1
|
Hnilicova P, Grendar M, Turcanova Koprusakova M, Trancikova Kralova A, Harsanyiova J, Krssak M, Just I, Misovicova N, Hikkelova M, Grossmann J, Spalek P, Meciarova I, Kurca E, Zilka N, Zelenak K, Bogner W, Kolisek M. Brain of miyoshi myopathy/dysferlinopathy patients presents with structural and metabolic anomalies. Sci Rep 2024; 14:19267. [PMID: 39164335 PMCID: PMC11336102 DOI: 10.1038/s41598-024-69966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Miyoshi myopathy/dysferlinopathy (MMD) is a rare muscle disease caused by DYSF gene mutations. Apart from skeletal muscles, DYSF is also expressed in the brain. However, the impact of MMD-causing DYSF variants on brain structure and function remains unexplored. To investigate this, we utilized magnetic resonance (MR) modalities (MR volumetry and 31P MR spectroscopy) in a family with seven children, four of whom have the illness. The MMD siblings showed distinct differences from healthy controls: (1) a significant (p < 0.001) right-sided volume asymmetry (+ 232 mm3) of the inferior lateral ventricles; and (2) a significant (p < 0.001) decrease in [Mg2+], along with a modified energy metabolism profile and altered membrane turnover in the hippocampus and motor and premotor cortices. The patients' [Mg2+], energy metabolism, and membrane turnover measures returned to those of healthy relatives after a month of 400 mg/day magnesium supplementation. This work is the first to describe anatomical and functional abnormalities characteristic of neurodegeneration in the MMD brain. Therefore, we call for further examination of brain functions in larger cohorts of MMD patients and testing of magnesium supplementation, which has proven to be an effective corrective approach in our study.
Collapse
Affiliation(s)
- Petra Hnilicova
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovakia
| | - Marian Grendar
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovakia
| | - Monika Turcanova Koprusakova
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Alzbeta Trancikova Kralova
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovakia
| | - Jana Harsanyiova
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovakia
| | - Martin Krssak
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field MR Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ivica Just
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | | | | | - Jan Grossmann
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Peter Spalek
- Center for Neuromuscular Disease, Clinic of Neurology, University Hospital Bratislava, Slovak Medical University in Bratislava, Pazitkova 4, 83303, Bratislava, Slovakia
| | - Iveta Meciarova
- Department of Pathology, Unilabs Slovensko Patologia s.r.o., Ruzinovska 6, 82606, Bratislava, Slovakia
| | - Egon Kurca
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 5779/9, 84510, Bratislava, Slovakia
| | - Kamil Zelenak
- Clinic of Radiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Wolfgang Bogner
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field MR Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Martin Kolisek
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovakia.
| |
Collapse
|
2
|
Kalyta K, Stelmaszczyk W, Szczęśniak D, Kotuła L, Dobosz P, Mroczek M. The Spectrum of the Heterozygous Effect in Biallelic Mendelian Diseases-The Symptomatic Heterozygote Issue. Genes (Basel) 2023; 14:1562. [PMID: 37628614 PMCID: PMC10454578 DOI: 10.3390/genes14081562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Heterozygous carriers of pathogenic/likely pathogenic variants in autosomal recessive disorders seem to be asymptomatic. However, in recent years, an increasing number of case reports have suggested that mild and unspecific symptoms can occur in some heterozygotes, as symptomatic heterozygotes have been identified across different disease types, including neurological, neuromuscular, hematological, and pulmonary diseases. The symptoms are usually milder in heterozygotes than in biallelic variants and occur "later in life". The status of symptomatic heterozygotes as separate entities is often disputed, and alternative diagnoses are considered. Indeed, often only a thin line exists between dual, dominant, and recessive modes of inheritance and symptomatic heterozygosity. Interestingly, recent population studies have found global disease effects in heterozygous carriers of some genetic variants. What makes the few heterozygotes symptomatic, while the majority show no symptoms? The molecular basis of this phenomenon is still unknown. Possible explanations include undiscovered deep-splicing variants, genetic and environmental modifiers, digenic/oligogenic inheritance, skewed methylation patterns, and mutational burden. Symptomatic heterozygotes are rarely reported in the literature, mainly because most did not undergo the complete diagnostic procedure, so alternative diagnoses could not be conclusively excluded. However, despite the increasing accessibility to high-throughput technologies, there still seems to be a small group of patients with mild symptoms and just one variant of autosomes in biallelic diseases. Here, we present some examples, the current state of knowledge, and possible explanations for this phenomenon, and thus argue against the existing dominant/recessive classification.
Collapse
Affiliation(s)
- Kateryna Kalyta
- School of Life Sciences, FHNW—University of Applied Sciences, 4132 Muttenz, Switzerland;
| | - Weronika Stelmaszczyk
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK;
| | - Dominika Szczęśniak
- Institute of Psychiatry and Neurology in Warsaw, Genetics Department, 02-957 Warsaw, Poland;
| | - Lidia Kotuła
- Department of Genetics, Medical University, 20-080 Lublin, Poland;
| | - Paula Dobosz
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland;
| | - Magdalena Mroczek
- University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
3
|
Folland C, Johnsen R, Gomez AB, Trajanoski D, Davis MR, Moore U, Straub V, Barresi R, Guglieri M, Hayhurst H, Schaefer AM, Laing NG, Lamont PJ, Ravenscroft G. Identification of a novel heterozygous DYSF variant in a large family with a dominantly-inherited dysferlinopathy. Neuropathol Appl Neurobiol 2022; 48:e12846. [PMID: 35962550 DOI: 10.1111/nan.12846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 11/27/2022]
Abstract
AIMS Dysferlinopathy is an autosomal recessive muscular dystrophy, caused by bi-allelic variants in the gene encoding dysferlin (DYSF). Onset typically occurs in the second to third decade and is characterised by slowly progressive skeletal muscle weakness and atrophy of the proximal and/or distal muscles of the four limbs. There are rare cases of symptomatic DYSF variant carriers. Here, we report a large family with a dominantly inherited hyperCKaemia and late-onset muscular dystrophy. METHODS AND RESULTS Genetic analysis identified a co-segregating novel DYSF variant [NM_003494.4:c.6207del p.(Tyr2070Metfs*4)]. No secondary variants in DYSF or other dystrophy-related genes were identified on whole genome sequencing and analysis of the proband's DNA. Skeletal muscle involvement was milder and later onset than typical dysferlinopathy presentations; these clinical signs manifested in four individuals, all between the fourth and sixth decades of life. All individuals heterozygous for the c.6207del variant had hyperCKaemia. Histological analysis of skeletal muscle biopsies across three generations showed clear dystrophic signs, including inflammatory infiltrates, regenerating myofibres, increased variability in myofibre size, and internal nuclei. Muscle magnetic resonance imaging revealed fatty replacement of muscle in two individuals. Western blot and immunohistochemical analysis of muscle biopsy demonstrated consistent reduction of dysferlin staining. Allele-specific quantitative PCR analysis of DYSF mRNA from patient muscle found that the variant, localised to the extreme C-terminus of dysferlin, does not activate post-transcriptional mRNA decay. CONCLUSIONS We propose that this inheritance pattern may be underappreciated and that other late-onset muscular dystrophy cases with mono-allelic DYSF variants, particularly C-terminal premature truncation variants, may represent dominant forms of disease.
Collapse
Affiliation(s)
- Chiara Folland
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Russell Johnsen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Australia
| | - Adriana Botero Gomez
- Department of Diagnostic Genomics, Department of Health, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Daniel Trajanoski
- Department of Diagnostic Genomics, Department of Health, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Mark R Davis
- Department of Diagnostic Genomics, Department of Health, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Ursula Moore
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | | | - Michela Guglieri
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Hannah Hayhurst
- Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Andrew M Schaefer
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Nigel G Laing
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | | | - Gianina Ravenscroft
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| |
Collapse
|
4
|
Angelini C, Pegoraro V. Assessing diagnosis and managing respiratory and cardiac complications of sarcoglycanopathy. Expert Opin Orphan Drugs 2021. [DOI: 10.1080/21678707.2020.1865916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Corrado Angelini
- Center for Neuromuscular Diseases, IRCCS San Camillo Hospital, Venice, Italy
| | - Valentina Pegoraro
- Center for Neuromuscular Diseases, IRCCS San Camillo Hospital, Venice, Italy
| |
Collapse
|
5
|
A novel dysferlin gene mutation in a Filipino male with Miyoshi myopathy. Clin Neurol Neurosurg 2020; 201:106433. [PMID: 33348118 DOI: 10.1016/j.clineuro.2020.106433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 11/23/2022]
|
6
|
González-Mera L, Ravenscroft G, Cabrera-Serrano M, Ermolova N, Domínguez-González C, Arteche-López A, Soltanzadeh P, Evesson F, Navas C, Mavillard F, Clayton J, Rodrigo P, Servián-Morilla E, Cooper ST, Waddell L, Reardon K, Corbett A, Hernandez-Laín A, Sanchez A, Esteban Perez J, Paradas-Lopez C, Rivas-Infante E, Spencer M, Laing N, Olivé M. Heterozygous CAPN3 missense variants causing autosomal-dominant calpainopathy in seven unrelated families. Neuropathol Appl Neurobiol 2020; 47:283-296. [PMID: 32896923 DOI: 10.1111/nan.12663] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/03/2020] [Accepted: 08/22/2020] [Indexed: 01/05/2023]
Abstract
AIMS Recessive variants in CAPN3 gene are the cause of the commonest form of autosomal recessive limb girdle muscle dystrophy. However, two distinct in-frame deletions in CAPN3 (NM_000070.3:c.643_663del21 and c.598_621del15) and more recently, Gly445Arg and Arg572Pro substitutions have been linked to autosomal dominant (AD) forms of calpainopathy. We report 21 affected individuals from seven unrelated families presenting with an autosomal dominant form of muscular dystrophy associated with five different heterozygous missense variants in CAPN. METHODS We have used massively parallel gene sequencing (MPS) to determine the genetic basis of a dominant form of limb girdle muscular dystrophy in affected individuals from seven unrelated families. RESULTS The c.700G> A, [p.(Gly234Arg)], c.1327T> C [p.(Ser443Pro], c.1333G> A [p.(Gly445Arg)], c.1661A> C [p.(Tyr554Ser)] and c.1706T> C [p.(Phe569Ser)] CAPN3 variants were identified. Affected individuals presented in young adulthood with progressive proximal and axial weakness, waddling walking and scapular winging or with isolated hyperCKaemia. Muscle imaging showed fatty replacement of paraspinal muscles, variable degrees of involvement of the gluteal muscles, and the posterior compartment of the thigh and minor changes at the mid-leg level. Muscle biopsies revealed mild myopathic changes. Western blot analysis revealed a clear reduction in calpain 3 in skeletal muscle relative to controls. Protein modelling of these variants on the predicted structure of calpain 3 revealed that all variants are located in proximity to the calmodulin-binding site and are predicted to interfere with proteolytic activation. CONCLUSIONS We expand the genotypic spectrum of CAPN3-associated muscular dystrophy due to autosomal dominant missense variants.
Collapse
Affiliation(s)
- L González-Mera
- Neuropathology Unit, Department of Pathology, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - G Ravenscroft
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - M Cabrera-Serrano
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, WA, Australia.,Neurology Department, Hospital Universitario Virgen del Rocío, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocıo/CSIC, Universidad de Sevilla, Sevilla, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - N Ermolova
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - C Domínguez-González
- Neuromuscular Unit, Department of Neurology, Hospital Universitario 12 de Octubre, Research Institute imas12, Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - A Arteche-López
- Department of Genetic, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - P Soltanzadeh
- Departments of Neurology and Physiology, David Geffen School of Medicine, UCLA, University of California, Los Angeles, CA, USA
| | - F Evesson
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW, Australia.,The Children's Medical Research Institute, Westmead, NSW, Australia
| | - C Navas
- Neuropathology Unit, Department of Pathology, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - F Mavillard
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocıo/CSIC, Universidad de Sevilla, Sevilla, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - J Clayton
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - P Rodrigo
- Neuropathology Unit, Department of Pathology, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - E Servián-Morilla
- Neurology Department, Hospital Universitario Virgen del Rocío, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocıo/CSIC, Universidad de Sevilla, Sevilla, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - S T Cooper
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW, Australia.,The Children's Medical Research Institute, Westmead, NSW, Australia.,Discipline of Child and Adolescent Health, Faculty of Health and Medicine, University of Sydney, Westmead, NSW, Australia
| | - L Waddell
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW, Australia.,Discipline of Child and Adolescent Health, Faculty of Health and Medicine, University of Sydney, Westmead, NSW, Australia
| | - K Reardon
- St. Vincent's Melbourne Neuromuscular Diagnostic Laboratory, Department of Clinical Neurosciences and Neurological Research, St Vincent's Hospital, Melbourne, VIC, Australia
| | - A Corbett
- Department of Neurology, Concord General Repatriation Hospital, Sydney, NSW, Australia
| | - A Hernandez-Laín
- Department of Pathology, Neuropathology Unit. Hospital Universitario 12 de Octubre, Madrid, Spain
| | - A Sanchez
- Institut de Diagnòstic per la imatge (IDI), IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - J Esteban Perez
- Neuromuscular Unit, Department of Neurology, Hospital Universitario 12 de Octubre, Research Institute imas12, Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - C Paradas-Lopez
- Neurology Department, Hospital Universitario Virgen del Rocío, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocıo/CSIC, Universidad de Sevilla, Sevilla, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - E Rivas-Infante
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neuropathology, Hospital U. Virgen del Rocío/Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - M Spencer
- Department of Neurology, Neuromuscular Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - N Laing
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - M Olivé
- Neuropathology Unit, Department of Pathology, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
7
|
Sreetama SC, Chandra G, Van der Meulen JH, Ahmad MM, Suzuki P, Bhuvanendran S, Nagaraju K, Hoffman EP, Jaiswal JK. Membrane Stabilization by Modified Steroid Offers a Potential Therapy for Muscular Dystrophy Due to Dysferlin Deficit. Mol Ther 2018; 26:2231-2242. [PMID: 30166241 PMCID: PMC6127637 DOI: 10.1016/j.ymthe.2018.07.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 07/15/2018] [Accepted: 07/24/2018] [Indexed: 11/16/2022] Open
Abstract
Mutations of the DYSF gene leading to reduced dysferlin protein level causes limb girdle muscular dystrophy type 2B (LGMD2B). Dysferlin facilitates sarcolemmal membrane repair in healthy myofibers, thus its deficit compromises myofiber repair and leads to chronic muscle inflammation. An experimental therapeutic approach for LGMD2B is to protect damage or improve repair of myofiber sarcolemma. Here, we compared the effects of prednisolone and vamorolone (a dissociative steroid; VBP15) on dysferlin-deficient myofiber repair. Vamorolone, but not prednisolone, stabilized dysferlin-deficient muscle cell membrane and improved repair of dysferlin-deficient mouse (B6A/J) myofibers injured by focal sarcolemmal damage, eccentric contraction-induced injury or injury due to spontaneous in vivo activity. Vamorolone decreased sarcolemmal lipid mobility, increased muscle strength, and decreased late-stage myofiber loss due to adipogenic infiltration. In contrast, the conventional glucocorticoid prednisolone failed to stabilize dysferlin deficient muscle cell membrane or improve repair of dysferlinopathic patient myoblasts and mouse myofibers. Instead, prednisolone treatment increased muscle weakness and myofiber atrophy in B6A/J mice—findings that correlate with reports of prednisolone worsening symptoms of LGMD2B patients. Our findings showing improved cellular and pre-clinical efficacy of vamorolone compared to prednisolone and better safety profile of vamorolone indicates the suitability of vamorolone for clinical trials in LGMD2B.
Collapse
Affiliation(s)
- Sen Chandra Sreetama
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Goutam Chandra
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Jack H Van der Meulen
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Mohammad Mahad Ahmad
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Peter Suzuki
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Shivaprasad Bhuvanendran
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA
| | - Eric P Hoffman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA; Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA.
| |
Collapse
|
8
|
Jalali-Sefid-Dashti M, Nel M, Heckmann JM, Gamieldien J. Exome sequencing identifies novel dysferlin mutation in a family with pauci-symptomatic heterozygous carriers. BMC MEDICAL GENETICS 2018; 19:95. [PMID: 29879922 PMCID: PMC5992709 DOI: 10.1186/s12881-018-0613-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND We investigated a South African family of admixed ancestry in which the first generation (G1) developed insidious progressive distal to proximal weakness in their twenties, while their offspring (G2) experienced severe unexpected symptoms of myalgia and cramps since adolescence. Our aim was to identify deleterious mutations that segregate with the affected individuals in this family. METHODS Exome sequencing was performed on five cases, which included three affected G1 siblings and two pauci-symptomatic G2 offspring. As controls we included an unaffected G1 sibling and a spouse of one of the G1 affected individuals. Homozygous or potentially compound heterozygous variants that were predicted to be functional and segregated with the affected G1 siblings, were further evaluated. Additionally, we considered variants in all genes segregating exclusively with the affected (G1) and pauci-symptomatic (G2) individuals to address the possibility of a pseudo-autosomal dominant inheritance pattern in this family. RESULTS All affected G1 individuals were homozygous for a novel truncating p.Tyr1433Ter DYSF (dysferlin) mutation, with their asymptomatic sibling and both pauci-symptomatic G2 offspring carrying only a single mutant allele. Sanger sequencing confirmed segregation of the variant. No additional potentially contributing variant was found in the DYSF or any other relevant gene in the pauci-symptomatic carriers. CONCLUSION Our finding of a truncating dysferlin mutation confirmed dysferlinopathy in this family and we propose that the single mutant allele is the primary contributor to the neuromuscular symptoms seen in the second-generation pauci-symptomatic carriers.
Collapse
Affiliation(s)
- Mahjoubeh Jalali-Sefid-Dashti
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, 7535, South Africa
| | - Melissa Nel
- Division of Neurology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Jeannine M Heckmann
- E8-74, Neurology, New Groote Schuur Hospital Observatory, Cape Town, 7925, South Africa
| | - Junaid Gamieldien
- South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa.
| |
Collapse
|
9
|
Angelini C, Fanin M. Limb girdle muscular dystrophies: clinical-genetical diagnostic update and prospects for therapy. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1367283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Corrado Angelini
- Department of Neurodegenerative Disorders, Neuromuscular Center, San Camillo Hospital IRCCS, Venice, Italy
| | - Marina Fanin
- Department of Neurosciences, University of Padova, Padova, Italy
| |
Collapse
|
10
|
|
11
|
Fanin M, Angelini C. Progress and challenges in diagnosis of dysferlinopathy. Muscle Nerve 2016; 54:821-835. [DOI: 10.1002/mus.25367] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Marina Fanin
- Department of Neurosciences; University of Padova; Biomedical Campus “Pietro d'Abano”, via Giuseppe Orus 2B 35129 Padova Italy
| | | |
Collapse
|
12
|
Sondergaard PC, Griffin DA, Pozsgai ER, Johnson RW, Grose WE, Heller KN, Shontz KM, Montgomery CL, Liu J, Clark KR, Sahenk Z, Mendell JR, Rodino-Klapac LR. AAV.Dysferlin Overlap Vectors Restore Function in Dysferlinopathy Animal Models. Ann Clin Transl Neurol 2015; 2:256-70. [PMID: 25815352 PMCID: PMC4369275 DOI: 10.1002/acn3.172] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 12/12/2014] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Dysferlinopathies are a family of untreatable muscle disorders caused by mutations in the dysferlin gene. Lack of dysferlin protein results in progressive dystrophy with chronic muscle fiber loss, inflammation, fat replacement, and fibrosis; leading to deteriorating muscle weakness. The objective of this work is to demonstrate efficient and safe restoration of dysferlin expression following gene therapy treatment. METHODS Traditional gene therapy is restricted by the packaging capacity limit of adeno-associated virus (AAV), however, use of a dual vector strategy allows for delivery of over-sized genes, including dysferlin. The two vector system (AAV.DYSF.DV) packages the dysferlin cDNA utilizing AAV serotype rh.74 through the use of two discrete vectors defined by a 1 kb region of homology. Delivery of AAV.DYSF.DV via intramuscular and vascular delivery routes in dysferlin deficient mice and nonhuman primates was compared for efficiency and safety. RESULTS Treated muscles were tested for dysferlin expression, overall muscle histology, and ability to repair following injury. High levels of dysferlin overexpression was shown for all muscle groups treated as well as restoration of functional outcome measures (membrane repair ability and diaphragm specific force) to wild-type levels. In primates, strong dysferlin expression was demonstrated with no safety concerns. INTERPRETATION Treated muscles showed high levels of dysferlin expression with functional restoration with no evidence of toxicity or immune response providing proof of principle for translation to dysferlinopathy patients.
Collapse
Affiliation(s)
| | | | - Eric R Pozsgai
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio ; Biomedical Sciences Graduate Program, The Ohio State University Columbus, Ohio
| | - Ryan W Johnson
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio
| | - William E Grose
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio
| | - Kristin N Heller
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio
| | - Kim M Shontz
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio
| | | | - Joseph Liu
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio
| | - Kelly Reed Clark
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio ; Biomedical Sciences Graduate Program, The Ohio State University Columbus, Ohio
| | - Zarife Sahenk
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio ; Department of Pediatrics, The Ohio State University Columbus, Ohio ; Department of Neurology, The Ohio State University Columbus, Ohio
| | - Jerry R Mendell
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio ; Department of Pediatrics, The Ohio State University Columbus, Ohio ; Department of Neurology, The Ohio State University Columbus, Ohio
| | - Louise R Rodino-Klapac
- Center for Gene Therapy, Nationwide Children's Hospital Columbus, Ohio ; Biomedical Sciences Graduate Program, The Ohio State University Columbus, Ohio ; Department of Pediatrics, The Ohio State University Columbus, Ohio
| |
Collapse
|
13
|
Sula A, Cole AR, Yeats C, Orengo C, Keep NH. Crystal structures of the human Dysferlin inner DysF domain. BMC STRUCTURAL BIOLOGY 2014; 14:3. [PMID: 24438169 PMCID: PMC3898210 DOI: 10.1186/1472-6807-14-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/15/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Mutations in dysferlin, the first protein linked with the cell membrane repair mechanism, causes a group of muscular dystrophies called dysferlinopathies. Dysferlin is a type two-anchored membrane protein, with a single C terminal trans-membrane helix, and most of the protein lying in cytoplasm. Dysferlin contains several C2 domains and two DysF domains which are nested one inside the other. Many pathogenic point mutations fall in the DysF domain region. RESULTS We describe the crystal structure of the human dysferlin inner DysF domain with a resolution of 1.9 Ångstroms. Most of the pathogenic mutations are part of aromatic/arginine stacks that hold the domain in a folded conformation. The high resolution of the structure show that these interactions are a mixture of parallel ring/guanadinium stacking, perpendicular H bond stacking and aliphatic chain packing. CONCLUSIONS The high resolution structure of the Dysferlin DysF domain gives a template on which to interpret in detail the pathogenic mutations that lead to disease.
Collapse
Affiliation(s)
| | | | | | | | - Nicholas H Keep
- Crystallography, Biological Sciences, Institute for Structural and Molecular Biology, Birkbeck University of London, Malet Street, London WC1E 7HX, UK.
| |
Collapse
|
14
|
Gáti I, Danielsson O, Gunnarsson C, Vrethem M, Häggqvist B, Fredriksson BA, Landtblom AM. Bent Spine Syndrome: A Phenotype of Dysferlinopathy or a Symptomatic DYSF Gene Mutation Carrier. Eur Neurol 2012; 67:300-2. [DOI: 10.1159/000336265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/31/2011] [Indexed: 01/06/2023]
|
15
|
Cacciottolo M, Numitone G, Aurino S, Caserta IR, Fanin M, Politano L, Minetti C, Ricci E, Piluso G, Angelini C, Nigro V. Muscular dystrophy with marked Dysferlin deficiency is consistently caused by primary dysferlin gene mutations. Eur J Hum Genet 2011; 19:974-80. [PMID: 21522182 PMCID: PMC3179367 DOI: 10.1038/ejhg.2011.70] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 11/09/2022] Open
Abstract
Dysferlin is a 237-kDa transmembrane protein involved in calcium-mediated sarcolemma resealing. Dysferlin gene mutations cause limb-girdle muscular dystrophy (LGMD) 2B, Miyoshi myopathy (MM) and distal myopathy of the anterior tibialis. Considering that a secondary Dysferlin reduction has also been described in other myopathies, our original goal was to identify cases with a Dysferlin deficiency without dysferlin gene mutations. The dysferlin gene is huge, composed of 55 exons that span 233 140 bp of genomic DNA. We performed a thorough mutation analysis in 65 LGMD/MM patients with ≤20% Dysferlin. The screening was exhaustive, as we sequenced both genomic DNA and cDNA. When required, we used other methods, including real-time PCR, long PCR and array CGH. In all patients, we were able to recognize the primary involvement of the dysferlin gene. We identified 38 novel mutation types. Some of these, such as a dysferlin gene duplication, could have been missed by conventional screening strategies. Nonsense-mediated mRNA decay was evident in six cases, in three of which both alleles were only detectable in the genomic DNA but not in the mRNA. Among a wide spectrum of novel gene defects, we found the first example of a 'nonstop' mutation causing a dysferlinopathy. This study presents the first direct and conclusive evidence that an amount of Dysferlin ≤20% is pathogenic and always caused by primary dysferlin gene mutations. This demonstrates the high specificity of a marked reduction of Dysferlin on western blot and the value of a comprehensive molecular approach for LGMD2B/MM diagnosis.
Collapse
Affiliation(s)
| | | | - Stefania Aurino
- TIGEM (Telethon Institute of Genetics and Medicine), Napoli, Italy
| | | | - Marina Fanin
- Department of Neurosciences, University of Padua, Padova, Italy
| | - Luisa Politano
- CIRM and Cardiomyology and Genetics Section, Dipartimento di Medicina Sperimentale, Seconda Università degli Studi di Napoli, Napoli, Italy
| | - Carlo Minetti
- Muscular and Neurodegenerative Disease Unit, G. Gaslini Institute, University of Genoa, Genova, Italy
| | - Enzo Ricci
- Department of Neurosciences, Università Cattolica Policlinico A. Gemelli, Rome, Italy
| | - Giulio Piluso
- CIRM and Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Napoli, Italy
| | | | - Vincenzo Nigro
- TIGEM (Telethon Institute of Genetics and Medicine), Napoli, Italy
- CIRM and Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Napoli, Italy
| |
Collapse
|
16
|
