1
|
Louie KW, Hasegawa EH, Farr GH, Ignacz A, Paguio A, Maenza A, Paquette AG, Henry C, Maves L. Epigenetic small molecule screening identifies a new HDACi compound for ameliorating Duchenne muscular dystrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634796. [PMID: 39974951 PMCID: PMC11838185 DOI: 10.1101/2025.01.24.634796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Duchenne muscular dystrophy (DMD) is the most common inherited muscle disease. There are currently few effective therapies to treat the disease, although many approaches are being pursued. Certain histone deacetylase inhibitors (HDACi) have been shown to ameliorate DMD phenotypes in mouse and zebrafish animal models, and the HDACi givinostat has recently gained FDA approval for DMD. Our goal was to identify additional HDACi, or other classes of epigenetic small molecules, that are beneficial for DMD. Using an established animal model for DMD, the zebrafish dmd mutant strain sapje , we screened a library of over 800 epigenetic small molecules of various classes. We used a quantitative muscle birefringence assay to assess and compare the effects of these small molecule treatments on dmd mutant zebrafish skeletal muscle. Our screening identified a new HDACi, SR-4370, that ameliorated dmd mutant zebrafish skeletal muscle degeneration, in addition to HDACi previously shown to improve dmd zebrafish. We find that a single early treatment of HDACi can ameliorate dmd zebrafish. Furthermore, we find that HDACi that improve dmd muscle also cause increased histone acetylation in zebrafish larvae, whereas givinostat does not appear to increase histone acetylation or improve zebrafish dmd muscle. Our results add to the growing evidence that HDACi are promising candidates for treating DMD. Our study also provides further support for the effectiveness of small-molecule screening in dmd zebrafish. Graphical abstract
Collapse
|
2
|
Barrett P, Louie KW, Dupont JB, Mack DL, Maves L. Uncovering the Embryonic Origins of Duchenne Muscular Dystrophy. WIREs Mech Dis 2024; 16:e1653. [PMID: 39444092 PMCID: PMC11563919 DOI: 10.1002/wsbm.1653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a severe degenerative muscle disease caused by mutations in the DMD gene, which encodes dystrophin. Despite its initial description in the late 19th century by French neurologist Guillaume Duchenne de Boulogne, and identification of causal DMD genetic mutations in the 1980s, therapeutics remain challenging. The current standard of care is corticosteroid treatment, which delays the progression of muscle dysfunction but is associated with significant adverse effects. Emerging therapeutic approaches, including AAV-mediated gene transfer, CRISPR gene editing, and small molecule interventions, are under development but face considerable obstacles. Although DMD is viewed as a progressive muscle disease, muscle damage and abnormal molecular signatures are already evident during fetal myogenesis. This early onset of pathology suggests that the limited success of current therapies may partly be due to their administration after aberrant embryonic myogenesis has occurred in the absence of dystrophin. Consequently, identifying optimal therapeutic strategies and intervention windows for DMD may depend on a better understanding of the earliest DMD disease mechanisms. As newer techniques are applied, the field is gaining increasingly detailed insights into the early muscle developmental abnormalities in DMD. A comprehensive understanding of the initial events in DMD pathogenesis and progression will facilitate the generation and testing of effective therapeutic interventions.
Collapse
Affiliation(s)
- Philip Barrett
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA
| | - Ke'ale W Louie
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | | | - David L Mack
- Departments of Rehabilitation Medicine, Bioengineering and Neurobiology & Biophysics, Institute for Stem Cell and Regenerative Medicine, University of Washington Medicine, Seattle, Washington, USA
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Mehmood H, Kasher PR, Barrett-Jolley R, Walmsley GL. Aligning with the 3Rs: alternative models for research into muscle development and inherited myopathies. BMC Vet Res 2024; 20:477. [PMID: 39425123 PMCID: PMC11488271 DOI: 10.1186/s12917-024-04309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
Inherited and acquired muscle diseases are an important cause of morbidity and mortality in human medical and veterinary patients. Researchers use models to study skeletal muscle development and pathology, improve our understanding of disease pathogenesis and explore new treatment options. Experiments on laboratory animals, including murine and canine models, have led to huge advances in congenital myopathy and muscular dystrophy research that have translated into clinical treatment trials in human patients with these debilitating and often fatal conditions. Whilst animal experimentation has enabled many significant and impactful discoveries that otherwise may not have been possible, we have an ethical and moral, and in many countries also a legal, obligation to consider alternatives. This review discusses the models available as alternatives to mammals for muscle development, biology and disease research with a focus on inherited myopathies. Cell culture models can be used to replace animals for some applications: traditional monolayer cultures (for example, using the immortalised C2C12 cell line) are accessible, tractable and inexpensive but developmentally limited to immature myotube stages; more recently, developments in tissue engineering have led to three-dimensional cultures with improved differentiation capabilities. Advances in computer modelling and an improved understanding of pathogenetic mechanisms are likely to herald new models and opportunities for replacement. Where this is not possible, a 3Rs approach advocates partial replacement with the use of less sentient animals (including invertebrates (such as worms Caenorhabditis elegans and fruit flies Drosophila melanogaster) and embryonic stages of small vertebrates such as the zebrafish Danio rerio) alongside refinement of experimental design and improved research practices to reduce the numbers of animals used and the severity of their experience. An understanding of the advantages and disadvantages of potential models is essential for researchers to determine which can best facilitate answering a specific scientific question. Applying 3Rs principles to research not only improves animal welfare but generates high-quality, reproducible and reliable data with translational relevance to human and animal patients.
Collapse
Affiliation(s)
- Hashir Mehmood
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Lifesciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Paul R Kasher
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Allianceand the, University of Manchester , Manchester, M6 8HD, UK
| | - Richard Barrett-Jolley
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Lifesciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Gemma L Walmsley
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Lifesciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
- Department of Small Animal Clinical Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, South Wirral, Neston, CH64 7TE, UK.
| |
Collapse
|
4
|
Marcello M, Cetrangolo V, Morotti I, Squarci C, Caremani M, Reconditi M, Savarese M, Bianco P, Piazzesi G, Lombardi V, Udd B, Conte I, Nigro V, Linari M. Sarcomere level mechanics of the fast skeletal muscle of the medaka fish larva. Am J Physiol Cell Physiol 2024; 326:C632-C644. [PMID: 38145303 DOI: 10.1152/ajpcell.00530.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
The medaka fish (Oryzias latipes) is a vertebrate model used in developmental biology and genetics. Here we explore its suitability as a model for investigating the molecular mechanisms of human myopathies caused by mutations in sarcomeric proteins. To this end, the relevant mechanical parameters of the intact skeletal muscle of wild-type medaka are determined using the transparent tail at larval stage 40. Tails were mounted at sarcomere length of 2.1 μm in a thermoregulated trough containing physiological solution. Tetanic contractions were elicited at physiological temperature (10°C-30°C) by electrical stimulation, and sarcomere length changes were recorded with nanometer-microsecond resolution during both isometric and isotonic contractions with a striation follower. The force output has been normalized for the actual fraction of the cross section of the tail occupied by the myofilament lattice, as established with transmission electron microscopy (TEM), and then for the actual density of myofilaments, as established with X-ray diffraction. Under these conditions, the mechanical performance of the contracting muscle of the wild-type larva can be defined at the level of the half-thick filament, where ∼300 myosin motors work in parallel as a collective motor, allowing a detailed comparison with the established performance of the skeletal muscle of different vertebrates. The results of this study point out that the medaka fish larva is a suitable model for the investigation of the genotype/phenotype correlations and therapeutic possibilities in skeletal muscle diseases caused by mutations in sarcomeric proteins.NEW & NOTEWORTHY The suitability of the medaka fish as a model for investigating the molecular mechanisms of human myopathies caused by mutations of sarcomeric proteins is tested by combining structural analysis and sarcomere-level mechanics of the skeletal muscle of the tail of medaka larva. The mechanical performance of the medaka muscle, scaled at the level of the myosin-containing thick filament, together with its reduced genome duplication makes this model unique for investigations of the genotype/phenotype correlations in human myopathies.
Collapse
Affiliation(s)
| | - Viviana Cetrangolo
- PhysioLab, University of Florence, Florence, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | | | | | | | - Marco Savarese
- Folkhälsan Research Center, Helsinki University, Helsinki, Finland
| | | | | | | | - Bjarne Udd
- Folkhälsan Research Center, Helsinki University, Helsinki, Finland
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Precision Medicine, University of Campania, Naples, Italy
| | - Marco Linari
- PhysioLab, University of Florence, Florence, Italy
| |
Collapse
|
5
|
Karuppasamy M, English KG, Henry CA, Manzini MC, Parant JM, Wright MA, Ruparelia AA, Currie PD, Gupta VA, Dowling JJ, Maves L, Alexander MS. Standardization of zebrafish drug testing parameters for muscle diseases. Dis Model Mech 2024; 17:dmm050339. [PMID: 38235578 PMCID: PMC10820820 DOI: 10.1242/dmm.050339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
Skeletal muscular diseases predominantly affect skeletal and cardiac muscle, resulting in muscle weakness, impaired respiratory function and decreased lifespan. These harmful outcomes lead to poor health-related quality of life and carry a high healthcare economic burden. The absence of promising treatments and new therapies for muscular disorders requires new methods for candidate drug identification and advancement in animal models. Consequently, the rapid screening of drug compounds in an animal model that mimics features of human muscle disease is warranted. Zebrafish are a versatile model in preclinical studies that support developmental biology and drug discovery programs for novel chemical entities and repurposing of established drugs. Due to several advantages, there is an increasing number of applications of the zebrafish model for high-throughput drug screening for human disorders and developmental studies. Consequently, standardization of key drug screening parameters, such as animal husbandry protocols, drug compound administration and outcome measures, is paramount for the continued advancement of the model and field. Here, we seek to summarize and explore critical drug treatment and drug screening parameters in the zebrafish-based modeling of human muscle diseases. Through improved standardization and harmonization of drug screening parameters and protocols, we aim to promote more effective drug discovery programs.
Collapse
Affiliation(s)
- Muthukumar Karuppasamy
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, AL 35294, USA
| | - Katherine G. English
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, AL 35294, USA
| | - Clarissa A. Henry
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - M. Chiara Manzini
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Rutgers, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - John M. Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Melissa A. Wright
- Department of Pediatrics, Section of Child Neurology, University of Colorado at Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Avnika A. Ruparelia
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria 3010, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Peter D. Currie
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria 3010, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
- EMBL Australia, Victorian Node, Monash University, Clayton, Victoria 3800, Australia
| | - Vandana A. Gupta
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - James J. Dowling
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario M5G 1X8, Canada
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Matthew S. Alexander
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, AL 35294, USA
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- UAB Center for Neurodegeneration and Experimental Therapeutics (CNET), Birmingham, AL 35294, USA
| |
Collapse
|
6
|
Singh J, Patten SA. Modeling neuromuscular diseases in zebrafish. Front Mol Neurosci 2022; 15:1054573. [PMID: 36583079 PMCID: PMC9794147 DOI: 10.3389/fnmol.2022.1054573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Neuromuscular diseases are a diverse group of conditions that affect the motor system and present some overlapping as well as distinct clinical manifestations. Although individually rare, the combined prevalence of NMDs is similar to Parkinson's. Over the past decade, new genetic mutations have been discovered through whole exome/genome sequencing, but the pathogenesis of most NMDs remains largely unexplored. Little information on the molecular mechanism governing the progression and development of NMDs accounts for the continual failure of therapies in clinical trials. Different aspects of the diseases are typically investigated using different models from cells to animals. Zebrafish emerges as an excellent model for studying genetics and pathogenesis and for developing therapeutic interventions for most NMDs. In this review, we describe the generation of different zebrafish genetic models mimicking NMDs and how they are used for drug discovery and therapy development.
Collapse
Affiliation(s)
- Jaskaran Singh
- INRS – Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Shunmoogum A. Patten
- INRS – Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada,Departement de Neurosciences, Université de Montréal, Montréal, QC, Canada,Centre d'Excellence en Recherche sur les Maladies Orphelines – Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC, Canada,*Correspondence: Shunmoogum A. Patten,
| |
Collapse
|
7
|
Tonelotto V, Consorti C, Facchinello N, Trapani V, Sabatelli P, Giraudo C, Spizzotin M, Cescon M, Bertolucci C, Bonaldo P. Collagen VI ablation in zebrafish causes neuromuscular defects during developmental and adult stages. Matrix Biol 2022; 112:39-61. [PMID: 35961424 DOI: 10.1016/j.matbio.2022.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Collagen VI (COL6) is an extracellular matrix protein exerting multiple functions in different tissues. In humans, mutations of COL6 genes cause rare inherited congenital disorders, primarily affecting skeletal muscles and collectively known as COL6-related myopathies, for which no cure is available yet. In order to get insights into the pathogenic mechanisms underlying COL6-related diseases, diverse animal models were produced. However, the roles exerted by COL6 during embryogenesis remain largely unknown. Here, we generated the first zebrafish COL6 knockout line through CRISPR/Cas9 site-specific mutagenesis of the col6a1 gene. Phenotypic characterization during embryonic and larval development revealed that lack of COL6 leads to neuromuscular defects and motor dysfunctions, together with distinctive alterations in the three-dimensional architecture of craniofacial cartilages. These phenotypic features were maintained in adult col6a1 null fish, which displayed defective muscle organization and impaired swimming capabilities. Moreover, col6a1 null fish showed autophagy defects and organelle abnormalities at both embryonic and adult stages, thus recapitulating the main features of patients affected by COL6-related myopathies. Mechanistically, lack of COL6 led to increased BMP signaling, and direct inhibition of BMP activity ameliorated the locomotor col6a1 null embryos. Finally performance of, treatment with salbutamol, a β2-adrenergic receptor agonist, elicited a significant amelioration of the neuromuscular and motility defects of col6a1 null fish embryos. Altogether, these findings indicate that this newly generated zebrafish col6a1 null line is a valuable in vivo tool to model COL6-related myopathies and suitable for drug screenings aimed at addressing the quest for effective therapeutic strategies for these disorders.
Collapse
Affiliation(s)
| | - Chiara Consorti
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Nicola Facchinello
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Valeria Trapani
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Patrizia Sabatelli
- CNR - Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, 40136, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Chiara Giraudo
- Department of Medicine, Unit of Advanced Clinical and Translational Imaging, University of Padova, 35128 Padova, Italy
| | - Marianna Spizzotin
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy; CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
8
|
Mob4-dependent STRIPAK involves the chaperonin TRiC to coordinate myofibril and microtubule network growth. PLoS Genet 2022; 18:e1010287. [PMID: 35737712 PMCID: PMC9258817 DOI: 10.1371/journal.pgen.1010287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/06/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022] Open
Abstract
Myofibrils of the skeletal muscle are comprised of sarcomeres that generate force by contraction when myosin-rich thick filaments slide past actin-based thin filaments. Surprisingly little is known about the molecular processes that guide sarcomere assembly in vivo, despite deficits within this process being a major cause of human disease. To overcome this knowledge gap, we undertook a forward genetic screen coupled with reverse genetics to identify genes required for vertebrate sarcomere assembly. In this screen, we identified a zebrafish mutant with a nonsense mutation in mob4. In Drosophila, mob4 has been reported to play a role in spindle focusing as well as neurite branching and in planarians mob4 was implemented in body size regulation. In contrast, zebrafish mob4geh mutants are characterised by an impaired actin biogenesis resulting in sarcomere defects. Whereas loss of mob4 leads to a reduction in the amount of myofibril, transgenic expression of mob4 triggers an increase. Further genetic analysis revealed the interaction of Mob4 with the actin-folding chaperonin TRiC, suggesting that Mob4 impacts on TRiC to control actin biogenesis and thus myofibril growth. Additionally, mob4geh features a defective microtubule network, which is in-line with tubulin being the second main folding substrate of TRiC. We also detected similar characteristics for strn3-deficient mutants, which confirmed Mob4 as a core component of STRIPAK and surprisingly implicates a role of the STRIPAK complex in sarcomerogenesis.
Collapse
|
9
|
Kilroy EA, Ignacz AC, Brann KL, Schaffer CE, Varney D, Alrowaished SS, Silknitter KJ, Miner JN, Almaghasilah A, Spellen TL, Lewis AD, Tilbury K, King BL, Kelley JB, Henry CA. Beneficial impacts of neuromuscular electrical stimulation on muscle structure and function in the zebrafish model of Duchenne muscular dystrophy. eLife 2022; 11:62760. [PMID: 35324428 PMCID: PMC8947762 DOI: 10.7554/elife.62760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/10/2022] [Indexed: 12/20/2022] Open
Abstract
Neuromuscular electrical stimulation (NMES) allows activation of muscle fibers in the absence of voluntary force generation. NMES could have the potential to promote muscle homeostasis in the context of muscle disease, but the impacts of NMES on diseased muscle are not well understood. We used the zebrafish Duchenne muscular dystrophy (dmd) mutant and a longitudinal design to elucidate the consequences of NMES on muscle health. We designed four neuromuscular stimulation paradigms loosely based on weightlifting regimens. Each paradigm differentially affected neuromuscular structure, function, and survival. Only endurance neuromuscular stimulation (eNMES) improved all outcome measures. We found that eNMES improves muscle and neuromuscular junction morphology, swimming, and survival. Heme oxygenase and integrin alpha7 are required for eNMES-mediated improvement. Our data indicate that neuromuscular stimulation can be beneficial, suggesting that the right type of activity may benefit patients with muscle disease.
Collapse
Affiliation(s)
- Elisabeth A Kilroy
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Amanda C Ignacz
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Kaylee L Brann
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Claire E Schaffer
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Devon Varney
- School of Biology and Ecology, University of Maine, Orono, United States
| | | | - Kodey J Silknitter
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Jordan N Miner
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, United States
| | - Ahmed Almaghasilah
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States
| | - Tashawna L Spellen
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Alexandra D Lewis
- School of Biology and Ecology, University of Maine, Orono, United States
| | - Karissa Tilbury
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,Department of Chemical and Biomedical Engineering, University of Maine, Orono, United States
| | - Benjamin L King
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,Department of Molecular and Biomedical Sciences, University of Maine, Orono, United States
| | - Joshua B Kelley
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,Department of Molecular and Biomedical Sciences, University of Maine, Orono, United States
| | - Clarissa A Henry
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, United States.,School of Biology and Ecology, University of Maine, Orono, United States
| |
Collapse
|
10
|
Nicolas HA, Hua K, Quigley H, Ivare J, Tesson F, Akimenko MA. A CRISPR/Cas9 zebrafish lamin A/C mutant model of muscular laminopathy. Dev Dyn 2021; 251:645-661. [PMID: 34599606 DOI: 10.1002/dvdy.427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/13/2021] [Accepted: 09/16/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Lamin A/C gene (LMNA) mutations frequently cause cardiac and/or skeletal muscle diseases called striated muscle laminopathies. We created a zebrafish muscular laminopathy model using CRISPR/Cas9 technology to target the zebrafish lmna gene. RESULTS Heterozygous and homozygous lmna mutants present skeletal muscle damage at 1 day post-fertilization (dpf), and mobility impairment at 4 to 7 dpf. Cardiac structure and function analyses between 1 and 7 dpf show mild and transient defects in the lmna mutants compared to wild type (WT). Quantitative RT-PCR analysis of genes implicated in striated muscle laminopathies show a decrease in jun and nfκb2 expression in 7 dpf homozygous lmna mutants compared to WT. Homozygous lmna mutants have a 1.26-fold protein increase in activated Erk 1/2, kinases associated with striated muscle laminopathies, compared to WT at 7 dpf. Activated Protein Kinase C alpha (Pkc α), a kinase that interacts with lamin A/C and Erk 1/2, is also upregulated in 7 dpf homozygous lmna mutants compared to WT. CONCLUSIONS This study presents an animal model of skeletal muscle laminopathy where heterozygous and homozygous lmna mutants exhibit prominent skeletal muscle abnormalities during the first week of development. Furthermore, this is the first animal model that potentially implicates Pkc α in muscular laminopathies.
Collapse
Affiliation(s)
- Hannah A Nicolas
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Khang Hua
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Hailey Quigley
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Joshua Ivare
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Frédérique Tesson
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Marie-Andrée Akimenko
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Spreafico M, Cafora M, Bragato C, Capitanio D, Marasca F, Bodega B, De Palma C, Mora M, Gelfi C, Marozzi A, Pistocchi A. Targeting HDAC8 to ameliorate skeletal muscle differentiation in Duchenne muscular dystrophy. Pharmacol Res 2021; 170:105750. [PMID: 34214631 DOI: 10.1016/j.phrs.2021.105750] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/07/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy (DMD) causes progressive skeletal muscle degeneration and currently there are few therapeutic options. The identification of new drug targets and their validation in model systems of DMD could be a promising approach to make progress in finding new treatments for this lethal disease. Histone deacetylases (HDACs) play key roles in myogenesis and the therapeutic approach targeting HDACs in DMD is in an advanced phase of clinical trial. Here, we show that the expression of HDAC8, one of the members of the HDAC family, is increased in DMD patients and dystrophic zebrafish. The selective inhibition of HDAC8 with the PCI-34051 inhibitor rescues skeletal muscle defects, similarly to the treatment with the pan-HDAC inhibitor Givinostat. Through acetylation profile of zebrafish with HDAC8 dysregulation, we identified new HDAC8 targets involved in cytoskeleton organization such as tubulin that, when acetylated, is a marker of stable microtubules. Our work provides evidence of HDAC8 overexpression in DMD patients and zebrafish and supports its specific inhibition as a new valuable therapeutic approach in the treatment of this pathology.
