1
|
Stonadge A, Genzor AV, Russell A, Hamed MF, Romero N, Evans G, Pownall ME, Bekker-Jensen S, Blanco G. Myofibrillar myopathy hallmarks associated with ZAK deficiency. Hum Mol Genet 2023; 32:2751-2770. [PMID: 37427997 PMCID: PMC10789240 DOI: 10.1093/hmg/ddad113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023] Open
Abstract
The ZAK gene encodes two functionally distinct kinases, ZAKα and ZAKβ. Homozygous loss of function mutations affecting both isoforms causes a congenital muscle disease. ZAKβ is the only isoform expressed in skeletal muscle and is activated by muscle contraction and cellular compression. The ZAKβ substrates in skeletal muscle or the mechanism whereby ZAKβ senses mechanical stress remains to be determined. To gain insights into the pathogenic mechanism, we exploited ZAK-deficient cell lines, zebrafish, mice and a human biopsy. ZAK-deficient mice and zebrafish show a mild phenotype. In mice, comparative histopathology data from regeneration, overloading, ageing and sex conditions indicate that while age and activity are drivers of the pathology, ZAKβ appears to have a marginal role in myoblast fusion in vitro or muscle regeneration in vivo. The presence of SYNPO2, BAG3 and Filamin C (FLNC) in a phosphoproteomics assay and extended analyses suggested a role for ZAKβ in the turnover of FLNC. Immunofluorescence analysis of muscle sections from mice and a human biopsy showed evidence of FLNC and BAG3 accumulations as well as other myofibrillar myopathy markers. Moreover, endogenous overloading of skeletal muscle exacerbated the presence of fibres with FLNC accumulations in mice, indicating that ZAKβ signalling is necessary for an adaptive turnover of FLNC that allows for the normal physiological response to sustained mechanical stress. We suggest that accumulation of mislocalized FLNC and BAG3 in highly immunoreactive fibres contributes to the pathogenic mechanism of ZAK deficiency.
Collapse
Affiliation(s)
- Amy Stonadge
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Aitana V Genzor
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Alex Russell
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Mohamed F Hamed
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Norma Romero
- Unité de Morphologie Neuromusculaire Institut de Myologie - Inserm Sorbonne Université - GHU Pitié-Salpêtrière 47- 83, boulevard de l’Hôpital F-75 651 Paris, Cedex 13, France
| | - Gareth Evans
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Mary Elizabeth Pownall
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Gonzalo Blanco
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| |
Collapse
|
2
|
Cracknell T, Mannsverk S, Nichols A, Dowle A, Blanco G. Proteomic resolution of IGFN1 complexes reveals a functional interaction with the actin nucleating protein COBL. Exp Cell Res 2020; 395:112179. [PMID: 32768501 PMCID: PMC7584501 DOI: 10.1016/j.yexcr.2020.112179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 01/09/2023]
Abstract
The Igfn1 gene produces multiple proteins by alternative splicing predominantly expressed in skeletal muscle. Igfn1 deficient clones derived from C2C12 myoblasts show reduced fusion index and morphological differences compared to control myotubes. Here, we first show that G:F actin ratios are significantly higher in differentiating IGFN1-deficient C2C12 myoblasts, suggesting that fusion and differentiation defects are underpinned by deficient actin remodelling. We obtained pull-downs from skeletal muscle with IGFN1 fragments and applied a proteomics approach. The proteomic composition of IGFN1 complexes identified the cytoskeleton and an association with the proteasome as the main networks. The actin nucleating protein COBL was selected for further validation. COBL is expressed in C2C12 myoblasts from the first stages of myoblast fusion but not in proliferating cells. COBL is also expressed in adult muscle and, as IGFN1, localizes to the Z-disc. We show that IGFN1 interacts, stabilizes and colocalizes with COBL and prevents the ability of COBL to form actin ruffles in COS7 cells. COBL loss of function C2C12-derived clones are able to fuse, therefore indicating that COBL or the IGFN1/COBL interaction are not essential for myoblast fusion.
Collapse
Affiliation(s)
| | - Steinar Mannsverk
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Angus Nichols
- Department of Biology, University of York, York, YO32 5UQ, UK
| | - Adam Dowle
- Technology Facility, Department of Biology, University of York, York, YO32 5UQ, UK
| | - Gonzalo Blanco
- Department of Biology, University of York, York, YO32 5UQ, UK.
| |
Collapse
|
3
|
Jokl EJ, Hughes GL, Cracknell T, Pownall ME, Blanco G. Transcriptional upregulation of Bag3, a chaperone-assisted selective autophagy factor, in animal models of KY-deficient hereditary myopathy. Dis Model Mech 2018; 11:dmm033225. [PMID: 29914939 PMCID: PMC6078408 DOI: 10.1242/dmm.033225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/07/2018] [Indexed: 11/20/2022] Open
Abstract
The importance of kyphoscoliosis peptidase (KY) in skeletal muscle physiology has recently been emphasised by the identification of novel human myopathies associated with KY deficiency. Neither the pathogenic mechanism of KY deficiency nor a specific role for KY in muscle function have been established. However, aberrant localisation of filamin C (FLNC) in muscle fibres has been shown in humans and mice with loss-of-function mutations in the KY gene. FLNC turnover has been proposed to be controlled by chaperone-assisted selective autophagy (CASA), a client-specific and tension-induced pathway that is required for muscle maintenance. Here, we have generated new C2C12 myoblast and zebrafish models of KY deficiency by CRISPR/Cas9 mutagenesis. To obtain insights into the pathogenic mechanism caused by KY deficiency, expression of the co-chaperone BAG3 and other CASA factors was analyzed in the cellular, zebrafish and ky/ky mouse models. Ky-deficient C2C12-derived clones show trends of higher transcription of CASA factors in differentiated myotubes. The ky-deficient zebrafish model (kyyo1/kyyo1 ) lacks overt signs of pathology, but shows significantly increased bag3 and flnca/b expression in embryos and adult muscle. Additionally, kyyo1/kyyo1 embryos challenged by swimming in viscous media show an inability to further increase expression of these factors in contrast with wild-type controls. The ky/ky mouse shows elevated expression of Bag3 in the non-pathological exterior digitorum longus (EDL) and evidence of impaired BAG3 turnover in the pathological soleus. Thus, upregulation of CASA factors appears to be an early and primary molecular hallmark of KY deficiency.
Collapse
Affiliation(s)
- Elliot J Jokl
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Gideon L Hughes
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Tobias Cracknell
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Mary E Pownall
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Gonzalo Blanco
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| |
Collapse
|
4
|
Integrating genome and transcriptome profiling for elucidating the mechanism of muscle growth and lipid deposition in Pekin ducks. Sci Rep 2017. [PMID: 28630415 PMCID: PMC5476626 DOI: 10.1038/s41598-017-04178-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Muscle growth and lipid deposition are co-ordinately regulated processes. Cherry Valley Pekin duck is a lean-type duck breed with high growth rate, whereas the native Pekin duck of China has high lipid deposition. Phenotypic analysis showed that native Pekin ducks have smaller fibre diameter and larger density in the breast muscle at 3 weeks of age and higher intramuscular fat content at 6 weeks of age than those in Cherry Valley Pekin ducks. We detected 17 positively selected genes (PSGs) by comparing genes mainly involved with muscle organ development, muscle contraction, peroxisome proliferator activated receptor signalling pathway, and fatty acid metabolism. In all, 52 and 206 differentially expressed genes (DEGs) were identified in transcriptomic comparisons between the two breeds at 3 and 6 weeks of age, respectively, which could potentially affect muscle growth and lipid deposition. Based on the integration of PSGs and DEGs and their functional annotations, we found that 11 and 10 genes were correlated with muscle growth and lipid deposition, respectively. Identification of candidate genes controlling quantitative traits of duck muscle might aid in elucidating the mechanisms of muscle growth and lipid deposition and could help in improving duck breeding.
Collapse
|
5
|
Hedberg-Oldfors C, Darin N, Olsson Engman M, Orfanos Z, Thomsen C, van der Ven PFM, Oldfors A. A new early-onset neuromuscular disorder associated with kyphoscoliosis peptidase (KY) deficiency. Eur J Hum Genet 2016; 24:1771-1777. [PMID: 27485408 DOI: 10.1038/ejhg.2016.98] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/17/2016] [Accepted: 06/28/2016] [Indexed: 11/09/2022] Open
Abstract
We describe a new early-onset neuromuscular disorder due to a homozygous loss-of-function variant in the kyphoscoliosis peptidase gene (KY). A 7.5-year-old girl with walking difficulties from 2 years of age presented with generalized muscle weakness; mild contractures in the shoulders, hips and feet; cavus feet; and lordosis but no scoliosis. She had previously been operated with Achilles tendon elongation. Whole-body MRI showed atrophy and fatty infiltration in the calf muscles. Biopsy of the vastus lateralis muscle showed variability in fiber size, with some internalized nuclei and numerous very small fibers with variable expression of developmental myosin heavy chain isoforms. Some small fibers showed abnormal sarcomeres with thickened Z-discs and small nemaline rods. Whole-exome sequencing revealed a homozygous one-base deletion (c.1071delG, p.(Thr358Leufs*3)) in KY, predicted to result in a truncated protein. Analysis of an RNA panel showed that KY is predominantly expressed in skeletal muscle in humans. A recessive variant in the murine ortholog Ky was previously described in a spontaneously generated mouse mutant with kyphoscoliosis, which developed postnatally and was caused by dystrophy of postural muscles. The abnormal distribution of Xin and Ky-binding partner filamin C in the muscle fibers of our patient was highly similar to their altered localization in ky/ky mouse muscle fibers. We describe the first human case of disease associated with KY inactivation. As in the mouse model, the affected child showed a neuromuscular disorder - but in contrast, no kyphoscoliosis.
Collapse
Affiliation(s)
- Carola Hedberg-Oldfors
- Department of Pathology and Genetics, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Niklas Darin
- Department of Pediatrics, University of Gothenburg, The Queen Silvia Children's Hospital, Gothenburg, Sweden
| | | | - Zacharias Orfanos
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Christer Thomsen
- Department of Pathology and Genetics, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Anders Oldfors
- Department of Pathology and Genetics, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Otten C, van der Ven PF, Lewrenz I, Paul S, Steinhagen A, Busch-Nentwich E, Eichhorst J, Wiesner B, Stemple D, Strähle U, Fürst DO, Abdelilah-Seyfried S. Xirp proteins mark injured skeletal muscle in zebrafish. PLoS One 2012; 7:e31041. [PMID: 22355335 PMCID: PMC3280289 DOI: 10.1371/journal.pone.0031041] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 12/30/2011] [Indexed: 11/18/2022] Open
Abstract
Myocellular regeneration in vertebrates involves the proliferation of activated progenitor or dedifferentiated myogenic cells that have the potential to replenish lost tissue. In comparison little is known about cellular repair mechanisms within myocellular tissue in response to small injuries caused by biomechanical or cellular stress. Using a microarray analysis for genes upregulated upon myocellular injury, we identified zebrafish Xin-actin-binding repeat-containing protein1 (Xirp1) as a marker for wounded skeletal muscle cells. By combining laser-induced micro-injury with proliferation analyses, we found that Xirp1 and Xirp2a localize to nascent myofibrils within wounded skeletal muscle cells and that the repair of injuries does not involve cell proliferation or Pax7(+) cells. Through the use of Xirp1 and Xirp2a as markers, myocellular injury can now be detected, even though functional studies indicate that these proteins are not essential in this process. Previous work in chicken has implicated Xirps in cardiac looping morphogenesis. However, we found that zebrafish cardiac morphogenesis is normal in the absence of Xirp expression, and animals deficient for cardiac Xirp expression are adult viable. Although the functional involvement of Xirps in developmental and repair processes currently remains enigmatic, our findings demonstrate that skeletal muscle harbours a rapid, cell-proliferation-independent response to injury which has now become accessible to detailed molecular and cellular characterizations.
Collapse
Affiliation(s)
- Cécile Otten
- Max Delbrück Center (MDC) for Molecular Medicine, Berlin, Germany
| | - Peter F. van der Ven
- Department of Molecular Cell Biology, Institute of Cell Biology, University of Bonn, Bonn, Germany
| | - Ilka Lewrenz
- Department of Molecular Cell Biology, Institute of Cell Biology, University of Bonn, Bonn, Germany
| | - Sandeep Paul
- Institute for Toxicology and Genetics, Karlsruhe, Germany
- University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Almut Steinhagen
- Department of Molecular Cell Biology, Institute of Cell Biology, University of Bonn, Bonn, Germany
| | - Elisabeth Busch-Nentwich
- Vertebrate Development and Genetics, The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Jenny Eichhorst
- Leibniz Institute for Molecular Pharmacology, Berlin, Germany
| | | | - Derek Stemple
- Vertebrate Development and Genetics, The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Uwe Strähle
- Institute for Toxicology and Genetics, Karlsruhe, Germany
| | - Dieter O. Fürst
- Department of Molecular Cell Biology, Institute of Cell Biology, University of Bonn, Bonn, Germany
| | | |
Collapse
|
7
|
Nissar AA, Zemanek B, Labatia R, Atkinson DJ, van der Ven PFM, Fürst DO, Hawke TJ. Skeletal muscle regeneration is delayed by reduction in Xin expression: consequence of impaired satellite cell activation? Am J Physiol Cell Physiol 2012; 302:C220-7. [DOI: 10.1152/ajpcell.00298.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Xin is a striated muscle-specific actin-binding protein whose mRNA expression has been observed in damaged skeletal muscle. Here we demonstrate increased Xin protein expression early postinjury (≤12 h) and localization primarily to the periphery of damaged myofibers. At 1 day postinjury, Xin is colocalized with MyoD, confirming expression in activated satellite cells (SCs). By 5 days postinjury, Xin is evident in newly regenerated myofibers, with a return to preinjury levels by 14 days of regeneration. To determine whether the increased Xin expression is functionally relevant, tibialis anterior muscles of wild-type mice were infected with Xin-short hairpin RNA (shRNA) adenovirus, whereas the contralateral tibialis anterior received control adenovirus (Control). Four days postinfection, muscles were harvested or injured with cardiotoxin and collected at 3, 5, or 14 days thereafter. When compared with Control, Xin-shRNA infection attenuated muscle regeneration as demonstrated by Myh3 expression and fiber areas. Given the colocalization of Xin and MyoD, we isolated single myofibers from infected muscles to investigate the effect of silencing Xin on SC function. Relative to Control, SC activation, but not proliferation, was significantly impaired in Xin-shRNA-infected muscles. To determine whether Xin affects the G0-G1 transition, cell cycle reentry was assessed on infected C2C12 myoblasts using a methylcellulose assay. No difference in reentry was noted between groups, suggesting that Xin contributes to SC activation by means other than affecting G0-G1 transition. Together these data demonstrate a critical role for Xin in SC activation and reduction in Xin expression results in attenuated skeletal muscle repair.
Collapse
Affiliation(s)
- Aliyah A. Nissar
- Department of Pathology and Molecular Medicine, McMaster University. Hamilton, Ontario
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada; and
| | - Bart Zemanek
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada; and
| | - Rita Labatia
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada; and
| | - Daniel J. Atkinson
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada; and
| | | | - Dieter O. Fürst
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Thomas J. Hawke
- Department of Pathology and Molecular Medicine, McMaster University. Hamilton, Ontario
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada; and
| |
Collapse
|
8
|
Baker J, Riley G, Romero MR, Haynes AR, Hilton H, Simon M, Hancock J, Tateossian H, Ripoll VM, Blanco G. Identification of a Z-band associated protein complex involving KY, FLNC and IGFN1. Exp Cell Res 2010; 316:1856-70. [PMID: 20206623 DOI: 10.1016/j.yexcr.2010.02.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/11/2010] [Accepted: 02/24/2010] [Indexed: 12/21/2022]
Abstract
The KY protein underlies a form of muscular dystrophy in the mouse but its role in muscle remains elusive. Immunodetection of endogenous KY protein in C2C12-derived myotubes and expression of a recombinant form in neonatal cardiomyocytes indicated that KY is a Z-band associated protein. Moreover, characterization of a KY interacting protein fragment led to the identification of Igfn1 (Immunoglobulin-like and fibronectin type 3 domain containing 1). Igfn1 is a transcriptionally complex locus encoding many protein variants. A yeast two-hybrid screen identified the Z-band protein filamin C (FLNC) as an interacting partner. Consistent with this, expression of an IGFN1 recombinant fragment showed that the three N-terminal globular domains, common to at least five IGFN1 variants, are sufficient to provide Z-band targeting. Taken together, the yeast two-hybrid, biochemical and immunofluorescence data support the notion that KY, IGFN1 and FLNC are part of a Z-band associated protein complex likely to provide structural support to the skeletal muscle sarcomere.
Collapse
|
9
|
Muscle LIM protein interacts with cofilin 2 and regulates F-actin dynamics in cardiac and skeletal muscle. Mol Cell Biol 2009; 29:6046-58. [PMID: 19752190 DOI: 10.1128/mcb.00654-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The muscle LIM protein (MLP) and cofilin 2 (CFL2) are important regulators of striated myocyte function. Mutations in the corresponding genes have been directly associated with severe human cardiac and skeletal myopathies, and aberrant expression patterns have often been observed in affected muscles. Herein, we have investigated whether MLP and CFL2 are involved in common molecular mechanisms, which would promote our understanding of disease pathogenesis. We have shown for the first time, using a range of biochemical and immunohistochemical methods, that MLP binds directly to CFL2 in human cardiac and skeletal muscles. The interaction involves the inter-LIM domain, amino acids 94 to 105, of MLP and the amino-terminal domain, amino acids 1 to 105, of CFL2, which includes part of the actin depolymerization domain. The MLP/CFL2 complex is stronger in moderately acidic (pH 6.8) environments and upon CFL2 phosphorylation, while it is independent of Ca(2+) levels. This interaction has direct implications in actin cytoskeleton dynamics in regulating CFL2-dependent F-actin depolymerization, with maximal depolymerization enhancement at an MLP/CFL2 molecular ratio of 2:1. Deregulation of this interaction by intracellular pH variations, CFL2 phosphorylation, MLP or CFL2 gene mutations, or expression changes, as observed in a range of cardiac and skeletal myopathies, could impair F-actin depolymerization, leading to sarcomere dysfunction and disease.
Collapse
|
10
|
Abstract
The backbone of the third filament system of the sarcomere is the huge titin molecule, spanning from the sarcomeric Z-disc to the M-line. Proteins in direct interaction and functionally integrated with titin, such as calpain 3 and telethonin, are part of the third filament system. The third filament system provides support to the contractile filament systems during development and mature states including mechanical properties and regulatory signaling functions. The first mutations in the third filament system causing human muscle disease were identified in calpain 3 in 1995, followed by telethonin and titin. In spite of some early ideas on what is going wrong in the muscle cells based on the defective proteins, the exact molecular pathomechanisms leading to muscle atrophy in patients with these disorders are still unknown. However, preparations for direct trials of gene therapy have already been launched, at least for calpainopathy.
Collapse
Affiliation(s)
- Bjarne Udd
- Department of Neurology, Tampere University Hospital and Medical School, Tampere, Finland.
| |
Collapse
|
11
|
Bibliography. Current world literature. Neuro-muscular diseases: nerve. Curr Opin Neurol 2007; 20:600-4. [PMID: 17885452 DOI: 10.1097/wco.0b013e3282efeb3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Hawke TJ, Atkinson DJ, Kanatous SB, Van der Ven PFM, Goetsch SC, Garry DJ. Xin, an actin binding protein, is expressed within muscle satellite cells and newly regenerated skeletal muscle fibers. Am J Physiol Cell Physiol 2007; 293:C1636-44. [PMID: 17855775 DOI: 10.1152/ajpcell.00124.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Xin is a muscle-specific actin binding protein of which its role and regulation within skeletal muscle is not well understood. Here we demonstrate that Xin mRNA is robustly upregulated (>16-fold) within 12 h of skeletal muscle injury and is localized to the muscle satellite cell population. RT-PCR confirmed the expression pattern of Xin during regeneration, as well as within primary muscle myoblast cultures, but not other known stem cell populations. Immunohistochemical staining of single myofibers demonstrate Xin expression colocalized with the satellite cell marker Syndecan-4 further supporting the mRNA expression of Xin in satellite cells. In situ hybridization of regenerating muscle 5-7 days postinjury illustrates Xin expression within newly regenerated myofibers. Promoter-reporter assays demonstrate that known myogenic transcription factors [myocyte enhancer factor-2 (MEF2), myogenic differentiation-1 (MyoD), and myogenic factor-5 (Myf-5)] transactivate Xin promoter constructs supporting the muscle-specific expression of Xin. To determine the role of Xin within muscle precursor cells, proliferation, migration, and differentiation analysis using Xin, short hairpin RNA (shRNA) were undertaken in C2C12 myoblasts. Reducing endogenous Xin expression resulted in a 26% increase (P < 0.05) in cell proliferation and a 20% increase (P < 0.05) in myoblast migratory capacity. Skeletal muscle myosin heavy chain protein levels were increased (P < 0.05) with Xin shRNA administration; however, this was not accompanied by changes in myoglobin protein (another marker of differentiation) nor overt morphological differences relative to differentiating control cells. Taken together, the present findings support the hypothesis that Xin is expressed within muscle satellite cells during skeletal muscle regeneration and is involved in the regulation of myoblast function.
Collapse
MESH Headings
- Animals
- Cell Line
- Cell Movement
- Cell Proliferation
- Cobra Cardiotoxin Proteins
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Models, Animal
- Genes, Reporter
- Immunohistochemistry
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscle Development
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/embryology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Muscular Diseases/chemically induced
- Muscular Diseases/genetics
- Muscular Diseases/metabolism
- Muscular Diseases/physiopathology
- Myogenic Regulatory Factors/genetics
- Myogenic Regulatory Factors/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Promoter Regions, Genetic
- RNA Interference
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Regeneration
- Reverse Transcriptase Polymerase Chain Reaction
- Satellite Cells, Skeletal Muscle/metabolism
- Syndecan-4/metabolism
- Time Factors
- Transcriptional Activation
- Up-Regulation
Collapse
Affiliation(s)
- Thomas J Hawke
- School of Kinesiology and Health Science, York Univ., 4700 Keele St., Toronto ON. Canada.
| | | | | | | | | | | |
Collapse
|