Rosales XQ, Moser SJ, Tran T, McCarthy B, Dunn N, Habib P, Simonetti OP, Mendell JR, Raman SV. Cardiovascular magnetic resonance of cardiomyopathy in limb girdle muscular dystrophy 2B and 2I. J Cardiovasc Magn Reson 2011; 13:39. [PMID: 21816046 PMCID: PMC3170213 DOI: 10.1186/1532-429x-13-39] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 08/04/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Limb girdle muscular dystrophies (LGMD) are inclusive of 7 autosomal dominant and 14 autosomal recessive disorders featuring progressive muscle weakness and atrophy. Studies of cardiac function have not yet been well-defined in deficiencies of dysferlin (LGMD2B) and fukutin related protein (LGMD2I). In this study of patients with these two forms of limb girdle muscular dystrophy, cardiovascular magnetic resonance (CMR) was used to more specifically define markers of cardiomyopathy including systolic dysfunction, myocardial fibrosis, and diastolic dysfunction. METHODS Consecutive patients with genetically-proven LGMD types 2I (n = 7) and 2B (n = 9) and 8 control subjects were enrolled. All subjects underwent cardiac magnetic resonance (CMR) on a standard 1.5 Tesla clinical scanner with cine imaging for left ventricular (LV) volume and ejection fraction (EF) measurement, vector velocity analysis of cine data to calculate myocardial strain, and late post-gadolinium enhancement imaging (LGE) to assess for myocardial fibrosis. RESULTS Sixteen LGMD patients (7 LGMD2I, 9 LGMD2B), and 8 control subjects completed CMR. All but one patient had normal LV size and systolic function; one (type 2I) had severe dilated cardiomyopathy. Of 15 LGMD patients with normal systolic function, LGE imaging revealed focal myocardial fibrosis in 7 (47%). Peak systolic circumferential strain rates were similar in patients vs. controls: εendo was -23.8 ± 8.5vs. -23.9 ± 4.2%, εepi was -11.5 ± 1.7% vs. -10.1 ± 4.2% (p = NS for all). Five of 7 LGE-positive patients had grade I diastolic dysfunction [2I (n = 2), 2B (n = 3)]. that was not present in any LGE-negative patients or controls. CONCLUSIONS LGMD2I and LGMD2B generally result in mild structural and functional cardiac abnormalities, though severe dilated cardiomyopathy may occur. Long-term studies are warranted to evaluate the prognostic significance of subclinical fibrosis detected by CMR in these patients.
Collapse
Affiliation(s)
- Xiomara Q Rosales
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- The Ohio State University, Department of Pediatrics and Neurology, Columbus, Ohio 43210, USA
| | - Sean J Moser
- The Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, USA
| | - Tam Tran
- The Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, USA
| | - Beth McCarthy
- The Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, USA
| | - Nicholas Dunn
- The Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, USA
| | - Philip Habib
- The Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, USA
| | - Orlando P Simonetti
- The Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, USA
| | - Jerry R Mendell
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- The Ohio State University, Department of Pediatrics and Neurology, Columbus, Ohio 43210, USA
| | - Subha V Raman
- The Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio 43210, USA
| |
Collapse
|
17
|
Meznaric M, Gonzalez-Quereda L, Gallardo E, de Luna N, Gallano P, Fanin M, Angelini C, Peterlin B, Zidar J. Abnormal expression of dysferlin in skeletal muscle and monocytes supports primary dysferlinopathy in patients with one mutated allele. Eur J Neurol 2011; 18:1021-3. [PMID: 21658164 DOI: 10.1111/j.1468-1331.2010.03240.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND In some cases, a definitive confirmation of dysferlinopathy cannot be achieved by DNA test, because the mutation is detected in one allele only. PATIENTS AND METHODS DYSFERLIN expression in skeletal muscle and peripheral blood monocytes (PBM) was studied by Western blot in two unrelated adult patients. The comparative C(T) method (ΔΔC(T) ) was used to calculate relative changes in dysferlin mRNA determined from real-time quantitative PCR experiments. The dysferlin gene was studied by direct sequencing of cDNA and genomic DNA and by Multiplex Ligation-dependent Probe Amplification (MLPA) analysis. RESULTS A comparable severe reduction in dysferlin was demonstrated in both skeletal muscle and PBM. The expression of dysferlin mRNA was significantly reduced. A novel mutation in exon 47 (c.5289G>C) of the dysferlin gene in the heterozygous state, causing an amino acid change (p.Glu1763Asp), was detected in both patients. The MLPA analysis did not reveal any deletion or duplication. CONCLUSIONS Dysferlin and/or dysferlin mRNA abnormalities are diagnostic for dysferlinopathy when mutational analysis detects a mutation in one allele only. Analysis of dysferlin mRNA can be helpful for distinguishing symptomatic heterozygotes from such patients.
Collapse
Affiliation(s)
- M Meznaric
- Medical Faculty, Institute of Anatomy, University of Ljubljana, Ljubljana, Slovenia.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Barresi R. From proteins to genes: immunoanalysis in the diagnosis of muscular dystrophies. Skelet Muscle 2011; 1:24. [PMID: 21798100 PMCID: PMC3156647 DOI: 10.1186/2044-5040-1-24] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 06/24/2011] [Indexed: 12/23/2022] Open
Abstract
Muscular dystrophies are a large heterogeneous group of inherited diseases that cause progressive muscle weakness and permanent muscle damage. Very few muscular dystrophies show sufficient specific clinical features to allow a definite diagnosis. Because of the currently limited capacity to screen for numerous genes simultaneously, muscle biopsy is a time and cost-effective test for many of these disorders. Protein analysis interpreted in correlation with the clinical phenotype is a useful way of directing genetic testing in many types of muscular dystrophies. Immunohistochemistry and western blot are complementary techniques used to gather quantitative and qualitative information on the expression of proteins involved in this group of diseases. Immunoanalysis has a major diagnostic application mostly in recessive conditions where the absence of labelling for a particular protein is likely to indicate a defect in that gene. However, abnormalities in protein expression can vary from absence to very subtle reduction. It is good practice to test muscle biopsies with antibodies for several proteins simultaneously and to interpret the results in context. Indeed, there is a degree of direct or functional association between many of these proteins that is reflected by the presence of specific secondary abnormalities that are of value, especially when the diagnosis is not straightforward.
