1
|
Lu J, Shi Z, Geng L, Ren D, Hou H, Ren G, Yao S, Wang P. Transcriptional Analysis Reveals That the FHL1/JAK-STAT Pathway is Involved in Acute Cartilage Injury in Mice. Cartilage 2025:19476035251323601. [PMID: 40119525 PMCID: PMC11948231 DOI: 10.1177/19476035251323601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/24/2025] Open
Abstract
ObjectiveThis study aimed to identify genes and signaling pathways associated with acute cartilage injury using RNA sequencing (RNA-seq).MethodsKnee joint cartilage samples were collected from normal mice and 2 models of acute cartilage injury (non-invasive and groove models) within an 8-hour time limit. RNA-seq revealed differential gene expression between the injury models and controls, with subsequent validation using real-time quantitative polymerase chain reaction (RT-qPCR) for 9 representative genes.ResultsCompared to controls, the non-invasive model showed 36 differentially expressed genes (DEGs) (13 up-regulated, 23 down-regulated), with Gm14648 and Gm35438 showing the most significant upregulation and downregulation, respectively. The groove model exhibited 255 DEGs (13 up-regulated, 23 down-regulated), with Gm14648 and Gm35438 showing the (222 up-regulated, 33 down-regulated). Six overlapping genes were identified between the non-invasive and groove models, including up-regulated genes (Igfn1, Muc6, Hmox1) and down-regulated genes (Pthlh, Cyp1a1, Gm13490), validated by RT-qPCR. Gene ontology (GO) analysis highlighted involvement in environmental information processing and cartilage organ system function, while Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis implicated the JAK-STAT signaling pathway. RT-qPCR and immunohistochemistry confirmed downregulation of Fhl1 in the non-invasive model, supported by Western blotting of p-JAK2/t-JAK2 levels.ConclusionsThis study identifies DEGs (13 up-regulated, 23 down-regulated), with Gm14648 and Gm35438 showing the in acute cartilage injury, suggesting potential therapeutic targets. The role of Fhl1 in cartilage protection via the JAK-STAT pathway warrants further investigation in acute cartilage injury research.
Collapse
Affiliation(s)
- Jian Lu
- Department of Orthopedic Surgery, Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Zhenhua Shi
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, People’s Republic of China
| | - Lindan Geng
- Department of Orthopedic Surgery, Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Dong Ren
- Department of Orthopedic Surgery, Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Haowei Hou
- Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Guowei Ren
- Department of Orthopedic Surgery, Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Shuangquan Yao
- Department of Orthopedic Surgery, Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Pengcheng Wang
- Department of Orthopedic Surgery, Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| |
Collapse
|
2
|
Nagaraj CB, Tian C, Kushlaf H. RNA Sequencing Confirms the Pathogenicity of a Novel FHL1 Deletion in a Kinship With Emery-Dreifuss Muscular Dystrophy. J Clin Neuromuscul Dis 2025; 26:148-151. [PMID: 40009419 DOI: 10.1097/cnd.0000000000000518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
ABSTRACT Pathogenic variants in FHL1 are associated with X-linked reducing body myopathy, scapuloperoneal myopathy, myopathy with postural muscle atrophy or Emery-Dreifuss muscular dystrophy type 6. Emery-Dreifuss muscular dystrophy is characterized by joint contractures in childhood, progressive muscle weakness that starts in a humeroperoneal distribution and later extends to scapular and pelvic girdle muscles, and cardiac involvement that include conduction defects or cardiomyopathy. In this study, we report diagnosis of a patient with Emery-Dreifuss muscular dystrophy type 6 after identification of a novel deletion in FHL1, whose pathogenicity was clarified by RNA sequencing.
Collapse
Affiliation(s)
- Chinmayee B Nagaraj
- Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH
| | - Cuixia Tian
- Neurology, Cincinnati Children's Hospital, Cincinnati, OH; and
- College of Medicine, University of Cincinnati, Cincinnati, OH
| | - Hani Kushlaf
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH
- Neurology, Cincinnati Children's Hospital, Cincinnati, OH; and
- College of Medicine, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
3
|
Kiouri DP, Chasapis CT, Mavromoustakos T, Spiliopoulou CA, Stefanidou ME. Zinc and its binding proteins: essential roles and therapeutic potential. Arch Toxicol 2025; 99:23-41. [PMID: 39508885 DOI: 10.1007/s00204-024-03891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
Zinc is an essential micronutrient that participates in a multitude of cellular and biochemical processes. It is indispensable for normal growth and the maintenance of physiological functions. As one of the most significant trace elements in the body, zinc fulfills three primary biological roles: catalytic, structural, and regulatory. It serves as a cofactor in over 300 enzymes, and more than 3000 proteins require zinc, underscoring its crucial role in numerous physiological processes such as cell division and growth, immune function, tissue maintenance, as well as synthesis protein and collagen synthesis. Zinc deficiency has been linked to increased oxidative stress and inflammation, which may contribute to the pathogenesis of a multitude of diseases, like neurological disorders and cancer. In addition, zinc is a key constituent of zinc-binding proteins, which play a pivotal role in maintaining cellular zinc homeostasis. This review aims to update and expand upon the understanding of zinc biology, highlighting the fundamental roles of zinc in biological processes and the health implications of zinc deficiency. This work also explores the diverse functions of zinc in immune regulation, cellular growth, and neurological health, emphasizing the need for further research to fully elucidate the therapeutic potential of zinc supplementation in disease prevention and management.
Collapse
Affiliation(s)
- Despoina P Kiouri
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - Christos T Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece.
| | - Thomas Mavromoustakos
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - Chara A Spiliopoulou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Maria E Stefanidou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| |
Collapse
|
4
|
Angerer M, Wülfing C, Dieckmann KP. Familial Testicular Germ Cell Tumor in Two Brothers With Emery Dreifuss Muscular Dystrophy Caused by an FHL-1 Mutation: A Case Report. Cureus 2023; 15:e38946. [PMID: 37309342 PMCID: PMC10257954 DOI: 10.7759/cureus.38946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 06/14/2023] Open
Abstract
Testicular germ cell tumor (GCT) is a rare disease, accounting for no more than 1.5% of all neoplasms in males, but represents the most common tumors in adolescents and young men in Western countries. There is also consensus about the involvement of genetic factors in the etiology of testicular GCT. Familial occurrence of testicular GCT is observed in 1-2% of all cases with GCT. We report the unique case of two brothers, both afflicted with inherited Emery-Dreifuss muscular dystrophy (EDMD) and both developing testicular GCT in young adulthood. EDMD is a rare muscular dystrophy, characterized by the triad of joint contractures, slowly progressive muscle weakness, and cardiac involvement. EDMD is not a homogeneous clinical entity because it is associated with various gene mutations. One common mutation relates to the Four and a half Limb domain protein 1 (FHL-1) gene. To date, there have been no GCT cases linked with FHL-1 mutations and no malignant disease has been found associated with EDMD.
Collapse
Affiliation(s)
- Markus Angerer
- Department of Urology, Asklepios Klinik Altona, Hamburg, DEU
| | | | | |
Collapse
|
5
|
Identification of novel FHL1 mutations associated with X-linked scapuloperoneal myopathy in unrelated Chinese patients. J Hum Genet 2023. [PMID: 36864287 DOI: 10.1038/s10038-023-01138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Mutations in the FHL1 gene can be associated with a variety of X-linked myopathies and cardiomyopathies, among which X-linked dominant scapuloperoneal myopathy is a rare phenotype. We collected the clinical data of two unrelated Chinese patients with X-linked scapuloperoneal myopathy and analyzed their clinical, pathological, muscle imaging, and genetic features. Both patients were characterized by scapular winging, bilateral Achilles tendon contractures, and weakness in shoulder-girdle and peroneal muscles. Muscle biopsy revealed myopathic changes, and no reducing bodies were found. Muscle magnetic resonance imaging was dominated by fatty infiltration, with minor edema-like findings. Genetic analysis revealed two novel mutations in the FHL1 gene: c.380T > C (p.F127S) and c.802C > T (p.Q268*), which were located in the LIM2 domain and the C-terminal sequence, respectively. To our knowledge, this is the first report of X-linked scapuloperoneal myopathy in the Chinese population. Our findings broadened the genetic and ethnic spectrum of FHL1-related disorders and proposed to look for variants in the FHL1 gene when scapuloperoneal myopathy is observed in the clinical work.
Collapse
|
6
|
Tham YK, Bernardo BC, Claridge B, Yildiz GS, Woon LML, Bond S, Fang H, Ooi JYY, Matsumoto A, Luo J, Tai CMK, Harmawan CA, Kiriazis H, Donner DG, Mellett NA, Abel ED, Khan SA, De Souza DP, Doomun SNE, Liu K, Xiang R, Singh M, Inouye M, Meikle PJ, Weeks KL, Drew BG, Greening DW, McMullen JR. Estrogen receptor alpha deficiency in cardiomyocytes reprograms the heart-derived extracellular vesicle proteome and induces obesity in female mice. NATURE CARDIOVASCULAR RESEARCH 2023; 2:268-289. [PMID: 39196021 DOI: 10.1038/s44161-023-00223-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/30/2023] [Indexed: 08/29/2024]
Abstract
Dysregulation of estrogen receptor alpha (ERα) has been linked with increased metabolic and cardiovascular disease risk. Here, we generate and characterize cardiomyocyte-specific ERα knockout (ERαHKO) mice to assess the role of ERα in the heart. The most striking phenotype was obesity in female ERαHKO but not male ERαHKO mice. Female ERαHKO mice showed cardiac dysfunction, mild glucose and insulin intolerance and reduced ERα gene expression in skeletal muscle and white adipose tissue. Transcriptomic, proteomic, lipidomic and metabolomic analyses revealed evidence of contractile and/or metabolic dysregulation in heart, skeletal muscle and white adipose tissue. We show that heart-derived extracellular vesicles from female ERαHKO mice contain a distinct proteome associated with lipid and metabolic regulation, and have the capacity to metabolically reprogram the target skeletal myocyte proteome with functional impacts on glycolytic capacity and reserve. This multi-omics study uncovers a cardiac-initiated and sex-specific cardiometabolic phenotype regulated by ERα and provides insights into extracellular vesicle-mediated interorgan communication.
Collapse
Affiliation(s)
- Yow Keat Tham
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Bianca C Bernardo
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Bethany Claridge
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Gunes S Yildiz
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Simon Bond
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Haoyun Fang
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jenny Y Y Ooi
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Aya Matsumoto
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jieting Luo
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Celeste M K Tai
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Helen Kiriazis
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel G Donner
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - E Dale Abel
- David Geffen School of Medicine, University of California, Los Angeles, California, CA, USA
| | - Sohaib A Khan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David P De Souza
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Kevin Liu
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Ruidong Xiang
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Manika Singh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Michael Inouye
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Brian G Drew
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia.
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria, Australia.
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia.
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia.
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia.
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia.
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia.
- Central Clinical School, Monash University, Melbourne, Victoria, Australia.
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia.
- Department of Physiology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
Aohara K, Kimura H, Takeda A, Izumiya Y, Nishino I, Itoh Y. [Sibling cases of four and a half LIM domains 1 (FHL1) myopathy who developed respiratory failure without apparent limb weakness]. Rinsho Shinkeigaku 2022; 62:726-731. [PMID: 36031379 DOI: 10.5692/clinicalneurol.cn-001761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A 60-year-old man developed dyspnea without apparent limb weakness. He had cardiomyopathy in his 30s and was treated for chronic heart failure since 42. He was diagnosed as having four and a half LIM domains 1 (FHL1) mutation at 53 following the same diagnosis of his younger brother. He was first admitted to the cardiology department for possible worsening of chronic cardiac failure. Blood gas analysis showing respiratory acidosis prompted his treatment with a respirator. Neurological examination revealed that he had mild weakness limited to the shoulder girdle muscles and contracture at jaw, spine, elbows and ankles. Skeletal muscle CT showed truncal atrophy. He, as well as his younger brother, was diagnosed with FHL1 myopathy resulting in ventilation failure and was discharged after successful weaning from the respirator in the daytime. The present sibling cases are the first with FHL1 mutation to develop respiratory failure without limb weakness and suggest that FHL1 myopathy as a differentially diagnosis of hereditary myopathies with early respiratory failure.
Collapse
Affiliation(s)
- Kenta Aohara
- Department of Neurology, Osaka City University Graduate School of Medicine
| | - Hiroko Kimura
- Department of Neurology, Osaka City University Graduate School of Medicine
| | - Akitoshi Takeda
- Department of Neurology, Osaka City University Graduate School of Medicine
| | - Yasuhiro Izumiya
- Department of Cardiology, Osaka City University Graduate School of Medicine
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Center of Neurology and Psychiatry
| | - Yoshiaki Itoh
- Department of Neurology, Osaka City University Graduate School of Medicine
| |
Collapse
|
8
|
Noack F, Vangelisti S, Raffl G, Carido M, Diwakar J, Chong F, Bonev B. Multimodal profiling of the transcriptional regulatory landscape of the developing mouse cortex identifies Neurog2 as a key epigenome remodeler. Nat Neurosci 2022; 25:154-167. [PMID: 35132236 PMCID: PMC8825286 DOI: 10.1038/s41593-021-01002-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022]
Abstract
How multiple epigenetic layers and transcription factors (TFs) interact to facilitate brain development is largely unknown. Here, to systematically map the regulatory landscape of neural differentiation in the mouse neocortex, we profiled gene expression and chromatin accessibility in single cells and integrated these data with measurements of enhancer activity, DNA methylation and three-dimensional genome architecture in purified cell populations. This allowed us to identify thousands of new enhancers, their predicted target genes and the temporal relationships between enhancer activation, epigenome remodeling and gene expression. We characterize specific neuronal transcription factors associated with extensive and frequently coordinated changes across multiple epigenetic modalities. In addition, we functionally demonstrate a new role for Neurog2 in directly mediating enhancer activity, DNA demethylation, increasing chromatin accessibility and facilitating chromatin looping in vivo. Our work provides a global view of the gene regulatory logic of lineage specification in the cerebral cortex. By profiling multiple epigenetic layers and enhancer activity in vivo, the authors show a widespread remodeling of the regulatory landscape during mouse cortical development and identify Neurog2 as a key transcription factor driving this process.
Collapse
Affiliation(s)
- Florian Noack
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Silvia Vangelisti
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gerald Raffl
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Madalena Carido
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jeisimhan Diwakar
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Faye Chong
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Boyan Bonev
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany. .,Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
9
|
van der Pijl RJ, Domenighetti AA, Sheikh F, Ehler E, Ottenheijm CAC, Lange S. The titin N2B and N2A regions: biomechanical and metabolic signaling hubs in cross-striated muscles. Biophys Rev 2021; 13:653-677. [PMID: 34745373 PMCID: PMC8553726 DOI: 10.1007/s12551-021-00836-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Muscle specific signaling has been shown to originate from myofilaments and their associated cellular structures, including the sarcomeres, costameres or the cardiac intercalated disc. Two signaling hubs that play important biomechanical roles for cardiac and/or skeletal muscle physiology are the N2B and N2A regions in the giant protein titin. Prominent proteins associated with these regions in titin are chaperones Hsp90 and αB-crystallin, members of the four-and-a-half LIM (FHL) and muscle ankyrin repeat protein (Ankrd) families, as well as thin filament-associated proteins, such as myopalladin. This review highlights biological roles and properties of the titin N2B and N2A regions in health and disease. Special emphasis is placed on functions of Ankrd and FHL proteins as mechanosensors that modulate muscle-specific signaling and muscle growth. This region of the sarcomere also emerged as a hotspot for the modulation of passive muscle mechanics through altered titin phosphorylation and splicing, as well as tethering mechanisms that link titin to the thin filament system.
Collapse
Affiliation(s)
| | - Andrea A. Domenighetti
- Shirley Ryan AbilityLab, Chicago, IL USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL USA
| | - Farah Sheikh
- Division of Cardiology, School of Medicine, UC San Diego, La Jolla, CA USA
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Cardiovascular Medicine and Sciences, King’s College London, London, UK
| | - Coen A. C. Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ USA
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Stephan Lange
- Division of Cardiology, School of Medicine, UC San Diego, La Jolla, CA USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Mota IA, Correia CDC, Fontana PN, Carvalho AADS. Reducing body myopathy - A new pathogenic FHL1 variant and literature review. Neuromuscul Disord 2021; 31:847-853. [PMID: 34366191 DOI: 10.1016/j.nmd.2021.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 11/26/2022]
Abstract
Reducing body myopathy (RBM) is a rare disease marked by progressive muscle weakness caused by a mutation in FHL1 gene. We describe a new pathogenic variant and contrasted it with 44 other cases identified in the literature. A male child presented at age 3 suffering frequent falls and progressive muscular weakness. At age 8, he was wheelchair-bound and required ventilatory support. His mother and sister died due to the same problem. Creatine kinase was 428 IU/L (<190). Muscle biopsy showed typical reducing bodies, and genetic analysis identified a novel pathogenic hemizygous variant, c.370_375del. We identified 44 previous reported cases separated in two groups: 28 cases with mean age onset 7.6 ± 5 years and 16 with 26.7 ± 4.2 years. The time for the diagnosis was shorter to younger group. The initial symptoms, rigid spine, contractures, scoliosis and axial and neck weaknesses, dysphagia, cardiac involvement, were predominant in younger group. The variant c.369C > G predominated in younger group and c.448T > C in older one. Pathogenic variants positions seemed related to severe phenotype. Most wheelchair patients belonged to younger group. The data from this compilation and our case provided a general characterization spectrum and prognosis between two groups of age onset with RBM.
Collapse
Affiliation(s)
- Isabella Araujo Mota
- Neurorehabilitation service at Hospital Universitário Lauro Wanderley, João Pessoa, Paraíba, Brazil
| | - Carolina da Cunha Correia
- Assistant Professor of Neurology at Faculdade de Ciências Medicas - Universidade de Pernambuco (UPE), Recife, Brazil
| | - Pedro Nogueira Fontana
- Post Graduate Program in Health Sciences, Faculdade de Ciências Médicas da Universidade de Pernambuco (UPE), Recife, Brazil
| | | |
Collapse
|
11
|
Santhoshkumar R, Preethish-Kumar V, Mangalaparthi KK, Unni S, Padmanabhan B, T S KP, Nongthomba U, Atchayaram N, Narayanappa G. A Dominant C150Y Mutation in FHL1 Induces Structural Alterations in LIM2 Domain Causing Protein Aggregation In Human and Drosophila Indirect Flight Muscles. J Mol Neurosci 2021; 71:2324-2335. [PMID: 33515430 DOI: 10.1007/s12031-020-01777-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/11/2020] [Indexed: 11/29/2022]
Abstract
FHL1-related myopathies are rare X-linked dominant myopathies. Though clinically classified into several subgroups, spinal and scapuloperoneal muscle involvement are common to all. In this study, we identified c.449G > A, p.C150Y mutation by clinical exome sequencing in two patients from same family (son and mother) of Indian origin who presented with multiple contractures. Muscle biopsy showed numerous intracytoplasmic aggregates intensely stained on HE and MGT. The strong reactions to M-NBT revealed aggregates to be reducing bodies and positively labeled to anti-FHL1 antibody. Ultrastructurally, Z-band streaming and granular and granulofilamentous material were seen. Further, the translational evidence of mutant peptide was confirmed using mass spectrometric analysis. To establish p.C150Y as the cause for protein aggregation, in vivo studies were carried out using transgenic Drosophila model which highlighted Z-band abnormalities and protein aggregates in indirect flight muscles with compromised physiological function. Thus, recapitulating the X-linked human disease phenotype. Additionally, the molecular dynamics simulation analysis unraveled the drastic change in α-helix of LIM2, the region immediately next to site of C150Y mutation that could be the plausible cause for protein aggregation. To the best of our knowledge, this is the first study of p.C150Y mutation in FHL1 identified in Indian patients with in vivo and in silico analysis to establish the cause for protein aggregation in muscle.
Collapse
Affiliation(s)
- Rashmi Santhoshkumar
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bengaluru, 560 029, Karnataka, India
| | - Veeramani Preethish-Kumar
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, 560 029, Karnataka, India
| | - Kiran K Mangalaparthi
- Institute of Bioinformatics, International Technology Park, Bengaluru, 560 066, Karnataka, India
| | - Sruthi Unni
- Department of Biophysics, National Institute of Mental Health and Neuro Sciences, Bengaluru, 560 029, Karnataka, India
| | - Balasundaram Padmanabhan
- Department of Biophysics, National Institute of Mental Health and Neuro Sciences, Bengaluru, 560 029, Karnataka, India
| | - Keshava Prasad T S
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya Deemed to be University, Mangaluru, 575 018, Karnataka, India
| | - Upendra Nongthomba
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science (IISc), Bengaluru, 560 012, Karnataka, India
| | - Nalini Atchayaram
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, 560 029, Karnataka, India
| | - Gayathri Narayanappa
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bengaluru, 560 029, Karnataka, India.
| |
Collapse
|
12
|
Wei X, Zhang H. Four and a half LIM domains protein 1 can be as a double-edged sword in cancer progression. Cancer Biol Med 2020; 17:270-281. [PMID: 32587768 PMCID: PMC7309467 DOI: 10.20892/j.issn.2095-3941.2019.0420] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/04/2020] [Indexed: 11/18/2022] Open
Abstract
Four and a half LIM domains protein 1 (FHL1), as the name suggests, contains four and a half LIM domains capable of interacting with various molecules, including structural proteins, kinases, and transcriptional machinery. FHL1 contains a zinc-finger domain and performs diverse roles in regulation of gene transcription, cytoarchitecture, cell proliferation, and signal transduction. Several studies have validated the importance of FHL1 in muscle development, myopathy, and cardiovascular diseases. Mutations in the FHL1 gene are associated with various myopathies. Recently, FHL1 was identified as a major host factor for chikungunya virus (CHIKV) infection in both humans and mice. Based on more recent findings over the last decade, FHL1 is proposed to play a dual role in cancer progression. On the one hand, FHL1 expression is suppressed in several cancer types, which correlates with increased metastatic disease and decreased survival. Moreover, FHL1 is reported to inhibit tumor cell growth and migration by associating with diverse signals, such as TGF-β and ER, and therefore considered a tumor suppressor. On the other hand, FHL1 can function as an oncogenic protein that promotes tumor progression upon phosphorylation, reflecting complex roles in cancer. This review primarily focuses on the dual role and underlying mechanisms of action of FHL1 in human cancer progression and its clinical relevance.
Collapse
Affiliation(s)
- Xiaofan Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Human Anatomy, Histology and Embryology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Hongquan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Human Anatomy, Histology and Embryology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
13
|
Binder MS, Brown E, Aversano T, Wagner KR, Calkins H, Barth AS. Novel FHL1 Mutation Associated With Hypertrophic Cardiomyopathy, Sudden Cardiac Death, and Myopathy. JACC Case Rep 2020; 2:372-377. [PMID: 34317245 PMCID: PMC8311586 DOI: 10.1016/j.jaccas.2019.11.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/23/2022]
Abstract
A 24-year-old man with muscle cramps and a family history of sudden death presented with palpitations. Electrocardiography showed signs of left ventricular hypertrophy and nonsustained ventricular tachycardia, and imaging studies confirmed hypertrophic cardiomyopathy. Genetic testing revealed a novel FHL1 mutation associated with Emery-Dreifuss muscular dystrophy. An implantable cardioverter-defibrillator was placed. (Level of Difficulty: Advanced.)
Collapse
|
14
|
Heller SA, Shih R, Kalra R, Kang PB. Emery-Dreifuss muscular dystrophy. Muscle Nerve 2019; 61:436-448. [PMID: 31840275 PMCID: PMC7154529 DOI: 10.1002/mus.26782] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 12/19/2022]
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is a rare muscular dystrophy, but is particularly important to diagnose due to frequent life-threatening cardiac complications. EDMD classically presents with muscle weakness, early contractures, cardiac conduction abnormalities and cardiomyopathy, although the presence and severity of these manifestations vary by subtype and individual. Associated genes include EMD, LMNA, SYNE1, SYNE2, FHL1, TMEM43, SUN1, SUN2, and TTN, encoding emerin, lamin A/C, nesprin-1, nesprin-2, FHL1, LUMA, SUN1, SUN2, and titin, respectively. The Online Mendelian Inheritance in Man database recognizes subtypes 1 through 7, which captures most but not all of the associated genes. Genetic diagnosis is essential whenever available, but traditional diagnostic tools can help steer the evaluation toward EDMD and assist with interpretation of equivocal genetic test results. Management is primarily supportive, but it is important to monitor patients closely, especially for potential cardiac complications. There is a high potential for progress in the treatment of EDMD in the coming years.
Collapse
Affiliation(s)
- Scott A Heller
- Department of Neurology, University of Florida College of Medicine, Gainesville, Florida
| | - Renata Shih
- Congenital Heart Center, University of Florida College of Medicine, Gainesville, Florida
| | - Raghav Kalra
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida
| | - Peter B Kang
- Department of Neurology, University of Florida College of Medicine, Gainesville, Florida.,Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida.,Genetics Institute and Myology Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
15
|
Lim KY, Kim HH, Sung J, Oh B, Kim K, Park S. FHL1
‐mutated reducing body myopathy. Neuropathology 2019; 40:185-190. [DOI: 10.1111/neup.12619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Ka Young Lim
- Department of Pathology Seoul National University Hospital, Seoul National University College of Medicine Seoul South Korea
| | - Hyun Hee Kim
- Department of Pathology Seoul National University Hospital, Seoul National University College of Medicine Seoul South Korea
| | - Jung‐Joon Sung
- Department of Neurology Seoul National University Hospital, Seoul National University College of Medicine Seoul South Korea
| | - Byung‐Mo Oh
- Department of Rehabilitation Medicine Seoul National University Hospital, Seoul National University College of Medicine Seoul South Korea
| | - Keewon Kim
- Department of Rehabilitation Medicine Seoul National University Hospital, Seoul National University College of Medicine Seoul South Korea
| | - Sung‐Hye Park
- Department of Pathology Seoul National University Hospital, Seoul National University College of Medicine Seoul South Korea
- Neuroscience Institute Seoul National University, College of Medicine Seoul South Korea
| |
Collapse
|
16
|
Arbustini E, Di Toro A, Giuliani L, Favalli V, Narula N, Grasso M. Cardiac Phenotypes in Hereditary Muscle Disorders: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 72:2485-2506. [PMID: 30442292 DOI: 10.1016/j.jacc.2018.08.2182] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/20/2018] [Accepted: 08/10/2018] [Indexed: 01/05/2023]
Abstract
Hereditary muscular diseases commonly involve the heart. Cardiac manifestations encompass a spectrum of phenotypes, including both cardiomyopathies and rhythm disorders. Common biomarkers suggesting cardiomuscular diseases include increased circulating creatine kinase and/or lactic acid levels or disease-specific metabolic indicators. Cardiac and extra-cardiac traits, imaging tests, family studies, and genetic testing provide precise diagnoses. Cardiac phenotypes are mainly dilated and hypokinetic in dystrophinopathies, Emery-Dreifuss muscular dystrophies, and limb girdle muscular dystrophies; hypertrophic in Friedreich ataxia, mitochondrial diseases, glycogen storage diseases, and fatty acid oxidation disorders; and restrictive in myofibrillar myopathies. Left ventricular noncompaction is variably associated with the different myopathies. Conduction defects and arrhythmias constitute a major phenotype in myotonic dystrophies and skeletal muscle channelopathies. Although the actual cardiac management is rarely based on the cause, the cardiac phenotypes need precise characterization because they are often the only or the predominant manifestations and the prognostic determinants of many hereditary muscle disorders.
Collapse
Affiliation(s)
- Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy.
| | - Alessandro Di Toro
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| | - Lorenzo Giuliani
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| | | | - Nupoor Narula
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy; Division of Cardiology, Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York
| | - Maurizia Grasso
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
17
|
Gaertner-Rommel A, Tiesmeier J, Jakob T, Strickmann B, Veit G, Bachmann-Mennenga B, Paluszkiewicz L, Klingel K, Schulz U, Laser KT, Karger B, Pfeiffer H, Milting H. Molecular autopsy and family screening in a young case of sudden cardiac death reveals an unusually severe case of FHL1 related hypertrophic cardiomyopathy. Mol Genet Genomic Med 2019; 7:e841. [PMID: 31293105 PMCID: PMC6687666 DOI: 10.1002/mgg3.841] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a genetic cardiomyopathy with a prevalence of about 1:200. It is characterized by left ventricular hypertrophy, diastolic dysfunction and interstitial fibrosis; HCM might lead to sudden cardiac death (SCD) especially in the young. Due to low autopsy frequencies of sudden unexplained deaths (SUD) the true prevalence of SCD and especially of HCM among SUD remains unclear. Even in cases of proven SCD genetic testing is not a routine procedure precluding appropriate risk stratification and counseling of relatives. METHODS Here we report a case of SCD in a 19-year-old investigated by combined forensic and molecular autopsy. RESULTS During autopsy of the index-patient HCM was detected. As no other possible cause of death could be uncovered by forensic autopsy the event was classified as SCD. Molecular autopsy identified two (probably) pathogenic genetic variants in FHL1 and MYBPC3. The MYBPC3 variant had an incomplete penetrance. The FHL1 variant was a de novo mutation. We detected reduced FHL1 mRNA levels and no FHL1 protein in muscle samples suggesting nonsense-mediated mRNA decay and/or degradation of the truncated protein in the SCD victim revealing a plausible disease mechanism. CONCLUSION The identification of the genetic cause of the SCD contributed to the rational counseling of the relatives and risk assessment within the family. Furthermore our study revealed evidences for the pathomechanism of FHL1 mutations.
Collapse
Affiliation(s)
- Anna Gaertner-Rommel
- Klinikum der Ruhr-Universität Bochum, Klinik für Thorax- und Kardiovaskularchirurgie und Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Herz- und Diabeteszentrum NRW, Bad Oeynhausen, Germany
| | - Jens Tiesmeier
- Mühlenkreiskliniken, Krankenhaus Lübbecke-Rahden, Institut für Anästhesiologie, Intensiv- und Notfallmedizin, Medizin Campus OWL, Ruhr-Universität Bochum, Bochum, Germany
| | - Thomas Jakob
- Klinikum Herford, Universitätsklinik für Anästhesiologie, Medizin Campus OWL, Ruhr-Universität Bochum, Herford, Germany
| | | | - Gunter Veit
- Mühlenkreiskliniken, Krankenhaus Lübbecke-Rahden, Institut für Anästhesiologie, Intensiv- und Notfallmedizin, Medizin Campus OWL, Ruhr-Universität Bochum, Bochum, Germany
| | - Bernd Bachmann-Mennenga
- Mühlenkreiskliniken, Johannes Wesling Klinikum, Universitätsinstitut für Anästhesiologie, Intensiv- und Notfallmedizin, Medizin Campus OWL, Ruhr-Universität Bochum, Minden, Germany
| | - Lech Paluszkiewicz
- Klinikum der Ruhr-Universität Bochum, Klinik für Thorax- und Kardiovaskularchirurgie und Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Herz- und Diabeteszentrum NRW, Bad Oeynhausen, Germany
| | - Karin Klingel
- Kardiopathologie, Universitätsklinikum Tübingen, Institut für Pathologie und Neuropathologie, Tubingen, Germany
| | - Uwe Schulz
- Klinikum der Ruhr-Universität Bochum, Klinik für Thorax- und Kardiovaskularchirurgie und Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Herz- und Diabeteszentrum NRW, Bad Oeynhausen, Germany
| | - Kai T Laser
- Zentrum für angeborene Herzfehler, Herz- und Diabeteszentrum NRW, Klinikum der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Bernd Karger
- Universitätsklinikum Münster, Institut für Rechtsmedizin, Münster, Germany
| | - Heidi Pfeiffer
- Universitätsklinikum Münster, Institut für Rechtsmedizin, Münster, Germany
| | - Hendrik Milting
- Klinikum der Ruhr-Universität Bochum, Klinik für Thorax- und Kardiovaskularchirurgie und Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Herz- und Diabeteszentrum NRW, Bad Oeynhausen, Germany
| |
Collapse
|
18
|
FHL1-related clinical, muscle MRI and genetic features in six Chinese patients with reducing body myopathy. J Hum Genet 2019; 64:919-926. [DOI: 10.1038/s10038-019-0627-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/14/2019] [Accepted: 05/30/2019] [Indexed: 01/21/2023]
|
19
|
Chen F, Yuan W, Mo X, Zhuang J, Wang Y, Chen J, Jiang Z, Zhu X, Zeng Q, Wan Y, Li F, Shi Y, Cao L, Fan X, Luo S, Ye X, Chen Y, Dai G, Gao J, Wang X, Xie H, Zhu P, Li Y, Wu X. Role of Zebrafish fhl1A in Satellite Cell and Skeletal Muscle Development. Curr Mol Med 2019. [PMID: 29521230 PMCID: PMC6040174 DOI: 10.2174/1566524018666180308113909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: Four-and-a-half LIM domains protein 1 (FHL1) mutations are associated with human myopathies. However, the function of this protein in skeletal development remains unclear. Methods: Whole-mount in situ hybridization and embryo immunostaining were performed. Results: Zebrafish Fhl1A is the homologue of human FHL1. We showed that fhl1A knockdown causes defective skeletal muscle development, while injection with fhl1A mRNA largely recovered the muscle development in these fhl1A morphants. We also demonstrated that fhl1A knockdown decreases the number of satellite cells. This decrease in satellite cells and the emergence of skeletal muscle abnormalities were associated with alterations in the gene expression of myoD, pax7, mef2ca and skMLCK. We also demonstrated that fhl1A expression and retinoic acid (RA) signalling caused similar skeletal muscle development phenotypes. Moreover, when treated with exogenous RA, endogenous fhl1A expression in skeletal muscles was robust. When treated with DEAB, an RA signalling inhibitor which inhibits the activity of retinaldehyde dehydrogenase, fhl1A was downregulated. Conclusion: fhl1A functions as an activator in regulating the number of satellite cells and in skeletal muscle development. The role of fhl1A in skeletal myogenesis is regulated by RA signaling.
Collapse
Affiliation(s)
- F Chen
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - W Yuan
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Mo
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - J Zhuang
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
| | - Y Wang
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - J Chen
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
| | - Z Jiang
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Zhu
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
| | - Q Zeng
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Y Wan
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - F Li
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Y Shi
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - L Cao
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Fan
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - S Luo
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Ye
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Y Chen
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - G Dai
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - J Gao
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Wang
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - H Xie
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China.,Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - P Zhu
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
| | - Y Li
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Wu
- The Center for Heart Development, State Key Lab of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
20
|
Kubota A, Juanola-Falgarona M, Emmanuele V, Sanchez-Quintero MJ, Kariya S, Sera F, Homma S, Tanji K, Quinzii CM, Hirano M. Cardiomyopathy and altered integrin-actin signaling in Fhl1 mutant female mice. Hum Mol Genet 2019; 28:209-219. [PMID: 30260394 DOI: 10.1093/hmg/ddy299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/14/2018] [Indexed: 12/20/2022] Open
Abstract
X-linked scapuloperoneal myopathy (X-SM), one of Four-and-a-half LIM 1 (FHL1) related diseases, is an adult-onset slowly progressive myopathy, often associated with cardiomyopathy. We previously generated a knock-in mouse model that has the same mutation (c.365 G > C, p.W122S) as human X-SM patients. The mutant male mouse developed late-onset slowly progressive myopathy without cardiomyopathy. In this study, we observed that heterozygous (Het) and homozygous (Homo) female mice did not show alterations of skeletal muscle function or histology. In contrast, 20-month-old mutant female mice showed signs of cardiomyopathy on echocardiograms with increased systolic diameter [wild-type (WT): 2.74 ± 0.22 mm, mean ± standard deviation (SD); Het: 3.13 ± 0.11 mm, P < 0.01; Homo: 3.08 ± 0.37 mm, P < 0.05) and lower fractional shortening (WT: 31.1 ± 4.4%, mean ± SD; Het: 22.7 ± 2.5%, P < 0.01; Homo: 22.4 ± 6.9%, P < 0.01]. Histological analysis of cardiac muscle revealed frequent extraordinarily large rectangular nuclei in mutant female mice that were also observed in human cardiac muscle from X-SM patients. Western blot demonstrated decreased Fhl1 protein levels in cardiac muscle, but not in skeletal muscle, of Homo mutant female mice. Proteomic analysis of cardiac muscle from 20-month-old Homo mutant female mice indicated abnormalities of the integrin signaling pathway (ISP) in association with cardiac dysfunction. The ISP dysregulation was further supported by altered levels of a subunit of the ISP downstream effectors Arpc1a in Fhl1 mutant mice and ARPC1A in X-SM patient muscles. This study reveals the first mouse model of FHL1-related cardiomyopathy and implicates ISP dysregulation in the pathogenesis of FHL1 myopathy.
Collapse
Affiliation(s)
| | | | | | | | - Shingo Kariya
- Department of Neurology, Columbia University Medical Center
| | - Fusako Sera
- Department of Cardiology, Columbia University Medical Center
| | - Shunichi Homma
- Department of Cardiology, Columbia University Medical Center
| | - Kurenai Tanji
- Department of Neurology, Columbia University Medical Center.,Department of Pathology and Cell Biology, Columbia University Medical Center
| | | | - Michio Hirano
- Department of Neurology, Columbia University Medical Center
| |
Collapse
|
21
|
Biendarra-Tiegs SM, Li X, Ye D, Brandt EB, Ackerman MJ, Nelson TJ. Single-Cell RNA-Sequencing and Optical Electrophysiology of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Reveal Discordance Between Cardiac Subtype-Associated Gene Expression Patterns and Electrophysiological Phenotypes. Stem Cells Dev 2019; 28:659-673. [PMID: 30892143 PMCID: PMC6534093 DOI: 10.1089/scd.2019.0030] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The ability to accurately phenotype cells differentiated from human induced pluripotent stem cells (hiPSCs) is essential for their application in modeling developmental and disease processes, yet also poses a particular challenge without the context of anatomical location. Our specific objective was to determine if single-cell gene expression was sufficient to predict the electrophysiology of iPSC-derived cardiac lineages, to evaluate the concordance between molecular and functional surrogate markers. To this end, we used the genetically encoded voltage indicator ArcLight to profile hundreds of hiPSC-derived cardiomyocytes (hiPSC-CMs), thus identifying patterns of electrophysiological maturation and increased prevalence of cells with atrial-like action potentials (APs) between days 11 and 42 of differentiation. To profile expression patterns of cardiomyocyte subtype-associated genes, single-cell RNA-seq was performed at days 12 and 40 after the populations were fully characterized with the high-throughput ArcLight platform. Although we could detect global gene expression changes supporting progressive differentiation, individual cellular expression patterns alone were not able to delineate the individual cardiomyocytes into atrial, ventricular, or nodal subtypes as functionally documented by electrophysiology measurements. Furthermore, our efforts to understand the distinct electrophysiological properties associated with day 12 versus day 40 hiPSC-CMs revealed that ion channel regulators SLMAP, FGF12, and FHL1 were the most significantly increased genes at day 40, categorized by electrophysiology-related gene functions. Notably, FHL1 knockdown during differentiation was sufficient to significantly modulate APs toward ventricular-like electrophysiology. Thus, our results establish the inability of subtype-associated gene expression patterns to specifically categorize hiPSC-derived cells according to their functional electrophysiology, and yet, altered FHL1 expression is able to redirect electrophysiological maturation of these developing cells. Therefore, noncanonical gene expression patterns of cardiac maturation may be sufficient to direct functional maturation of cardiomyocytes, with canonical gene expression patterns being insufficient to temporally define cardiac subtypes of in vitro differentiation.
Collapse
Affiliation(s)
- Sherri M Biendarra-Tiegs
- 1 Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.,2 Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Xing Li
- 2 Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota.,3 Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Dan Ye
- 4 Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Emma B Brandt
- 1 Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.,2 Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael J Ackerman
- 4 Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.,5 Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.,6 Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Timothy J Nelson
- 1 Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.,2 Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota.,5 Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.,6 Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.,7 Division of General Internal Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
22
|
Ortiz Madinaveitia S, del Valle Sanchez M, Sagarra Mur D. Distrofia muscular de Emery-Dreifuss tipo 2: nueva mutación de novo en el gen la lamina A/C. Neurologia 2018; 33:554-555. [DOI: 10.1016/j.nrl.2016.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/14/2016] [Accepted: 05/17/2016] [Indexed: 11/24/2022] Open
|
23
|
Ortiz Madinaveitia S, del Valle Sanchez M, Sagarra Mur D. Emery-Dreifuss muscular dystrophy type 2: New de novo mutation in the lamin A/C gene. NEUROLOGÍA (ENGLISH EDITION) 2018. [DOI: 10.1016/j.nrleng.2016.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
24
|
Four and a half LIM domain protein signaling and cardiomyopathy. Biophys Rev 2018; 10:1073-1085. [PMID: 29926425 DOI: 10.1007/s12551-018-0434-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/06/2018] [Indexed: 01/10/2023] Open
Abstract
Four and a half LIM domain (FHL) protein family members, FHL1 and FHL2, are multifunctional proteins that are enriched in cardiac muscle. Although they both localize within the cardiomyocyte sarcomere (titin N2B), they have been shown to have important yet unique functions within the context of cardiac hypertrophy and disease. Studies in FHL1-deficient mice have primarily uncovered mitogen-activated protein kinase (MAPK) scaffolding functions for FHL1 as part of a novel biomechanical stretch sensor within the cardiomyocyte sarcomere, which acts as a positive regulator of pressure overload-mediated cardiac hypertrophy. New data have highlighted a novel role for the serine/threonine protein phosphatase (PP5) as a deactivator of the FHL1-based biomechanical stretch sensor, which has implications in not only cardiac hypertrophy but also heart failure. In contrast, studies in FHL2-deficient mice have primarily uncovered an opposing role for FHL2 as a negative regulator of adrenergic-mediated signaling and cardiac hypertrophy, further suggesting unique functions targeted by FHL proteins in the "stressed" cardiomyocyte. In this review, we provide current knowledge of the role of FHL1 and FHL2 in cardiac muscle as it relates to their actions in cardiac hypertrophy and cardiomyopathy. A specific focus will be to dissect the pathways and protein-protein interactions that underlie FHLs' signaling role in cardiac hypertrophy as well as provide a comprehensive list of FHL mutations linked to cardiac disease, using evidence gained from genetic mouse models and human genetic studies.
Collapse
|
25
|
Keßler M, Kieltsch A, Kayvanpour E, Katus H, Schoser B, Schessl J, Just S, Rottbauer W. A zebrafish model for FHL1-opathy reveals loss-of-function effects of human FHL1 mutations. Neuromuscul Disord 2018; 28:521-531. [DOI: 10.1016/j.nmd.2018.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/27/2017] [Accepted: 03/01/2018] [Indexed: 11/16/2022]
|
26
|
Ziat E, Mamchaoui K, Beuvin M, Nelson I, Azibani F, Spuler S, Bonne G, Bertrand AT. FHL1B Interacts with Lamin A/C and Emerin at the Nuclear Lamina and is Misregulated in Emery-Dreifuss Muscular Dystrophy. J Neuromuscul Dis 2018; 3:497-510. [PMID: 27911330 DOI: 10.3233/jnd-160169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Emery-Dreifuss muscular dystrophy (EDMD) is associated with mutations in EMD and LMNA genes, encoding for the nuclear envelope proteins emerin and lamin A/C, indicating that EDMD is a nuclear envelope disease. We recently reported mutations in FHL1 gene in X-linked EDMD. FHL1 encodes FHL1A, and the two minor isoforms FHL1B and FHL1C. So far, none have been described at the nuclear envelope. OBJECTIVE To gain insight into the pathophysiology of EDMD, we focused our attention on the poorly characterized FHL1B isoform. METHODS The amount and the localisation of FHL1B were evaluated in control and diseased human primary myoblasts using immunofluorescence and western blotting. RESULTS We found that in addition to a cytoplasmic localization, this isoform strongly accumulated at the nuclear envelope of primary human myoblasts, like but independently of lamin A/C and emerin. During myoblast differentiation, we observed a major reduction of FHL1B protein expression, especially in the nucleus. Interestingly, we found elevated FHL1B expression level in myoblasts from an FHL1-related EDMD patient where the FHL1 mutation only affects FHL1A, as well as in myoblasts from an LMNA-related EDMD patient. CONCLUSIONS Altogether, the specific localization of FHL1B and its modulation in disease-patient's myoblasts confirmed FHL1-related EDMD as a nuclear envelope disease.
Collapse
Affiliation(s)
- Esma Ziat
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center of Research in Myology, F-75013 Paris, France.,Muscle Research Unit, Experimental and Clinical Research Center, A Joint Cooperation between Max-Delbrück-Center for Molecular Medicine and Charite Medical Faculty, Berlin, Germany
| | - Kamel Mamchaoui
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center of Research in Myology, F-75013 Paris, France
| | - Maud Beuvin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center of Research in Myology, F-75013 Paris, France
| | - Isabelle Nelson
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center of Research in Myology, F-75013 Paris, France
| | - Feriel Azibani
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center of Research in Myology, F-75013 Paris, France
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, A Joint Cooperation between Max-Delbrück-Center for Molecular Medicine and Charite Medical Faculty, Berlin, Germany
| | - Gisèle Bonne
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center of Research in Myology, F-75013 Paris, France
| | - Anne T Bertrand
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center of Research in Myology, F-75013 Paris, France
| |
Collapse
|
27
|
Wang X, Wei X, Yuan Y, Sun Q, Zhan J, Zhang J, Tang Y, Li F, Ding L, Ye Q, Zhang H. Src-mediated phosphorylation converts FHL1 from tumor suppressor to tumor promoter. J Cell Biol 2018; 217:1335-1351. [PMID: 29434030 PMCID: PMC5881501 DOI: 10.1083/jcb.201708064] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/19/2017] [Accepted: 01/16/2018] [Indexed: 02/07/2023] Open
Abstract
FHL1 has been recognized for a long time as a tumor suppressor protein that associates with both the actin cytoskeleton and the transcriptional machinery. We present in this study a paradigm that phosphorylated FHL1 functions as an oncogenic protein by promoting tumor cell proliferation. The cytosolic tyrosine kinase Src interacts with and phosphorylates FHL1 at Y149 and Y272, which switches FHL1 from a tumor suppressor to a cell growth accelerator. Phosphorylated FHL1 translocates into the nucleus, where it binds to the transcription factor BCLAF1 and promotes tumor cell growth. Importantly, the phosphorylation of FHL1 is increased in tissues from lung adenocarcinoma patients despite the down-regulation of total FHL1 expression. Kindlin-2 was found to interact with FHL1 and recruit FHL1 to focal adhesions. Kindlin-2 competes with Src for binding to FHL1 and suppresses Src-mediated FHL1 phosphorylation. Collectively, we demonstrate that FHL1 can either suppress or promote tumor cell growth depending on the status of the sites for phosphorylation by Src.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Human Anatomy, Histology and Embryology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Xiaofan Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Human Anatomy, Histology and Embryology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Yang Yuan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Human Anatomy, Histology and Embryology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Qingrui Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Human Anatomy, Histology and Embryology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Jun Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Human Anatomy, Histology and Embryology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Jing Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Human Anatomy, Histology and Embryology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Yan Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Human Anatomy, Histology and Embryology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Feng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Human Anatomy, Histology and Embryology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Lihua Ding
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Hongquan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Human Anatomy, Histology and Embryology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| |
Collapse
|
28
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
29
|
Muscle MRI in pediatrics: clinical, pathological and genetic correlation. Pediatr Radiol 2017; 47:724-735. [PMID: 28102454 DOI: 10.1007/s00247-016-3777-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/31/2016] [Accepted: 12/28/2016] [Indexed: 10/20/2022]
Abstract
Pediatric myopathies comprise a very heterogeneous group of disorders that may develop at different ages and affect different muscle groups. Its diagnosis is sometimes difficult and must be confirmed by muscle biopsy and/or genetic analysis. In recent years, muscle involvement patterns observed on MRI have become a valuable tool, aiding clinical diagnosis and enriching pathological and genetic assessments. We selected eight myopathy cases from our institutional database in which the pattern of muscle involvement observed on MRI was almost pathognomonic and could therefore contribute to establishing diagnosis. Muscle biopsy, genetic diagnosis or both confirmed all cases.
Collapse
|
30
|
Pillar N, Pleniceanu O, Fang M, Ziv L, Lahav E, Botchan S, Cheng L, Dekel B, Shomron N. A rare variant in the FHL1 gene associated with X-linked recessive hypoparathyroidism. Hum Genet 2017; 136:835-845. [PMID: 28444561 PMCID: PMC5487855 DOI: 10.1007/s00439-017-1804-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/17/2017] [Indexed: 12/12/2022]
Abstract
Isolated familial hypoparathyroidism is an extremely rare disorder, which to date has been linked to several loci including mutations in CASR, GCM2, and PTH, as well as a rare condition defined as X-linked recessive hypoparathyroidism, previously associated with a 1.5 Mb region on Xq26-q27. Here, we report a patient with hypocalcemia-induced seizures leading to the diagnosis of primary hypoparathyroidism. Mutations in CASR, GCM2, and PTH were ruled out, while whole exome sequencing of the family suggested FHL1, located on chromosome Xq26, as the most likely causative gene variant (FHL1, exon 4, c.C283T, p.R95W). Since FHL1 has not been linked to calcium regulation before, we provide evidence for its functional role in hypoparathyroidism by: (i) bioinformatics analysis coupling its action to known modulators of PTH function; (ii) observing strong expression of fhl1b in Corpuscles of Stannius, gland-like aggregates in zebrafish that function in calcium regulation similar to mammalian PTH; and (iii) implicating fhl1b and FHL1 as regulators of calcium homeostasis in zebrafish and human cells, respectively. Altogether, our data suggest that FHL1 is a novel regulator of calcium homeostasis and implicate it as the causative gene for X-linked recessive hypoparathyroidism.
Collapse
Affiliation(s)
- Nir Pillar
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren Pleniceanu
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Stem Cell Research Institute & Division of Pediatric Nephrology, Edmond & Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | | | - Limor Ziv
- Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Einat Lahav
- Pediatric Stem Cell Research Institute & Division of Pediatric Nephrology, Edmond & Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Shay Botchan
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Benjamin Dekel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Pediatric Stem Cell Research Institute & Division of Pediatric Nephrology, Edmond & Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel.
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
31
|
Abstract
After the advances created by the use of cryostat sections and histochemistry 60 years ago, muscle histopathology is now living a real renaissance. In the field of genetic neuromuscular disorders, muscle biopsy analysis is fundamental to address questions about pathogenicity and protein expression when new genes are discovered through next-generation sequencing approaches. Moreover, the identification of the same gene mutated in previously considered distinct histopathologic entities imposes a constant reassessment of morphologic boundaries in several groups of disorders. In other fields like the acquired inflammatory myopathies, histologic analysis nowadays helps to affirm a diagnosis, set up therapeutic strategies, and verify the success of immunosuppressive treatment. In this exciting scenario morphologists are definitely key figures in the neuromuscular field. The objective of this chapter is to give an overview on morphology of the most frequent and recently identified muscle conditions, stressing the importance that only a combined analysis of clinical findings, muscle histology, and specific ancillary investigations is effective in reaching a precise diagnosis and orienting therapy.
Collapse
Affiliation(s)
- Edoardo Malfatti
- Neuromuscular Morphology Unit and Neuromuscular Pathology Reference Center Paris-Est, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France.
| | - Norma Beatriz Romero
- Neuromuscular Morphology Unit and Neuromuscular Pathology Reference Center Paris-Est, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| |
Collapse
|
32
|
Exome sequencing identifies variants in two genes encoding the LIM-proteins NRAP and FHL1 in an Italian patient with BAG3 myofibrillar myopathy. J Muscle Res Cell Motil 2016; 37:101-15. [PMID: 27443559 PMCID: PMC5010835 DOI: 10.1007/s10974-016-9451-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/09/2016] [Indexed: 11/06/2022]
Abstract
Myofibrillar myopathies (MFMs) are genetically heterogeneous dystrophies characterized by the disintegration of Z-disks and myofibrils and are associated with mutations in genes encoding Z-disk or Z-disk-related proteins. The c.626 C > T (p.P209L) mutation in the BAG3 gene has been described as causative of a subtype of MFM. We report a sporadic case of a 26-year-old Italian woman, affected by MFM with axonal neuropathy, cardiomyopathy, rigid spine, who carries the c.626 C > T mutation in the BAG3 gene. The patient and her non-consanguineous healthy parents and brother were studied with whole exome sequencing (WES) to further investigate the genetic basis of this complex phenotype. In the patient, we found that the BAG3 mutation is associated with variants in the NRAP and FHL1 genes that encode muscle-specific, LIM domain containing proteins. Quantitative real time PCR, immunohistochemistry and Western blot analysis of the patient’s muscular biopsy showed the absence of NRAP expression and FHL1 accumulation in aggregates in the affected skeletal muscle tissue. Molecular dynamic analysis of the mutated FHL1 domain showed a modification in its surface charge, which could affect its capability to bind its target proteins. To our knowledge this is the first study reporting, in a BAG3 MFM, the simultaneous presence of genetic variants in the BAG3 and FHL1 genes (previously described as independently associated with MFMs) and linking the NRAP gene to MFM for the first time.
Collapse
|
33
|
Cao W, Liu J, Xia R, Lin L, Wang X, Xiao M, Zhang C, Li J, Ji T, Chen W. X-linked FHL1 as a novel therapeutic target for head and neck squamous cell carcinoma. Oncotarget 2016; 7:14537-14550. [PMID: 26908444 PMCID: PMC4924734 DOI: 10.18632/oncotarget.7478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/29/2016] [Indexed: 02/05/2023] Open
Abstract
To identify X-linked novel tumor suppressors could provide novel insights to improve prognostic prediction and therapeutic strategy for some cancers. Using bioinformatics and Venn analysis of gene transcriptional profiling, we identified downregulation of X-linked four-and-a-half LIM domains protein 1 (FHL1) gene in head and neck squamous cell carcinoma (HNSCC). FHL1 functions were investigated and confirmed in vitro and in vivo. FHL1 downregulated mechanisms were analyzed in HNSCCs by using methylation specific PCR, bisulfate-based sequencing, 5-Aza-dC treatment and chromatin immunoprecipitation assays. Two independent HNSCC cohorts (the training cohort n = 105 and the validation cohort n = 101) were enrolled to evaluate clinical implications of FHL1 expression by using real-time PCR or immunohistochemistry. FHL1 mRNA and protein expressions were frequently decreased in HNSCCs. FHL1 overexpression or depletion gave rise to suppress or promote cell growth through Cyclin D1, Cyclin E and p27 dysregulations. Abundant occupy of EZH2 or H3K27Me3 was observed in FHL1 promoter except for DNA hypermethylation. Reduced FHL1 mRNA expression was notably associated with poor differentiation (p = 0.020). Multivariate analysis demonstrated FHL1 mRNA expression was identified as independent prognostic predictors of overall survival (OS) (p = 0.036; HR 0.520; Cl, 0.283-0.958) and disease-free survival (DFS) (p = 0.041; HR 0.527; Cl, 0.284-0.975), which was validated by another independent cohort (p = 0.021; HR 0.404; Cl, 0.187-0.871 for OS; p = 0.011; HR 0.407; Cl, 0.203-0.815 for DFS). These results suggest epigenetic silencing of X-linked FHL1 may have an important role in adjuvant therapeutic intervention of HNSCCs and is an independent prognostic factor in patients with HNSCCs.
Collapse
Affiliation(s)
- Wei Cao
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Jiannan Liu
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Ronghui Xia
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lu Lin
- Department of Medical Records, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xu Wang
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Meng Xiao
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Chenping Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Jiang Li
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Tong Ji
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Wantao Chen
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Research Institute of Stomatology and Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| |
Collapse
|
34
|
Xue Y, Schoser B, Rao AR, Quadrelli R, Vaglio A, Rupp V, Beichler C, Nelson SF, Schapacher-Tilp G, Windpassinger C, Wilcox WR. Exome Sequencing Identified a Splice Site Mutation in FHL1 that Causes Uruguay Syndrome, an X-Linked Disorder With Skeletal Muscle Hypertrophy and Premature Cardiac Death. ACTA ACUST UNITED AC 2016; 9:130-5. [PMID: 26933038 DOI: 10.1161/circgenetics.115.001193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 02/27/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND Previously, we reported a rare X-linked disorder, Uruguay syndrome in a single family. The main features are pugilistic facies, skeletal deformities, and muscular hypertrophy despite a lack of exercise and cardiac ventricular hypertrophy leading to premature death. METHODS AND RESULTS An ≈19 Mb critical region on X chromosome was identified through identity-by-descent analysis of 3 affected males. Exome sequencing was conducted on one affected male to identify the disease-causing gene and variant. A splice site variant (c.502-2A>G) in the FHL1 gene was highly suspicious among other candidate genes and variants. FHL1A is the predominant isoform of FHL1 in cardiac and skeletal muscle. Sequencing cDNA showed the splice site variant led to skipping of exons 6 of the FHL1A isoform, equivalent to the FHL1C isoform. Targeted analysis showed that this splice site variant cosegregated with disease in the family. Western blot and immunohistochemical analysis of muscle from the proband showed a significant decrease in protein expression of FHL1A. Real-time polymerase chain reaction analysis of different isoforms of FHL1 demonstrated that the FHL1C is markedly increased. CONCLUSIONS Mutations in the FHL1 gene have been reported in disorders with skeletal and cardiac myopathy but none has the skeletal or facial phenotype seen in patients with Uruguay syndrome. Our data suggest that a novel FHL1 splice site variant results in the absence of FHL1A and the abundance of FHL1C, which may contribute to the complex and severe phenotype. Mutation screening of the FHL1 gene should be considered for patients with uncharacterized myopathies and cardiomyopathies.
Collapse
Affiliation(s)
- Yuan Xue
- From the Emory Genetics Laboratory (Y.X.), Division of Medical Genetics (W.R.W.), Department of Human Genetics, Emory University, Atlanta, GA; Friedrich-Baur Institut, Neurologische Klinik, Klinikum der Universität, München, Germany (B.S.); Department of Human Genetics, UCLA School of Medicine, CA (A.R.R., S.F.N.); Instituto de Genetica Medica, Hospital Italiano, Montevideo, Uruguay (R.Q., A.V.); Institute of Human Genetics, Medical University of Graz (V.R., C.B., C.W.); and Department for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria (G.S.-T.).
| | - Benedikt Schoser
- From the Emory Genetics Laboratory (Y.X.), Division of Medical Genetics (W.R.W.), Department of Human Genetics, Emory University, Atlanta, GA; Friedrich-Baur Institut, Neurologische Klinik, Klinikum der Universität, München, Germany (B.S.); Department of Human Genetics, UCLA School of Medicine, CA (A.R.R., S.F.N.); Instituto de Genetica Medica, Hospital Italiano, Montevideo, Uruguay (R.Q., A.V.); Institute of Human Genetics, Medical University of Graz (V.R., C.B., C.W.); and Department for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria (G.S.-T.)
| | - Aliz R Rao
- From the Emory Genetics Laboratory (Y.X.), Division of Medical Genetics (W.R.W.), Department of Human Genetics, Emory University, Atlanta, GA; Friedrich-Baur Institut, Neurologische Klinik, Klinikum der Universität, München, Germany (B.S.); Department of Human Genetics, UCLA School of Medicine, CA (A.R.R., S.F.N.); Instituto de Genetica Medica, Hospital Italiano, Montevideo, Uruguay (R.Q., A.V.); Institute of Human Genetics, Medical University of Graz (V.R., C.B., C.W.); and Department for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria (G.S.-T.)
| | - Roberto Quadrelli
- From the Emory Genetics Laboratory (Y.X.), Division of Medical Genetics (W.R.W.), Department of Human Genetics, Emory University, Atlanta, GA; Friedrich-Baur Institut, Neurologische Klinik, Klinikum der Universität, München, Germany (B.S.); Department of Human Genetics, UCLA School of Medicine, CA (A.R.R., S.F.N.); Instituto de Genetica Medica, Hospital Italiano, Montevideo, Uruguay (R.Q., A.V.); Institute of Human Genetics, Medical University of Graz (V.R., C.B., C.W.); and Department for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria (G.S.-T.)
| | - Alicia Vaglio
- From the Emory Genetics Laboratory (Y.X.), Division of Medical Genetics (W.R.W.), Department of Human Genetics, Emory University, Atlanta, GA; Friedrich-Baur Institut, Neurologische Klinik, Klinikum der Universität, München, Germany (B.S.); Department of Human Genetics, UCLA School of Medicine, CA (A.R.R., S.F.N.); Instituto de Genetica Medica, Hospital Italiano, Montevideo, Uruguay (R.Q., A.V.); Institute of Human Genetics, Medical University of Graz (V.R., C.B., C.W.); and Department for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria (G.S.-T.)
| | - Verena Rupp
- From the Emory Genetics Laboratory (Y.X.), Division of Medical Genetics (W.R.W.), Department of Human Genetics, Emory University, Atlanta, GA; Friedrich-Baur Institut, Neurologische Klinik, Klinikum der Universität, München, Germany (B.S.); Department of Human Genetics, UCLA School of Medicine, CA (A.R.R., S.F.N.); Instituto de Genetica Medica, Hospital Italiano, Montevideo, Uruguay (R.Q., A.V.); Institute of Human Genetics, Medical University of Graz (V.R., C.B., C.W.); and Department for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria (G.S.-T.)
| | - Christine Beichler
- From the Emory Genetics Laboratory (Y.X.), Division of Medical Genetics (W.R.W.), Department of Human Genetics, Emory University, Atlanta, GA; Friedrich-Baur Institut, Neurologische Klinik, Klinikum der Universität, München, Germany (B.S.); Department of Human Genetics, UCLA School of Medicine, CA (A.R.R., S.F.N.); Instituto de Genetica Medica, Hospital Italiano, Montevideo, Uruguay (R.Q., A.V.); Institute of Human Genetics, Medical University of Graz (V.R., C.B., C.W.); and Department for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria (G.S.-T.)
| | - Stanley F Nelson
- From the Emory Genetics Laboratory (Y.X.), Division of Medical Genetics (W.R.W.), Department of Human Genetics, Emory University, Atlanta, GA; Friedrich-Baur Institut, Neurologische Klinik, Klinikum der Universität, München, Germany (B.S.); Department of Human Genetics, UCLA School of Medicine, CA (A.R.R., S.F.N.); Instituto de Genetica Medica, Hospital Italiano, Montevideo, Uruguay (R.Q., A.V.); Institute of Human Genetics, Medical University of Graz (V.R., C.B., C.W.); and Department for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria (G.S.-T.)
| | - Gudrun Schapacher-Tilp
- From the Emory Genetics Laboratory (Y.X.), Division of Medical Genetics (W.R.W.), Department of Human Genetics, Emory University, Atlanta, GA; Friedrich-Baur Institut, Neurologische Klinik, Klinikum der Universität, München, Germany (B.S.); Department of Human Genetics, UCLA School of Medicine, CA (A.R.R., S.F.N.); Instituto de Genetica Medica, Hospital Italiano, Montevideo, Uruguay (R.Q., A.V.); Institute of Human Genetics, Medical University of Graz (V.R., C.B., C.W.); and Department for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria (G.S.-T.)
| | - Christian Windpassinger
- From the Emory Genetics Laboratory (Y.X.), Division of Medical Genetics (W.R.W.), Department of Human Genetics, Emory University, Atlanta, GA; Friedrich-Baur Institut, Neurologische Klinik, Klinikum der Universität, München, Germany (B.S.); Department of Human Genetics, UCLA School of Medicine, CA (A.R.R., S.F.N.); Instituto de Genetica Medica, Hospital Italiano, Montevideo, Uruguay (R.Q., A.V.); Institute of Human Genetics, Medical University of Graz (V.R., C.B., C.W.); and Department for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria (G.S.-T.)
| | - William R Wilcox
- From the Emory Genetics Laboratory (Y.X.), Division of Medical Genetics (W.R.W.), Department of Human Genetics, Emory University, Atlanta, GA; Friedrich-Baur Institut, Neurologische Klinik, Klinikum der Universität, München, Germany (B.S.); Department of Human Genetics, UCLA School of Medicine, CA (A.R.R., S.F.N.); Instituto de Genetica Medica, Hospital Italiano, Montevideo, Uruguay (R.Q., A.V.); Institute of Human Genetics, Medical University of Graz (V.R., C.B., C.W.); and Department for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria (G.S.-T.)
| |
Collapse
|
35
|
Zhang BQ, Si N, Liu DF. Identification of a Novel Four and a Half LIM Domain 1 Mutation in a Chinese Male Presented with Hypertrophic Cardiomyopathy and Mild Skeletal Muscle Hypertrophy. Chin Med J (Engl) 2016; 128:2269-70. [PMID: 26265627 PMCID: PMC4717995 DOI: 10.4103/0366-6999.162493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | | | - Dong-Fang Liu
- Division of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
36
|
Witting N, Andersen LK, Vissing J. Axial myopathy: an overlooked feature of muscle diseases. Brain 2015; 139:13-22. [DOI: 10.1093/brain/awv332] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/16/2015] [Indexed: 12/21/2022] Open
|
37
|
Albrecht I, Wick C, Hallgren Å, Tjärnlund A, Nagaraju K, Andrade F, Thompson K, Coley W, Phadke A, Diaz-Gallo LM, Bottai M, Nennesmo I, Chemin K, Herrath J, Johansson K, Wikberg A, Ytterberg AJ, Zubarev RA, Danielsson O, Krystufkova O, Vencovsky J, Landegren N, Wahren-Herlenius M, Padyukov L, Kämpe O, Lundberg IE. Development of autoantibodies against muscle-specific FHL1 in severe inflammatory myopathies. J Clin Invest 2015; 125:4612-24. [PMID: 26551678 DOI: 10.1172/jci81031] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 09/25/2015] [Indexed: 11/17/2022] Open
Abstract
Mutations of the gene encoding four-and-a-half LIM domain 1 (FHL1) are the causative factor of several X-linked hereditary myopathies that are collectively termed FHL1-related myopathies. These disorders are characterized by severe muscle dysfunction and damage. Here, we have shown that patients with idiopathic inflammatory myopathies (IIMs) develop autoimmunity to FHL1, which is a muscle-specific protein. Anti-FHL1 autoantibodies were detected in 25% of IIM patients, while patients with other autoimmune diseases or muscular dystrophies were largely anti-FHL1 negative. Anti-FHL1 reactivity was predictive for muscle atrophy, dysphagia, pronounced muscle fiber damage, and vasculitis. FHL1 showed an altered expression pattern, with focal accumulation in the muscle fibers of autoantibody-positive patients compared with a homogeneous expression in anti-FHL1-negative patients and healthy controls. We determined that FHL1 is a target of the cytotoxic protease granzyme B, indicating that the generation of FHL1 fragments may initiate FHL1 autoimmunity. Moreover, immunization of myositis-prone mice with FHL1 aggravated muscle weakness and increased mortality, suggesting a direct link between anti-FHL1 responses and muscle damage. Together, our findings provide evidence that FHL1 may be involved in the pathogenesis not only of genetic FHL1-related myopathies but also of autoimmune IIM. Importantly, these results indicate that anti-FHL1 autoantibodies in peripheral blood have promising potential as a biomarker to identify a subset of severe IIM.
Collapse
|
38
|
D'Arcy C, Kanellakis V, Forbes R, Wilding B, McGrath M, Howell K, Ryan M, McLean C. X-linked Recessive Distal Myopathy With Hypertrophic Cardiomyopathy Caused by a Novel Mutation in the FHL1 Gene. J Child Neurol 2015; 30:1211-7. [PMID: 25246303 DOI: 10.1177/0883073814549807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 08/11/2014] [Indexed: 11/16/2022]
Abstract
FHL1 gene mutations are associated with reducing body myopathy, X-linked myopathy with postural muscle atrophy, scapuloperoneal myopathy, Emery-Dreifuss muscular dystrophy, and isolated hypertrophic cardiomyopathy. We describe a boy with a family history consistent with X-linked distal myopathy/cardiomyopathy. The boy first presented at age 14 years and was found to have distal wasting and weakness. Echocardiogram revealed hypertrophic cardiomyopathy. Muscle biopsy showed a vacuolar pathology with no reducing bodies. Sequencing of FHL1 revealed a novel hemizygous c.764G>C missense mutation in exon 8. This is the first report of a predominantly distal myopathy with hypertrophic cardiomyopathy occurring secondary to an FHL1 mutation.
Collapse
Affiliation(s)
- Colleen D'Arcy
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia Department of Anatomical Pathology, The Alfred Hospital, Victoria, Australia
| | - Voula Kanellakis
- Applied Genetics Diagnostics, University of Melbourne, Melbourne, Australia
| | - Robin Forbes
- Victorian Clinical Genetics Service, Royal Children's Hospital, Victoria, Australia
| | - Brendan Wilding
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Meagan McGrath
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Katherine Howell
- Children's Neurosciences Centre, Royal Children's Hospital, Victoria, Australia
| | - Monique Ryan
- Children's Neurosciences Centre, Royal Children's Hospital, Victoria, Australia
| | - Catriona McLean
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia Department of Anatomical Pathology, The Alfred Hospital, Victoria, Australia
| |
Collapse
|
39
|
Gallego-Delgado M, Gonzalez-Lopez E, Garcia-Guereta L, Ortega-Molina M, Gonzalez-Vioque E, Cobo-Marcos M, Alonso-Pulpon L, Garcia-Pavia P. Adverse clinical course and poor prognosis of hypertrophic cardiomyopathy due to mutations in FHL1. Int J Cardiol 2015; 191:194-7. [PMID: 25965631 DOI: 10.1016/j.ijcard.2015.04.260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 04/30/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Maria Gallego-Delgado
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain.
| | - Esther Gonzalez-Lopez
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain; Myocardial Biology Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| | - Luis Garcia-Guereta
- Department of Paediatric Cardiology, Hospital Universitario La Paz, Madrid, Spain.
| | - Marta Ortega-Molina
- Department of Paediatric Cardiology, Hospital Universitario La Paz, Madrid, Spain.
| | | | - Marta Cobo-Marcos
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain.
| | - Luis Alonso-Pulpon
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain.
| | - Pablo Garcia-Pavia
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain; Myocardial Biology Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
40
|
Pfeffer G, Povitz M, