1
|
Frison-Roche C, Demier CM, Cottin S, Lainé J, Arandel L, Halliez M, Lemaitre M, Lornage X, Strochlic L, Swanson MS, Martinat C, Messéant J, Furling D, Rau F. MBNL deficiency in motor neurons disrupts neuromuscular junction maintenance and gait coordination. Brain 2025; 148:1180-1193. [PMID: 39460437 PMCID: PMC11967847 DOI: 10.1093/brain/awae336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/09/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Muscleblind-like proteins (MBNLs) are a family of RNA-binding proteins that play essential roles in the regulation of RNA metabolism. Beyond their canonical role in RNA regulation, MBNL proteins have emerged as key players in the pathogenesis of myotonic dystrophy type 1. In myotonic dystrophy type 1, sequestration of MBNL proteins by expansion of the CUG repeat RNA leads to functional depletion of MBNL, resulting in deregulated alternative splicing and aberrant RNA processing, which underlie the clinical features of the disease. Although attention on MBNL proteins has focused on their functions in skeletal muscle, new evidence suggests that their importance extends to motor neurons (MNs), pivotal cellular components in the control of motor skills and movement. To address this question, we generated conditional double-knockout (dKO) mice, in which Mbnl1 and Mbnl2 were specifically deleted in motor neurons (MN-dKO). Adult MN-dKO mice develop gait coordination deficits associated with structural and ultrastructural defects in the neuromuscular junction, indicating that MBNL activity in MNs is crucial for the maintenance of the neuromuscular junction. In addition, transcriptome analysis performed on the spinal cord of MN-dKO mice identified mis-splicing events in genes associated with synaptic transmission and neuromuscular junction homeostasis. In summary, our results highlight the complex roles and regulatory mechanisms of MBNL proteins in MNs for muscle function and locomotion. This work provides valuable insights into fundamental aspects of RNA biology and offers promising avenues for therapeutic intervention in myotonic dystrophy type 1 and in a range of diseases associated with RNA dysregulation.
Collapse
Affiliation(s)
- Charles Frison-Roche
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, Institut de Myologie, 75013 Paris, France
| | - Célia Martin Demier
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, Institut de Myologie, 75013 Paris, France
| | - Steve Cottin
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, Institut de Myologie, 75013 Paris, France
| | - Jeanne Lainé
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, Institut de Myologie, 75013 Paris, France
| | - Ludovic Arandel
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, Institut de Myologie, 75013 Paris, France
| | - Marius Halliez
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, Institut de Myologie, 75013 Paris, France
| | - Mégane Lemaitre
- UMS28, Phénotypage du Petit Animal, Sorbonne Université, 75013 Paris, France
| | - Xavière Lornage
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, Institut de Myologie, 75013 Paris, France
| | - Laure Strochlic
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, Institut de Myologie, 75013 Paris, France
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Cécile Martinat
- Inserm, Paris Saclay University, I-STEM, 91100 Corbeil-Essonnes, France
| | - Julien Messéant
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, Institut de Myologie, 75013 Paris, France
| | - Denis Furling
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, Institut de Myologie, 75013 Paris, France
| | - Frédérique Rau
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, Institut de Myologie, 75013 Paris, France
| |
Collapse
|
2
|
Todorow V, Hintze S, Schoser B, Meinke P. Comparative Analysis of Splicing Alterations in Three Muscular Dystrophies. Biomedicines 2025; 13:606. [PMID: 40149583 PMCID: PMC11940573 DOI: 10.3390/biomedicines13030606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Missplicing caused by toxic DMPK-mRNA is described as a hallmark of myotonic dystrophy type 1 (DM1). Yet, there is an expressional misregulation of additional splicing factors described in DM1, and missplicing has been observed in other myopathies. Here, we compare the expressional misregulation of splicing factors and the resulting splicing profiles between three different hereditary myopathies. Methods: We used publicly available RNA-sequencing datasets for the three muscular dystrophies-DM1, facioscapulohumeral muscular dystrophy (FSHD) and Emery-Dreifuss muscular dystrophy (EDMD)-to compare the splicing factor expression and missplicing genome-wide using DESeq2 and MAJIQ. Results: Upregulation of alternative splicing factors and downregulation of constitutive splicing factors were detected for all three myopathies, but to different degrees. Correspondingly, the missplicing events were mostly alternative exon usage and skipping events. In DM1, most events were alternative exon usage and intron retention, while exon skipping was prevalent in FSHD, with EDMD being in between the two other myopathies in terms of splice factor regulation as well as missplicing. Accordingly, the missplicing events were only partially shared between these three myopathies, sometimes with the same locus being spliced differently. Conclusions: This indicates a combination of primary (toxic RNA) and more downstream effects (splicing factor expression) resulting in the DM1 missplicing phenotype. Furthermore, this analysis allows the distinction between disease-specific missplicing and general myopathic splicing alteration to be used as biomarkers.
Collapse
Affiliation(s)
- Vanessa Todorow
- Friedrich-Baur-Institute, Department of Neurology, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Stefan Hintze
- Friedrich-Baur-Institute, Department of Neurology, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Peter Meinke
- Friedrich-Baur-Institute, Department of Neurology, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| |
Collapse
|
3
|
Falcetta D, Quirim S, Cocchiararo I, Chabry F, Théodore M, Stiefvater A, Lin S, Tintignac L, Ivanek R, Kinter J, Rüegg MA, Sinnreich M, Castets P. CaMKIIβ deregulation contributes to neuromuscular junction destabilization in Myotonic Dystrophy type I. Skelet Muscle 2024; 14:11. [PMID: 38769542 PMCID: PMC11106974 DOI: 10.1186/s13395-024-00345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Myotonic Dystrophy type I (DM1) is the most common muscular dystrophy in adults. Previous reports have highlighted that neuromuscular junctions (NMJs) deteriorate in skeletal muscle from DM1 patients and mouse models thereof. However, the underlying pathomechanisms and their contribution to muscle dysfunction remain unknown. METHODS We compared changes in NMJs and activity-dependent signalling pathways in HSALR and Mbnl1ΔE3/ΔE3 mice, two established mouse models of DM1. RESULTS Muscle from DM1 mouse models showed major deregulation of calcium/calmodulin-dependent protein kinases II (CaMKIIs), which are key activity sensors regulating synaptic gene expression and acetylcholine receptor (AChR) recycling at the NMJ. Both mouse models exhibited increased fragmentation of the endplate, which preceded muscle degeneration. Endplate fragmentation was not accompanied by changes in AChR turnover at the NMJ. However, the expression of synaptic genes was up-regulated in mutant innervated muscle, together with an abnormal accumulation of histone deacetylase 4 (HDAC4), a known target of CaMKII. Interestingly, denervation-induced increase in synaptic gene expression and AChR turnover was hampered in DM1 muscle. Importantly, CaMKIIβ/βM overexpression normalized endplate fragmentation and synaptic gene expression in innervated Mbnl1ΔE3/ΔE3 muscle, but it did not restore denervation-induced synaptic gene up-regulation. CONCLUSIONS Our results indicate that CaMKIIβ-dependent and -independent mechanisms perturb synaptic gene regulation and muscle response to denervation in DM1 mouse models. Changes in these signalling pathways may contribute to NMJ destabilization and muscle dysfunction in DM1 patients.
Collapse
Affiliation(s)
- Denis Falcetta
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, CH-1211, Switzerland
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, University and University Hospital Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, CH-4056, Switzerland
| | - Sandrine Quirim
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, CH-1211, Switzerland
| | - Ilaria Cocchiararo
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, CH-1211, Switzerland
| | - Florent Chabry
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, CH-1211, Switzerland
| | - Marine Théodore
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, University and University Hospital Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Adeline Stiefvater
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, University and University Hospital Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Shuo Lin
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, CH-4056, Switzerland
| | - Lionel Tintignac
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, University and University Hospital Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Robert Ivanek
- Department of Biomedicine, University Hospital and University of Basel, Hebelstrasse 20, Basel, CH-4053, Switzerland
- Swiss Institute of Bioinformatics, Hebelstrasse 20, Basel, CH-4053, Switzerland
| | - Jochen Kinter
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, University and University Hospital Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Markus A Rüegg
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, CH-4056, Switzerland
| | - Michael Sinnreich
- Neuromuscular Research Group, Departments of Neurology and Biomedicine, University and University Hospital Basel, Klingelbergstrasse 50/70, Basel, CH-4056, Switzerland
| | - Perrine Castets
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva, CH-1211, Switzerland.
| |
Collapse
|
4
|
Tahraoui-Bories J, Mérien A, González-Barriga A, Lainé J, Leteur C, Polvèche H, Carteron A, De Lamotte JD, Nicoleau C, Polentes J, Jarrige M, Gomes-Pereira M, Ventre E, Poydenot P, Furling D, Schaeffer L, Legay C, Martinat C. MBNL-dependent impaired development within the neuromuscular system in myotonic dystrophy type 1. Neuropathol Appl Neurobiol 2023; 49:e12876. [PMID: 36575942 PMCID: PMC10107781 DOI: 10.1111/nan.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
AIMS Myotonic dystrophy type I (DM1) is one of the most frequent muscular dystrophies in adults. Although DM1 has long been considered mainly a muscle disorder, growing evidence suggests the involvement of peripheral nerves in the pathogenicity of DM1 raising the question of whether motoneurons (MNs) actively contribute to neuromuscular defects in DM1. METHODS By using micropatterned 96-well plates as a coculture platform, we generated a functional neuromuscular model combining DM1 and muscleblind protein (MBNL) knock-out human-induced pluripotent stem cells-derived MNs and human healthy skeletal muscle cells. RESULTS This approach led to the identification of presynaptic defects which affect the formation or stability of the neuromuscular junction at an early developmental stage. These neuropathological defects could be reproduced by the loss of RNA-binding MBNL proteins, whose loss of function in vivo is associated with muscular defects associated with DM1. These experiments indicate that the functional defects associated with MNs can be directly attributed to MBNL family proteins. Comparative transcriptomic analyses also revealed specific neuronal-related processes regulated by these proteins that are commonly misregulated in DM1. CONCLUSIONS Beyond the application to DM1, our approach to generating a robust and reliable human neuromuscular system should facilitate disease modelling studies and drug screening assays.
Collapse
Affiliation(s)
| | - Antoine Mérien
- INSERM/UEVE UMR 861, Université Paris Saclay, I-STEM, Corbeil-Essonnes, France
| | - Anchel González-Barriga
- INSERM, Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, Paris, France
| | - Jeanne Lainé
- INSERM, Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, Paris, France
| | | | | | | | | | | | | | | | - Mário Gomes-Pereira
- INSERM, Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, Paris, France
| | | | | | - Denis Furling
- INSERM, Institut de Myologie, Centre de Recherche en Myologie, Sorbonne Université, Paris, France
| | - Laurent Schaeffer
- INMG, INSERM U1217, CNRS UMR5310, Université Lyon 1, Université de Lyon, Hospices Civils de Lyon, Lyon, France
| | - Claire Legay
- CNRS, SPINN-Saint-Pères Paris Institute for the Neurosciences, Université Paris Cité, Paris, France
| | - Cécile Martinat
- INSERM/UEVE UMR 861, Université Paris Saclay, I-STEM, Corbeil-Essonnes, France
| |
Collapse
|
5
|
Di Leo V, Lawless C, Roussel MP, Gomes TB, Gorman GS, Russell OM, Tuppen HA, Duchesne E, Vincent AE. Resistance Exercise Training Rescues Mitochondrial Dysfunction in Skeletal Muscle of Patients with Myotonic Dystrophy Type 1. J Neuromuscul Dis 2023; 10:1111-1126. [PMID: 37638448 PMCID: PMC10657683 DOI: 10.3233/jnd-230099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Myotonic dystrophy type 1 (DM1) is a dominant autosomal neuromuscular disorder caused by the inheritance of a CTG triplet repeat expansion in the Dystrophia Myotonica Protein Kinase (DMPK) gene. At present, no cure currently exists for DM1 disease. OBJECTIVE This study investigates the effects of 12-week resistance exercise training on mitochondrial oxidative phosphorylation in skeletal muscle in a cohort of DM1 patients (n = 11, men) in comparison to control muscle with normal oxidative phosphorylation. METHODS Immunofluorescence was used to assess protein levels of key respiratory chain subunits of complex I (CI) and complex IV (CIV), and markers of mitochondrial mass and cell membrane in individual myofibres sampled from muscle biopsies. Using control's skeletal muscle fibers population, we classified each patient's fibers as having normal, low or high levels of CI and CIV and compared the proportions of fibers before and after exercise training. The significance of changes observed between pre- and post-exercise within patients was estimated using a permutation test. RESULTS At baseline, DM1 patients present with significantly decreased mitochondrial mass, and isolated or combined CI and CIV deficiency. After resistance exercise training, in most patients a significant increase in mitochondrial mass was observed, and all patients showed a significant increase in CI and/or CIV protein levels. Moreover, improvements in mitochondrial mass were correlated with the one-repetition maximum strength evaluation. CONCLUSIONS Remarkably, 12-week resistance exercise training is sufficient to partially rescue mitochondrial dysfunction in DM1 patients, suggesting that the response to exercise is in part be due to changes in mitochondria.
Collapse
Affiliation(s)
- Valeria Di Leo
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, England
| | - Conor Lawless
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Marie-Pier Roussel
- Department of Fundamental Sciences, Université du Québec à Chicoutimi, Quebec, Canada
| | - Tiago B. Gomes
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle Upon Tyne, UK
| | - Gráinne S. Gorman
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, England
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle Upon Tyne, UK
| | - Oliver M. Russell
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, England
| | - Helen A.L. Tuppen
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Elise Duchesne
- Department of Health Sciences, Université du Québec à Chicoutimi, Québec, Canada
- Neuromuscular Diseases Interdisciplinary Research Group (GRIMN), Saguenay-Lac-St-Jean Integrated University Health and Social Services Center, Saguenay, QC, Canada
| | - Amy E. Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, England
| |
Collapse
|
6
|
Nakamori M, Shimizu H, Ogawa K, Hasuike Y, Nakajima T, Sakurai H, Araki T, Okada Y, Kakita A, Mochizuki H. Cell type-specific abnormalities of central nervous system in myotonic dystrophy type 1. Brain Commun 2022; 4:fcac154. [PMID: 35770133 PMCID: PMC9218787 DOI: 10.1093/braincomms/fcac154] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/13/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Myotonic dystrophy type 1 is a multisystem genetic disorder involving the muscle, heart and CNS. It is caused by toxic RNA transcription from expanded CTG repeats in the 3′-untranslated region of DMPK, leading to dysregulated splicing of various genes and multisystemic symptoms. Although aberrant splicing of several genes has been identified as the cause of some muscular symptoms, the pathogenesis of CNS symptoms prevalent in patients with myotonic dystrophy type 1 remains unelucidated, possibly due to a limitation in studying a diverse mixture of different cell types, including neuronal cells and glial cells. Previous studies revealed neuronal loss in the cortex, myelin loss in the white matter and the presence of axonal neuropathy in patients with myotonic dystrophy type 1. To elucidate the CNS pathogenesis, we investigated cell type-specific abnormalities in cortical neurons, white matter glial cells and spinal motor neurons via laser-capture microdissection. We observed that the CTG repeat instability and cytosine–phosphate–guanine (CpG) methylation status varied among the CNS cell lineages; cortical neurons had more unstable and longer repeats with higher CpG methylation than white matter glial cells, and spinal motor neurons had more stable repeats with lower methylation status. We also identified splicing abnormalities in each CNS cell lineage, such as DLGAP1 in white matter glial cells and CAMKK2 in spinal motor neurons. Furthermore, we demonstrated that aberrant splicing of CAMKK2 is associated with abnormal neurite morphology in myotonic dystrophy type 1 motor neurons. Our laser-capture microdissection-based study revealed cell type-dependent genetic, epigenetic and splicing abnormalities in myotonic dystrophy type 1 CNS, indicating the significant potential of cell type-specific analysis in elucidating the CNS pathogenesis.
Collapse
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565-0871 , Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University , 1-1 Yamadaoka, Suita, Osaka 565-0871 , Japan
| | - Hiroshi Shimizu
- Department of Pathology, Brain Research Institute, Niigata University , 1-757 Asahimachi, Chuo-ku, Niigata 951-8585 , Japan
| | - Kotaro Ogawa
- Department of Neurology, Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565-0871 , Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565-0871 , Japan
| | - Yuhei Hasuike
- Department of Neurology, Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565-0871 , Japan
| | - Takashi Nakajima
- Department of Neurology, National Hospital Organization Niigata National Hospital , 3-52 Akasakamachi, Kashiwazaki, Niigata 945-8585 , Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University , 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 , Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry , 4-1-1 Ogawahigashimachi, Kodaira, Tokyo 187-8502 , Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565-0871 , Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University , 1-757 Asahimachi, Chuo-ku, Niigata 951-8585 , Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565-0871 , Japan
| |
Collapse
|
7
|
Fralish Z, Lotz EM, Chavez T, Khodabukus A, Bursac N. Neuromuscular Development and Disease: Learning From in vitro and in vivo Models. Front Cell Dev Biol 2021; 9:764732. [PMID: 34778273 PMCID: PMC8579029 DOI: 10.3389/fcell.2021.764732] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
The neuromuscular junction (NMJ) is a specialized cholinergic synaptic interface between a motor neuron and a skeletal muscle fiber that translates presynaptic electrical impulses into motor function. NMJ formation and maintenance require tightly regulated signaling and cellular communication among motor neurons, myogenic cells, and Schwann cells. Neuromuscular diseases (NMDs) can result in loss of NMJ function and motor input leading to paralysis or even death. Although small animal models have been instrumental in advancing our understanding of the NMJ structure and function, the complexities of studying this multi-tissue system in vivo and poor clinical outcomes of candidate therapies developed in small animal models has driven the need for in vitro models of functional human NMJ to complement animal studies. In this review, we discuss prevailing models of NMDs and highlight the current progress and ongoing challenges in developing human iPSC-derived (hiPSC) 3D cell culture models of functional NMJs. We first review in vivo development of motor neurons, skeletal muscle, Schwann cells, and the NMJ alongside current methods for directing the differentiation of relevant cell types from hiPSCs. We further compare the efficacy of modeling NMDs in animals and human cell culture systems in the context of five NMDs: amyotrophic lateral sclerosis, myasthenia gravis, Duchenne muscular dystrophy, myotonic dystrophy, and Pompe disease. Finally, we discuss further work necessary for hiPSC-derived NMJ models to function as effective personalized NMD platforms.
Collapse
Affiliation(s)
| | | | | | | | - Nenad Bursac
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
8
|
Mateus T, Almeida I, Costa A, Viegas D, Magalhães S, Martins F, Herdeiro MT, da Cruz e Silva OAB, Fraga C, Alves I, Nunes A, Rebelo S. Fourier-Transform Infrared Spectroscopy as a Discriminatory Tool for Myotonic Dystrophy Type 1 Metabolism: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073800. [PMID: 33917301 PMCID: PMC8038712 DOI: 10.3390/ijerph18073800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a hereditary disease characterized by progressive distal muscle weakness and myotonia. Patients with DM1 have abnormal lipid metabolism and a high propensity to develop a metabolic syndrome in comparison to the general population. It follows that metabolome evaluation in these patients is crucial and may contribute to a better characterization and discrimination between DM1 disease phenotypes and severities. Several experimental approaches are possible to carry out such an analysis; among them is Fourier-transform infrared spectroscopy (FTIR) which evaluates metabolic profiles by categorizing samples through their biochemical composition. In this study, FTIR spectra were acquired and analyzed using multivariate analysis (Principal Component Analysis) using skin DM1 patient-derived fibroblasts and controls. The results obtained showed a clear discrimination between both DM1-derived fibroblasts with different CTG repeat length and with the age of disease onset; this was evident given the distinct metabolic profiles obtained for the two groups. Discrimination could be attributed mainly to the altered lipid metabolism and proteins in the 1800–1500 cm−1 region. These results suggest that FTIR spectroscopy is a valuable tool to discriminate both DM1-derived fibroblasts with different CTG length and age of onset and to study the metabolomic profile of patients with DM1.
Collapse
Affiliation(s)
- Tiago Mateus
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (T.M.); (I.A.); (A.C.); (D.V.); (S.M.); (F.M.); (M.T.H.); (O.A.B.d.C.eS.); (A.N.)
| | - Idália Almeida
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (T.M.); (I.A.); (A.C.); (D.V.); (S.M.); (F.M.); (M.T.H.); (O.A.B.d.C.eS.); (A.N.)
| | - Adriana Costa
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (T.M.); (I.A.); (A.C.); (D.V.); (S.M.); (F.M.); (M.T.H.); (O.A.B.d.C.eS.); (A.N.)
| | - Diana Viegas
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (T.M.); (I.A.); (A.C.); (D.V.); (S.M.); (F.M.); (M.T.H.); (O.A.B.d.C.eS.); (A.N.)
| | - Sandra Magalhães
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (T.M.); (I.A.); (A.C.); (D.V.); (S.M.); (F.M.); (M.T.H.); (O.A.B.d.C.eS.); (A.N.)
- Department of Chemistry, Aveiro Institute of Materials (CICECO), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (T.M.); (I.A.); (A.C.); (D.V.); (S.M.); (F.M.); (M.T.H.); (O.A.B.d.C.eS.); (A.N.)
| | - Maria Teresa Herdeiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (T.M.); (I.A.); (A.C.); (D.V.); (S.M.); (F.M.); (M.T.H.); (O.A.B.d.C.eS.); (A.N.)
| | - Odete A. B. da Cruz e Silva
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (T.M.); (I.A.); (A.C.); (D.V.); (S.M.); (F.M.); (M.T.H.); (O.A.B.d.C.eS.); (A.N.)
| | - Carla Fraga
- Neurology Department, Centro Hospitalar Tâmega e Sousa (CHTS), 4564-007 Penafiel, Portugal; (C.F.); (I.A.)
| | - Ivânia Alves
- Neurology Department, Centro Hospitalar Tâmega e Sousa (CHTS), 4564-007 Penafiel, Portugal; (C.F.); (I.A.)
| | - Alexandra Nunes
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (T.M.); (I.A.); (A.C.); (D.V.); (S.M.); (F.M.); (M.T.H.); (O.A.B.d.C.eS.); (A.N.)
| | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (T.M.); (I.A.); (A.C.); (D.V.); (S.M.); (F.M.); (M.T.H.); (O.A.B.d.C.eS.); (A.N.)
- Correspondence: ; Tel.: +351-924-406-306; Fax: +351-234-372-587
| |
Collapse
|
9
|
Mateus T, Martins F, Nunes A, Herdeiro MT, Rebelo S. Metabolic Alterations in Myotonic Dystrophy Type 1 and Their Correlation with Lipin. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041794. [PMID: 33673200 PMCID: PMC7918590 DOI: 10.3390/ijerph18041794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant hereditary and multisystemic disease, characterized by progressive distal muscle weakness and myotonia. Despite huge efforts, the pathophysiological mechanisms underlying DM1 remain elusive. In this review, the metabolic alterations observed in patients with DM1 and their connection with lipin proteins are discussed. We start by briefly describing the epidemiology, the physiopathological and systemic features of DM1. The molecular mechanisms proposed for DM1 are explored and summarized. An overview of metabolic syndrome, dyslipidemia, and the summary of metabolic alterations observed in patients with DM1 are presented. Patients with DM1 present clinical evidence of metabolic alterations, namely increased levels of triacylglycerol and low-density lipoprotein, increased insulin and glucose levels, increased abdominal obesity, and low levels of high-density lipoprotein. These metabolic alterations may be associated with lipins, which are phosphatidate phosphatase enzymes that regulates the triacylglycerol levels, phospholipids, lipid signaling pathways, and are transcriptional co-activators. Furthermore, lipins are also important for autophagy, inflammasome activation and lipoproteins synthesis. We demonstrate the association of lipin with the metabolic alterations in patients with DM1, which supports further clinical studies and a proper exploration of lipin proteins as therapeutic targets for metabolic syndrome, which is important for controlling many diseases including DM1.
Collapse
Affiliation(s)
| | | | | | | | - Sandra Rebelo
- Correspondence: ; Tel.: +351-924-406-306; Fax: +351-234-372-587
| |
Collapse
|
10
|
Antisense oligonucleotide and adjuvant exercise therapy reverse fatigue in old mice with myotonic dystrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:393-405. [PMID: 33473325 PMCID: PMC7787993 DOI: 10.1016/j.omtn.2020.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
Patients with myotonic dystrophy type 1 (DM1) identify chronic fatigue as the most debilitating symptom, which manifests in part as prolonged recovery after exercise. Clinical features of DM1 result from pathogenic gain-of-function activity of transcripts containing an expanded microsatellite CUG repeat (CUGexp). In DM1 mice, therapies targeting the CUGexp transcripts correct the molecular phenotype, reverse myotonia, and improve muscle pathology. However, the effect of targeted molecular therapies on fatigue in DM1 is unknown. Here, we use two mouse models of DM1, age-matched wild-type controls, an exercise-activity assay, electrical impedance myography, and therapeutic antisense oligonucleotides (ASOs) to show that exaggerated exercise-induced fatigue progresses with age, is unrelated to muscle fiber size, and persists despite correction of the molecular phenotype for 3 months. In old DM1 mice, ASO treatment combined with an exercise training regimen consisting of treadmill walking 30 min per day 6 days per week for 3 months reverse all measures of fatigue. Exercise training without ASO therapy improves some measures of fatigue without correction of the molecular pathology. Our results highlight a key limitation of ASO monotherapy for this clinically important feature and support the development of moderate-intensity exercise as an adjuvant for targeted molecular therapies of DM1.
Collapse
|
11
|
Sztretye M, Szabó L, Dobrosi N, Fodor J, Szentesi P, Almássy J, Magyar ZÉ, Dienes B, Csernoch L. From Mice to Humans: An Overview of the Potentials and Limitations of Current Transgenic Mouse Models of Major Muscular Dystrophies and Congenital Myopathies. Int J Mol Sci 2020; 21:ijms21238935. [PMID: 33255644 PMCID: PMC7728138 DOI: 10.3390/ijms21238935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Muscular dystrophies are a group of more than 160 different human neuromuscular disorders characterized by a progressive deterioration of muscle mass and strength. The causes, symptoms, age of onset, severity, and progression vary depending on the exact time point of diagnosis and the entity. Congenital myopathies are rare muscle diseases mostly present at birth that result from genetic defects. There are no known cures for congenital myopathies; however, recent advances in gene therapy are promising tools in providing treatment. This review gives an overview of the mouse models used to investigate the most common muscular dystrophies and congenital myopathies with emphasis on their potentials and limitations in respect to human applications.
Collapse
|
12
|
Braz SO, Acquaire J, Gourdon G, Gomes-Pereira M. Of Mice and Men: Advances in the Understanding of Neuromuscular Aspects of Myotonic Dystrophy. Front Neurol 2018; 9:519. [PMID: 30050493 PMCID: PMC6050950 DOI: 10.3389/fneur.2018.00519] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022] Open
Abstract
Intensive effort has been directed toward the modeling of myotonic dystrophy (DM) in mice, in order to reproduce human disease and to provide useful tools to investigate molecular and cellular pathogenesis and test efficient therapies. Mouse models have contributed to dissect the multifaceted impact of the DM mutation in various tissues, cell types and in a pleiotropy of pathways, through the expression of toxic RNA transcripts. Changes in alternative splicing, transcription, translation, intracellular RNA localization, polyadenylation, miRNA metabolism and phosphorylation of disease intermediates have been described in different tissues. Some of these events have been directly associated with specific disease symptoms in the skeletal muscle and heart of mice, offering the molecular explanation for individual disease phenotypes. In the central nervous system (CNS), however, the situation is more complex. We still do not know how the molecular abnormalities described translate into CNS dysfunction, nor do we know if the correction of individual molecular events will provide significant therapeutic benefits. The variability in model design and phenotypes described so far requires a thorough and critical analysis. In this review we discuss the recent contributions of mouse models to the understanding of neuromuscular aspects of disease, therapy development, and we provide a reflective assessment of our current limitations and pressing questions that remain unanswered.