Collapse
Affiliation(s)
- Rita Barresi
- NCG Diagnostic & Advisory Service for Rare Neuromuscular Diseases, Muscle Immunoanalysis Unit, Dental Hospital, Richardson Road, Newcastle upon Tyne, UK.
| |
Collapse
|
19
|
Díaz-Manera J, Touvier T, Dellavalle A, Tonlorenzi R, Tedesco FS, Messina G, Meregalli M, Navarro C, Perani L, Bonfanti C, Illa I, Torrente Y, Cossu G. Partial dysferlin reconstitution by adult murine mesoangioblasts is sufficient for full functional recovery in a murine model of dysferlinopathy. Cell Death Dis 2010; 1:e61. [PMID: 21364666 PMCID: PMC3032521 DOI: 10.1038/cddis.2010.35] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/25/2010] [Accepted: 06/10/2010] [Indexed: 01/02/2023]
Abstract
Dysferlin deficiency leads to a peculiar form of muscular dystrophy due to a defect in sarcolemma repair and currently lacks a therapy. We developed a cell therapy protocol with wild-type adult murine mesoangioblasts. These cells differentiate with high efficiency into skeletal muscle in vitro but differ from satellite cells because they do not express Pax7. After intramuscular or intra-arterial administration to SCID/BlAJ mice, a novel model of dysferlinopathy, wild-type mesoangioblasts efficiently colonized dystrophic muscles and partially restored dysferlin expression. Nevertheless, functional assays performed on isolated single fibers from transplanted muscles showed a normal repairing ability of the membrane after laser-induced lesions; this result, which reflects gene correction of an enzymatic rather than a structural deficit, suggests that this myopathy may be easier to treat with cell or gene therapy than other forms of muscular dystrophies.
Collapse
Affiliation(s)
- J Díaz-Manera
- Division of Regenerative Medicine, San Raffaele Scientific Institute, 58 via Olgettina, Milan 20132, Italy
- Neuromuscular Diseases Unit, Neurology Department, Hospital Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 167 Sant Antoni Maria Claret, Barcelona 08025, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid 28031, Spain
| | - T Touvier
- Division of Regenerative Medicine, San Raffaele Scientific Institute, 58 via Olgettina, Milan 20132, Italy
| | - A Dellavalle
- Division of Regenerative Medicine, San Raffaele Scientific Institute, 58 via Olgettina, Milan 20132, Italy
| | - R Tonlorenzi
- Division of Regenerative Medicine, San Raffaele Scientific Institute, 58 via Olgettina, Milan 20132, Italy
| | - F S Tedesco
- Division of Regenerative Medicine, San Raffaele Scientific Institute, 58 via Olgettina, Milan 20132, Italy
| | - G Messina
- Division of Regenerative Medicine, San Raffaele Scientific Institute, 58 via Olgettina, Milan 20132, Italy
- Department of Biology, University of Milan, 26 via Celoria, Milano 20133, Italy
| | - M Meregalli
- Stem Cell Laboratory, Department of Neurological Sciences, Fondazione IRCCS Ospedale Maggiore Policlinico, Centro Dino Ferrari, Università di Milano, via F. Sforza 35, Milano 20122, Italy
| | - C Navarro
- Stem Cell Laboratory, Department of Neurological Sciences, Fondazione IRCCS Ospedale Maggiore Policlinico, Centro Dino Ferrari, Università di Milano, via F. Sforza 35, Milano 20122, Italy
| | - L Perani
- Division of Regenerative Medicine, San Raffaele Scientific Institute, 58 via Olgettina, Milan 20132, Italy
| | - C Bonfanti
- Division of Regenerative Medicine, San Raffaele Scientific Institute, 58 via Olgettina, Milan 20132, Italy
| | - I Illa
- Neuromuscular Diseases Unit, Neurology Department, Hospital Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 167 Sant Antoni Maria Claret, Barcelona 08025, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid 28031, Spain
| | - Y Torrente
- Stem Cell Laboratory, Department of Neurological Sciences, Fondazione IRCCS Ospedale Maggiore Policlinico, Centro Dino Ferrari, Università di Milano, via F. Sforza 35, Milano 20122, Italy
| | - G Cossu
- Division of Regenerative Medicine, San Raffaele Scientific Institute, 58 via Olgettina, Milan 20132, Italy
- Department of Biology, University of Milan, 26 via Celoria, Milano 20133, Italy
| |
Collapse
|
20
|
Rosales XQ, Gastier-Foster JM, Lewis S, Vinod M, Thrush DL, Astbury C, Pyatt R, Reshmi S, Sahenk Z, Mendell JR. Novel diagnostic features of dysferlinopathies. Muscle Nerve 2010; 42:14-21. [PMID: 20544924 PMCID: PMC3025537 DOI: 10.1002/mus.21650] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Reports of dysferlinopathy have suggested a clinically heterogeneous group of patients. We identified specific novel molecular and phenotypic features that help distinguish dysferlinopathies from other forms of limb-girdle muscular dystrophy (LGMD). A detailed history, physical exam, and protein and mutation analysis of genomic DNA was done for all subjects. Five of 21 confirmed DYSF gene mutations were not previously reported. A distinct "bulge" of the deltoid muscle in combination with other findings was a striking feature in all patients. Six subjects had atypical calf enlargement, and 3 of these exhibited a paradoxical pattern of dysferlin expression: severely reduced by direct immunofluorescence with overexpression on Western blots. Six patients showed amyloid deposits in muscle that extended these findings to new domains of the dysferlin gene, including the C2G domain. Correlative studies showed colocalization of amyloid with deposition of dysferlin. The present data further serve to guide clinicians facing the expensive task of molecular characterization of patients with an LGMD phenotype.
Collapse
Affiliation(s)
- Xiomara Q. Rosales
- Neuromuscular Center, Columbus, OH
- Department of Pediatrics, Neurology, and Center for Gene Therapy, Columbus, OH
- The Research Institute at Nationwide Children's Hospital, and The Ohio State University, Columbus, OH
| | - Julie M. Gastier-Foster
- Department of Pediatrics, Neurology, and Center for Gene Therapy, Columbus, OH
- The Research Institute at Nationwide Children's Hospital, and The Ohio State University, Columbus, OH
| | - Sarah Lewis
- Neuromuscular Center, Columbus, OH
- Department of Pediatrics, Neurology, and Center for Gene Therapy, Columbus, OH
| | - Malik Vinod
- Neuromuscular Center, Columbus, OH
- Department of Pediatrics, Neurology, and Center for Gene Therapy, Columbus, OH
| | - Devon L. Thrush
- Department of Pediatrics, Neurology, and Center for Gene Therapy, Columbus, OH
- The Research Institute at Nationwide Children's Hospital, and The Ohio State University, Columbus, OH
| | - Caroline Astbury
- Department of Pediatrics, Neurology, and Center for Gene Therapy, Columbus, OH
- The Research Institute at Nationwide Children's Hospital, and The Ohio State University, Columbus, OH
| | - Robert Pyatt
- Department of Pediatrics, Neurology, and Center for Gene Therapy, Columbus, OH
- The Research Institute at Nationwide Children's Hospital, and The Ohio State University, Columbus, OH
| | - Shalini Reshmi
- Department of Pediatrics, Neurology, and Center for Gene Therapy, Columbus, OH
- The Research Institute at Nationwide Children's Hospital, and The Ohio State University, Columbus, OH
| | - Zarife Sahenk
- Neuromuscular Center, Columbus, OH
- Department of Pediatrics, Neurology, and Center for Gene Therapy, Columbus, OH
- The Research Institute at Nationwide Children's Hospital, and The Ohio State University, Columbus, OH
| | - Jerry R. Mendell
- Neuromuscular Center, Columbus, OH
- Department of Pediatrics, Neurology, and Center for Gene Therapy, Columbus, OH
- The Research Institute at Nationwide Children's Hospital, and The Ohio State University, Columbus, OH
| |
Collapse
|
21
|
Capasso M, De Angelis MV, Di Muzio A, Uncini A. Caveats in determining reference intervals for serum creatine kinase. Am Heart J 2008; 155:e5-e3. [PMID: 18215582 DOI: 10.1016/j.ahj.2007.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 11/06/2007] [Indexed: 05/25/2023]
|
22
|
Guglieri M, Magri F, D'Angelo MG, Prelle A, Morandi L, Rodolico C, Cagliani R, Mora M, Fortunato F, Bordoni A, Del Bo R, Ghezzi S, Pagliarani S, Lucchiari S, Salani S, Zecca C, Lamperti C, Ronchi D, Aguennouz M, Ciscato P, Di Blasi C, Ruggieri A, Moroni I, Turconi A, Toscano A, Moggio M, Bresolin N, Comi GP. Clinical, molecular, and protein correlations in a large sample of genetically diagnosed Italian limb girdle muscular dystrophy patients. Hum Mutat 2008; 29:258-66. [PMID: 17994539 DOI: 10.1002/humu.20642] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Limb girdle muscular dystrophies (LGMD) are characterized by genetic and clinical heterogeneity: seven autosomal dominant and 12 autosomal recessive loci have so far been identified. Aims of this study were to evaluate the relative proportion of the different types of LGMD in 181 predominantly Italian LGMD patients (representing 155 independent families), to describe the clinical pattern of the different forms, and to identify possible correlations between genotype, phenotype, and protein expression levels, as prognostic factors. Based on protein data, the majority of probands (n=72) presented calpain-3 deficiency; other defects were as follows: dysferlin (n=31), sarcoglycans (n=32), alpha-dystroglycan (n=4), and caveolin-3 (n=2). Genetic analysis identified 111 different mutations, including 47 novel ones. LGMD relative frequency was as follows: LGMD1C (caveolin-3) 1.3%; LGMD2A (calpain-3) 28.4%; LGMD2B (dysferlin) 18.7%; LGMD2C (gamma-sarcoglycan) 4.5%; LGMD2D (alpha-sarcoglycan) 8.4%; LGMD2E (beta-sarcoglycan) 4.5%; LGMD2F (delta-sarcoglycan) 0.7%; LGMD2I (Fukutin-related protein) 6.4%; and undetermined 27.1%. Compared to Northern European populations, Italian patients are less likely to be affected with LGMD2I. The order of decreasing clinical severity was: sarcoglycanopathy, calpainopathy, dysferlinopathy, and caveolinopathy. LGMD2I patients showed both infantile noncongenital and mild late-onset presentations. Age at disease onset correlated with variability of genotype and protein levels in LGMD2B. Truncating mutations determined earlier onset than missense substitutions (20+/-5.1 years vs. 36.7+/-11.1 years; P=0.0037). Similarly, dysferlin absence was associated with an earlier onset when compared to partial deficiency (20.2+/-standard deviation [SD] 5.2 years vs. 28.4+/-SD 11.2 years; P=0.014).
Collapse
Affiliation(s)
- Michela Guglieri
- Centro Dino Ferrari, Dipartimento di Scienze Neurologiche, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bibliography. Current world literature. Neuro-muscular diseases: nerve. Curr Opin Neurol 2007; 20:600-4. [PMID: 17885452 DOI: 10.1097/wco.0b013e3282efeb3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|