1
|
Acquarone D, Bertero A, Brancaccio M, Sorge M. Chaperone Proteins: The Rising Players in Muscle Atrophy. J Cachexia Sarcopenia Muscle 2025; 16:e13659. [PMID: 39707668 PMCID: PMC11747685 DOI: 10.1002/jcsm.13659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/18/2024] [Accepted: 10/31/2024] [Indexed: 12/23/2024] Open
Abstract
Despite significant progress in understanding the molecular aetiology of muscle atrophy, there is still a great need for new targets and drugs capable of counteracting muscle wasting. The role of an impaired proteostasis as the underlying causal mechanism of muscle atrophy is a well-established concept. From the earliest work on muscle atrophy and the identification of the first atrogenes, the hyper-activation of the proteolytic systems, such as autophagy and the ubiquitin proteasome system, has been recognized as the major driver of atrophy. However, the role of other key regulators of proteostasis, the chaperone proteins, has been largely overlooked. Chaperone proteins play a pivotal role in protein folding and in preventing the aggregation of misfolded proteins. Indeed, some chaperones, such as αB-crystallin and Hsp25, are involved in compensatory responses aimed at counteracting protein aggregation during sarcopenia. Chaperones also regulate different intracellular signalling pathways crucial for atrogene expression and the control of protein catabolism, such as the AKT and NF-kB pathways, which are regulated by Hsp70 and Hsp90. Furthermore, the downregulation of certain chaperones causes severe muscle wasting per se and experimental strategies aimed at preventing this downregulation have shown promising results in mitigating or reversing muscle atrophy. This highlights the therapeutic potential of targeting chaperones and confirms their crucial anti-atrophic functions. In this review, we summarize the most relevant data showing the modulation and the causative role of chaperone proteins in different types of skeletal muscle atrophies.
Collapse
Affiliation(s)
- Davide Acquarone
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | - Alessandro Bertero
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| |
Collapse
|
2
|
Ha C, Kim D, Bak M, Park JH, Kim YG, Jang JH, Kim JW, Choi JO, Jang MA. CRYAB stop-loss variant causes rare syndromic dilated cardiomyopathy with congenital cataract: expanding the phenotypic and mutational spectrum of alpha-B crystallinopathy. J Hum Genet 2024; 69:159-162. [PMID: 38212463 DOI: 10.1038/s10038-023-01218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/01/2023] [Accepted: 12/25/2023] [Indexed: 01/13/2024]
Abstract
Missense mutations in the alpha-B crystallin gene (CRYAB) have been reported in desmin-related myopathies with or without cardiomyopathy and have also been reported in families with only a cataract phenotype. Dilated cardiomyopathy (DCM) is a disorder with a highly heterogeneous genetic etiology involving more than 60 causative genes, hindering genetic diagnosis. In this study, we performed whole genome sequencing on 159 unrelated patients with DCM and identified an unusual stop-loss pathogenic variant in NM_001289808.2:c.527A>G of CRYAB in one patient. The mutant alpha-B crystallin protein is predicted to have an extended strand with addition of 19 amino acid residues, p.(Ter176TrpextTer19), which may contribute to aggregation and increased hydrophobicity of alpha-B crystallin. The proband, diagnosed with DCM at age 32, had a history of bilateral congenital cataracts but had no evidence of myopathy or associated symptoms. He also has a 10-year-old child diagnosed with bilateral congenital cataracts with the same CRYAB variant. This study expands the mutational spectrum of CRYAB and deepens our understanding of the complex phenotypes of alpha-B crystallinopathies.
Collapse
Affiliation(s)
- Changhee Ha
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Darae Kim
- Division of Cardiology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Minjung Bak
- Division of Cardiology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Jong-Ho Park
- Clinical Genome Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Young-Gon Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Jong-Won Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
- Clinical Genome Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Jin-Oh Choi
- Division of Cardiology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
| | - Mi-Ae Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
| |
Collapse
|
3
|
Claeyssen C, Bulangalire N, Bastide B, Agbulut O, Cieniewski-Bernard C. Desmin and its molecular chaperone, the αB-crystallin: How post-translational modifications modulate their functions in heart and skeletal muscles? Biochimie 2024; 216:137-159. [PMID: 37827485 DOI: 10.1016/j.biochi.2023.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Maintenance of the highly organized striated muscle tissue requires a cell-wide dynamic network through protein-protein interactions providing an effective mechanochemical integrator of morphology and function. Through a continuous and complex trans-cytoplasmic network, desmin intermediate filaments ensure this essential role in heart and in skeletal muscle. Besides their role in the maintenance of cell shape and architecture (permitting contractile activity efficiency and conferring resistance towards mechanical stress), desmin intermediate filaments are also key actors of cell and tissue homeostasis. Desmin participates to several cellular processes such as differentiation, apoptosis, intracellular signalisation, mechanotransduction, vesicle trafficking, organelle biogenesis and/or positioning, calcium homeostasis, protein homeostasis, cell adhesion, metabolism and gene expression. Desmin intermediate filaments assembly requires αB-crystallin, a small heat shock protein. Over its chaperone activity, αB-crystallin is involved in several cellular functions such as cell integrity, cytoskeleton stabilization, apoptosis, autophagy, differentiation, mitochondria function or aggresome formation. Importantly, both proteins are known to be strongly associated to the aetiology of several cardiac and skeletal muscles pathologies related to desmin filaments disorganization and a strong disturbance of desmin interactome. Note that these key proteins of cytoskeleton architecture are extensively modified by post-translational modifications that could affect their functional properties. Therefore, we reviewed in the herein paper the impact of post-translational modifications on the modulation of cellular functions of desmin and its molecular chaperone, the αB-crystallin.
Collapse
Affiliation(s)
- Charlotte Claeyssen
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Nathan Bulangalire
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France; Université de Lille, CHU Lille, F-59000 Lille, France
| | - Bruno Bastide
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Caroline Cieniewski-Bernard
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France.
| |
Collapse
|
4
|
Budnar P, Tangirala R, Bakthisaran R, Rao CM. Protein Aggregation and Cataract: Role of Age-Related Modifications and Mutations in α-Crystallins. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:225-241. [PMID: 35526854 DOI: 10.1134/s000629792203004x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
* The article is published as a part of the Special Issue "Protein Misfolding and Aggregation in Cataract Disorders" (Vol. 87, No. 2). ** To whom correspondence should be addressed. Cataract is a major cause of blindness. Due to the lack of protein turnover, lens proteins accumulate age-related and environmental modifications that alter their native conformation, leading to the formation of aggregation-prone intermediates, as well as insoluble and light-scattering aggregates, thus compromising lens transparency. The lens protein, α-crystallin, is a molecular chaperone that prevents protein aggregation, thereby maintaining lens transparency. However, mutations or post-translational modifications, such as oxidation, deamidation, truncation and crosslinking, can render α-crystallins ineffective and lead to the disease exacerbation. Here, we describe such mutations and alterations, as well as their consequences. Age-related modifications in α-crystallins affect their structure, oligomerization, and chaperone function. Mutations in α-crystallins can lead to the aggregation/intracellular inclusions attributable to the perturbation of structure and oligomeric assembly and resulting in the rearrangement of aggregation-prone regions. Such rearrangements can lead to the exposure of hitherto buried aggregation-prone regions, thereby populating aggregation-prone state(s) and facilitating amorphous/amyloid aggregation and/or inappropriate interactions with cellular components. Investigations of the mutation-induced changes in the structure, oligomer assembly, aggregation mechanisms, and interactomes of α-crystallins will be useful in fighting protein aggregation-related diseases.