Collapse
Affiliation(s)
- Sandra O Braz
- Laboratory CTGDM, INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Julien Acquaire
- Laboratory CTGDM, INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Geneviève Gourdon
- Laboratory CTGDM, INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Mário Gomes-Pereira
- Laboratory CTGDM, INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| |
Collapse
|
13
|
André LM, Ausems CRM, Wansink DG, Wieringa B. Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy. Front Neurol 2018; 9:368. [PMID: 29892259 PMCID: PMC5985300 DOI: 10.3389/fneur.2018.00368] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In addition, manifestation in DM1 is generally more severe, with possible congenital or childhood-onset of disease and prominent CNS involvement. DM1 and DM2 are caused by expansion of (CTG•CAG)n and (CCTG•CAGG)n repeats in the 3' non-coding region of DMPK and in intron 1 of CNBP, respectively, and in overlapping antisense genes. This critical review will focus on the pleiotropic problems that occur during development, growth, regeneration, and aging of skeletal muscle in patients who inherited these expansions. The current best-accepted idea is that most muscle symptoms can be explained by pathomechanistic effects of repeat expansion on RNA-mediated pathways. However, aberrations in DNA replication and transcription of the DM loci or in protein translation and proteome homeostasis could also affect the control of proliferation and differentiation of muscle progenitor cells or the maintenance and physiological integrity of muscle fibers during a patient's lifetime. Here, we will discuss these molecular and cellular processes and summarize current knowledge about the role of embryonic and adult muscle-resident stem cells in growth, homeostasis, regeneration, and premature aging of healthy and diseased muscle tissue. Of particular interest is that also progenitor cells from extramuscular sources, such as pericytes and mesoangioblasts, can participate in myogenic differentiation. We will examine the potential of all these types of cells in the application of regenerative medicine for muscular dystrophies and evaluate new possibilities for their use in future therapy of DM.
Collapse
Affiliation(s)
- Laurène M André
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - C Rosanne M Ausems
- Department of Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Derick G Wansink
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
14
|
Thomas JD, Oliveira R, Sznajder ŁJ, Swanson MS. Myotonic Dystrophy and Developmental Regulation of RNA Processing. Compr Physiol 2018; 8:509-553. [PMID: 29687899 PMCID: PMC11323716 DOI: 10.1002/cphy.c170002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myotonic dystrophy (DM) is a multisystemic disorder caused by microsatellite expansion mutations in two unrelated genes leading to similar, yet distinct, diseases. DM disease presentation is highly variable and distinguished by differences in age-of-onset and symptom severity. In the most severe form, DM presents with congenital onset and profound developmental defects. At the molecular level, DM pathogenesis is characterized by a toxic RNA gain-of-function mechanism that involves the transcription of noncoding microsatellite expansions. These mutant RNAs disrupt key cellular pathways, including RNA processing, localization, and translation. In DM, these toxic RNA effects are predominantly mediated through the modulation of the muscleblind-like and CUGBP and ETR-3-like factor families of RNA binding proteins (RBPs). Dysfunction of these RBPs results in widespread RNA processing defects culminating in the expression of developmentally inappropriate protein isoforms in adult tissues. The tissue that is the focus of this review, skeletal muscle, is particularly sensitive to mutant RNA-responsive perturbations, as patients display a variety of developmental, structural, and functional defects in muscle. Here, we provide a comprehensive overview of DM1 and DM2 clinical presentation and pathology as well as the underlying cellular and molecular defects associated with DM disease onset and progression. Additionally, fundamental aspects of skeletal muscle development altered in DM are highlighted together with ongoing and potential therapeutic avenues to treat this muscular dystrophy. © 2018 American Physiological Society. Compr Physiol 8:509-553, 2018.
Collapse
Affiliation(s)
- James D. Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Ruan Oliveira
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Łukasz J. Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Maurice S. Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
15
|
Thornton CA, Wang E, Carrell EM. Myotonic dystrophy: approach to therapy. Curr Opin Genet Dev 2017; 44:135-140. [PMID: 28376341 PMCID: PMC5447481 DOI: 10.1016/j.gde.2017.03.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/25/2017] [Accepted: 03/13/2017] [Indexed: 01/16/2023]
Abstract
Myotonic dystrophy (DM) is a dominantly-inherited genetic disorder affecting skeletal muscle, heart, brain, and other organs. DM type 1 is caused by expansion of a CTG triplet repeat in DMPK, whereas DM type 2 is caused by expansion of a CCTG tetramer repeat in CNBP. In both cases the DM mutations lead to expression of dominant-acting RNAs. Studies of RNA toxicity have now revealed novel mechanisms and new therapeutic targets. Preclinical data have suggested that RNA dominance is responsive to therapeutic intervention and that DM therapy can be approached at several different levels. Here we review recent efforts to alleviate RNA toxicity in DM.
Collapse
Affiliation(s)
- Charles A Thornton
- Department of Neurology, University of Rochester, Rochester 14642, NY, United States.
| | - Eric Wang
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, University of Florida, Gainesville, FL, United States
| | - Ellie M Carrell
- Department of Neurology, University of Rochester, Rochester 14642, NY, United States
| |
Collapse
|
16
|
Lindberg C, Bjerkne F. Prevalence of myotonic dystrophy type 1 in adults in western Sweden. Neuromuscul Disord 2016; 27:159-162. [PMID: 28082207 DOI: 10.1016/j.nmd.2016.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 09/14/2016] [Accepted: 12/08/2016] [Indexed: 01/09/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is the most common inherited muscle disorder in adults. The prevalence differs widely between countries, but a figure of 13/100.000 is most frequently cited. It is a multi-organ disorder classified into four categories: congenital, childhood, adult/classical and late-onset/mild. The purpose of this study was to estimate the total and age adjusted prevalence of DM1 in adults in western Sweden (the Västra Götaland Region, VGR) as well as in the city of Gothenburg and also in the VGR except Gothenburg. Patients with the diagnosis of DM1 in the VGR were traced by outpatient registers at the Neuromuscular Center, contacted by regular mail and thereafter telephone interviewed about organ manifestations in order to ascertain the age at onset and thus the disease category. Medical records were examined to obtain detail accuracy. We detected 230 adult DM1 patients in the VGR which gives a prevalence of 17.8/100.000. The prevalence of DM1 in Gothenburg was 14.1/100.000, which was significantly lower than in the remaining region which was 19.7/100.000. There was no gender difference. The age adjusted prevalence rates showed that DM1 is most prevalent in the age group 35-44 years (23.9/100.000) and 45-54 years (25.8/100.000). DM1 prevalence in the western Sweden thus seems to be somewhat higher than elsewhere in Europe, and is especially high in the less densely populated areas of the region. The disease burden in the community is larger than what was known previously.
Collapse
Affiliation(s)
- Christopher Lindberg
- Neuromuscular Centre, Department of Neurology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden.
| | - Fredrik Bjerkne
- Neuromuscular Centre, Department of Neurology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| |
Collapse
|
17
|
Bombelli F, Lispi L, Porrini SC, Giacanelli M, Terracciano C, Massa R, Petrucci A. Neuromuscular transmission abnormalities in myotonic dystrophy type 1: A neurophysiological study. Clin Neurol Neurosurg 2016; 150:84-88. [PMID: 27611986 DOI: 10.1016/j.clineuro.2016.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/10/2016] [Accepted: 08/21/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Weakness and fatigue are frequent symptoms in myotonic dystrophy type 1 (DM1), mainly as a result of muscle impairment. However, neuromuscular junction (NMJ) abnormalities could play an additional role in determining these manifestations. We aimed to document the possible NMJ involvement in DM1. PATIENTS AND METHODS In order to substantiate this hypothesis we performed low rate repetitive nerve stimulation (RNS) and single fiber electromyography (SFEMG), in 14 DM1 subjects. RESULTS RNS resulted abnormal in four patients while SFEMG revealed a pathological jitter in ten. A significative correlation was found between jitter values and decrementing response (p<0.000311; r=0.822). CONCLUSION These results suggest a possible involvement of NMJ in DM1.
Collapse
Affiliation(s)
- Francesco Bombelli
- Neuromuscular and Neurological Rare Diseases Centre, Neurology and Neurophysiology Unit, S. Camillo Forlanini Hospital, C. Gianicolense, 87-00152, Rome, Italy
| | - Ludovico Lispi
- Neuromuscular and Neurological Rare Diseases Centre, Neurology and Neurophysiology Unit, S. Camillo Forlanini Hospital, C. Gianicolense, 87-00152, Rome, Italy
| | - Sandro Costanzi Porrini
- Medical Genetics Unit, S. Camillo Forlanini Hospital, C. Gianicolense, 87-00152, Rome, Italy
| | - Manlio Giacanelli
- Neuromuscular and Neurological Rare Diseases Centre, Neurology and Neurophysiology Unit, S. Camillo Forlanini Hospital, C. Gianicolense, 87-00152, Rome, Italy
| | - Chiara Terracciano
- Neuromuscular Centre, Neuroscience, Department of Systems Medicine, University of Rome Tor Vergata, V.le Oxford, 81-00133, Rome, Italy
| | - Roberto Massa
- Neuromuscular Centre, Neuroscience, Department of Systems Medicine, University of Rome Tor Vergata, V.le Oxford, 81-00133, Rome, Italy
| | - Antonio Petrucci
- Neuromuscular and Neurological Rare Diseases Centre, Neurology and Neurophysiology Unit, S. Camillo Forlanini Hospital, C. Gianicolense, 87-00152, Rome, Italy.
| |
Collapse
|
18
|
Urbanek MO, Jazurek M, Switonski PM, Figura G, Krzyzosiak WJ. Nuclear speckles are detention centers for transcripts containing expanded CAG repeats. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1513-20. [PMID: 27239700 DOI: 10.1016/j.bbadis.2016.05.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/18/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022]
Abstract
The human genetic disorders caused by CAG repeat expansions in the translated sequences of various genes are called polyglutamine (polyQ) diseases because of the cellular "toxicity" of the mutant proteins. The contribution of mutant transcripts to the pathogenesis of these diseases is supported by several observations obtained from cellular models of these disorders. Here, we show that the common feature of cell lines modeling polyQ diseases is the formation of nuclear CAG RNA foci. We performed qualitative and quantitative analyses of these foci in numerous cellular models endogenously and exogenously expressing mutant transcripts by fluorescence in situ hybridization (FISH). We compared the CAG RNA foci of polyQ diseases with the CUG foci of myotonic dystrophy type 1 and found substantial differences in their number and morphology. Smaller differences within the polyQ disease group were also revealed and included a positive correlation between the foci number and the CAG repeat length. We show that expanded CAA repeats, also encoding glutamine, did not trigger RNA foci formation and foci formation is independent of the presence of mutant polyglutamine protein. Using FISH combined with immunofluorescence, we demonstrated partial co-localization of CAG repeat foci with MBNL1 alternative splicing factor, which explains the mild deregulation of MBNL1-dependent genes. We also showed that foci reside within nuclear speckles in diverse cell types: fibroblasts, lymphoblasts, iPS cells and neuronal progenitors and remain dependent on integrity of these nuclear structures.
Collapse
Affiliation(s)
- Martyna O Urbanek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland
| | - Magdalena Jazurek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland
| | - Pawel M Switonski
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland
| | - Grzegorz Figura
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| |
Collapse
|
19
|
Wheeler TM, Baker JN, Chad DA, Zilinski JL, Verzosa S, Mordes DA. Case Records of the Massachusetts General Hospital. Case 30-2015: A 50-Year-Old Man with Cardiogenic Shock. N Engl J Med 2015; 373:1251-61. [PMID: 26398074 DOI: 10.1056/nejmcpc1415169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A 50-year-old man with a history of cardiomyopathy and progressive muscle weakness was admitted with cardiogenic shock. Electroencephalography showed total suppression of cerebral activity; ventilator support was withdrawn, and he died. An autopsy was performed.
Collapse
|
20
|
Yanovsky-Dagan S, Mor-Shaked H, Eiges R. Modeling diseases of noncoding unstable repeat expansions using mutant pluripotent stem cells. World J Stem Cells 2015; 7:823-838. [PMID: 26131313 PMCID: PMC4478629 DOI: 10.4252/wjsc.v7.i5.823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/22/2015] [Accepted: 04/07/2015] [Indexed: 02/06/2023] Open
Abstract
Pathogenic mutations involving DNA repeat expansions are responsible for over 20 different neuronal and neuromuscular diseases. All result from expanded tracts of repetitive DNA sequences (mostly microsatellites) that become unstable beyond a critical length when transmitted across generations. Nearly all are inherited as autosomal dominant conditions and are typically associated with anticipation. Pathologic unstable repeat expansions can be classified according to their length, repeat sequence, gene location and underlying pathologic mechanisms. This review summarizes the current contribution of mutant pluripotent stem cells (diseased human embryonic stem cells and patient-derived induced pluripotent stem cells) to the research of unstable repeat pathologies by focusing on particularly large unstable noncoding expansions. Among this class of disorders are Fragile X syndrome and Fragile X-associated tremor/ataxia syndrome, myotonic dystrophy type 1 and myotonic dystrophy type 2, Friedreich ataxia and C9 related amyotrophic lateral sclerosis and/or frontotemporal dementia, Facioscapulohumeral Muscular Dystrophy and potentially more. Common features that are typical to this subclass of conditions are RNA toxic gain-of-function, epigenetic loss-of-function, toxic repeat-associated non-ATG translation and somatic instability. For each mechanism we summarize the currently available stem cell based models, highlight how they contributed to better understanding of the related mechanism, and discuss how they may be utilized in future investigations.
Collapse
|
21
|
Nakamori M, Sobczak K, Puwanant A, Welle S, Eichinger K, Pandya S, Dekdebrun J, Heatwole CR, McDermott MP, Chen T, Cline M, Tawil R, Osborne RJ, Wheeler TM, Swanson M, Moxley RT, Thornton CA. Splicing biomarkers of disease severity in myotonic dystrophy. Ann Neurol 2013; 74:862-72. [PMID: 23929620 PMCID: PMC4099006 DOI: 10.1002/ana.23992] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 06/25/2013] [Accepted: 07/27/2013] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To develop RNA splicing biomarkers of disease severity and therapeutic response in myotonic dystrophy type 1 (DM1) and type 2 (DM2). METHODS In a discovery cohort, we used microarrays to perform global analysis of alternative splicing in DM1 and DM2. The newly identified splicing changes were combined with previous data to create a panel of 50 putative splicing defects. In a validation cohort of 50 DM1 subjects, we measured the strength of ankle dorsiflexion (ADF) and then obtained a needle biopsy of tibialis anterior (TA) to analyze splice events in muscle RNA. The specificity of DM-associated splicing defects was assessed in disease controls. The CTG expansion size in muscle tissue was determined by Southern blot. The reversibility of splicing defects was assessed in transgenic mice by using antisense oligonucleotides to reduce levels of toxic RNA. RESULTS Forty-two splicing defects were confirmed in TA muscle in the validation cohort. Among these, 20 events showed graded changes that correlated with ADF weakness. Five other splice events were strongly affected in DM1 subjects with normal ADF strength. Comparison to disease controls and mouse models indicated that splicing changes were DM-specific, mainly attributable to MBNL1 sequestration, and reversible in mice by targeted knockdown of toxic RNA. Splicing defects and weakness were not correlated with CTG expansion size in muscle tissue. INTERPRETATION Alternative splicing changes in skeletal muscle may serve as biomarkers of disease severity and therapeutic response in myotonic dystrophy.
Collapse
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Krzysztof Sobczak
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Araya Puwanant
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steve Welle
- Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Katy Eichinger
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Shree Pandya
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jeannne Dekdebrun
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Chad R. Heatwole
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael P. McDermott
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Tian Chen
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Melissa Cline
- RNA Center, Department of Molecular, Cell and Developmental Biology, Sinsheimer Labs, University of California, Santa Cruz, California 95064 USA
| | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Robert J. Osborne
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Thurman M. Wheeler
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Center for Neural Development and Disease, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Maurice Swanson
- Department of Molecular Genetics & Microbiology, University of Florida, College of Medicine, Gainesville, FL 32610 USA
| | - Richard T. Moxley
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Charles A. Thornton
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Center for Neural Development and Disease, University of Rochester Medical Center, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
22
|
Jahromi AH, Nguyen L, Fu Y, Miller KA, Baranger AM, Zimmerman SC. A novel CUG(exp)·MBNL1 inhibitor with therapeutic potential for myotonic dystrophy type 1. ACS Chem Biol 2013; 8:1037-43. [PMID: 23480597 DOI: 10.1021/cb400046u] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is caused by an expanded CUG repeat (CUG(exp)) that sequesters muscleblind-like 1 protein (MBNL1), a protein that regulates alternative splicing. CUG(exp) RNA is a validated drug target for this currently untreatable disease. Herein, we develop a bioactive small molecule (1) that targets CUG(exp) RNA and is able to inhibit the CUG(exp)·MBNL1 interaction in cells that model DM1. The core of this small molecule is based on ligand 2, which was previously reported to be active in an in vitro assay. A polyamine-derivative side chain was conjugated to this core to make it aqueous-soluble and cell-penetrable. In a DM1 cell model this conjugate was found to disperse CUG(exp) ribonuclear foci, release MBNL1, and partially reverse the mis-splicing of the insulin receptor pre-mRNA. Direct evidence for ribonuclear foci dispersion by this ligand was obtained in a live DM1 cell model using time-lapse confocal microscopy.
