, Schatzberg SJ, Dow JL, Grange RW, Styner MA, Hoffman EP, Wagner KR. The paradox of muscle hypertrophy in muscular dystrophy. Phys Med Rehabil Clin N Am 2012; 23:149-72, xii. [PMID: 22239881 DOI: 10.1016/j.pmr.2011.11.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mutations in the dystrophin gene cause Duchenne and Becker muscular dystrophy in humans and syndromes in mice, dogs, and cats. Affected humans and dogs have progressive disease that leads primarily to muscle atrophy. Mdx mice progress through an initial phase of muscle hypertrophy followed by atrophy. Cats have persistent muscle hypertrophy. Hypertrophy in humans has been attributed to deposition of fat and connective tissue (pseudohypertrophy). Increased muscle mass (true hypertrophy) has been documented in animal models. Muscle hypertrophy can exaggerate postural instability and joint contractures. Deleterious consequences of muscle hypertrophy should be considered when developing treatments for muscular dystrophy.
Collapse
Affiliation(s)
- Joe N Kornegay
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zwaagstra JC, Sulea T, Baardsnes J, Lenferink AEG, Collins C, Cantin C, Paul-Roc B, Grothe S, Hossain S, Richer LP, L'Abbé D, Tom R, Cass B, Durocher Y, O'Connor-McCourt MD. Engineering and therapeutic application of single-chain bivalent TGF-β family traps. Mol Cancer Ther 2012; 11:1477-87. [PMID: 22562986 DOI: 10.1158/1535-7163.mct-12-0060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Deregulation of TGF-β superfamily signaling is a causative factor in many diseases. Here we describe a protein engineering strategy for the generation of single-chain bivalent receptor traps for TGF-β superfamily ligands. Traps were assembled using the intrinsically disordered regions flanking the structured binding domain of each receptor as "native linkers" between two binding domains. This yields traps that are approximately threefold smaller than antibodies and consists entirely of native receptor sequences. Two TGF-β type II receptor-based, single-chain traps were designed, termed (TβRII)2 and (TβRIIb)2, that have native linker lengths of 35 and 60 amino acids, respectively. Both single-chain traps exhibit a 100 to 1,000 fold higher in vitro ligand binding and neutralization activity compared with the monovalent ectodomain (TβRII-ED), and a similar or slightly better potency than pan-TGF-β-neutralizing antibody 1D11 or an Fc-fused receptor trap (TβRII-Fc). Despite its short in vivo half-life (<1 hour), which is primarily due to kidney clearance, daily injections of the (TβRII)2 trap reduced the growth of 4T1 tumors in BALB/c mice by 50%, an efficacy that is comparable with 1D11 (dosed thrice weekly). In addition, (TβRII)2 treatment of mice with established 4T1 tumors (100 mm(3)) significantly inhibited further tumor growth, whereas the 1D11 antibody did not. Overall, our results indicate that our rationally designed bivalent, single-chain traps have promising therapeutic potential.
Collapse
Affiliation(s)
- John C Zwaagstra
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
LAURENTINO GILBERTOCANDIDO, UGRINOWITSCH CARLOS, ROSCHEL HAMILTON, AOKI MARCELOSALDANHA, SOARES ANTONIOGARCIA, NEVES MANOEL, AIHARA ANDRÉYUI, DA ROCHA CORREA FERNANDES ARTUR, TRICOLI VALMOR. Strength Training with Blood Flow Restriction Diminishes Myostatin Gene Expression. Med Sci Sports Exerc 2012; 44:406-12. [DOI: 10.1249/mss.0b013e318233b4bc] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Reutenauer-Patte J, Boittin FX, Patthey-Vuadens O, Ruegg UT, Dorchies OM. Urocortins improve dystrophic skeletal muscle structure and function through both PKA- and Epac-dependent pathways. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:749-62. [PMID: 22192627 DOI: 10.1016/j.ajpath.2011.10.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 10/14/2011] [Accepted: 10/23/2011] [Indexed: 02/03/2023]
Abstract
In Duchenne muscular dystrophy, the absence of dystrophin causes progressive muscle wasting and premature death. Excessive calcium influx is thought to initiate the pathogenic cascade, resulting in muscle cell death. Urocortins (Ucns) have protected muscle in several experimental paradigms. Herein, we demonstrate that daily s.c. injections of either Ucn 1 or Ucn 2 to 3-week-old dystrophic mdx(5Cv) mice for 2 weeks increased skeletal muscle mass and normalized plasma creatine kinase activity. Histological examination showed that Ucns remarkably reduced necrosis in the diaphragm and slow- and fast-twitch muscles. Ucns improved muscle resistance to mechanical stress provoked by repetitive tetanizations. Ucn 2 treatment resulted in faster kinetics of contraction and relaxation and a rightward shift of the force-frequency curve, suggesting improved calcium homeostasis. Ucn 2 decreased calcium influx into freshly isolated dystrophic muscles. Pharmacological manipulation demonstrated that the mechanism involved the corticotropin-releasing factor type 2 receptor, cAMP elevation, and activation of both protein kinase A and the cAMP-binding protein Epac. Moreover, both STIM1, the calcium sensor that initiates the assembly of store-operated channels, and the calcium-independent phospholipase A(2) that activates these channels were reduced in dystrophic muscle by Ucn 2. Altogether, our results demonstrate the high potency of Ucns for improving dystrophic muscle structure and function, suggesting that these peptides may be considered for treatment of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Julie Reutenauer-Patte
- Laboratory of Pharmacology, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
40
|
The C313Y Piedmontese mutation decreases myostatin covalent dimerisation and stability. BMC Res Notes 2011; 4:442. [PMID: 22023879 PMCID: PMC3213697 DOI: 10.1186/1756-0500-4-442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/24/2011] [Indexed: 11/20/2022] Open
Abstract
Background Myostatin is a key negative regulator of muscle growth and development, whose activity has important implications for the treatment of muscle wastage disorders. Piedmontese cattle display a double-muscled phenotype associated with the expression of C313Y mutant myostatin. In vivo, C313Y myostatin is proteolytically processed, exported and circulated extracellularly but fails to correctly regulate muscle growth. The C313Y mutation removes the C313-containing disulphide bond, an integral part of the characteristic TGF-β cystine-knot structural motif. Results Here we present in vitro analysis of the structure and stability of the C313Y myostatin protein that reveals significantly decreased covalent dimerisation for C313Y myostatin accompanied by a loss of structural stability compared to wild type. The C313Y myostatin growth factor, processed from full length precursor protein, fails to inhibit C2C12 myoblast proliferation in contrast to wild type myostatin. Although structural modeling shows the substitution of tyrosine causes structural perturbation, biochemical analysis of additional disulphide mutants, C313A and C374A, indicates that an intact cystine-knot motif is a major determinant in myostatin growth factor stability and covalent dimerisation. Conclusions This research shows that the cystine-knot structure is important for myostatin dimerisation and stability, and that disruption of this structural motif perturbs myostatin signaling.
Collapse
|
41
|
Abstract
Myostatin is an extracellular cytokine mostly expressed in skeletal muscles and known to play a crucial role in the negative regulation of muscle mass. Upon the binding to activin type IIB receptor, myostatin can initiate several different signalling cascades resulting in the upregulation of the atrogenes and downregulation of the important for myogenesis genes. Muscle size is regulated via a complex interplay of myostatin signalling with the insulin-like growth factor 1/phosphatidylinositol 3-kinase/Akt pathway responsible for increase in protein synthesis in muscle. Therefore, the regulation of muscle weight is a process in which myostatin plays a central role but the mechanism of its action and signalling cascades are not fully understood. Myostatin upregulation was observed in the pathogenesis of muscle wasting during cachexia associated with different diseases (i.e. cancer, heart failure, HIV). Characterisation of myostatin signalling is therefore a perspective direction in the treatment development for cachexia. The current review covers the present knowledge about myostatin signalling pathways leading to muscle wasting and the state of therapy approaches via the regulation of myostatin and/or its downstream targets in cachexia.
Collapse
|
42
|
Wilton SD, Fletcher S. Novel compounds for the treatment of Duchenne muscular dystrophy: emerging therapeutic agents. APPLICATION OF CLINICAL GENETICS 2011; 4:29-44. [PMID: 23776365 PMCID: PMC3681176 DOI: 10.2147/tacg.s8762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The identification of dystrophin and the causative role of mutations in this gene in Duchenne and Becker muscular dystrophies (D/BMD) was expected to lead to timely development of effective therapies. Despite over 20 years of research, corticosteroids remain the only available pharmacological treatment for DMD, although significant benefits and extended life have resulted from advances in the clinical care and management of DMD individuals. Effective treatment of DMD will require dystrophin restitution in skeletal, cardiac, and smooth muscles and nonmuscle tissues; however, modulation of muscle loss and regeneration has the potential to play an important role in altering the natural history of DMD, particularly in combination with other treatments. Emerging biological, molecular, and small molecule therapeutics are showing promise in ameliorating this devastating disease, and it is anticipated that regulatory environments will need to display some flexibility in order to accommodate the new treatment paradigms.
Collapse
Affiliation(s)
- Steve D Wilton
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Crawley, Perth, WA, Australia
| | | |
Collapse
|
43
|
Distrofia muscolare facio-scapolo-omerale. Neurologia 2011. [DOI: 10.1016/s1634-7072(11)70626-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
44
|
Fakhfakh R, Michaud A, Tremblay JP. Blocking the myostatin signal with a dominant negative receptor improves the success of human myoblast transplantation in dystrophic mice. Mol Ther 2011; 19:204-210. [PMID: 20700111 PMCID: PMC3017433 DOI: 10.1038/mt.2010.171] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 07/13/2010] [Indexed: 01/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a recessive disease caused by a dystrophin gene mutation. Myoblast transplantation permits to introduce the dystrophin gene in dystrophic muscle fibers. However, the success of this approach is reduced by the short duration of the regeneration following the transplantation, which reduces the number of hybrid fibers. Myostatin (MSTN) is a negative regulator of skeletal muscle development and responsible for limiting regeneration. It binds with high affinity to the activin type IIB receptor (ActRIIB). Our aim was to verify whether the success of the myoblast transplantation is enhanced by blocking the MSTN signal with expression of a dominant negative mutant of ActRIIB (dnActRIIB). In vitro, blocking MSTN activity with a lentivirus carrying dnActRIIB increased proliferation and fusion of human myoblasts because MSTN regulates the expression of several myogenic regulatory factors. In vivo, myoblasts infected with the dnActRIIB lentivirus were transplanted in immunodeficient dystrophic mice. Dystrophin immunostaining of tibialis anterior (TA) cross-sections of these mice 1 month post-transplantation revealed more human dystrophin-positive myofibers following the transplantation of dnActRIIB myoblasts than of control myoblasts. Thus, blocking the MSTN signal with dnActRIIB improved the success of myoblast transplantation by increasing the myoblast proliferation and fusion and changed the expression of myogenic regulatory factors.
Collapse
Affiliation(s)
- Raouia Fakhfakh
- Unité de recherche en Génétique Humaine, Centre de recherche de CHUL, CHUQ, Faculté de médecine, Université Laval, Sainte-Foy, Québec, Canada
| | | | | |
Collapse
|
45
|
McPherron AC. METABOLIC FUNCTIONS OF MYOSTATIN AND GDF11. IMMUNOLOGY, ENDOCRINE & METABOLIC AGENTS IN MEDICINAL CHEMISTRY 2010; 10:217-231. [PMID: 21197386 PMCID: PMC3011861 DOI: 10.2174/187152210793663810] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myostatin is a member of the transforming growth factor β superfamily of secreted growth factors that negatively regulates skeletal muscle size. Mice null for the myostatin gene have a dramatically increased mass of individual muscles, reduced adiposity, increased insulin sensitivity, and resistance to obesity. Myostatin inhibition in adult mice also increases muscle mass which raises the possibility that anti-myostatin therapy could be a useful approach for treating diseases such as obesity or diabetes in addition to muscle wasting diseases. In this review I will describe the present state of our understanding of the role of myostatin and the closely related growth factor growth/differentiation factor 11 on metabolism.
Collapse
Affiliation(s)
- Alexandra C McPherron
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland USA
| |
Collapse
|
46
|
Kang JK, Malerba A, Popplewell L, Foster K, Dickson G. Antisense-induced myostatin exon skipping leads to muscle hypertrophy in mice following octa-guanidine morpholino oligomer treatment. Mol Ther 2010; 19:159-64. [PMID: 20924365 DOI: 10.1038/mt.2010.212] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Myostatin is a negative regulator of muscle mass, and several strategies are being developed to knockdown its expression to improve muscle-wasting conditions. Strategies using antimyostatin-blocking antibodies, inhibitory-binding partners, signal transduction blockers, and RNA interference system (RNAi)-based knockdown have yielded promising results and increased muscle mass in experimental animals. These approaches have, however, a number of disadvantages such as transient effects or adverse immune complications. We report here the use of antisense oligonucleotides (AOs) to manipulate myostatin pre-mRNA splicing and knockdown myostatin expression. Both 2'O-methyl phosphorothioate RNA (2'OMePS) and phosphorodiamidate morpholino oligomers (PMO) led to efficient exon skipping in vitro and in vivo and knockdown of myostatin at the transcript level. The substantial myostatin exon skipping observed after systemic injection of Vivo-PMO into normal mice led to a significant increase in soleus muscle mass as compared to the controls injected with normal saline suggesting that this approach could be feasible to ameliorate muscle-wasting pathologies.
Collapse
Affiliation(s)
- Jagjeet K Kang
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey, UK
| | | | | | | | | |
Collapse
|
47
|
Abstract
The growth factor myostatin (Mstn) is a negative regulator of skeletal muscle mass. Mstn(-/-) muscles are hypertrophied, stronger, and more glycolytic than Mstn(+/+) muscles, suggesting that they might not perform endurance exercise as well as Mstn(+/+) mice. Indeed, it has previously been shown that treadmill exercise training reduces triceps weight in Mstn(-/-) mice. To analyze the response of Mstn(-/-) muscle to endurance exercise in detail, we carried out endurance training over 4 weeks to examine muscle mass, histology, and oxidative enzyme activity. We found that muscle mass was reduced with training in several muscles from both genotypes, with no evidence of muscle damage. Citrate synthase activity was increased with training in control and mutant mice. Non-trained Mstn(-/-) mice did, however, have lower maximal exercise capacity compared with Mstn(+/+) mice. These results show that Mstn(-/-) muscle retains the metabolic plasticity necessary to adapt normally to endurance training.
Collapse
Affiliation(s)
- Kathleen J. Savage
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland USA
| | - Alexandra C. McPherron
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland USA
| |
Collapse
|
48
|
Zeng L, Akasaki Y, Sato K, Ouchi N, Izumiya Y, Walsh K. Insulin-like 6 is induced by muscle injury and functions as a regenerative factor. J Biol Chem 2010; 285:36060-9. [PMID: 20807758 DOI: 10.1074/jbc.m110.160879] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The insulin-like family of factors are involved in the regulation of a variety of physiological processes, but the function of the family member termed insulin-like 6 (Insl6) in skeletal muscle has not been reported. We show that Insl6 is a myokine that is up-regulated in skeletal muscle downstream of Akt signaling and in regenerating muscle in response to cardiotoxin (CTX)-induced injury. In the CTX injury model, myofiber regeneration was improved by the intramuscular or systemic delivery of an adenovirus expressing Insl6. Skeletal muscle-specific Insl6 transgenic mice exhibited normal muscle mass under basal conditions but elevated satellite cell activation and enhanced muscle regeneration in response to CTX injury. The Insl6-mediated regenerative response was associated with reductions in muscle cell apoptosis and reduced serum levels of creatine kinase M. Overexpression of Insl6 stimulated proliferation and reduced apoptosis in cultured myogenic cells. Conversely, knockdown of Insl6 reduced proliferation and increased apoptosis. These data indicate that Insl6 is an injury-regulated myokine that functions as a myogenic regenerative factor.
Collapse
Affiliation(s)
- Ling Zeng
- Molecular Cardiology/Whitaker Cardiovascular Institute, Boston University Medical Campus, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
49
|
Long DB, Zhang KY, Chen DW, Ding XM, Yu B. Effects of active immunization against myostatin on carcass quality and expression of the myostatin gene in pigs. Anim Sci J 2010; 80:585-90. [PMID: 20163624 DOI: 10.1111/j.1740-0929.2009.00666.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The study was conducted to investigate the effects of active immunization against myostatin on the titer of myostatin antibody, carcass evaluation, activity of creatine kinase and the expression of the myostatin gene in pigs. Eighteen pigs were allotted into three groups (six pigs per group), and pigs in treatment 1, 2 and 3 were immunized with physiological saline, 1 mg or 4 mg myostatin per pig, respectively. Six pigs were killed by electrical stunning followed by exsanguination at BW of 100 kg. The results indicated that the titer of myostatin antibody was increased in treated groups compared to the control group on day 42 (P < 0.01) and d 84 (P < 0.01). The carcass lean percentage was significantly increased in the treatment groups compared to the control group (P < 0.01), and intramuscular fat was significantly decreased in the 4 mg group compared to the control group (P < 0.05). The muscle creatine kinase activity of pigs treated with 1 mg and 4 mg myostatin was lower than the control group. The immunization of myostatin significantly decreased the myostatin gene expression levels in muscle. It was concluded that optimal active immunization against myostatin could increase the content of myostatin antibody, suppress the activity of creatine kinase and the expression of myostatin gene, and therefore improve the carcass lean percentage for pigs.
Collapse
Affiliation(s)
- Ding-biao Long
- Institute of Animal Nutrition, and Animal Nutrition and Feed Engineering Key Laboratory of Sichuan Province, Sichuan Agricultural University, Yaan, Sichuan, China
| | | | | | | | | |
Collapse
|
50
|
Myostatin Gene Knockdown by Myostatin-specific Short Interfering Hairpin RNAs Increases MyoD Expression in C2C12 Myoblasts*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|