Collapse
MESH Headings
- Animals
- Humans
- Acetylation
- Animals, Genetically Modified
- Cell Differentiation
- Disease Models, Animal
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Hydroxamic Acids/pharmacology
- Indoles/pharmacology
- Muscle Development
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/enzymology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Protein Processing, Post-Translational
- Repressor Proteins/antagonists & inhibitors
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction
- Zebrafish
- Zebrafish Proteins/antagonists & inhibitors
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Marco Spreafico
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Marco Cafora
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy; Dipartimento di Scienze Cliniche e Comunità, Università degli Studi di Milano, Milan, Italy
| | - Cinzia Bragato
- PhD program in Neuroscience, Università degli Studi di Milano-Bicocca, Monza, Italy; Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniele Capitanio
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Federica Marasca
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), Milan, Italy
| | - Beatrice Bodega
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), Milan, Italy; Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Clara De Palma
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Marina Mora
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cecilia Gelfi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy; IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Anna Marozzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
12
|
Swiderski K, Lynch GS. Murine models of Duchenne muscular dystrophy: is there a best model? Am J Physiol Cell Physiol 2021; 321:C409-C412. [PMID: 34260298 DOI: 10.1152/ajpcell.00212.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022]
Affiliation(s)
- Kristy Swiderski
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Yuan C, Arora A, Garofalo AM, Grange RW. Potential cross-talk between muscle and tendon in Duchenne muscular dystrophy. Connect Tissue Res 2021; 62:40-52. [PMID: 32867551 DOI: 10.1080/03008207.2020.1810247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To describe potential signaling (cross-talk) between dystrophic skeletal muscle and tendon in Duchenne muscular dystrophy. MATERIALS AND METHODS Review of Duchenne muscular dystrophy and associated literature relevant to muscle-tendon cross-talk. RESULTS AND CONCLUSIONS Duchenne muscular dystrophy results from the absence of the protein dystrophin and the associated dystrophin - glycoprotein complex, which are thought to provide both structural support and signaling functions for the muscle fiber. In addition, there are other potential signal pathways that could represent cross-talk between muscle and tendon, particularly at the myotendinous junction. Duchenne muscular dystrophy is characterized by multiple pathophysiologic mechanisms. Herein, we explore three of these: (1) the extracellular matrix, fibrosis, and fat deposition; (2) satellite cells; and (3) tensegrity. A key signaling protein that emerged in each was transforming growth factor - beta one (TGF-β1).].
Collapse
Affiliation(s)
- Claire Yuan
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech , Blacksburg, Virginia, USA
| | - Ashwin Arora
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech , Blacksburg, Virginia, USA
| | - Anthony M Garofalo
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech , Blacksburg, Virginia, USA
| | - Robert W Grange
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech , Blacksburg, Virginia, USA
| |
Collapse
|
14
|
Farr GH, Morris M, Gomez A, Pham T, Kilroy E, Parker EU, Said S, Henry C, Maves L. A novel chemical-combination screen in zebrafish identifies epigenetic small molecule candidates for the treatment of Duchenne muscular dystrophy. Skelet Muscle 2020; 10:29. [PMID: 33059738 PMCID: PMC7559456 DOI: 10.1186/s13395-020-00251-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is a severe neuromuscular disorder and is one of the most common muscular dystrophies. There are currently few effective therapies to treat the disease, although many small-molecule approaches are being pursued. Certain histone deacetylase inhibitors (HDACi) have been shown to ameliorate DMD phenotypes in mouse and zebrafish animal models. The HDACi givinostat has shown promise for DMD in clinical trials. However, beyond a small group of HDACi, other classes of epigenetic small molecules have not been broadly and systematically studied for their benefits for DMD. Methods We used an established animal model for DMD, the zebrafish dmd mutant strain sapje. A commercially available library of epigenetic small molecules was used to treat embryonic-larval stages of dmd mutant zebrafish. We used a quantitative muscle birefringence assay in order to assess and compare the effects of small-molecule treatments on dmd mutant zebrafish skeletal muscle structure. Results We performed a novel chemical-combination screen of a library of epigenetic compounds using the zebrafish dmd model. We identified candidate pools of epigenetic compounds that improve skeletal muscle structure in dmd mutant zebrafish. We then identified a specific combination of two HDACi compounds, oxamflatin and salermide, that ameliorated dmd mutant zebrafish skeletal muscle degeneration. We validated the effects of oxamflatin and salermide on dmd mutant zebrafish in an independent laboratory. Furthermore, we showed that the combination of oxamflatin and salermide caused increased levels of histone H4 acetylation in zebrafish larvae. Conclusions Our results provide novel, effective methods for performing a combination of small-molecule screen in zebrafish. Our results also add to the growing evidence that epigenetic small molecules may be promising candidates for treating DMD.
Collapse
Affiliation(s)
- Gist H Farr
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Melanie Morris
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA.,Medical Student Research Training Program, University of Washington School of Medicine, Seattle, WA, USA
| | - Arianna Gomez
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA.,Molecular Medicine and Mechanisms of Disease Program, Department of Pathology, University of Washington, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Thao Pham
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA.,Molecular Medicine and Mechanisms of Disease Program, Department of Pathology, University of Washington, Seattle, WA, USA
| | - Elisabeth Kilroy
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Elizabeth U Parker
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA.,Medical Student Research Training Program, University of Washington School of Medicine, Seattle, WA, USA
| | - Shery Said
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Clarissa Henry
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA. .,Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
15
|
Reid AL, Wang Y, Samani A, Hightower RM, Lopez MA, Gilbert SR, Ianov L, Crossman DK, Dell’Italia LJ, Millay DP, van Groen T, Halade GV, Alexander MS. DOCK3 is a dosage-sensitive regulator of skeletal muscle and Duchenne muscular dystrophy-associated pathologies. Hum Mol Genet 2020; 29:2855-2871. [PMID: 32766788 PMCID: PMC7566544 DOI: 10.1093/hmg/ddaa173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/07/2020] [Accepted: 07/29/2020] [Indexed: 12/26/2022] Open
Abstract
DOCK3 is a member of the DOCK family of guanine nucleotide exchange factors that regulate cell migration, fusion and viability. Previously, we identified a dysregulated miR-486/DOCK3 signaling cascade in dystrophin-deficient muscle, which resulted in the overexpression of DOCK3; however, little is known about the role of DOCK3 in muscle. Here, we characterize the functional role of DOCK3 in normal and dystrophic skeletal muscle. Utilizing Dock3 global knockout (Dock3 KO) mice, we found that the haploinsufficiency of Dock3 in Duchenne muscular dystrophy mice improved dystrophic muscle pathologies; however, complete loss of Dock3 worsened muscle function. Adult Dock3 KO mice have impaired muscle function and Dock3 KO myoblasts are defective for myogenic differentiation. Transcriptomic analyses of Dock3 KO muscles reveal a decrease in myogenic factors and pathways involved in muscle differentiation. These studies identify DOCK3 as a novel modulator of muscle health and may yield therapeutic targets for treating dystrophic muscle symptoms.
Collapse
Affiliation(s)
- Andrea L Reid
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
| | - Yimin Wang
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
| | - Adrienne Samani
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
| | - Rylie M Hightower
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
- UAB Center for Exercise Medicine, Birmingham, AL 35294, USA
| | - Michael A Lopez
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
- UAB Center for Exercise Medicine, Birmingham, AL 35294, USA
| | - Shawn R Gilbert
- Department of Orthopedic Surgery, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lara Ianov
- Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David K Crossman
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Louis J Dell’Italia
- Birmingham Veteran Affairs Medical Center, Birmingham, AL 35233, USA
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Thomas van Groen
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ganesh V Halade
- Division of Cardiovascular Sciences, Department of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Matthew S Alexander
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
- UAB Center for Exercise Medicine, Birmingham, AL 35294, USA
- Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
16
|
"Betwixt Mine Eye and Heart a League Is Took": The Progress of Induced Pluripotent Stem-Cell-Based Models of Dystrophin-Associated Cardiomyopathy. Int J Mol Sci 2020; 21:ijms21196997. [PMID: 32977524 PMCID: PMC7582534 DOI: 10.3390/ijms21196997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
The ultimate goal of precision disease modeling is to artificially recreate the disease of affected people in a highly controllable and adaptable external environment. This field has rapidly advanced which is evident from the application of patient-specific pluripotent stem-cell-derived precision therapies in numerous clinical trials aimed at a diverse set of diseases such as macular degeneration, heart disease, spinal cord injury, graft-versus-host disease, and muscular dystrophy. Despite the existence of semi-adequate treatments for tempering skeletal muscle degeneration in dystrophic patients, nonischemic cardiomyopathy remains one of the primary causes of death. Therefore, cardiovascular cells derived from muscular dystrophy patients' induced pluripotent stem cells are well suited to mimic dystrophin-associated cardiomyopathy and hold great promise for the development of future fully effective therapies. The purpose of this article is to convey the realities of employing precision disease models of dystrophin-associated cardiomyopathy. This is achieved by discussing, as suggested in the title echoing William Shakespeare's words, the settlements (or "leagues") made by researchers to manage the constraints ("betwixt mine eye and heart") distancing them from achieving a perfect precision disease model.
Collapse
|
17
|
Berger J, Li M, Berger S, Meilak M, Rientjes J, Currie PD. Effect of Ataluren on dystrophin mutations. J Cell Mol Med 2020; 24:6680-6689. [PMID: 32343037 PMCID: PMC7299694 DOI: 10.1111/jcmm.15319] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 01/09/2023] Open
Abstract
Duchenne muscular dystrophy is a severe muscle wasting disease caused by mutations in the dystrophin gene (dmd). Ataluren has been approved by the European Medicines Agency for treatment of Duchenne muscular dystrophy. Ataluren has been reported to promote ribosomal read‐through of premature stop codons, leading to restoration of full‐length dystrophin protein. However, the mechanism of Ataluren action has not been fully described. To evaluate the efficacy of Ataluren on all three premature stop codons featuring different termination strengths (UAA > UAG > UGA), novel dystrophin‐deficient zebrafish were generated. Pathological assessment of the muscle by birefringence quantification, a tool to directly measure muscle integrity, did not reveal a significant effect of Ataluren on any of the analysed dystrophin‐deficient mutants at 3 days after fertilization. Functional analysis of the musculature at 6 days after fertilization by direct measurement of the generated force revealed a significant improvement by Ataluren only for the UAA‐carrying mutant dmdta222a. Interestingly however, all other analysed dystrophin‐deficient mutants were not affected by Ataluren, including the dmdpc3 and dmdpc2 mutants that harbour weaker premature stop codons UAG and UGA, respectively. These in vivo results contradict reported in vitro data on Ataluren efficacy, suggesting that Ataluren might not promote read‐through of premature stop codons. In addition, Ataluren had no effect on dystrophin transcript levels, but mild adverse effects on wild‐type larvae were identified. Further assessment of N‐terminally truncated dystrophin opened the possibility of Ataluren promoting alternative translation codons within dystrophin, thereby potentially shifting the patient cohort applicable for Ataluren.
Collapse
Affiliation(s)
- Joachim Berger
- Australian Regenerative Medicine Institute, Monash University, Clayton, Vic, Australia.,Victoria Node, EMBL Australia, Clayton, Vic, Australia
| | - Mei Li
- Australian Regenerative Medicine Institute, Monash University, Clayton, Vic, Australia.,Victoria Node, EMBL Australia, Clayton, Vic, Australia
| | - Silke Berger
- Australian Regenerative Medicine Institute, Monash University, Clayton, Vic, Australia.,Victoria Node, EMBL Australia, Clayton, Vic, Australia
| | - Michelle Meilak
- Monash Genome Modification Platform, Monash University, Clayton, Vic, Australia
| | - Jeanette Rientjes
- Monash Genome Modification Platform, Monash University, Clayton, Vic, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Vic, Australia.,Victoria Node, EMBL Australia, Clayton, Vic, Australia
| |
Collapse
|
18
|
Widrick JJ, Kawahara G, Alexander MS, Beggs AH, Kunkel LM. Discovery of Novel Therapeutics for Muscular Dystrophies using Zebrafish Phenotypic Screens. J Neuromuscul Dis 2020; 6:271-287. [PMID: 31282429 PMCID: PMC6961982 DOI: 10.3233/jnd-190389] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent availability and development of mutant and transgenic zebrafish strains that model human muscular dystrophies has created new research opportunities for therapeutic development. Not only do these models mimic many pathological aspects of human dystrophies, but their small size, large clutch sizes, rapid ex utero development, body transparency, and genetic tractability enable research approaches that would be inconceivable with mammalian model systems. Here we discuss the use of zebrafish models of muscular dystrophy to rapidly screen hundreds to thousands of bioactive compounds in order to identify novel therapeutic candidates that modulate pathologic phenotypes. We review the justification and rationale behind this unbiased approach, including how zebrafish screens have identified FDA-approved drugs that are candidates for treating Duchenne and limb girdle muscular dystrophies. Not only can these drugs be re-purposed for treating dystrophies in a fraction of the time and cost of new drug development, but their identification has revealed novel, unexpected directions for future therapy development. Phenotype-driven zebrafish drug screens are an important compliment to the more established mammalian, target-based approaches for rapidly developing and validating therapeutics for muscular dystrophies.
Collapse
Affiliation(s)
- Jeffrey J Widrick
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Genri Kawahara
- Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan
| | - Matthew S Alexander
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children's of Alabama; University of Alabama at Birmingham Center for Exercise Medicine; University of Alabama at Birmingham Civitan International Research Center; University of Alabama at Birmingham Department of Genetics; Birmingham, Alabama, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Louis M Kunkel
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
Podkalicka P, Mucha O, Dulak J, Loboda A. Targeting angiogenesis in Duchenne muscular dystrophy. Cell Mol Life Sci 2019; 76:1507-1528. [PMID: 30770952 PMCID: PMC6439152 DOI: 10.1007/s00018-019-03006-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy (DMD) represents one of the most devastating types of muscular dystrophies which affect boys already at early childhood. Despite the fact that the primary cause of the disease, namely the lack of functional dystrophin is known already for more than 30 years, DMD still remains an incurable disease. Thus, an enormous effort has been made during recent years to reveal novel mechanisms that could provide therapeutic targets for DMD, especially because glucocorticoids treatment acts mostly symptomatic and exerts many side effects, whereas the effectiveness of genetic approaches aiming at the restoration of functional dystrophin is under the constant debate. Taking into account that dystrophin expression is not restricted to muscle cells, but is present also in, e.g., endothelial cells, alterations in angiogenesis process have been proposed to have a significant impact on DMD progression. Indeed, already before the discovery of dystrophin, several abnormalities in blood vessels structure and function have been revealed, suggesting that targeting angiogenesis could be beneficial in DMD. In this review, we will summarize current knowledge about the angiogenesis status both in animal models of DMD as well as in DMD patients, focusing on different organs as well as age- and sex-dependent effects. Moreover, we will critically discuss some approaches such as modulation of vascular endothelial growth factor or nitric oxide related pathways, to enhance angiogenesis and attenuate the dystrophic phenotype. Additionally, we will suggest the potential role of other mediators, such as heme oxygenase-1 or statins in those processes.
Collapse
Affiliation(s)
- Paulina Podkalicka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Olga Mucha
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
20
|
How Surrogate and Chemical Genetics in Model Organisms Can Suggest Therapies for Human Genetic Diseases. Genetics 2018; 208:833-851. [PMID: 29487144 PMCID: PMC5844338 DOI: 10.1534/genetics.117.300124] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022] Open
Abstract
Genetic diseases are both inherited and acquired. Many genetic diseases fall under the paradigm of orphan diseases, a disease found in < 1 in 2000 persons. With rapid and cost-effective genome sequencing becoming the norm, many causal mutations for genetic diseases are being rapidly determined. In this regard, model organisms are playing an important role in validating if specific mutations identified in patients drive the observed phenotype. An emerging challenge for model organism researchers is the application of genetic and chemical genetic platforms to discover drug targets and drugs/drug-like molecules for potential treatment options for patients with genetic disease. This review provides an overview of how model organisms have contributed to our understanding of genetic disease, with a focus on the roles of yeast and zebrafish in gene discovery and the identification of compounds that could potentially treat human genetic diseases.
Collapse
|
21
|
Bersini S, Gilardi M, Mora M, Krol S, Arrigoni C, Candrian C, Zanotti S, Moretti M. Tackling muscle fibrosis: From molecular mechanisms to next generation engineered models to predict drug delivery. Adv Drug Deliv Rev 2018. [PMID: 29518415 DOI: 10.1016/j.addr.2018.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Muscle fibrosis represents the end stage consequence of different diseases, among which muscular dystrophies, leading to severe impairment of muscle functions. Muscle fibrosis involves the production of several growth factors, cytokines and proteolytic enzymes and is strictly associated to inflammatory processes. Moreover, fibrosis causes profound changes in tissue properties, including increased stiffness and density, lower pH and oxygenation. Up to now, there is no therapeutic approach able to counteract the fibrotic process and treatments directed against muscle pathologies are severely impaired by the harsh conditions of the fibrotic environment. The design of new therapeutics thus need innovative tools mimicking the obstacles posed by the fibrotic environment to their delivery. This review will critically discuss the role of in vivo and 3D in vitro models in this context and the characteristics that an ideal model should possess to help the translation from bench to bedside of new candidate anti-fibrotic agents.
Collapse
|
22
|
Wilson K, Faelan C, Patterson-Kane JC, Rudmann DG, Moore SA, Frank D, Charleston J, Tinsley J, Young GD, Milici AJ. Duchenne and Becker Muscular Dystrophies: A Review of Animal Models, Clinical End Points, and Biomarker Quantification. Toxicol Pathol 2017; 45:961-976. [PMID: 28974147 DOI: 10.1177/0192623317734823] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are neuromuscular disorders that primarily affect boys due to an X-linked mutation in the DMD gene, resulting in reduced to near absence of dystrophin or expression of truncated forms of dystrophin. Some newer therapeutic interventions aim to increase sarcolemmal dystrophin expression, and accurate dystrophin quantification is critical for demonstrating pharmacodynamic relationships in preclinical studies and clinical trials. Current challenges with measuring dystrophin include the variation in protein expression within individual muscle fibers and across whole muscle samples, the presence of preexisting dystrophin-positive revertant fibers, and trace amounts of residual dystrophin. Immunofluorescence quantification of dystrophin can overcome many of these challenges, but manual quantification of protein expression may be complicated by variations in the collection of images, reproducible scoring of fluorescent intensity, and bias introduced by manual scoring of typically only a few high-power fields. This review highlights the pathology of DMD and BMD, discusses animal models of DMD and BMD, and describes dystrophin biomarker quantitation in DMD and BMD, with several image analysis approaches, including a new automated method that evaluates protein expression of individual muscle fibers.
Collapse
Affiliation(s)
- Kristin Wilson
- 1 Flagship Biosciences, Inc., Westminster, Colorado, USA
| | - Crystal Faelan
- 1 Flagship Biosciences, Inc., Westminster, Colorado, USA
| | | | | | - Steven A Moore
- 2 Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Diane Frank
- 3 Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Jay Charleston
- 3 Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Jon Tinsley
- 4 Summit Therapeutics, Abingdon, United Kingdom
| | - G David Young
- 1 Flagship Biosciences, Inc., Westminster, Colorado, USA
| | | |
Collapse
|
23
|
Jagla K, Kalman B, Boudou T, Hénon S, Batonnet-Pichon S. Beyond mice: Emerging and transdisciplinary models for the study of early-onset myopathies. Semin Cell Dev Biol 2017; 64:171-180. [DOI: 10.1016/j.semcdb.2016.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 09/06/2016] [Accepted: 09/22/2016] [Indexed: 01/23/2023]
|
24
|
Berberoglu MA, Gallagher TL, Morrow ZT, Talbot JC, Hromowyk KJ, Tenente IM, Langenau DM, Amacher SL. Satellite-like cells contribute to pax7-dependent skeletal muscle repair in adult zebrafish. Dev Biol 2017; 424:162-180. [PMID: 28279710 DOI: 10.1016/j.ydbio.2017.03.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/02/2017] [Accepted: 03/05/2017] [Indexed: 12/24/2022]
Abstract
Satellite cells, also known as muscle stem cells, are responsible for skeletal muscle growth and repair in mammals. Pax7 and Pax3 transcription factors are established satellite cell markers required for muscle development and regeneration, and there is great interest in identifying additional factors that regulate satellite cell proliferation, differentiation, and/or skeletal muscle regeneration. Due to the powerful regenerative capacity of many zebrafish tissues, even in adults, we are exploring the regenerative potential of adult zebrafish skeletal muscle. Here, we show that adult zebrafish skeletal muscle contains cells similar to mammalian satellite cells. Adult zebrafish satellite-like cells have dense heterochromatin, express Pax7 and Pax3, proliferate in response to injury, and show peak myogenic responses 4-5 days post-injury (dpi). Furthermore, using a pax7a-driven GFP reporter, we present evidence implicating satellite-like cells as a possible source of new muscle. In lieu of central nucleation, which distinguishes regenerating myofibers in mammals, we describe several characteristics that robustly identify newly-forming myofibers from surrounding fibers in injured adult zebrafish muscle. These characteristics include partially overlapping expression in satellite-like cells and regenerating myofibers of two RNA-binding proteins Rbfox2 and Rbfoxl1, known to regulate embryonic muscle development and function. Finally, by analyzing pax7a; pax7b double mutant zebrafish, we show that Pax7 is required for adult skeletal muscle repair, as it is in the mouse.
Collapse
Affiliation(s)
- Michael A Berberoglu
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Thomas L Gallagher
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Zachary T Morrow
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Jared C Talbot
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Kimberly J Hromowyk
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Inês M Tenente
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Molecular Pathology and Regenerative Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - David M Langenau
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Molecular Pathology and Regenerative Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Sharon L Amacher
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA.
| |
Collapse
|
25
|
Abstract
Skeletal muscle performs an essential function in human physiology with defects in genes encoding a variety of cellular components resulting in various types of inherited muscle disorders. Muscular dystrophies (MDs) are a severe and heterogeneous type of human muscle disease, manifested by progressive muscle wasting and degeneration. The disease pathogenesis and therapeutic options for MDs have been investigated for decades using rodent models, and considerable knowledge has been accumulated on the cause and pathogenetic mechanisms of this group of human disorders. However, due to some differences between disease severity and progression, what is learned in mammalian models does not always transfer to humans, prompting the desire for additional and alternative models. More recently, zebrafish have emerged as a novel and robust animal model for the study of human muscle disease. Zebrafish MD models possess a number of distinct advantages for modeling human muscle disorders, including the availability and ease of generating mutations in homologous disease-causing genes, the ability to image living muscle tissue in an intact animal, and the suitability of zebrafish larvae for large-scale chemical screens. In this chapter, we review the current understanding of molecular and cellular mechanisms involved in MDs, the process of myogenesis in zebrafish, and the structural and functional characteristics of zebrafish larval muscles. We further discuss the insights gained from the key zebrafish MD models that have been so far generated, and we summarize the attempts that have been made to screen for small molecules inhibitors of the dystrophic phenotypes using these models. Overall, these studies demonstrate that zebrafish is a useful in vivo system for modeling aspects of human skeletal muscle disorders. Studies using these models have contributed both to the understanding of the pathogenesis of muscle wasting disorders and demonstrated their utility as highly relevant models to implement therapeutic screening regimens.
Collapse
Affiliation(s)
- M Li
- Monash University, Clayton, VIC, Australia
| | - K J Hromowyk
- The Ohio State University, Columbus, OH, United States
| | - S L Amacher
- The Ohio State University, Columbus, OH, United States
| | - P D Currie
- Monash University, Clayton, VIC, Australia
| |
Collapse
|
26
|
Abstract
Tendons are important components of our musculoskeletal system. Injuries to these tissues are very common, resulting from occupational-related injuries, sports-related trauma, and age-related degeneration. Unfortunately, there are few treatment options, and current therapies rarely restore injured tendons to their original function. An improved understanding of the pathways regulating their development and repair would have significant impact in stimulating the formulation of regenerative-based approaches for tendon injury. The zebrafish provides an ideal system in which to perform genetic and chemical screens to identify new pathways involved in tendon biology. Until recently, there had been few descriptions of tendons and ligaments in the zebrafish and their similarity to mammalian tendon tissues. In this chapter, we describe the development of the zebrafish tendon and ligament tissues in the context of their gene expression, structure, and interactions with neighboring musculoskeletal tissues. We highlight the similarities with tendon development in higher vertebrates, showing that the craniofacial tendons and ligaments in zebrafish morphologically, molecularly, and structurally resemble mammalian tendons and ligaments from embryonic to adult stages. We detail methods for fluorescent in situ hybridization and immunohistochemistry as an assay to examine morphological changes in the zebrafish musculoskeleton. Staining assays such as these could provide the foundation for screen-based approaches to identify new regulators of tendon development, morphogenesis, and repair. These discoveries would provide new targets and pathways to study in the context of regenerative medicine-based approaches to improve tendon healing.
Collapse
Affiliation(s)
- J W Chen
- Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - J L Galloway
- Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| |
Collapse
|
27
|
Identification of novel MYO18A interaction partners required for myoblast adhesion and muscle integrity. Sci Rep 2016; 6:36768. [PMID: 27824130 PMCID: PMC5099880 DOI: 10.1038/srep36768] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/20/2016] [Indexed: 01/02/2023] Open
Abstract
The unconventional myosin MYO18A that contains a PDZ domain is required for muscle integrity during zebrafish development. However, the mechanism by which it functions in myofibers is not clear. The presence of a PDZ domain suggests that MYO18A may interact with other partners to perform muscle-specific functions. Here we performed double-hybrid screening and co-immunoprecipitation to identify MYO18A-interacting proteins, and have identified p190RhoGEF and Golgin45 as novel partners for the MYO18A PDZ domain. We have also identified Lurap1, which was previously shown to bind MYO18A. Functional analyses indicate that, similarly as myo18a, knockdown of lurap1, p190RhoGEF and Golgin45 by morpholino oligonucleotides disrupts dystrophin localization at the sarcolemma and produces muscle lesions. Simultaneous knockdown of myo18a with either of these genes severely disrupts myofiber integrity and dystrophin localization, suggesting that they may function similarly to maintain myofiber integrity. We further show that MYO18A and its interaction partners are required for adhesion of myoblasts to extracellular matrix, and for the formation of the Golgi apparatus and organization of F-actin bundles in myoblast cells. These findings suggest that MYO18A has the potential to form a multiprotein complex that links the Golgi apparatus to F-actin, which regulates muscle integrity and function during early development.
Collapse
|
28
|
Allen DG, Whitehead NP, Froehner SC. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy. Physiol Rev 2016; 96:253-305. [PMID: 26676145 DOI: 10.1152/physrev.00007.2015] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numerous signaling proteins. Absence or reduced expression of dystrophin or many of the DPC components cause the muscular dystrophies, a group of inherited diseases in which repeated bouts of muscle damage lead to atrophy and fibrosis, and eventually muscle degeneration. The normal function of dystrophin is poorly defined. In its absence a complex series of changes occur with multiple muscle proteins showing reduced or increased expression or being modified in various ways. In this review, we will consider the various proteins whose expression and function is changed in muscular dystrophies, focusing on Ca(2+)-permeable channels, nitric oxide synthase, NADPH oxidase, and caveolins. Excessive Ca(2+) entry, increased membrane permeability, disordered caveolar function, and increased levels of reactive oxygen species are early changes in the disease, and the hypotheses for these phenomena will be critically considered. The aim of the review is to define the early damage pathways in muscular dystrophy which might be appropriate targets for therapy designed to minimize the muscle degeneration and slow the progression of the disease.
Collapse
Affiliation(s)
- David G Allen
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Nicholas P Whitehead
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Stanley C Froehner
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
29
|
Ryckebüsch L. [Potential of the zebrafish model to study congenital muscular dystrophies]. Med Sci (Paris) 2015; 31:912-9. [PMID: 26481031 DOI: 10.1051/medsci/20153110018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In order to better understand the complexity of congenital muscular dystrophies (CMD) and develop new strategies to cure them, it is important to establish new disease models. Due to its numerous helpful attributes, the zebrafish has recently become a very powerful animal model for the study of CMD. For some CMD, this vertebrate model is phenotypically closer to human pathology than the murine model. Over the last few years, researchers have developed innovative techniques to screen rapidly and on a large scale for muscle defects in zebrafish. Furthermore, new genome editing techniques in zebrafish make possible the identification of new disease models. In this review, the major attributes of zebrafish for CMD studies are discussed and the principal models of CMD in zebrafish are highlighted.
Collapse
Affiliation(s)
- Lucile Ryckebüsch
- Division of biological sciences, university of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, La Jolla, États-Unis
| |
Collapse
|
30
|
Bajanca F, Gonzalez-Perez V, Gillespie SJ, Beley C, Garcia L, Theveneau E, Sear RP, Hughes SM. In vivo dynamics of skeletal muscle Dystrophin in zebrafish embryos revealed by improved FRAP analysis. eLife 2015; 4. [PMID: 26459831 PMCID: PMC4601390 DOI: 10.7554/elife.06541] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 09/10/2015] [Indexed: 12/30/2022] Open
Abstract
Dystrophin forms an essential link between sarcolemma and cytoskeleton, perturbation of which causes muscular dystrophy. We analysed Dystrophin binding dynamics in vivo for the first time. Within maturing fibres of host zebrafish embryos, our analysis reveals a pool of diffusible Dystrophin and complexes bound at the fibre membrane. Combining modelling, an improved FRAP methodology and direct semi-quantitative analysis of bleaching suggests the existence of two membrane-bound Dystrophin populations with widely differing bound lifetimes: a stable, tightly bound pool, and a dynamic bound pool with high turnover rate that exchanges with the cytoplasmic pool. The three populations were found consistently in human and zebrafish Dystrophins overexpressed in wild-type or dmd(ta222a/ta222a) zebrafish embryos, which lack Dystrophin, and in Gt(dmd-Citrine)(ct90a) that express endogenously-driven tagged zebrafish Dystrophin. These results lead to a new model for Dystrophin membrane association in developing muscle, and highlight our methodology as a valuable strategy for in vivo analysis of complex protein dynamics.
Collapse
Affiliation(s)
- Fernanda Bajanca
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,CNRS and Université Paul Sabatier, Toulouse, France
| | | | - Sean J Gillespie
- Department of Physics, University of Surrey, Guildford, United Kingdom
| | - Cyriaque Beley
- Université Versailles Saint-Quentin, Montigny-le-Bretonneux, France.,Laboratoire International Associé-Biologie appliquée aux handicaps neuromusculaires, Centre Scientifique de Monaco, Monaco, Monaco
| | - Luis Garcia
- Université Versailles Saint-Quentin, Montigny-le-Bretonneux, France.,Laboratoire International Associé-Biologie appliquée aux handicaps neuromusculaires, Centre Scientifique de Monaco, Monaco, Monaco
| | | | - Richard P Sear
- Department of Physics, University of Surrey, Guildford, United Kingdom
| | - Simon M Hughes
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| |
Collapse
|
31
|
Ruf-Zamojski F, Trivedi V, Fraser SE, Trinh LA. Spatio-Temporal Differences in Dystrophin Dynamics at mRNA and Protein Levels Revealed by a Novel FlipTrap Line. PLoS One 2015; 10:e0128944. [PMID: 26083378 PMCID: PMC4471274 DOI: 10.1371/journal.pone.0128944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 05/01/2015] [Indexed: 11/18/2022] Open
Abstract
Dystrophin (Dmd) is a structural protein that links the extracellular matrix to actin filaments in muscle fibers and is required for the maintenance of muscles integrity. Mutations in Dmd lead to muscular dystrophies in humans and other vertebrates. Here, we report the characterization of a zebrafish gene trap line that fluorescently labels the endogenous Dmd protein (Dmd-citrine, Gt(dmd-citrine) ct90a). We show that the Dmd-citrine line recapitulates endogenous dmd transcript expression and Dmd protein localization. Using this Dmd-citrine line, we follow Dmd localization to the myosepta in real-time using time-lapse microscopy, and find that the accumulation of Dmd protein at the transverse myosepta coincides with the onset of myotome formation, a critical stage in muscle maturation. We observed that Dmd protein localizes specifically to the myosepta prior to dmd mRNA localization. Additionally, we demonstrate that the Dmd-citrine line can be used to assess muscular dystrophy following both genetic and physical disruptions of the muscle.
Collapse
Affiliation(s)
- Frederique Ruf-Zamojski
- California Institute of Technology, Biological Imaging Center, Beckman Institute, Division of Biology, Pasadena, California 91125, United States of America
| | - Vikas Trivedi
- California Institute of Technology, Department of Bioengineering, Pasadena, California 91125, United States of America
| | - Scott E. Fraser
- California Institute of Technology, Biological Imaging Center, Beckman Institute, Division of Biology, Pasadena, California 91125, United States of America
| | - Le A. Trinh
- California Institute of Technology, Biological Imaging Center, Beckman Institute, Division of Biology, Pasadena, California 91125, United States of America
- * E-mail:
| |
Collapse
|
32
|
Rau F, Lainé J, Ramanoudjame L, Ferry A, Arandel L, Delalande O, Jollet A, Dingli F, Lee KY, Peccate C, Lorain S, Kabashi E, Athanasopoulos T, Koo T, Loew D, Swanson MS, Le Rumeur E, Dickson G, Allamand V, Marie J, Furling D. Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy. Nat Commun 2015; 6:7205. [PMID: 26018658 PMCID: PMC4458869 DOI: 10.1038/ncomms8205] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/16/2015] [Indexed: 02/06/2023] Open
Abstract
Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM1.
Collapse
Affiliation(s)
- Frédérique Rau
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, GH Pitié-Salpêtrière, F-75013 Paris, France
| | - Jeanne Lainé
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, GH Pitié-Salpêtrière, F-75013 Paris, France.,Sorbonne Universités, UPMC Paris 06, Département de Physiologie, Site Pitié-Salpêtrière, F-75013 Paris, France
| | - Laetitita Ramanoudjame
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, GH Pitié-Salpêtrière, F-75013 Paris, France
| | - Arnaud Ferry
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, GH Pitié-Salpêtrière, F-75013 Paris, France
| | - Ludovic Arandel
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, GH Pitié-Salpêtrière, F-75013 Paris, France
| | - Olivier Delalande
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, F-35043 Rennes, France
| | - Arnaud Jollet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, GH Pitié-Salpêtrière, F-75013 Paris, France
| | - Florent Dingli
- Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, F-75005 Paris, France
| | - Kuang-Yung Lee
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida 32610, USA.,Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Cécile Peccate
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, GH Pitié-Salpêtrière, F-75013 Paris, France
| | - Stéphanie Lorain
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, GH Pitié-Salpêtrière, F-75013 Paris, France
| | - Edor Kabashi
- Sorbonne Université, UPMC Univ Paris 06, UM 75, INSERM U1127, CNRS UMR7225, ICM, Paris, F-75013 Paris, France
| | - Takis Athanasopoulos
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey, TW20 0EX, UK
| | - Taeyoung Koo
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey, TW20 0EX, UK
| | - Damarys Loew
- Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, F-75005 Paris, France
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida 32610, USA
| | - Elisabeth Le Rumeur
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, F-35043 Rennes, France
| | - George Dickson
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey, TW20 0EX, UK
| | - Valérie Allamand
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, GH Pitié-Salpêtrière, F-75013 Paris, France
| | - Joëlle Marie
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, GH Pitié-Salpêtrière, F-75013 Paris, France
| | - Denis Furling
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, GH Pitié-Salpêtrière, F-75013 Paris, France
| |
Collapse
|
33
|
Gurevich D, Siegel A, Currie PD. Skeletal myogenesis in the zebrafish and its implications for muscle disease modelling. Results Probl Cell Differ 2015; 56:49-76. [PMID: 25344666 DOI: 10.1007/978-3-662-44608-9_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Current evidence indicates that post-embryonic muscle growth and regeneration in amniotes is mediated almost entirely by stem cells derived from muscle progenitor cells (MPCs), known as satellite cells. Exhaustion and impairment of satellite cell activity is involved in the severe muscle loss associated with degenerative muscle diseases such as Muscular Dystrophies and is the main cause of age-associated muscle wasting. Understanding the molecular and cellular basis of satellite cell function in muscle generation and regeneration (myogenesis) is critical to the broader goal of developing treatments that may ameliorate such conditions. Considerable knowledge exists regarding the embryonic stages of amniote myogenesis. Much less is known about how post-embryonic amniote myogenesis proceeds, how adult myogenesis relates to embryonic myogenesis on a cellular or genetic level. Of the studies focusing on post-embryonic amniote myogenesis, most are post-mortem and in vitro analyses, precluding the understanding of cellular behaviours and genetic mechanisms in an undisturbed in vivo setting. Zebrafish are optically clear throughout much of their post-embryonic development, facilitating their use in live imaging of cellular processes. Zebrafish also possess a compartment of MPCs, which appear similar to satellite cells and persist throughout the post-embryonic development of the fish, permitting their use in examining the contribution of these cells to muscle tissue growth and regeneration.
Collapse
Affiliation(s)
- David Gurevich
- Australian Regenerative Medicine Institute, Monash University, Level 1, Building 75, Wellington Road, Clayton, VIC, 3800, Australia
| | | | | |
Collapse
|
34
|
Yu E, Xie J, Wang G, Yu D, Gong W, Li Z, Wang H, Xia Y, Wei N. Gene Expression Profiling of Grass Carp (Ctenopharyngodon idellus) and Crisp Grass Carp. Int J Genomics 2014; 2014:639687. [PMID: 25525591 PMCID: PMC4266764 DOI: 10.1155/2014/639687] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 11/10/2014] [Indexed: 11/18/2022] Open
Abstract
Grass carp (Ctenopharyngodon idellus) is one of the most important freshwater fish that is native to China, and crisp grass carp is a kind of high value-added fishes which have higher muscle firmness. To investigate biological functions and possible signal transduction pathways that address muscle firmness increase of crisp grass carp, microarray analysis of 14,900 transcripts was performed. Compared with grass carp, 127 genes were upregulated and 114 genes were downregulated in crisp grass carp. Gene ontology (GO) analysis revealed 30 GOs of differentially expressed genes in crisp grass carp. And strong correlation with muscle firmness increase of crisp grass carp was found for these genes from differentiation of muscle fibers and deposition of ECM, and also glycolysis/gluconeogenesis pathway and calcium metabolism may contribute to muscle firmness increase. In addition, a number of genes with unknown functions may be related to muscle firmness, and these genes are still further explored. Overall, these results had been demonstrated to play important roles in clarifying the molecular mechanism of muscle firmness increase in crisp grass carp.
Collapse
Affiliation(s)
- Ermeng Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jun Xie
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Guangjun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Deguang Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Wangbao Gong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zhifei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Haiying Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yun Xia
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Nan Wei
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|
35
|
Abstract
Muscle cells have an elaborate plasma membrane and t-tubule system that has been evolutionarily refined to maximize electrical conductivity for synchronous muscle contraction. However, this elaborate plasma membrane network has intrinsic vulnerabilities to stretch-induced membrane injury, and thus requires ongoing maintenance and repair. Herein we discuss the types of membrane injuries encountered by myofibers in healthy muscle and in muscular dystrophy. We review the different mechanisms by which muscle fibers in patients with muscular dystrophy are rendered more susceptible to injury, and we summarize the latest developments in our understanding of how the muscular dystrophy protein dysferlin mediates satellite-cell independent membrane repair.
Collapse
Affiliation(s)
- Sandra T Cooper
- Institute for Neuroscience and Muscle Research, Kids Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, New South Wales, Australia
| | - Stewart I Head
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Berger J, Tarakci H, Berger S, Li M, Hall TE, Arner A, Currie PD. Loss of Tropomodulin4 in the zebrafish mutant träge causes cytoplasmic rod formation and muscle weakness reminiscent of nemaline myopathy. Dis Model Mech 2014; 7:1407-15. [PMID: 25288681 PMCID: PMC4257009 DOI: 10.1242/dmm.017376] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Nemaline myopathy is an inherited muscle disease that is mainly diagnosed by the presence of nemaline rods in muscle biopsies. Of the nine genes associated with the disease, five encode components of striated muscle sarcomeres. In a genetic zebrafish screen, the mutant träge (trg) was isolated based on its reduction in muscle birefringence, indicating muscle damage. Myofibres in trg appeared disorganised and showed inhomogeneous cytoplasmic eosin staining alongside malformed nuclei. Linkage analysis of trg combined with sequencing identified a nonsense mutation in tropomodulin4 (tmod4), a regulator of thin filament length and stability. Accordingly, although actin monomers polymerize to form thin filaments in the skeletal muscle of tmod4trg mutants, thin filaments often appeared to be dispersed throughout myofibres. Organised myofibrils with the typical striation rarely assemble, leading to severe muscle weakness, impaired locomotion and early death. Myofibrils of tmod4trg mutants often featured thin filaments of various lengths, widened Z-disks, undefined H-zones and electron-dense aggregations of various shapes and sizes. Importantly, Gomori trichrome staining and the lattice pattern of the detected cytoplasmic rods, together with the reactivity of rods with phalloidin and an antibody against actinin, is reminiscent of nemaline rods found in nemaline myopathy, suggesting that misregulation of thin filament length causes cytoplasmic rod formation in tmod4trg mutants. Although Tropomodulin4 has not been associated with myopathy, the results presented here implicateTMOD4 as a novel candidate for unresolved nemaline myopathies and suggest that the tmod4trg mutant will be a valuable tool to study human muscle disorders.
Collapse
Affiliation(s)
- Joachim Berger
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Hakan Tarakci
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Silke Berger
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Mei Li
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, SE 17177, Sweden
| | - Thomas E Hall
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
| | - Anders Arner
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, SE 17177, Sweden
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
37
|
Cao J, Li S, Shao M, Cheng X, Xu Z, Shi D. The PDZ-containing unconventional myosin XVIIIA regulates embryonic muscle integrity in zebrafish. J Genet Genomics 2014; 41:417-28. [PMID: 25160974 DOI: 10.1016/j.jgg.2014.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 12/22/2022]
Abstract
Myosin XVIIIA, or MYO18A, is a unique PDZ domain-containing unconventional myosin and is evolutionarily conserved from Drosophila to vertebrates. Although there is evidence indicating its expression in the somites, whether it regulates muscle function remains unclear. We show that the two zebrafish myo18a genes (myo18aa and myo18ab) are predominantly expressed at somite borders during early developmental stages. Knockdown of these genes or overexpression of the MYO18A PDZ domain disrupts myofiber integrity, induces myofiber lesions, and compromises the localization of dystrophin, α-dystroglycan (α-DG) and laminin at the myotome boundaries. Cell transplantation experiments indicate that myo18a morphant myoblasts fail to form elongated myofibers in the myotomes of wild-type embryos, which can be rescued by the full-length MYO18A protein. These results suggest that MYO18A likely functions in the adhesion process that maintains the stable attachment of myofibers to ECM (extracellular matrix) and muscle integrity during early development.
Collapse
Affiliation(s)
- Jianmeng Cao
- School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China
| | - Shangqi Li
- School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China
| | - Ming Shao
- School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China
| | - Xiaoning Cheng
- School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China
| | - Zhigang Xu
- School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China.
| | - Deli Shi
- School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China; Sorbonne Universités, UPMC Univ Paris 06, UMR 7622, Laboratory of Developmental Biology, F-75005 Paris, France; CNRS, UMR 7622, Laboratory of Developmental Biology, F-75005 Paris, France.
| |
Collapse
|
38
|
Maves L. Recent advances using zebrafish animal models for muscle disease drug discovery. Expert Opin Drug Discov 2014; 9:1033-45. [PMID: 24931439 DOI: 10.1517/17460441.2014.927435] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Animal models have enabled great progress in the discovery and understanding of pharmacological approaches for treating muscle diseases like Duchenne muscular dystrophy. AREAS COVERED With this article, the author provides the reader with a description of the zebrafish animal model, which has been employed to identify and study pharmacological approaches to muscle disease. In particular, the author focuses on how both large-scale chemical screens and targeted drug treatment studies have established zebrafish as an important model for muscle disease drug discovery. EXPERT OPINION There are a number of opportunities arising for the use of zebrafish models for further developing pharmacological approaches to muscle diseases, including studying drug combination therapies and utilizing genome editing to engineer zebrafish muscle disease models. It is the author's particular belief that the availability of a wide range of zebrafish transgenic strains for labeling immune cell types, combined with live imaging and drug treatment of muscle disease models, should allow for new elegant studies demonstrating how pharmacological approaches might influence inflammation and the immune response in muscle disease.
Collapse
Affiliation(s)
- Lisa Maves
- University of Washington School of Medicine, Department of Pediatrics, Division of Cardiology , Seattle, WA , USA
| |
Collapse
|
39
|
Skobo T, Benato F, Grumati P, Meneghetti G, Cianfanelli V, Castagnaro S, Chrisam M, Di Bartolomeo S, Bonaldo P, Cecconi F, Valle LD. Zebrafish ambra1a and ambra1b knockdown impairs skeletal muscle development. PLoS One 2014; 9:e99210. [PMID: 24922546 PMCID: PMC4055674 DOI: 10.1371/journal.pone.0099210] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/12/2014] [Indexed: 11/28/2022] Open
Abstract
The essential role of autophagy in muscle homeostasis has been clearly demonstrated by phenotype analysis of mice with muscle-specific inactivation of genes encoding autophagy-related proteins. Ambra1 is a key component of the Beclin 1 complex and, in zebrafish, it is encoded by two paralogous genes, ambra1a and ambra1b, both required for normal embryogenesis and larval development. In this study we focused on the function of Ambra1, a positive regulator of the autophagic process, during skeletal muscle development by means of morpholino (MO)-mediated knockdown and compared the phenotype of zebrafish Ambra1-depleted embryos with that of Ambra1gt/gt mouse embryos. Morphological analysis of zebrafish morphant embryos revealed that silencing of ambra1 impairs locomotor activity and muscle development, as well as myoD1 expression. Skeletal muscles in ATG-morphant embryos displayed severe histopathological changes and contained only small areas of organized myofibrils that were widely dispersed throughout the cell. Double knockdown of ambra1a and ambra1b resulted in a more severe phenotype whereas defects were much less evident in splice-morphants. The morphants phenotypes were effectively rescued by co-injection with human AMBRA1 mRNA. Together, these results indicate that ambra1a and ambra1b are required for the correct development and morphogenesis of skeletal muscle.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Birefringence
- Cell Proliferation
- Embryo, Nonmammalian/abnormalities
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/pathology
- Gene Expression Regulation, Developmental/drug effects
- Gene Knockdown Techniques
- Mice
- Morpholinos/pharmacology
- Movement
- Muscle Development/genetics
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/abnormalities
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/embryology
- Muscle, Skeletal/metabolism
- MyoD Protein/metabolism
- Myosins/metabolism
- PAX7 Transcription Factor/metabolism
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish Proteins/deficiency
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Tatjana Skobo
- Department of Biology, University of Padova, Padova, Italy
| | | | - Paolo Grumati
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | - Silvia Castagnaro
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Martina Chrisam
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Francesco Cecconi
- Department of Biology, University of Tor Vergata, Rome, Italy
- Department of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico “Santa Lucia Foundation”, Rome, Italy
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
- * E-mail: (LDV); (FC)
| | - Luisa Dalla Valle
- Department of Biology, University of Padova, Padova, Italy
- * E-mail: (LDV); (FC)
| |
Collapse
|
40
|
Rossi G, Messina G. Comparative myogenesis in teleosts and mammals. Cell Mol Life Sci 2014; 71:3081-99. [PMID: 24664432 PMCID: PMC4111864 DOI: 10.1007/s00018-014-1604-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/17/2014] [Accepted: 03/06/2014] [Indexed: 01/02/2023]
Abstract
Skeletal myogenesis has been and is currently under extensive study in both mammals and teleosts, with the latter providing a good model for skeletal myogenesis because of their flexible and conserved genome. Parallel investigations of muscle studies using both these models have strongly accelerated the advances in the field. However, when transferring the knowledge from one model to the other, it is important to take into account both their similarities and differences. The main difficulties in comparing mammals and teleosts arise from their different temporal development. Conserved aspects can be seen for muscle developmental origin and segmentation, and for the presence of multiple myogenic waves. Among the divergences, many fish have an indeterminate growth capacity throughout their entire life span, which is absent in mammals, thus implying different post-natal growth mechanisms. This review covers the current state of the art on myogenesis, with a focus on the most conserved and divergent aspects between mammals and teleosts.
Collapse
Affiliation(s)
- Giuliana Rossi
- Department of Biosciences, University of Milan, 20133, Milan, Italy
| | | |
Collapse
|
41
|
Zhang H, Anderson JE. Satellite cell activation and populations on single muscle-fiber cultures from adult zebrafish (Danio rerio). ACTA ACUST UNITED AC 2014; 217:1910-7. [PMID: 24577448 DOI: 10.1242/jeb.102210] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Satellite cells (SCs), stem cells in skeletal muscle, are mitotically quiescent in adult mammals until activated for growth or regeneration. In mouse muscle, SCs are activated by nitric oxide (NO), hepatocyte growth factor (HGF) and the mechanically induced NO-HGF signaling cascade. Here, the SC population on fibers from the adult, ectothermic zebrafish and SC responsiveness to activating stimuli were assessed using the model system of isolated fibers cultured at 27 and 21°C. SCs were identified by immunostaining for the HGF receptor, c-met, and activation was determined using bromodeoxyuridine uptake in culture or in vivo. In dose-response studies, SC activation was increased by treatment with the NO-donor drug isosorbide dinitrate (1 mmol l(-1)) or HGF (10 ng ml(-1)) to maximum activation at lower concentrations of both than in previous studies of mouse fibers. HGF-induced activation was blocked by anti-c-met antibody, and reduced by culture at 21°C. The effect of cyclical stretch (3 h at 4 cycles per minute) increased activation and was blocked by nitric oxide synthase inhibition and reduced by culture at 21°C. The number of c-met+ SCs per fiber increased rapidly (by 3 h) after stretching. The character of signaling in SC activation on zebrafish fibers, in particular temperature-dependent responses to HGF and stretch, gives new insights into the influence of ectothermy on regulation of muscle growth in teleosts and suggests the use of the single-fiber model system to explore the basis of fiber hyperplasia and the conservation of regulatory pathways between species.
Collapse
Affiliation(s)
- Helia Zhang
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - Judy E Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| |
Collapse
|
42
|
Li M, Andersson‐Lendahl M, Sejersen T, Arner A. Muscle dysfunction and structural defects of dystrophin‐null
sapje
mutant zebrafish larvae are rescued by ataluren treatment. FASEB J 2013; 28:1593-9. [DOI: 10.1096/fj.13-240044] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mei Li
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | | | - Thomas Sejersen
- Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
| | - Anders Arner
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
43
|
Kawahara G, Gasperini MJ, Myers JA, Widrick JJ, Eran A, Serafini PR, Alexander MS, Pletcher MT, Morris CA, Kunkel LM. Dystrophic muscle improvement in zebrafish via increased heme oxygenase signaling. Hum Mol Genet 2013; 23:1869-78. [PMID: 24234649 DOI: 10.1093/hmg/ddt579] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by a lack of the dystrophin protein and has no effective treatment at present. Zebrafish provide a powerful in vivo tool for high-throughput therapeutic drug screening for the improvement of muscle phenotypes caused by dystrophin deficiency. Using the dystrophin-deficient zebrafish, sapje, we have screened a total of 2640 compounds with known modes of action from three drug libraries to identify modulators of the disease progression. Six compounds that target heme oxygenase signaling were found to rescue the abnormal muscle phenotype in sapje and sapje-like, while upregulating the inducible heme oxygenase 1 (Hmox1) at the protein level. Direct Hmox1 overexpression by injection of zebrafish Hmox1 mRNA into fertilized eggs was found to be sufficient for a dystrophin-independent restoration of normal muscle via an upregulation of cGMP levels. In addition, treatment of mdx(5cv) mice with the PDE5 inhibitor, sildenafil, which was one of the six drugs impacting the Hmox1 pathway in zebrafish, significantly increased the expression of Hmox1 protein, thus making Hmox1 a novel target for the improvement of dystrophic symptoms. These results demonstrate the translational relevance of our zebrafish model to mammalian models and support the use of zebrafish to screen for new drugs to treat human DMD. The discovery of a small molecule and a specific therapeutic pathway that might mitigate DMD disease progression could lead to significant clinical implications.
Collapse
Affiliation(s)
- Genri Kawahara
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yu EM, Liu BH, Wang GJ, Yu DG, Xie J, Xia Y, Gong WB, Wang HH, Li ZF, Wei N. Molecular cloning of type I collagen cDNA and nutritional regulation of type I collagen mRNA expression in grass carp. J Anim Physiol Anim Nutr (Berl) 2013; 98:755-65. [DOI: 10.1111/jpn.12132] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/04/2013] [Indexed: 11/29/2022]
Affiliation(s)
- E. M. Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation; Pearl River Fisheries Research Institute; Ministry of Agriculture; Chinese Academy of Fishery Science; Guangzhou China
| | - B. H. Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation; Pearl River Fisheries Research Institute; Ministry of Agriculture; Chinese Academy of Fishery Science; Guangzhou China
| | - G. J. Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation; Pearl River Fisheries Research Institute; Ministry of Agriculture; Chinese Academy of Fishery Science; Guangzhou China
| | - D. G. Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation; Pearl River Fisheries Research Institute; Ministry of Agriculture; Chinese Academy of Fishery Science; Guangzhou China
| | - J. Xie
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation; Pearl River Fisheries Research Institute; Ministry of Agriculture; Chinese Academy of Fishery Science; Guangzhou China
| | - Y. Xia
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation; Pearl River Fisheries Research Institute; Ministry of Agriculture; Chinese Academy of Fishery Science; Guangzhou China
| | - W. B. Gong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation; Pearl River Fisheries Research Institute; Ministry of Agriculture; Chinese Academy of Fishery Science; Guangzhou China
| | - H. H. Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation; Pearl River Fisheries Research Institute; Ministry of Agriculture; Chinese Academy of Fishery Science; Guangzhou China
| | - Z. F. Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation; Pearl River Fisheries Research Institute; Ministry of Agriculture; Chinese Academy of Fishery Science; Guangzhou China
| | - N. Wei
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation; Pearl River Fisheries Research Institute; Ministry of Agriculture; Chinese Academy of Fishery Science; Guangzhou China
| |
Collapse
|
45
|
Johnson NM, Farr GH, Maves L. The HDAC Inhibitor TSA Ameliorates a Zebrafish Model of Duchenne Muscular Dystrophy. PLOS CURRENTS 2013; 5. [PMID: 24459606 PMCID: PMC3870918 DOI: 10.1371/currents.md.8273cf41db10e2d15dd3ab827cb4b027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Zebrafish are an excellent model for Duchenne muscular dystrophy. In particular, zebrafish provide a system for rapid, easy, and low-cost screening of small molecules that can ameliorate muscle damage in dystrophic larvae. Here we identify an optimal anti-sense morpholino cocktail that robustly knocks down zebrafish Dystrophin (<i>dmd</i>-MO). We use two approaches, muscle birefringence and muscle actin expression, to quantify muscle damage and show that the <i>dmd</i>-MO dystrophic phenotype closely resembles the zebrafish <i>dmd</i> mutant phenotype. We then show that the histone deacetylase (HDAC) inhibitor TSA, which has been shown to ameliorate the <i>mdx</i> mouse Duchenne model, can rescue muscle fiber damage in both <i>dmd</i>-MO and <i>dmd</i> mutant larvae. Our study identifies optimal morpholino and phenotypic scoring approaches for dystrophic zebrafish, further enhancing the zebrafish <i>dmd</i> model for rapid and cost-effective small molecule screening.
Collapse
Affiliation(s)
- Nathan M Johnson
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Gist H Farr
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA; Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
46
|
Gibbs EM, Horstick EJ, Dowling JJ. Swimming into prominence: the zebrafish as a valuable tool for studying human myopathies and muscular dystrophies. FEBS J 2013; 280:4187-97. [PMID: 23809187 DOI: 10.1111/febs.12412] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/07/2013] [Accepted: 06/20/2013] [Indexed: 11/28/2022]
Abstract
A new and exciting phase of muscle disease research has recently been entered. The application of next generation sequencing technology has spurred an unprecedented era of gene discovery for both myopathies and muscular dystrophies. Gene-based therapies for Duchenne muscular dystrophy have entered clinical trial, and several pathway-based therapies are doing so as well for a handful of muscle diseases. While many factors have aided the extraordinary developments in gene discovery and therapy development, the zebrafish model system has emerged as a vital tool in these advancements. In this review, we will highlight how the zebrafish has greatly aided in the identification of new muscle disease genes and in the recognition of novel therapeutic strategies. We will start with a general introduction to the zebrafish as a model, discuss the ways in which muscle disease can be modeled and analyzed in the fish, and conclude with observations from recent studies that highlight the power of the fish as a research tool for muscle disease.
Collapse
Affiliation(s)
- Elizabeth M Gibbs
- Departments of Neuroscience, Neurology and Pediatrics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | | | | |
Collapse
|
47
|
Sloboda DD, Claflin DR, Dowling JJ, Brooks SV. Force measurement during contraction to assess muscle function in zebrafish larvae. J Vis Exp 2013. [PMID: 23912162 PMCID: PMC3846141 DOI: 10.3791/50539] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Zebrafish larvae provide models of muscle development, muscle disease and muscle-related chemical toxicity, but related studies often lack functional measures of muscle health. In this video article, we demonstrate a method to measure force generation during contraction of zebrafish larval trunk muscle. Force measurements are accomplished by placing an anesthetized larva into a chamber filled with a salt solution. The anterior end of the larva is tied to a force transducer and the posterior end of the larva is tied to a length controller. An isometric twitch contraction is elicited by electric field stimulation and the force response is recorded for analysis. Force generation during contraction provides a measure of overall muscle health and specifically provides a measure of muscle function. Although we describe this technique for use with wild-type larvae, this method can be used with genetically modified larvae or with larvae treated with drugs or toxicants, to characterize muscle disease models and evaluate treatments, or to study muscle development, injury, or chemical toxicity.
Collapse
Affiliation(s)
- Darcée D Sloboda
- Department of Biomedical Engineering, University of Michigan, Michigan, USA
| | | | | | | |
Collapse
|
48
|
Liew WKM, Kang PB. Recent developments in the treatment of Duchenne muscular dystrophy and spinal muscular atrophy. Ther Adv Neurol Disord 2013; 6:147-60. [PMID: 23634188 DOI: 10.1177/1756285612472386] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pediatric neuromuscular disorders comprise a large variety of disorders that can be classified based on their neuroanatomical localization, patterns of weakness, and laboratory test results. Over the last decade, the field of translational research has been active with many ongoing clinical trials. This is particularly so in two common pediatric neuromuscular disorders: Duchenne muscular dystrophy and spinal muscular atrophy. Although no definitive therapy has yet been found, numerous active areas of research raise the potential for novel therapies in these two disorders, offering hope for improved quality of life and life expectancy for affected individuals.
Collapse
Affiliation(s)
- Wendy K M Liew
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, USA and Neurology service, Department of Paediatric Medicine, KK Women's and Children's Hospital, Singapore
| | | |
Collapse
|
49
|
Berger J, Currie PD. Zebrafish models flex their muscles to shed light on muscular dystrophies. Dis Model Mech 2013; 5:726-32. [PMID: 23115202 PMCID: PMC3484855 DOI: 10.1242/dmm.010082] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Muscular dystrophies are a group of genetic disorders that specifically affect skeletal muscle and are characterized by progressive muscle degeneration and weakening. To develop therapies and treatments for these diseases, a better understanding of the molecular basis of muscular dystrophies is required. Thus, identification of causative genes mutated in specific disorders and the study of relevant animal models are imperative. Zebrafish genetic models of human muscle disorders often closely resemble disease pathogenesis, and the optical clarity of zebrafish embryos and larvae enables visualization of dynamic molecular processes in vivo. As an adjunct tool, morpholino studies provide insight into the molecular function of genes and allow rapid assessment of candidate genes for human muscular dystrophies. This unique set of attributes makes the zebrafish model system particularly valuable for the study of muscle diseases. This review discusses how recent research using zebrafish has shed light on the pathological basis of muscular dystrophies, with particular focus on the muscle cell membrane and the linkage between the myofibre cytoskeleton and the extracellular matrix.
Collapse
Affiliation(s)
- Joachim Berger
- Australian Regenerative Medicine Institute, EMBL Australia, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
50
|
Berger J, Currie PD. 503unc, a small and muscle-specific zebrafish promoter. Genesis 2013; 51:443-7. [PMID: 23444339 DOI: 10.1002/dvg.22385] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/20/2013] [Accepted: 02/20/2013] [Indexed: 01/26/2023]
Abstract
The muscle-specific UNC-45b assists in the folding of sarcomeric myosin. Analysis of the zebrafish unc-45b upstream region revealed that unc-45b promoter fragments reliably drive GFP expression after germline transmission. The muscle-specific 503-bp minimal promoter 503unc was identified to drive gene expression in the zebrafish musculature. In transgenic Tg(-503unc:GFP) zebrafish, GFP fluorescence was detected in the adaxial cells, their slow fiber descendants, and the fast muscle. At later stages, robust GFP fluorescence is eminent in the cardiac, cranial, fin, and trunk muscle, thereby recapitulating the unc-45b expression pattern. We propose that the 503unc promoter is a small and muscle-specific promoter that drives robust gene expression throughout the zebrafish musculature, making it a valuable tool for the exploration of zebrafish muscle.
Collapse
Affiliation(s)
- Joachim Berger
- Department of Zebrafish Muscle Development and Evolution, Australian Regenerative Medicine Institute, EMBL Australia, Monash University, Clayton, Victoria, Australia.
| | | |
Collapse
|