Collapse
Affiliation(s)
- Amin Haghighat Jahromi
- Center for Biophysics
and Computational Biology and ‡Department of Chemistry, University of Illinois, Urbana, Illinois, United States
| | - Lien Nguyen
- Center for Biophysics
and Computational Biology and ‡Department of Chemistry, University of Illinois, Urbana, Illinois, United States
| | - Yuan Fu
- Center for Biophysics
and Computational Biology and ‡Department of Chemistry, University of Illinois, Urbana, Illinois, United States
| | - Kali A. Miller
- Center for Biophysics
and Computational Biology and ‡Department of Chemistry, University of Illinois, Urbana, Illinois, United States
| | - Anne M. Baranger
- Center for Biophysics
and Computational Biology and ‡Department of Chemistry, University of Illinois, Urbana, Illinois, United States
| | - Steven C. Zimmerman
- Center for Biophysics
and Computational Biology and ‡Department of Chemistry, University of Illinois, Urbana, Illinois, United States
| |
Collapse
|
23
|
Panaite PA, Kuntzer T, Gourdon G, Lobrinus JA, Barakat-Walter I. Functional and histopathological identification of the respiratory failure in a DMSXL transgenic mouse model of myotonic dystrophy. Dis Model Mech 2012. [PMID: 23180777 PMCID: PMC3634646 DOI: 10.1242/dmm.010512] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acute and chronic respiratory failure is one of the major and potentially life-threatening features in individuals with myotonic dystrophy type 1 (DM1). Despite several clinical demonstrations showing respiratory problems in DM1 patients, the mechanisms are still not completely understood. This study was designed to investigate whether the DMSXL transgenic mouse model for DM1 exhibits respiratory disorders and, if so, to identify the pathological changes underlying these respiratory problems. Using pressure plethysmography, we assessed the breathing function in control mice and DMSXL mice generated after large expansions of the CTG repeat in successive generations of DM1 transgenic mice. Statistical analysis of breathing function measurements revealed a significant decrease in the most relevant respiratory parameters in DMSXL mice, indicating impaired respiratory function. Histological and morphometric analysis showed pathological changes in diaphragmatic muscle of DMSXL mice, characterized by an increase in the percentage of type I muscle fibers, the presence of central nuclei, partial denervation of end-plates (EPs) and a significant reduction in their size, shape complexity and density of acetylcholine receptors, all of which reflect a possible breakdown in communication between the diaphragmatic muscles fibers and the nerve terminals. Diaphragm muscle abnormalities were accompanied by an accumulation of mutant DMPK RNA foci in muscle fiber nuclei. Moreover, in DMSXL mice, the unmyelinated phrenic afferents are significantly lower. Also in these mice, significant neuronopathy was not detected in either cervical phrenic motor neurons or brainstem respiratory neurons. Because EPs are involved in the transmission of action potentials and the unmyelinated phrenic afferents exert a modulating influence on the respiratory drive, the pathological alterations affecting these structures might underlie the respiratory impairment detected in DMSXL mice. Understanding mechanisms of respiratory deficiency should guide pharmaceutical and clinical research towards better therapy for the respiratory deficits associated with DM1.
Collapse
|
24
|
Lukáš Z, Falk M, Feit J, Souček O, Falková I, Štefančíková L, Janoušová E, Fajkusová L, Zaorálková J, Hrabálková R. Sequestration of MBNL1 in tissues of patients with myotonic dystrophy type 2. Neuromuscul Disord 2012; 22:604-16. [DOI: 10.1016/j.nmd.2012.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/02/2012] [Accepted: 03/06/2012] [Indexed: 12/20/2022]
|
25
|
Spilker KA, Wang GJ, Tugizova MS, Shen K. Caenorhabditis elegans Muscleblind homolog mbl-1 functions in neurons to regulate synapse formation. Neural Dev 2012; 7:7. [PMID: 22314215 PMCID: PMC3353867 DOI: 10.1186/1749-8104-7-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 02/07/2012] [Indexed: 01/08/2023] Open
Abstract
Background The sequestration of Muscleblind splicing regulators results in myotonic dystrophy. Previous work on Muscleblind has largely focused on its roles in muscle development and maintenance due to the skeletal and cardiac muscle degeneration phenotype observed in individuals with the disorder. However, a number of reported nervous system defects suggest that Muscleblind proteins function in other tissues as well. Results We have identified a mutation in the Caenorhabditis elegans homolog of Muscleblind, mbl-1, that is required for proper formation of neuromuscular junction (NMJ) synapses. mbl-1 mutants exhibit selective loss of the most distal NMJ synapses in a C. elegans motorneuron, DA9, visualized using the vesicle-associated protein RAB-3, as well as the active zone proteins SYD-2/liprin-α and UNC-10/Rim. The proximal NMJs appear to have normal pre- and postsynaptic specializations. Surprisingly, expressing a mbl-1 transgene in the presynaptic neuron is sufficient to rescue the synaptic defect, while muscle expression has no effect. Consistent with this result, mbl-1 is also expressed in neurons. Conclusions Based on these results, we conclude that in addition to its functions in muscle, the Muscleblind splice regulators also function in neurons to regulate synapse formation.
Collapse
Affiliation(s)
- Kerri A Spilker
- Department of Biology, Howard Hughes Medical Institute, Stanford University, 385 Serra Mall, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
26
|
Peripheral neuropathy is linked to a severe form of myotonic dystrophy in transgenic mice. J Neuropathol Exp Neurol 2011; 70:678-85. [PMID: 21760538 DOI: 10.1097/nen.0b013e3182260939] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystem disorder with a variable phenotype. The involvement of peripheral nerves in DM1 disease is controversial. The DM1 animal model DM300 transgenic mice that carry 350 to 500 CTG repeats express a mild DM1 phenotype but do not exhibit motor or sensory pathology. Here, we investigated the presence or absence of peripheral neuropathy in transgenic mice (DMSXL) that carry more than 1,300 CTG repeats and display a severe form of DM1. Electrophysiologic, histologic, and morphometric methods were used to investigate the structure and function of peripheral nerves. We observed lower compound muscle action potentials recorded from hind limb muscles and slowing of sciatic nerve conduction velocity in DMSXL versus control mice. Morphometric analyses showed an axonopathy and neuronopathy in the DMSXL mice characterized by a decrease in numbers of myelinated motor axons in sciatic nerve and in spinal cord motor neurons. Pathologic alterations in the structure of hind limb neuromuscular junctions were also detected in the DMSXL mice. These results suggest that peripheral neuropathy can be linked to a large CTG expansion and a severe form of DM1.
Collapse
|
27
|
Mahadevan MS. Myotonic muscular dystrophy, RNA toxicity, and the brain: trouble making the connection? Cell Stem Cell 2011; 8:349-50. [PMID: 21474094 DOI: 10.1016/j.stem.2011.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The study of rare genetic diseases is complicated by the inaccessibility of relevant cells and tissues, especially for neurologic disorders. In this issue of Cell Stem Cell, Marteyn et al. (2011) use human embryonic stem cells to identify deficits in neuritic outgrowth in myotonic dystrophy type 1.
Collapse
Affiliation(s)
- Mani S Mahadevan
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
28
|
Mykowska A, Sobczak K, Wojciechowska M, Kozlowski P, Krzyzosiak WJ. CAG repeats mimic CUG repeats in the misregulation of alternative splicing. Nucleic Acids Res 2011; 39:8938-51. [PMID: 21795378 PMCID: PMC3203611 DOI: 10.1093/nar/gkr608] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mutant transcripts containing expanded CUG repeats in the untranslated region are a pathogenic factor in myotonic dystrophy type 1 (DM1). The mutant RNA sequesters the muscleblind-like 1 (MBNL1) splicing factor and causes misregulation of the alternative splicing of multiple genes that are linked to clinical symptoms of the disease. In this study, we show that either long untranslated CAG repeat RNA or short synthetic CAG repeats induce splicing aberrations typical of DM1. Alternative splicing defects are also caused by translated CAG repeats in normal cells transfected with a mutant ATXN3 gene construct and in cells derived from spinocerebellar ataxia type 3 and Huntington's disease patients. Splicing misregulation is unlikely to be caused by traces of antisense transcripts with CUG repeats, and the possible trigger of this misregulation may be sequestration of the MBNL1 protein with nuclear RNA inclusions containing expanded CAG repeat transcripts. We propose that alternative splicing misregulation by mutant CAG repeats may contribute to the pathological features of polyglutamine disorders.
Collapse
Affiliation(s)
- Agnieszka Mykowska
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznan, Poland
| | | | | | | | | |
Collapse
|
29
|
Llamusí B, Artero R. Molecular Effects of the CTG Repeats in Mutant Dystrophia Myotonica Protein Kinase Gene. Curr Genomics 2011; 9:509-16. [PMID: 19516957 PMCID: PMC2694559 DOI: 10.2174/138920208786847944] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/18/2008] [Accepted: 06/24/2008] [Indexed: 11/22/2022] Open
Abstract
Myotonic Dystrophy type 1 (DM1) is a multi-system disorder characterized by muscle wasting, myotonia, cardiac conduction defects, cataracts, and neuropsychological dysfunction. DM1 is caused by expansion of a CTG repeat in the 3´untranslated region (UTR) of the Dystrophia Myotonica Protein Kinase (DMPK) gene. A body of work demonstrates that DMPK mRNAs containing abnormally expanded CUG repeats are toxic to several cell types. A core mechanism underlying symptoms of DM1 is that mutant DMPK RNA interferes with the developmentally regulated alternative splicing of defined pre-mRNAs. Expanded CUG repeats fold into ds(CUG) hairpins that sequester nuclear proteins including human Muscleblind-like (MBNL) and hnRNP H alternative splicing factors. DM1 cells activate CELF family member CUG-BP1 protein through hyperphosphorylation and stabilization in the cell nucleus. CUG-BP1 and MBNL1 proteins act antagonistically in exon selection in several pre-mRNA transcripts, thus MBNL1 sequestration and increase in nuclear activity of CUG-BP1 both act synergistically to missplice defined transcripts. Mutant DMPK-mediated effect on subcellular localization, and defective phosphorylation of cytoplasmic CUG-BP1, have additionally been linked to defective translation of p21 and MEF2A in DM1, possibly explaining delayed differentiation of DM1 muscle cells. Mutant DMPK transcripts bind and sequester transcription factors such as Specificity protein 1 leading to reduced transcription of selected genes. Recently, transcripts containing long hairpin structures of CUG repeats have been shown to be a Dicer ribonuclease target and Dicer-induced downregulation of the mutant DMPK transcripts triggers silencing effects on RNAs containing long complementary repeats. In summary, mutant DMPK transcripts alter gene transcription, alternative splicing, and translation of specific gene transcripts, and have the ability to trigger gene-specific silencing effects in DM1 cells. Therapies aimed at reversing these gene expression alterations should prove effective ways to treat DM1.