Collapse
Affiliation(s)
- Prashanth Budnar
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Ramakrishna Tangirala
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Raman Bakthisaran
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Ch Mohan Rao
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
5
|
Tedesco B, Cristofani R, Ferrari V, Cozzi M, Rusmini P, Casarotto E, Chierichetti M, Mina F, Galbiati M, Piccolella M, Crippa V, Poletti A. Insights on Human Small Heat Shock Proteins and Their Alterations in Diseases. Front Mol Biosci 2022; 9:842149. [PMID: 35281256 PMCID: PMC8913478 DOI: 10.3389/fmolb.2022.842149] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The family of the human small Heat Shock Proteins (HSPBs) consists of ten members of chaperones (HSPB1-HSPB10), characterized by a low molecular weight and capable of dimerization and oligomerization forming large homo- or hetero-complexes. All HSPBs possess a highly conserved centrally located α-crystallin domain and poorly conserved N- and C-terminal domains. The main feature of HSPBs is to exert cytoprotective functions by preserving proteostasis, assuring the structural maintenance of the cytoskeleton and acting in response to cellular stresses and apoptosis. HSPBs take part in cell homeostasis by acting as holdases, which is the ability to interact with a substrate preventing its aggregation. In addition, HSPBs cooperate in substrates refolding driven by other chaperones or, alternatively, promote substrate routing to degradation. Notably, while some HSPBs are ubiquitously expressed, others show peculiar tissue-specific expression. Cardiac muscle, skeletal muscle and neurons show high expression levels for a wide variety of HSPBs. Indeed, most of the mutations identified in HSPBs are associated to cardiomyopathies, myopathies, and motor neuropathies. Instead, mutations in HSPB4 and HSPB5, which are also expressed in lens, have been associated with cataract. Mutations of HSPBs family members encompass base substitutions, insertions, and deletions, resulting in single amino acid substitutions or in the generation of truncated or elongated proteins. This review will provide an updated overview of disease-related mutations in HSPBs focusing on the structural and biochemical effects of mutations and their functional consequences.
Collapse
Affiliation(s)
- B. Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - R. Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - P. Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - E. Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - F. Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - A. Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- *Correspondence: A. Poletti,
| |
Collapse
|
6
|
Alpha B-Crystallin in Muscle Disease Prevention: The Role of Physical Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031147. [PMID: 35164412 PMCID: PMC8840510 DOI: 10.3390/molecules27031147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022]
Abstract
HSPB5 or alpha B-crystallin (CRYAB), originally identified as lens protein, is one of the most widespread and represented of the human small heat shock proteins (sHSPs). It is greatly expressed in tissue with high rates of oxidative metabolism, such as skeletal and cardiac muscles, where HSPB5 dysfunction is associated with a plethora of human diseases. Since HSPB5 has a major role in protecting muscle tissues from the alterations of protein stability (i.e., microfilaments, microtubules, and intermediate filament components), it is not surprising that this sHSP is specifically modulated by exercise. Considering the robust content and the protective function of HSPB5 in striated muscle tissues, as well as its specific response to muscle contraction, it is then realistic to predict a specific role for exercise-induced modulation of HSPB5 in the prevention of muscle diseases caused by protein misfolding. After offering an overview of the current knowledge on HSPB5 structure and function in muscle, this review aims to introduce the reader to the capacity that different exercise modalities have to induce and/or activate HSPB5 to levels sufficient to confer protection, with the potential to prevent or delay skeletal and cardiac muscle disorders.
Collapse
|
7
|
Zhang SS, Gu LN, Zhang T, Xu L, Wei X, Chen SH, Shi SJ, Sun DQ, Zhou SH, Zhao QY. Case report: Fatal infantile hypertonic myofibrillar myopathy with compound heterozygous mutations in the CRYAB gene. Front Pediatr 2022; 10:993165. [PMID: 36727013 PMCID: PMC9884804 DOI: 10.3389/fped.2022.993165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/09/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Fatal infantile hypertonic myofibrillar myopathy (FIHMM) is an autosomal recessive hereditary disease characterized by amyotrophy, progressive flexion contracture and ankylosis of the trunk and limb muscles, apnea and respiratory failure, and increased creatine phosphate levels. It is caused by mutations in the CRYAB gene, and only around 18 cases including genetic mutations have been reported worldwide. All patients with FIHMM develop respiratory distress, progressive stiffness of the limbs, and have a poor prognosis. However, no effective treatment for CRYAB-associated respiratory failure has been reported. Here, we report a case of FIHMM with a novel heterozygous missense mutation. CASE PRESENTATION A 2-year-old female developed scoliosis of the lumbar spine and restrictive ventilatory dysfunction in infancy. She was admitted to the hospital with labored breathing on the third day after the second injection of inactivated poliomyelitis vaccine. Acute respiratory failure, pneumothorax, and cardiac arrest arose in the patient during hospitalization, and progressive stiffness of the trunk and limb muscles appeared, accompanied by obvious abdominal distension and an increase in phosphocreatine kinase levels. Screenings for genetic metabolic diseases in the blood and urine were normal. Electromyography revealed mild myogenic damage. A muscle biopsy indicated the accumulation of desmin, α-crystallin, and myotilin in the musculus biceps brachii, and dense granules were observed in muscle fibers using electron microscopy. Mutation analysis of CRYAB revealed a novel heterozygous missense mutation in the proband, c.302A > C (p.His101Pro) and c.3G > A (p.Met1Ile), which inherited from her asymptomatic, heterozygous carrier parents, respectively. The proband was finally diagnosed as FIHMM. One month after the FIHMM diagnosis, the child died of respiratory failure. CONCLUSION We report a case of FIHMM with a novel heterozygous missense mutation of CRYAB. This finding might improve our understanding of FIHMM and highlight a novel mutation in the Chinese population.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- Pediatric Respiratory Ward I, Lianyungang Maternal and Children's Hospital, Lianyungang, China
| | - Li-Niu Gu
- Department of Immunization Planning, Lianyungang Center for Disease Control and revention, Lianyungang, China
| | - Teng Zhang
- Department of Science & Education, Lianyungang Maternal and Children's Hospital, Lianyungang, China
| | - Lu Xu
- Department of Neonatology, Lianyungang Maternal and Children's Hospital, Lianyungang, China
| | - Xiang Wei
- Pediatric Respiratory Ward I, Lianyungang Maternal and Children's Hospital, Lianyungang, China
| | - Su-Hong Chen
- Pediatric Respiratory Ward I, Lianyungang Maternal and Children's Hospital, Lianyungang, China
| | - Su-Jie Shi
- Pediatric Respiratory Ward I, Lianyungang Maternal and Children's Hospital, Lianyungang, China
| | - Da-Quan Sun
- Pediatric Respiratory Ward I, Lianyungang Maternal and Children's Hospital, Lianyungang, China
| | - Shao-Hong Zhou
- Pediatric Respiratory Ward I, Lianyungang Maternal and Children's Hospital, Lianyungang, China
| | - Qian-Ye Zhao
- Pediatric Respiratory Ward I, Lianyungang Maternal and Children's Hospital, Lianyungang, China
| |
Collapse
|
8
|
Henry ML, Velez-Irizarry D, Pagan JD, Sordillo L, Gandy J, Valberg SJ. The Impact of N-Acetyl Cysteine and Coenzyme Q10 Supplementation on Skeletal Muscle Antioxidants and Proteome in Fit Thoroughbred Horses. Antioxidants (Basel) 2021; 10:antiox10111739. [PMID: 34829610 PMCID: PMC8615093 DOI: 10.3390/antiox10111739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/22/2022] Open
Abstract
Horses have one of the highest skeletal muscle oxidative capacities amongst mammals, which, combined with a high glycolytic capacity, could perturb redox status during maximal exercise. We determined the effect of 30 d of oral coenzyme Q10 and N-acetyl-cysteine supplementation (NACQ) on muscle glutathione (GSH), cysteine, ROS, and coenzyme Q10 concentrations, and the muscle proteome, in seven maximally exercising Thoroughbred horses using a placebo and randomized cross-over design. Gluteal muscle biopsies were obtained the day before and 1 h after maximal exercise. Concentrations of GSH, cysteine, coenzyme Q10, and ROS were measured, and citrate synthase, glutathione peroxidase, and superoxide dismutase activities analyzed. GSH increased significantly 1 h post-exercise in the NACQ group (p = 0.022), whereas other antioxidant concentrations/activities were unchanged. TMT proteomic analysis revealed 40 differentially expressed proteins with NACQ out of 387 identified, including upregulation of 13 mitochondrial proteins (TCA cycle and NADPH production), 4 Z-disc proteins, and down regulation of 9 glycolytic proteins. NACQ supplementation significantly impacted muscle redox capacity after intense exercise by enhancing muscle glutathione concentrations and increasing expression of proteins involved in the uptake of glutathione into mitochondria and the NAPDH-associated reduction of oxidized glutathione, without any evident detrimental effects on performance.
Collapse
Affiliation(s)
- Marisa L. Henry
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (D.V.-I.); (L.S.); (J.G.); (S.J.V.)
- Correspondence:
| | - Deborah Velez-Irizarry
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (D.V.-I.); (L.S.); (J.G.); (S.J.V.)
| | - Joe D. Pagan
- Kentucky Equine Research, Versailles, KY 40383, USA;
| | - Lorraine Sordillo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (D.V.-I.); (L.S.); (J.G.); (S.J.V.)
| | - Jeff Gandy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (D.V.-I.); (L.S.); (J.G.); (S.J.V.)
| | - Stephanie J. Valberg
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (D.V.-I.); (L.S.); (J.G.); (S.J.V.)
| |
Collapse
|
9
|
Lu XG, Yu U, Han CX, Mai JH, Liao JX, Hou YQ. c.3G>A mutation in the CRYAB gene that causes fatal infantile hypertonic myofibrillar myopathy in the Chinese population. J Integr Neurosci 2021; 20:143-151. [PMID: 33834702 DOI: 10.31083/j.jin.2021.01.267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 02/05/2023] Open
Abstract
Infantile hypertonic myofibrillar myopathy is characterized by the rapid development of rigid muscles and respiratory insufficiency soon after birth, with very high mortality. It is extremely rare, and only a few cases having been reported until now. Here we report four Chinese infants with fatal neuromuscular disorders characterized by abdominal and trunk skeletal muscle stiffness and rapid respiratory insufficiency progression. Electromyograms showed increased insertion activities and profuse fibrillation potentials with complex repetitive discharges. Immunohistochemistry staining of muscle biopsies showed accumulations of desmin in the myocytes. Powdery Z-bands with dense granules across sarcomeres were observed in muscle fibers using electron microscopy. All patients carry a homozygous c.3G>A mutation in the CRYAB gene, which resulted in the loss of the initiating methionine and the absence of protein. This study's findings help further understand the disease and highlight a founder mutation in the Chinese population.
Collapse
Affiliation(s)
- Xin-Guo Lu
- Department of Neuromuscular Research Lab, Shenzhen Children's Hospital, 518038 Shenzhen, P. R. China
- Department of Neurology, Shenzhen Children's Hospital, 518038 Shenzhen, P. R. China
| | - Uet Yu
- Department of Neurology, Shenzhen Children's Hospital, 518038 Shenzhen, P. R. China
| | - Chun-Xi Han
- Department of Neuromuscular Research Lab, Shenzhen Children's Hospital, 518038 Shenzhen, P. R. China
- Department of Neurology, Shenzhen Children's Hospital, 518038 Shenzhen, P. R. China
| | - Jia-Hui Mai
- Department of Neurology, Shenzhen Children's Hospital, 518038 Shenzhen, P. R. China
| | - Jian-Xiang Liao
- Department of Neurology, Shenzhen Children's Hospital, 518038 Shenzhen, P. R. China
| | - Yan-Qi Hou
- Running Gene Inc.,100083 Beijing, P. R. China
| |
Collapse
|
10
|
Urtizberea JA, Kaplan JC. [The Frozen Man and the Chinese Alphabet]. Med Sci (Paris) 2020; 36 Hors série n° 2:38-50. [PMID: 33427635 DOI: 10.1051/medsci/2020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Confucian philosophy teaches us that the search for truth does not always follow a straight line. The clinical observation presented here illustrates this perfectly and is about a child afflicted by a rare neuromuscular disorder (in Chinese, the word 'myopathy' is translated to meaning 'frozen man') in whom was suspected a deficit in αB crystallin. The authors take the opportunity to put the spotlight on China, this great country which did not wait for Alain Peyrefitte to wake up or, more precisely, to rewake. In the light of past and recent missions in the former Middle Kingdom, an update is made on the medico-scientific but also societal issues of this country on the verge of becoming, perhaps, a giant in the field of neuromuscular diseases.
Collapse
|
11
|
Marcos AT, Amorós D, Muñoz-Cabello B, Galán F, Rivas Infante E, Alcaraz-Mas L, Navarro-Pando JM. A novel dominant mutation in CRYAB gene leading to a severe phenotype with childhood onset. Mol Genet Genomic Med 2020; 8:e1290. [PMID: 32420686 PMCID: PMC7434720 DOI: 10.1002/mgg3.1290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 11/24/2022] Open
Abstract
Background αB‐crystallin is a promiscuous protein involved in numerous cell functions. Mutations in CRYAB have been found in patients with different pathological phenotypes that are not properly understood. Patients can present different diseases like cataracts, muscle weakness, myopathy, cardiomyopathy, respiratory insufficiency or dysphagia, but also a variable combination of these pathologies has been found. These mutations can show either autosomal dominant or recessive mode of inheritance and variable penetrance and expressivity. This is the first report of congenital cataracts and myopathy described in childhood due to a CRYAB mutation with autosomal dominant mode of inheritance. Methods The whole exome sequence was subjected to phenotype‐driven analysis and a novel variant in CRYAB was detected: c.514delG, p.(Ala172ProfsTer14). The mutation was located in the C‐terminal domain of the protein, which is essential for chaperone activity. The deduced protein was analyzed searching for alterations of the relevant physico‐chemical properties described for this domain. A muscle biopsy was also tested for CRYAB with immunohistochemical and histoenzymatic techniques. Results CRYAB displayed a mild immunoreactivity in the subsarcolemmal compartment with no pathological sarcoplasmic accumulation. It agrees with an alteration of the physico‐chemical properties predicted for the C‐terminal domain: hydrophobicity, stiffness, and isomerization. Conclusions The described mutation leads to elongation of the protein at the carboxi‐terminal domain (CTD) with altered properties, which are essential for solubility and activity. It suggests that can be the cause of the severe conditions observed in this patient.
Collapse
Affiliation(s)
- Ana T Marcos
- Unidad de Genética, INEBIR (Instituto para el estudio de la Biología de la Reproducción Humana), Seville, Spain.,Cátedra de Reproducción y Genética Humana, INEBIR/Universidad Europea del Atlántico, Santander, Spain.,FUNIBER (Fundación Universitaria Iberoamericana), Barcelona, Spain
| | - Diego Amorós
- BioArray, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain
| | | | - Francisco Galán
- BioArray, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain
| | | | - Luis Alcaraz-Mas
- BioArray, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain
| | - José M Navarro-Pando
- Unidad de Genética, INEBIR (Instituto para el estudio de la Biología de la Reproducción Humana), Seville, Spain.,Cátedra de Reproducción y Genética Humana, INEBIR/Universidad Europea del Atlántico, Santander, Spain.,FUNIBER (Fundación Universitaria Iberoamericana), Barcelona, Spain
| |
Collapse
|
12
|
Lulli M, Nencioni D, Papucci L, Schiavone N. Zeta-crystallin: a moonlighting player in cancer. Cell Mol Life Sci 2020; 77:965-976. [PMID: 31563996 PMCID: PMC11104887 DOI: 10.1007/s00018-019-03301-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Crystallins were firstly found as structural proteins of the eye lens. To this family belong proteins, such as ζ-crystallin, expressed ubiquitously, and endowed with enzyme activity. ζ-crystallin is a moonlighting protein endowed with two main different functions: (1) mRNA binding with stabilizing activity; (2) NADPH:quinone oxidoreductase. ζ-crystallin has been clearly demonstrated to stabilize mRNAs encoding proteins involved in renal glutamine catabolism during metabolic acidosis resulting in ammoniagenesis and bicarbonate ion production that concur to compensate such condition. ζ-crystallin binds also mRNAs encoding for antiapoptotic proteins, such as Bcl-2 in leukemia cells. On the other hand, the physiological role of its enzymatic activity is still elusive. Gathering research evidences and data mined from public databases, we provide a framework where all the known ζ-crystallin properties are called into question, making it a hypothetical pivotal player in cancer, allowing cells to hijack or subjugate the acidity response mechanism to increase their ability to resist oxidative stress and apoptosis, while fueling their glutamine addicted metabolism.
Collapse
Affiliation(s)
- Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi di Firenze, Viale G.B. Morgagni, 50, Firenze, 50134, Italy.
| | - Daniele Nencioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi di Firenze, Viale G.B. Morgagni, 50, Firenze, 50134, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi di Firenze, Viale G.B. Morgagni, 50, Firenze, 50134, Italy
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi di Firenze, Viale G.B. Morgagni, 50, Firenze, 50134, Italy.
| |
Collapse
|
13
|
Neuromuscular Diseases Due to Chaperone Mutations: A Review and Some New Results. Int J Mol Sci 2020; 21:ijms21041409. [PMID: 32093037 PMCID: PMC7073051 DOI: 10.3390/ijms21041409] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle and the nervous system depend on efficient protein quality control, and they express chaperones and cochaperones at high levels to maintain protein homeostasis. Mutations in many of these proteins cause neuromuscular diseases, myopathies, and hereditary motor and sensorimotor neuropathies. In this review, we cover mutations in DNAJB6, DNAJB2, αB-crystallin (CRYAB, HSPB5), HSPB1, HSPB3, HSPB8, and BAG3, and discuss the molecular mechanisms by which they cause neuromuscular disease. In addition, previously unpublished results are presented, showing downstream effects of BAG3 p.P209L on DNAJB6 turnover and localization.
Collapse
|
14
|
Ma K, Luo D, Tian T, Li N, He X, Rao C, Zhong B, Lu X. A novel homozygous initiation codon variant associated with infantile alpha-Bcrystallinopathy in a Chinese family. Mol Genet Genomic Med 2019; 7:e825. [PMID: 31215171 PMCID: PMC6687638 DOI: 10.1002/mgg3.825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Due to inconsistencies with reported myofibrillar myopathy (MFM), including autosomal dominant inheritance, late onset and a slowly progressive course, the severe, recessively inherited form of CRYAB (alpha-B crystallin) gene-related infantile MFM has been suggested. Here, we report an infant in a Chinese family with fatal neonatal-onset hypertonic MFM with a novel CRYAB homozygous variant (c.3G > A (p.Met1?)). METHODS Muscle biopsy indicated that muscle fibers showed a uniformly small diameter, cell atrophy, and visible focal muscle fiber degeneration and necrosis consistent with myogenic myopathy. We performed the whole exome sequencing of pathogenic genes and identified it as MFM. RESULTS The proband presented with profound muscle stiffness, progressive respiratory distress and a concurrent abnormal increase in myocardial enzymogram, and the patient died in the 17th month of life. Muscle biopsy and electron microscopy results were consistent with ultramicroscopic myogenic damage and pathological changes. Mutation analysis of the proband identified a novel rare homozygous mutation in the initiation codon of the CRYAB gene, which was inherited from currently asymptomatic, heterozygous carrier parents, and his heterozygous biological brother is unaffected. CONCLUSIONS This article reports one infant with CRYAB-related neonatal onset MFM with a novel homozygous variant in CRYAB. To our knowledge, this is the first reported case of infantile alpha-Bcrystallinopathy in the Chinese population.
Collapse
Affiliation(s)
- Keze Ma
- Department of Neonates, Dongguan Children's Hospital, Dongguan, China.,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China
| | - Dong Luo
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China.,Medical Laboratory, Dongguan Children's Hospital, Dongguan, China
| | - Tian Tian
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ning Li
- Department of Neonates, Dongguan Children's Hospital, Dongguan, China.,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China
| | - Xiaoguang He
- Department of Neonates, Dongguan Children's Hospital, Dongguan, China.,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China
| | - Chunbao Rao
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China.,Medical Laboratory, Dongguan Children's Hospital, Dongguan, China
| | - Baimao Zhong
- Department of Neonates, Dongguan Children's Hospital, Dongguan, China.,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China
| | - Xiaomei Lu
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China.,Medical Laboratory, Dongguan Children's Hospital, Dongguan, China
| |
Collapse
|
15
|
Fang X, Bogomolovas J, Trexler C, Chen J. The BAG3-dependent and -independent roles of cardiac small heat shock proteins. JCI Insight 2019; 4:126464. [PMID: 30830872 DOI: 10.1172/jci.insight.126464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Small heat shock proteins (sHSPs) comprise an important protein family that is ubiquitously expressed, is highly conserved among species, and has emerged as a critical regulator of protein folding. While these proteins are functionally important for a variety of tissues, an emerging field of cardiovascular research reveals sHSPs are also extremely important for maintaining normal cardiac function and regulating the cardiac stress response. Notably, numerous mutations in genes encoding sHSPs have been associated with multiple cardiac diseases. sHSPs (HSPB5, HSPB6, and HSPB8) have been described as mediating chaperone functions within the heart by interacting with the cochaperone protein BCL-2-associated anthanogene 3 (BAG3); however, recent reports indicate that sHSPs (HSPB7) can perform other BAG3-independent functions. Here, we summarize the cardiac functions of sHSPs and present the notion that cardiac sHSPs function via BAG3-dependent or -independent pathways.
Collapse
|
16
|
Identification of a novel nonsense mutation in kyphoscoliosis peptidase gene in an Iranian patient with myofibrillar myopathy. Genes Dis 2018; 5:331-334. [PMID: 30591934 PMCID: PMC6303478 DOI: 10.1016/j.gendis.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 09/28/2018] [Indexed: 12/28/2022] Open
Abstract
Myofibrillar myopathies (MFMs) are rare genetic and slowly progressive neuromuscular disorders. Several pathogenic mutations have been reported in MFM-related genes including DES, CRYAB, MYOT, LDB3 or ZASP, FLNC, BAG3, FHL1 and DNAJB6. Although MFMs is commonly inherited in an autosomal dominant manner, the inheritance pattern and novel mutated genes are not thoroughly elucidated in some cases. Here, we report discovery of a novel nonsense mutation in a 29-year-old Iranian male patient with motor disorders and deformity in his lower limbs. His parents are second cousins. Hereditary Motor Sensory Neuropathy as initial genetic diagnosis was ruled out. Whole exome sequencing using NGS on Illumina HiSeq4000 platform was performed to identify the disease and possible mutated gene(s). Our data analysis identified a homozygous nonsense unreported c.C415T (p.R139X) variant on kyphoscoliosis peptidase (KY) gene (NM_178554: exon4). Sanger sequencing of this mutation has been performed for his other related family members. Sequencing and segregation analysis was confirmed the NGS results and autosomal recessive inheritance pattern of the disease.
Collapse
|
17
|
Dimauro I, Antonioni A, Mercatelli N, Caporossi D. The role of αB-crystallin in skeletal and cardiac muscle tissues. Cell Stress Chaperones 2018; 23:491-505. [PMID: 29190034 PMCID: PMC6045558 DOI: 10.1007/s12192-017-0866-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 12/25/2022] Open
Abstract
All organisms and cells respond to various stress conditions such as environmental, metabolic, or pathophysiological stress by generally upregulating, among others, the expression and/or activation of a group of proteins called heat shock proteins (HSPs). Among the HSPs, special attention has been devoted to the mutations affecting the function of the αB-crystallin (HSPB5), a small heat shock protein (sHsp) playing a critical role in the modulation of several cellular processes related to survival and stress recovery, such as protein degradation, cytoskeletal stabilization, and apoptosis. Because of the emerging role in general health and disease conditions, the main objective of this mini-review is to provide a brief account on the role of HSPB5 in mammalian muscle physiopathology. Here, we report the current known state of the regulation and localization of HSPB5 in skeletal and cardiac tissue, making also a critical summary of all human HSPB5 mutations known to be strictly associated to specific skeletal and cardiac diseases, such as desmin-related myopathies (DRM), dilated (DCM) and restrictive (RCM) cardiomyopathy. Finally, pointing to putative strategies for HSPB5-based therapy to prevent or counteract these forms of human muscular disorders.
Collapse
Affiliation(s)
- Ivan Dimauro
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Ambra Antonioni
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Neri Mercatelli
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| |
Collapse
|
18
|
Neurophysiological Assessment of Abnormalities of the Neuromuscular Junction in Children. Int J Mol Sci 2018; 19:ijms19020624. [PMID: 29470437 PMCID: PMC5855846 DOI: 10.3390/ijms19020624] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 11/16/2022] Open
Abstract
The function of the neuromuscular junction in children is amenable to electrophysiological testing. Of the two tests available, repetitive nerve stimulation is uncomfortable and has a reduced sensitivity compared with single-fibre methodology. The latter is the method of choice, recording the variability in neuromuscular transmission as a value called jitter. It can be performed by voluntary activation of the muscle being examined, which is not suitable in children, or by stimulation techniques. A modification of these techniques, called Stimulated Potential Analysis with Concentric needle Electrodes (SPACE), is well tolerated and can be performed while the child is awake. It has a high sensitivity (84%) for the diagnosis of neuromuscular transmission disorders, the majority of which are myasthenic syndromes, and a moderate specificity (70%). The latter can be improved by the exclusion of neurogenic causes and the determination of the degree of jitter abnormality. Minor jitter abnormalities, under 115% of the upper limit of normal, are usually caused by myopathies with an associated neuromuscular transmission disorder, whereas levels higher than this value are usually associated with one of the myasthenic conditions.
Collapse
|
19
|
Mishra S, Wu SY, Fuller AW, Wang Z, Rose KL, Schey KL, Mchaourab HS. Loss of αB-crystallin function in zebrafish reveals critical roles in the development of the lens and stress resistance of the heart. J Biol Chem 2017; 293:740-753. [PMID: 29162721 DOI: 10.1074/jbc.m117.808634] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/17/2017] [Indexed: 12/12/2022] Open
Abstract
Genetic mutations in the human small heat shock protein αB-crystallin have been implicated in autosomal cataracts and skeletal myopathies, including heart muscle diseases (cardiomyopathy). Although these mutations lead to modulation of their chaperone activity in vitro, the in vivo functions of αB-crystallin in the maintenance of both lens transparency and muscle integrity remain unclear. This lack of information has hindered a mechanistic understanding of these diseases. To better define the functional roles of αB-crystallin, we generated loss-of-function zebrafish mutant lines by utilizing the CRISPR/Cas9 system to specifically disrupt the two αB-crystallin genes, αBa and αBb We observed lens abnormalities in the mutant lines of both genes, and the penetrance of the lens phenotype was higher in αBa than αBb mutants. This finding is in contrast with the lack of a phenotype previously reported in αB-crystallin knock-out mice and suggests that the elevated chaperone activity of the two zebrafish orthologs is critical for lens development. Besides its key role in the lens, we uncovered another critical role for αB-crystallin in providing stress tolerance to the heart. The αB-crystallin mutants exhibited hypersusceptibility to develop pericardial edema when challenged by crowding stress or exposed to elevated cortisol stress, both of which activate glucocorticoid receptor signaling. Our work illuminates the involvement of αB-crystallin in stress tolerance of the heart presumably through the proteostasis network and reinforces the critical role of the chaperone activity of αB-crystallin in the maintenance of lens transparency.
Collapse
Affiliation(s)
- Sanjay Mishra
- From the Departments of Molecular Physiology and Biophysics and
| | - Shu-Yu Wu
- From the Departments of Molecular Physiology and Biophysics and
| | | | - Zhen Wang
- Biochemistry and.,Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Kristie L Rose
- Biochemistry and.,Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Kevin L Schey
- Biochemistry and.,Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | |
Collapse
|
20
|
Pitt MC. Use of stimulated electromyography in the analysis of the neuromuscular junction in children. Muscle Nerve 2017; 56:841-847. [DOI: 10.1002/mus.25685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/18/2017] [Accepted: 05/01/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Matthew C. Pitt
- Department of Clinical NeurophysiologyGreat Ormond Street Hospital for Children NHS Foundation TrustGreat Ormond Street, LondonWC1N 3JH United Kingdom
| |
Collapse
|
21
|
Ravenscroft G, Davis MR, Lamont P, Forrest A, Laing NG. New era in genetics of early-onset muscle disease: Breakthroughs and challenges. Semin Cell Dev Biol 2016; 64:160-170. [PMID: 27519468 DOI: 10.1016/j.semcdb.2016.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
Early-onset muscle disease includes three major entities that present generally at or before birth: congenital myopathies, congenital muscular dystrophies and congenital myasthenic syndromes. Almost exclusively there is weakness and hypotonia, although cases manifesting hypertonia are increasingly being recognised. These diseases display a wide phenotypic and genetic heterogeneity, with the uptake of next generation sequencing resulting in an unparalleled extension of the phenotype-genotype correlations and "diagnosis by sequencing" due to unbiased sequencing. Perhaps now more than ever, detailed clinical evaluations are necessary to guide the genetic diagnosis; with arrival at a molecular diagnosis frequently occurring following dialogue between the molecular geneticist, the referring clinician and the pathologist. There is an ever-increasing blurring of the boundaries between the congenital myopathies, dystrophies and myasthenic syndromes. In addition, many novel disease genes have been described and new insights have been gained into skeletal muscle development and function. Despite the advances made, a significant percentage of patients remain without a molecular diagnosis, suggesting that there are many more human disease genes and mechanisms to identify. It is now technically- and clinically-feasible to perform next generation sequencing for severe diseases on a population-wide scale, such that preconception-carrier screening can occur. Newborn screening for selected early-onset muscle diseases is also technically and ethically-achievable, with benefits to the patient and family from early management of these diseases and should also be implemented. The need for world-wide Reference Centres to meticulously curate polymorphisms and mutations within a particular gene is becoming increasingly apparent, particularly for interpretation of variants in the large genes which cause early-onset myopathies: NEB, RYR1 and TTN. Functional validation of candidate disease variants is crucial for accurate interpretation of next generation sequencing and appropriate genetic counseling. Many published "pathogenic" variants are too frequent in control populations and are thus likely rare polymorphisms. Mechanisms need to be put in place to systematically update the classification of variants such that accurate interpretation of variants occurs. In this review, we highlight the recent advances made and the challenges ahead for the molecular diagnosis of early-onset muscle diseases.
Collapse
Affiliation(s)
- Gianina Ravenscroft
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, Nedlands, Australia
| | - Mark R Davis
- Department of Diagnostic Genomics, Pathwest, QEII Medical Centre, Nedlands, Australia
| | - Phillipa Lamont
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, Nedlands, Australia; Neurogenetic unit, Dept of Neurology, Royal Perth Hospital and The Perth Children's Hospital, Western Australia, Australia
| | - Alistair Forrest
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, Nedlands, Australia
| | - Nigel G Laing
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, Nedlands, Australia; Department of Diagnostic Genomics, Pathwest, QEII Medical Centre, Nedlands, Australia.
| |
Collapse
|
22
|
Mitzelfelt KA, Limphong P, Choi MJ, Kondrat FDL, Lai S, Kolander KD, Kwok WM, Dai Q, Grzybowski MN, Zhang H, Taylor GM, Lui Q, Thao MT, Hudson JA, Barresi R, Bushby K, Jungbluth H, Wraige E, Geurts AM, Benesch JLP, Riedel M, Christians ES, Minella AC, Benjamin IJ. The Human 343delT HSPB5 Chaperone Associated with Early-onset Skeletal Myopathy Causes Defects in Protein Solubility. J Biol Chem 2016; 291:14939-53. [PMID: 27226619 PMCID: PMC4946913 DOI: 10.1074/jbc.m116.730481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/14/2016] [Indexed: 12/23/2022] Open
Abstract
Mutations of HSPB5 (also known as CRYAB or αB-crystallin), a bona fide heat shock protein and molecular chaperone encoded by the HSPB5 (crystallin, alpha B) gene, are linked to multisystem disorders featuring variable combinations of cataracts, cardiomyopathy, and skeletal myopathy. This study aimed to investigate the pathological mechanisms involved in an early-onset myofibrillar myopathy manifesting in a child harboring a homozygous recessive mutation in HSPB5, 343delT. To study HSPB5 343delT protein dynamics, we utilize model cell culture systems including induced pluripotent stem cells derived from the 343delT patient (343delT/343delT) along with isogenic, heterozygous, gene-corrected control cells (WT KI/343delT) and BHK21 cells, a cell line lacking endogenous HSPB5 expression. 343delT/343delT and WT KI/343delT-induced pluripotent stem cell-derived skeletal myotubes and cardiomyocytes did not express detectable levels of 343delT protein, contributable to the extreme insolubility of the mutant protein. Overexpression of HSPB5 343delT resulted in insoluble mutant protein aggregates and induction of a cellular stress response. Co-expression of 343delT with WT prevented visible aggregation of 343delT and improved its solubility. Additionally, in vitro refolding of 343delT in the presence of WT rescued its solubility. We demonstrate an interaction between WT and 343delT both in vitro and within cells. These data support a loss-of-function model for the myopathy observed in the patient because the insoluble mutant would be unavailable to perform normal functions of HSPB5, although additional gain-of-function effects of the mutant protein cannot be excluded. Additionally, our data highlight the solubilization of 343delT by WT, concordant with the recessive inheritance of the disease and absence of symptoms in carrier individuals.
Collapse
Affiliation(s)
- Katie A Mitzelfelt
- From the Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650
| | | | | | - Frances D L Kondrat
- the Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | | | | | - Wai-Meng Kwok
- Departments of Anesthesiology and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | | | | | - Huali Zhang
- the Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha City, Hunan 410078, China
| | - Graydon M Taylor
- the Division of Cardiology, Department of Medicine, University of Utah, Salt Lake City, Utah 84132
| | - Qiang Lui
- the Division of Cardiology, Department of Medicine, University of Utah, Salt Lake City, Utah 84132
| | | | - Judith A Hudson
- the Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Rita Barresi
- the National Health Service England Health Science Services for Rare Neuromuscular Diseases, Muscle Immunoanalysis Unit, Dental Hospital, Richardson Road, Newcastle upon Tyne NE2 4AZ, United Kingdom
| | - Kate Bushby
- Neuromuscular Genetics, Newcastle University John Walton Centre for Muscular Dystrophy Research, Medical Research Council Centre for Neuromuscular Diseases, Institute of Genetic Medicine, International Centre for Life, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Heinz Jungbluth
- the Department of Paediatric Neurology, Neuromuscular Service Evelina Children's Hospital, Guy's and St. Thomas' National Health Service Foundation Trust, London SE1 7EH, United Kingdom, the Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King's College London, London SE1 1UL, United Kingdom, the Department of Basic and Clinical Neuroscience Institute of Psychiatry, Psychology and Neuroscience, King's College London SE5 9RX, United Kingdom
| | - Elizabeth Wraige
- the Department of Paediatric Neurology, Neuromuscular Service Evelina Children's Hospital, Guy's and St. Thomas' National Health Service Foundation Trust, London SE1 7EH, United Kingdom
| | | | - Justin L P Benesch
- the Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | | | - Elisabeth S Christians
- the Sorbonne Universités, University Pierre and Marie Curie, Univ Paris 06, CNRS, Laboratoire de Biologie du Dévelopment de Villefranche sur mer (LBDV), UMR 7009, 181 Chemin du Lazaret, 06230 Villefranche sur mer, France, and
| | - Alex C Minella
- the Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53226
| | - Ivor J Benjamin
- From the Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, the Cardiovascular Center,
| |
Collapse
|
23
|
Witting N, Andersen LK, Vissing J. Axial myopathy: an overlooked feature of muscle diseases. Brain 2015; 139:13-22. [DOI: 10.1093/brain/awv332] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/16/2015] [Indexed: 12/21/2022] Open
|
24
|
Béhin A, Salort-Campana E, Wahbi K, Richard P, Carlier RY, Carlier P, Laforêt P, Stojkovic T, Maisonobe T, Verschueren A, Franques J, Attarian S, Maues de Paula A, Figarella-Branger D, Bécane HM, Nelson I, Duboc D, Bonne G, Vicart P, Udd B, Romero N, Pouget J, Eymard B. Myofibrillar myopathies: State of the art, present and future challenges. Rev Neurol (Paris) 2015; 171:715-29. [DOI: 10.1016/j.neurol.2015.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 05/11/2015] [Accepted: 06/02/2015] [Indexed: 12/18/2022]
|
25
|
Jackson S, Schaefer J, Meinhardt M, Reichmann H. Mitochondrial abnormalities in the myofibrillar myopathies. Eur J Neurol 2015. [DOI: 10.1111/ene.12814] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- S. Jackson
- Department of Neurology; Technische Universität Dresden; Dresden Germany
| | - J. Schaefer
- Department of Neurology; Technische Universität Dresden; Dresden Germany
| | - M. Meinhardt
- Department of Pathology; Technische Universität Dresden; Dresden Germany
| | - H. Reichmann
- Department of Neurology; Technische Universität Dresden; Dresden Germany
| |
Collapse
|
26
|
Severe congenital actin related myopathy with myofibrillar myopathy features. Neuromuscul Disord 2015; 25:488-92. [DOI: 10.1016/j.nmd.2015.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 11/20/2022]
|
27
|
Der Perng M, Quinlan RA. The Dynamic Duo of Small Heat Proteins and IFs Maintain Cell Homeostasis, Resist Cellular Stress and Enable Evolution in Cells and Tissues. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Semmler AL, Sacconi S, Bach JE, Liebe C, Bürmann J, Kley RA, Ferbert A, Anderheiden R, Van den Bergh P, Martin JJ, De Jonghe P, Neuen-Jacob E, Müller O, Deschauer M, Bergmann M, Schröder JM, Vorgerd M, Schulz JB, Weis J, Kress W, Claeys KG. Unusual multisystemic involvement and a novel BAG3 mutation revealed by NGS screening in a large cohort of myofibrillar myopathies. Orphanet J Rare Dis 2014; 9:121. [PMID: 25208129 PMCID: PMC4347565 DOI: 10.1186/s13023-014-0121-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/21/2014] [Indexed: 12/14/2022] Open
Abstract
Background Myofibrillar myopathies (MFM) are a group of phenotypically and genetically heterogeneous neuromuscular disorders, which are characterized by protein aggregations in muscle fibres and can be associated with multisystemic involvement. Methods We screened a large cohort of 38 index patients with MFM for mutations in the nine thus far known causative genes using Sanger and next generation sequencing (NGS). We studied the clinical and histopathological characteristics in 38 index patients and five additional relatives (n = 43) and particularly focused on the associated multisystemic symptoms. Results We identified 14 heterozygous mutations (diagnostic yield of 37%), among them the novel p.Pro209Gln mutation in the BAG3 gene, which was associated with onset in adulthood, a mild phenotype and an axonal sensorimotor polyneuropathy, in the absence of giant axons at the nerve biopsy. We revealed several novel clinical phenotypes and unusual multisystemic presentations with previously described mutations: hearing impairment with a FLNC mutation, dysphonia with a mutation in DES and the first patient with a FLNC mutation presenting respiratory insufficiency as the initial symptom. Moreover, we described for the first time respiratory insufficiency occurring in a patient with the p.Gly154Ser mutation in CRYAB. Interestingly, we detected a polyneuropathy in 28% of the MFM patients, including a BAG3 and a MYOT case, and hearing impairment in 13%, including one patient with a FLNC mutation and two with mutations in the DES gene. In four index patients with a mutation in one of the MFM genes, typical histological findings were only identified at the ultrastructural level (29%). Conclusions We conclude that extraskeletal symptoms frequently occur in MFM, particularly cardiac and respiratory involvement, polyneuropathy and/or deafness. BAG3 mutations should be considered even in cases with a mild phenotype or an adult onset. We identified a genetic defect in one of the known genes in less than half of the MFM patients, indicating that more causative genes are still to be found. Next generation sequencing techniques should be helpful in achieving this aim.
Collapse
Affiliation(s)
- Anna-Lena Semmler
- Department of Neurology, RWTH Aachen University, Aachen, Germany. .,Institute of Neuropathology, RWTH Aachen University, Aachen, Germany.
| | - Sabrina Sacconi
- Centre de Référence des Maladies Neuromusculaires, Nice Hospital and UMR CNRS6543, Nice University, Nice, France.
| | - J Elisa Bach
- Department of Human Genetics, University of Würzburg, Würzburg, Germany.
| | - Claus Liebe
- Department of Neurology, RWTH Aachen University, Aachen, Germany. .,Institute of Neuropathology, RWTH Aachen University, Aachen, Germany.
| | - Jan Bürmann
- Department of Neurology, Saarland University, Homburg/Saar, Germany.
| | - Rudolf A Kley
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany.
| | | | | | - Peter Van den Bergh
- Department of Neurology, Neuromuscular Reference Center, University Hospital Saint-Luc, Brussel, Belgium.
| | | | - Peter De Jonghe
- Institute Born-Bunge, University of Antwerpen, Antwerpen, Belgium. .,Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerpen, Antwerpen, Belgium. .,Department of Neurology, University Hospital of Antwerpen, Antwerpen, Belgium.
| | - Eva Neuen-Jacob
- Institute of Neuropathology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | - Oliver Müller
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg, Heidelberg, Germany.
| | - Marcus Deschauer
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle, Germany.
| | - Markus Bergmann
- Institute of Neuropathology, Klinikum Bremen-Mitte, Bremen, Germany.
| | | | - Matthias Vorgerd
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany.
| | - Jörg B Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany. .,JARA - Translational Brain Medicine, Jülich and Aachen, Germany.
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany. .,JARA - Translational Brain Medicine, Jülich and Aachen, Germany.
| | - Wolfram Kress
- Department of Human Genetics, University of Würzburg, Würzburg, Germany.
| | - Kristl G Claeys
- Department of Neurology, RWTH Aachen University, Aachen, Germany. .,Institute of Neuropathology, RWTH Aachen University, Aachen, Germany. .,JARA - Translational Brain Medicine, Jülich and Aachen, Germany.
| |
Collapse
|
29
|
Benndorf R, Martin JL, Kosakovsky Pond SL, Wertheim JO. Neuropathy- and myopathy-associated mutations in human small heat shock proteins: Characteristics and evolutionary history of the mutation sites. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2014; 761:15-30. [PMID: 24607769 PMCID: PMC4157968 DOI: 10.1016/j.mrrev.2014.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 02/07/2014] [Accepted: 02/26/2014] [Indexed: 11/24/2022]
Abstract
Mutations in four of the ten human small heat shock proteins (sHSP) are associated with various forms of motor neuropathies and myopathies. In HspB1, HspB3, and HspB8 all known mutations cause motor neuropathies, whereas in HspB5 they cause myopathies. Several features are common to the majority of these mutations: (i) they are missense mutations, (ii) most associated disease phenotypes exhibit a dominant inheritance pattern and late disease onset, (iii) in the primary protein sequences, the sites of most mutations are located in the conserved α-crystallin domain and the variable C-terminal extensions, and (iv) most human mutation sites are highly conserved among the vertebrate orthologs and have been historically exposed to significant purifying selection. In contrast, a minor fraction of these mutations deviate from these rules: they are (i) frame shifting, nonsense, or elongation mutations, (ii) associated with recessive or early onset disease phenotypes, (iii) positioned in the N-terminal domain of the proteins, and (iv) less conserved among the vertebrates and were historically not subject to a strong selective pressure. In several vertebrate sHSPs (including primate sHSPs), homologous sites differ from the human sequence and occasionally even encode the same amino acid residues that cause the disease in humans. Apparently, a number of these mutations sites are not crucial for the protein function in single species or entire taxa, and single species even seem to have adopted mechanisms that compensate for potentially adverse effects of 'mutant-like' sHSPs. The disease-associated dominant sHSP missense mutations have a number of cellular consequences that are consistent with gain-of-function mechanisms of genetic dominance: dominant-negative effects, the formation of cytotoxic amyloid protein oligomers and precipitates, disruption of cytoskeletal networks, and increased downstream enzymatic activities. Future therapeutic concepts should aim for reducing these adverse effects of mutant sHSPs in patients. Indeed, initial experimental results are encouraging.
Collapse
Affiliation(s)
- Rainer Benndorf
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| | - Jody L Martin
- Department of Cell and Molecular Physiology, Cardiovascular Institute, Loyola University Medical Center, Maywood, IL, USA.
| | | | - Joel O Wertheim
- Department of Medicine, University of California, San Diego, CA, USA; Department of Pathology, University of California, San Diego, CA, USA.
| |
Collapse
|
30
|
Slingsby C, Wistow GJ. Functions of crystallins in and out of lens: roles in elongated and post-mitotic cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:52-67. [PMID: 24582830 PMCID: PMC4104235 DOI: 10.1016/j.pbiomolbio.2014.02.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/18/2014] [Indexed: 12/25/2022]
Abstract
The vertebrate lens evolved to collect light and focus it onto the retina. In development, the lens grows through massive elongation of epithelial cells possibly recapitulating the evolutionary origins of the lens. The refractive index of the lens is largely dependent on high concentrations of soluble proteins called crystallins. All vertebrate lenses share a common set of crystallins from two superfamilies (although other lineage specific crystallins exist). The α-crystallins are small heat shock proteins while the β- and γ-crystallins belong to a superfamily that contains structural proteins of uncertain function. The crystallins are expressed at very high levels in lens but are also found at lower levels in other cells, particularly in retina and brain. All these proteins have plausible connections to maintenance of cytoplasmic order and chaperoning of the complex molecular machines involved in the architecture and function of cells, particularly elongated and post-mitotic cells. They may represent a suite of proteins that help maintain homeostasis in such cells that are at risk from stress or from the accumulated insults of aging.
Collapse
Affiliation(s)
- Christine Slingsby
- Department of Biological Sciences, Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, UK.
| | - Graeme J Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, Bg 6, Rm 106, National Institutes of Health, Bethesda, MD 20892-0608, USA
| |
Collapse
|
31
|
Hochberg GK, Benesch JL. Dynamical structure of αB-crystallin. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:11-20. [DOI: 10.1016/j.pbiomolbio.2014.03.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 12/11/2022]
|
32
|
Abstract
PURPOSE OF REVIEW Myofibrillar myopathies (MFMs) are a heterogeneous group of skeletal and cardiac muscle diseases. In this review, we highlight recent discoveries of new genes and disease mechanisms involved in this group of disorders. RECENT FINDINGS The advent of next-generation sequencing technology, laser microdissection and mass spectrometry-based proteomics has facilitated the discovery of new MFM causative genes and pathomechanisms. New mutations have also been discovered in 'older' genes, helping to find a classification niche for MFM-linked disorders showing variant phenotypes. Cell transfection experiments using primary cultured myoblasts and newer animal models provide insights into the pathogenesis of MFMs. SUMMARY An increasing number of genes are involved in the causation of variant subtypes of MFM. The application of modern technologies in combination with classical histopathological and ultrastructural studies is helping to establish the molecular diagnosis and reach a better understanding of the pathogenic mechanisms of each MFM subtype, thus putting an emphasis on the development of specific means for prevention and therapy of these incapacitating and frequently fatal diseases.
Collapse
|
33
|
Dubińska-Magiera M, Jabłońska J, Saczko J, Kulbacka J, Jagla T, Daczewska M. Contribution of small heat shock proteins to muscle development and function. FEBS Lett 2014; 588:517-30. [PMID: 24440355 DOI: 10.1016/j.febslet.2014.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/17/2013] [Accepted: 01/02/2014] [Indexed: 12/17/2022]
Abstract
Investigations undertaken over the past years have led scientists to introduce the concept of protein quality control (PQC) systems, which are responsible for polypeptide processing. The PQC system monitors proteostasis and involves activity of different chaperones such as small heat shock proteins (sHSPs). These proteins act during normal conditions as housekeeping proteins regulating cellular processes, and during stress conditions. They also mediate the removal of toxic misfolded polypeptides and thereby prevent development of pathogenic states. It is postulated that sHSPs are involved in muscle development. They could act via modulation of myogenesis or by maintenance of the structural integrity of signaling complexes. Moreover, mutations in genes coding for sHSPs lead to pathological states affecting muscular tissue functioning. This review focuses on the question how sHSPs, still relatively poorly understood proteins, contribute to the development and function of three types of muscle tissue: skeletal, cardiac and smooth.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland
| | - Jadwiga Jabłońska
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland
| | - Jolanta Saczko
- Department of Medical Biochemistry, Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Medical Biochemistry, Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Teresa Jagla
- Institut National de la Santé et de la Recherche Médicale U384, Faculté de Medecine, Clermont-Ferrand, France
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| |
Collapse
|
34
|
Datskevich PN, Nefedova VV, Sudnitsyna MV, Gusev NB. Mutations of small heat shock proteins and human congenital diseases. BIOCHEMISTRY (MOSCOW) 2013; 77:1500-14. [DOI: 10.1134/s0006297912130081] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Sarkozy A, Bushby K, Mercuri E. Muscular Dystrophies. EMERY AND RIMOIN'S PRINCIPLES AND PRACTICE OF MEDICAL GENETICS 2013:1-58. [DOI: 10.1016/b978-0-12-383834-6.00134-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
36
|
Jaffer F, Murphy SM, Scoto M, Healy E, Rossor AM, Brandner S, Phadke R, Selcen D, Jungbluth H, Muntoni F, Reilly MM. BAG3 mutations: another cause of giant axonal neuropathy. J Peripher Nerv Syst 2012; 17:210-6. [PMID: 22734908 DOI: 10.1111/j.1529-8027.2012.00409.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mutations in Bcl-2 associated athanogene-3 (BAG3) are a rare cause of myofibrillar myopathy, characterised by rapidly progressive proximal and axial myopathy, cardiomyopathy and respiratory compromise. Neuropathy has been documented neurophysiologically in previously reported cases of BAG3-associated myofibrillar myopathy and in some cases giant axons were observed on nerve biopsies; however, neuropathy was not thought to be a dominant feature of the disease. In the context of inherited neuropathy, giant axons are typically associated with autosomal recessive giant axonal neuropathy caused by gigaxonin mutations but have also been reported in association with NEFL- and SH3TC2-associated Charcot-Marie-Tooth disease. Here, we describe four patients with heterozygous BAG3 mutations with clinical evidence of a sensorimotor neuropathy, with predominantly axonal features on neurophysiology. Three patients presented with a significant neuropathy. Muscle magnetic resonance imaging (MRI) in one patient revealed mild to moderate atrophy without prominent selectivity. Examination of sural nerve biopsies in two patients demonstrated giant axons. This report confirms the association of giant axonal neuropathy with BAG3-associated myofibrillar myopathy, and highlights that neuropathy may be a significant feature.
Collapse
Affiliation(s)
- Fatima Jaffer
- MRC Centre for Neuromuscular Diseases, Department of Molecular Neurosciences, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fine-Goulden MR, Puppala NK, Durward A. Mechanisms of ventilator dependence in children with neuromuscular and respiratory control disorders identified by monitoring diaphragm electrical activity. Intensive Care Med 2012; 38:2072-9. [PMID: 23093244 DOI: 10.1007/s00134-012-2724-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 09/19/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVES To report on the monitoring of diaphragm electrical activity (Edi) using neurally adjusted ventilator assist (NAVA) technology to investigate the mechanisms of ventilator dependence in children with neuromuscular and respiratory control disorders. PATIENTS AND METHODS Using NAVA technology, electrical activity of the diaphragm (Edi) was monitored at the lowest achievable level of respiratory support in six ventilator-dependent patients with neuromuscular and respiratory control disorders, aged 6 weeks to 12 years, admitted to a tertiary paediatric intensive care unit between 2009 and 2011. RESULTS Edi monitoring identified markedly abnormal respiratory dynamic patterns that were not always apparent clinically. These were associated with disorders of central respiratory control, muscle weakness and diaphragm pathology. CONCLUSIONS Edi monitoring using NAVA technology is a valuable, minimally invasive, diagnostic adjunct in children with neuromuscular and respiratory control disorders who are ventilator-dependent.
Collapse
|
38
|
Clark AR, Lubsen NH, Slingsby C. sHSP in the eye lens: Crystallin mutations, cataract and proteostasis. Int J Biochem Cell Biol 2012; 44:1687-97. [DOI: 10.1016/j.biocel.2012.02.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/23/2012] [Indexed: 01/25/2023]
|
39
|
Christians ES, Ishiwata T, Benjamin IJ. Small heat shock proteins in redox metabolism: implications for cardiovascular diseases. Int J Biochem Cell Biol 2012; 44:1632-45. [PMID: 22710345 DOI: 10.1016/j.biocel.2012.06.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 06/02/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
A timely review series on small heat shock proteins has to appropriately examine their fundamental properties and implications in the cardiovascular system since several members of this chaperone family exhibit robust expression in the myocardium and blood vessels. Due to energetic and metabolic demands, the cardiovascular system maintains a high mitochondrial activity but irreversible oxidative damage might ensue from increased production of reactive oxygen species. How equilibrium between their production and scavenging is achieved becomes paramount for physiological maintenance. For example, heat shock protein B1 (HSPB1) is implicated in maintaining this equilibrium or redox homeostasis by upholding the level of glutathione, a major redox mediator. Studies of gain or loss of function achieved by genetic manipulations have been highly informative for understanding the roles of those proteins. For example, genetic deficiency of several small heat shock proteins such as HSPB5 and HSPB2 is well-tolerated in heart cells whereas a single missense mutation causes human pathology. Such evidence highlights both the profound genetic redundancy observed among the multigene family of small heat shock proteins while underscoring the role proteotoxicity plays in driving disease pathogenesis. We will discuss the available data on small heat shock proteins in the cardiovascular system, redox metabolism and human diseases. From the medical perspective, we envision that such emerging knowledge of the multiple roles small heat shock proteins exert in the cardiovascular system will undoubtedly open new avenues for their identification and possible therapeutic targeting in humans. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.
Collapse
Affiliation(s)
- Elisabeth S Christians
- Laboratory of Cardiac Disease, Redox Signaling and Cell Regeneration, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | | | | |
Collapse
|
40
|
Abstract
Protein aggregation in congenital myopathies may be encountered among different myofibrillar myopathies such as granulofilamentous myopathy, cytoplasmic body myopathy, or spheroid body myopathy, which are designated as αB crystallinopathy, desminopathy, and myotilinopathy, respectively, according to the respective mutant proteins. Caps in cap disease and reducing bodies in reducing body myopathy were disclosed to contain numerous proteins. The multitude of diverse proteins aggregating within muscle fibers suggests impaired extralysosomal degradation of proteins, a disturbance of catabolism. The lack of different proteins accruing, but the mutant ones at an early age of affected patients in actin filament aggregating myopathy (AFAM) and hyaline body myopathy (HBM), suggests defects in maturation of sarcomeres and failure to integrate the possible mutant proteins, sarcomeric actin and heavy chain myosin in AFAM and HBM, a disturbance of anabolic metabolism.
Collapse
|
41
|
Sacconi S, Féasson L, Antoine JC, Pécheux C, Bernard R, Cobo AM, Casarin A, Salviati L, Desnuelle C, Urtizberea A. A novel CRYAB mutation resulting in multisystemic disease. Neuromuscul Disord 2011; 22:66-72. [PMID: 21920752 DOI: 10.1016/j.nmd.2011.07.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 06/30/2011] [Accepted: 07/07/2011] [Indexed: 11/25/2022]
Abstract
Mutations in the CRYAB gene, encoding alpha-B crystallin, cause distinct clinical phenotypes including isolated posterior polar cataract, myofibrillar myopathy, cardiomyopathy, or a multisystemic disorder combining all these features. Genotype/phenotype correlations are still unclear. To date, multisystemic involvement has been reported only in kindred harboring the R120G substitution. We report a novel CRYAB mutation, D109H, associated with posterior polar cataract, myofibrillar myopathy and cardiomyopathy in a two-generation family with five affected individuals. Age of onset, clinical presentation, and muscle abnormalities were very similar to those described in the R120G family. Alpha-B crystallin may form dimers and acts as a chaperone for a number of proteins. It has been suggested that the phenotypic diversity could be related to the various interactions between target proteins of individual mutant residues. Molecular modeling indicates that residues D109 and R120 interact with each other during dimerization of alpha-B crystallin; interestingly, the two substitutions affecting these residues (D109H and R120G) are associated with the same clinical phenotype, thus suggesting a similar pathogenic mechanism. We propose that impairment of alpha-B crystallin dimerization may also be relevant to the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Sabrina Sacconi
- Centre de Référence des Maladies Neuromusculaires, Nice Hospital and UMR CNRS6543, Nice University, Nice, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|