Collapse
Affiliation(s)
- Beatriz Llamusí
- Department of Genetics, University of Valencia, Doctor Moliner, 50, E46100 Burjasot, Valencia, Spain
| | | |
Collapse
|
30
|
Gomes-Pereira M, Cooper TA, Gourdon G. Myotonic dystrophy mouse models: towards rational therapy development. Trends Mol Med 2011; 17:506-17. [PMID: 21724467 DOI: 10.1016/j.molmed.2011.05.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/04/2011] [Accepted: 05/17/2011] [Indexed: 01/26/2023]
Abstract
DNA repeat expansions can result in the production of toxic RNA. RNA toxicity has been best characterised in the context of myotonic dystrophy. Nearly 20 mouse models have contributed significant and complementary insights into specific aspects of this novel disease mechanism. These models provide a unique resource to test pharmacological, anti-sense, and gene-therapy therapeutic strategies that target specific events of the pathobiological cascade. Further proof-of-principle concept studies and preclinical experiments require critical and thorough analysis of the multiple myotonic dystrophy transgenic lines available. This review provides in-depth assessment of the molecular and phenotypic features of these models and their contribution towards the dissection of disease mechanisms, and compares them with the human condition. More importantly, it provides critical assessment of their suitability and limitations for preclinical testing of emerging therapeutic strategies.
Collapse
Affiliation(s)
- Mário Gomes-Pereira
- Inserm U781, Université Paris Descartes, Faculté de Medicine Necker Enfants Malades, Paris, France.
| | | | | |
Collapse
|
31
|
Querido E, Gallardo F, Beaudoin M, Ménard C, Chartrand P. Stochastic and reversible aggregation of mRNA with expanded CUG-triplet repeats. J Cell Sci 2011; 124:1703-14. [PMID: 21511730 DOI: 10.1242/jcs.073270] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcripts containing expanded CNG repeats, which are found in several neuromuscular diseases, are not exported from the nucleus and aggregate as ribonuclear inclusions by an unknown mechanism. Using the MS2-GFP system, which tethers fluorescent proteins to a specific mRNA, we followed the dynamics of single CUG-repeat transcripts and RNA aggregation in living cells. Single transcripts with 145 CUG repeats from the dystrophia myotonica-protein kinase (DMPK) gene had reduced diffusion kinetics compared with transcripts containing only five CUG repeats. Fluorescence recovery after photobleaching (FRAP) experiments showed that CUG-repeat RNAs display a stochastic aggregation behaviour, because individual RNA foci formed at different rates and displayed different recoveries. Spontaneous clustering of CUG-repeat RNAs was also observed, confirming the stochastic aggregation revealed by FRAP. The splicing factor Mbnl1 colocalized with individual CUG-repeat transcripts and its aggregation with RNA foci displayed the same stochastic behaviour as CUG-repeat mRNAs. Moreover, depletion of Mbnl1 by RNAi resulted in decreased aggregation of CUG-repeat transcripts after FRAP, supporting a direct role for Mbnl1 in CUG-rich RNA foci formation. Our data reveal that nuclear CUG-repeat RNA aggregates are labile, constantly forming and disaggregating structures, and that the Mbnl1 splicing factor is directly involved in the aggregation process.
Collapse
Affiliation(s)
- Emmanuelle Querido
- Department of Biochemistry, Université de Montréal, 2900 Edouard-Montpetit, Montréal, QC H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
32
|
Marteyn A, Maury Y, Gauthier MM, Lecuyer C, Vernet R, Denis JA, Pietu G, Peschanski M, Martinat C. Mutant human embryonic stem cells reveal neurite and synapse formation defects in type 1 myotonic dystrophy. Cell Stem Cell 2011; 8:434-44. [PMID: 21458401 DOI: 10.1016/j.stem.2011.02.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 11/28/2010] [Accepted: 02/10/2011] [Indexed: 01/01/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystem disorder affecting a variety of organs, including the central nervous system. By using neuronal progeny derived from human embryonic stem cells carrying the causal DM1 mutation, we have identified an early developmental defect in genes involved in neurite formation and the establishment of neuromuscular connections. Differential gene expression profiling and quantitative RT-PCR revealed decreased expression of two members of the SLITRK family in DM1 neural cells and in DM1 brain biopsies. In addition, DM1 motoneuron/muscle cell cocultures showed alterations that are consistent with the known role of SLITRK genes in neurite outgrowth, neuritogenesis, and synaptogenesis. Rescue and knockdown experiments suggested that the functional defects can be directly attributed to SLITRK misexpression. These neuropathological mechanisms may be clinically significant for the functional changes in neuromuscular connections associated with DM1.
Collapse
Affiliation(s)
- Antoine Marteyn
- INSERM/UEVE UMR 861, I-STEM AFM, 5 rue H. Desbruères, Evry Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Iacoangeli A, Bianchi R, Tiedge H. Regulatory RNAs in brain function and disorders. Brain Res 2010; 1338:36-47. [PMID: 20307503 PMCID: PMC3524968 DOI: 10.1016/j.brainres.2010.03.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 03/10/2010] [Accepted: 03/15/2010] [Indexed: 11/17/2022]
Abstract
Regulatory RNAs are being increasingly investigated in neurons, and important roles in brain function have been revealed. Regulatory RNAs are non-protein-coding RNAs (npcRNAs) that comprise a heterogeneous group of molecules, varying in size and mechanism of action. Regulatory RNAs often exert post-transcriptional control of gene expression, resulting in gene silencing or gene expression stimulation. Here, we review evidence that regulatory RNAs are implicated in neuronal development, differentiation, and plasticity. We will also discuss npcRNA dysregulation that may be involved in pathological states of the brain such as neurodevelopmental disorders, neurodegeneration, and epilepsy.
Collapse
Affiliation(s)
- Anna Iacoangeli
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, State University of New York, Health Science Center at Brooklyn, 450 Clarkson Avenue, Brooklyn, New York 11203, USA
| | - Riccardo Bianchi
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, State University of New York, Health Science Center at Brooklyn, 450 Clarkson Avenue, Brooklyn, New York 11203, USA
- Program in Neural and Behavioral Science, State University of New York, Health Science Center at Brooklyn, 450 Clarkson Avenue, Brooklyn, New York 11203, USA
| | - Henri Tiedge
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, State University of New York, Health Science Center at Brooklyn, 450 Clarkson Avenue, Brooklyn, New York 11203, USA
- Program in Neural and Behavioral Science, State University of New York, Health Science Center at Brooklyn, 450 Clarkson Avenue, Brooklyn, New York 11203, USA
| |
Collapse
|
34
|
Vanlinthout LEH, Booij LHDJ, Van Egmond J, Robertson EN. Comparison of mechanomyography and acceleromyography for the assessment of rocuronium induced neuromuscular block in myotonic dystrophy type 1. Anaesthesia 2010; 65:601-607. [DOI: 10.1111/j.1365-2044.2010.06342.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Oude Ophuis RJA, Mulders SAM, van Herpen REMA, van de Vorstenbosch R, Wieringa B, Wansink DG. DMPK protein isoforms are differentially expressed in myogenic and neural cell lineages. Muscle Nerve 2009; 40:545-55. [PMID: 19626675 DOI: 10.1002/mus.21352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by an unstable (CTG . CAG)n segment in the 3' untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. It is commonly accepted that DMPK mRNA-based toxicity is the main contributor to DM1 manifestations; however, not much is known about the significance of the DMPK protein. To appreciate its normal and possible pathobiological role, we analyzed the patterns of DMPK splice isoform expression in mouse tissues. Long membrane-anchored DMPK dominated in heart, diaphragm, and skeletal muscle, whereas short cytosolic isoforms were highly expressed in bladder and stomach. Both isoform types were present in diverse brain regions. DMPK protein was also detectable in cultured myoblasts, myotubes, cortical astrocytes, and related cell lines of neural or muscle origin, but not in hippocampal neurons. This work identifies DMPK as a kinase with pronounced expression in diverse muscle and neural tissues that are affected in DM1.
Collapse
Affiliation(s)
- Ralph J A Oude Ophuis
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
Perdoni F, Malatesta M, Cardani R, Giagnacovo M, Mancinelli E, Meola G, Pellicciari C. RNA/MBNL1-containing foci in myoblast nuclei from patients affected by myotonic dystrophy type 2: an immunocytochemical study. Eur J Histochem 2009; 53:e18. [PMID: 19864209 PMCID: PMC3168229 DOI: 10.4081/ejh.2009.e18] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 07/17/2009] [Indexed: 01/01/2023] Open
Abstract
Myotonic dystrophy type 2 (DM2) is a dominantly inherited autosomal disease with multi-systemic clinical features and it is caused by expansion of a CCTG tetranucleotide repeat in the first intron of the zinc finger protein 9 (ZNF9) gene in 3q21.The expanded-CCUG-containing transcripts are retained in the cell nucleus and accumulate in the form of focal aggregates which specifically sequester the muscleblind-like 1 (MBNL1) protein, a RNA binding factor involved in the regulation of alternative splicing. The structural organization and composition of the foci are still incompletely known. In this study, the nuclear foci occurring in cultured myoblasts from DM2 patients were characterised at fluorescence and transmission electron microscopy by using a panel of antibodies recognizing transcription and processing factors of pre-mRNAs. MBNL1 proved to co-locate in the nuclear foci with snRNPs and hnRNPs, whereas no co-location was observed with RNA polymerase II, the non-RNP splicing factor SC35, the cleavage factor CStF and the PML protein. At electron microscopy the MBNL1-containing nuclear foci appeared as roundish domains showing a rather homogeneous structure and proved to contain snRNPs and hnRNPs. The sequestration of splicing factors involved in early phases of pre-mRNA processing supports the hypothesis of a general alteration in the maturation of several mRNAs, which could lead to the multiple pathological dysfunctions observed in dystrophic patients.
Collapse
Affiliation(s)
- F Perdoni
- Dipartimento di Biologia Animale, Laboratorio di Biologia cellulare e Neurobiologia, Università di Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Sasagawa N, Ohno E, Kino Y, Watanabe Y, Ishiura S. Identification ofCaenorhabditis elegansK02H8.1 (CeMBL), a functional ortholog of mammalian MBNL proteins. J Neurosci Res 2009; 87:1090-7. [DOI: 10.1002/jnr.21942] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Osborne RJ, Lin X, Welle S, Sobczak K, O'Rourke JR, Swanson MS, Thornton CA. Transcriptional and post-transcriptional impact of toxic RNA in myotonic dystrophy. Hum Mol Genet 2009; 18:1471-81. [PMID: 19223393 DOI: 10.1093/hmg/ddp058] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an RNA dominant disease in which mutant transcripts containing an expanded CUG repeat (CUG(exp)) cause muscle dysfunction by interfering with biogenesis of other mRNAs. The toxic effects of mutant RNA are mediated partly through sequestration of splicing regulator Muscleblind-like 1 (Mbnl1), a protein that binds to CUG(exp) RNA. A gene that is prominently affected encodes chloride channel 1 (Clcn1), resulting in hyperexcitability of muscle (myotonia). To identify DM1-affected genes and study mechanisms for dysregulation, we performed global mRNA profiling in transgenic mice that express CUG(exp) RNA, when compared with Mbnl1 knockout and Clcn1 null mice. We found that the majority of changes induced by CUG(exp) RNA in skeletal muscle can be explained by reduced activity of Mbnl1, including many changes that are secondary to myotonia. The pathway most affected comprises genes involved in calcium signaling and homeostasis. Some effects of CUG(exp) RNA on gene expression are caused by abnormal alternative splicing or downregulation of Mbnl1-interacting mRNAs. However, several of the most highly dysregulated genes showed altered transcription, as indicated by parallel changes of the corresponding pre-mRNAs. These results support the idea that trans-dominant effects of CUG(exp) RNA on gene expression in this transgenic model may occur at the level of transcription, RNA processing and mRNA decay, and are mediated mainly but not entirely through sequestration of Mbnl1.
Collapse
Affiliation(s)
- Robert J Osborne
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Myotonic dystrophy (DM) is a dominantly inherited neurodegenerative disorder for which there is no cure or effective treatment. Investigation of DM pathogenesis has identified a novel disease mechanism that requires development of innovative therapeutic strategies. It is now clear that DM is not caused by expression of a mutant protein. Instead, DM is the first recognized example of an RNA-mediated disease. Expression of the mutated gene gives rise to an expanded repeat RNA that is directly toxic to cells. The mutant RNA is retained in the nucleus, forming ribonuclear inclusions in affected tissue. A primary consequence of RNA toxicity in DM is dysfunction of two classes of RNA binding proteins, which leads to abnormal regulation of alternative splicing, or spliceopathy, of select genes. Spliceopathy now is known to cause myotonia and insulin resistance in DM. As our understanding of pathogenesis continues to improve, therapy targeted directly at the RNA disease mechanism will begin to replace the supportive care currently available. New pharmacologic approaches to treat myotonia and muscle wasting in DM type 1 are already in early clinical trials, and therapies designed to reverse the RNA toxicity have shown promise in preclinical models by correcting spliceopathy and eliminating myotonia. The well-defined ribonuclear inclusions may serve as convenient therapeutic targets to identify new agents that modify RNA toxicity. Continued development of appropriate model systems will allow testing of additional therapeutic strategies as they become available. Although DM is a decidedly complex disorder, its RNA-mediated disease mechanism may prove to be highly susceptible to therapy.
Collapse
Affiliation(s)
- Thurman M Wheeler
- Neuromuscular Disease Center, Department of Neurology, University of Rochester, Rochester, New York 14642, USA.
| |
Collapse
|
40
|
SCA8 mRNA expression suggests an antisense regulation of KLHL1 and correlates to SCA8 pathology. Brain Res 2008; 1233:176-84. [PMID: 18708037 DOI: 10.1016/j.brainres.2008.07.096] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Revised: 07/22/2008] [Accepted: 07/22/2008] [Indexed: 12/22/2022]
Abstract
An increasing number of inherited neurodegenerative diseases are known to be caused by the expansion of unstable trinucleotide repeat tracts. Spinocerebellar ataxia type 8 (SCA8) has been identified as being partly caused by a CTG expansion in an untranslated, endogenous antisense RNA that overlaps the Kelch-like 1 (KLHL1) gene. Clinically, SCA8 patients show similar features to those with the other SCAs, including limb and truncal ataxia, ataxic dysarthria and horizontal nystagmus, all of which are signs of dysfunction of the cerebellar system. However, allele sizes within the SCA8 proposed pathogenic range have been reported in patients with ataxia of unknown etiology, in individuals from pedigrees with other SCA or Friedreich's ataxia, and in patients with Alzheimer's disease, schizophrenia or parkinsonism. These observations suggest that mutation of the SCA8 locus might affect neurons other than the cerebellum. Antisense transcripts are known to regulate complementary sense transcripts and are involved in several biologic functions, such as development, adaptive response, and viral infection. In order to test whether SCA8 affects the KLHL1 expression by antisense RNA in brain cells, we examined the expression pattern of KLHL1 and SCA8 in human tissues and in mouse brain regions. SCA8 expression was colocalized with KLHL1 transcript in many brain regions whose functions are correlated to the clinical symptoms of SCA8 patients. These findings lead to the hypothesis of a possible relevance that SCA8 transcript downregulates KLHL1 expression through an antisense mechanism, which then leads to SCA8 neuropathogenesis.
Collapse
|
41
|
Myotonic Dystrophy Transgenic Mice Exhibit Pathologic Abnormalities in Diaphragm Neuromuscular Junctions and Phrenic Nerves. J Neuropathol Exp Neurol 2008; 67:763-72. [DOI: 10.1097/nen.0b013e318180ec64] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
42
|
Di Costanzo A, Santoro L, de Cristofaro M, Manganelli F, Di Salle F, Tedeschi G. Familial aggregation of white matter lesions in myotonic dystrophy type 1. Neuromuscul Disord 2008; 18:299-305. [DOI: 10.1016/j.nmd.2008.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Revised: 01/12/2008] [Accepted: 01/30/2008] [Indexed: 10/22/2022]
|
43
|
Yuan Y, Compton SA, Sobczak K, Stenberg MG, Thornton CA, Griffith JD, Swanson MS. Muscleblind-like 1 interacts with RNA hairpins in splicing target and pathogenic RNAs. Nucleic Acids Res 2007; 35:5474-86. [PMID: 17702765 PMCID: PMC2018611 DOI: 10.1093/nar/gkm601] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The MBNL and CELF proteins act antagonistically to control the alternative splicing of specific exons during mammalian postnatal development. This process is dysregulated in myotonic dystrophy because MBNL proteins are sequestered by (CUG)n and (CCUG)n RNAs expressed from mutant DMPK and ZNF9 genes, respectively. While these observations predict that MBNL proteins have a higher affinity for these pathogenic RNAs versus their normal splicing targets, we demonstrate that MBNL1 possesses comparably high affinities for (CUG)n and (CAG)n RNAs as well as a splicing target, Tnnt3. Mapping of a MBNL1-binding site upstream of the Tnnt3 fetal exon indicates that a preferred binding site for this protein is a GC-rich RNA hairpin containing a pyrimidine mismatch. To investigate how pathogenic RNAs sequester MBNL1 in DM1 cells, we used a combination of chemical/enzymatic structure probing and electron microscopy to determine that MBNL1 forms a ring-like structure which binds to the dsCUG helix. While the MBNL1 N-terminal region is required for RNA binding, the C-terminal region mediates homotypic interactions which may stabilize intra- and/or inter-ring interactions. Our results provide a mechanistic basis for dsCUG-induced MBNL1 sequestration and highlight a striking similarity in the binding sites for MBNL proteins on splicing precursor and pathogenic RNAs.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC and Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Sarah A. Compton
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC and Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Krzysztof Sobczak
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC and Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Myrna G. Stenberg
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC and Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Charles A. Thornton
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC and Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jack D. Griffith
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC and Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Maurice S. Swanson
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC and Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
- *To whom correspondence should be addressed. +1 352 273 8076+1 352 273 8284
| |
Collapse
|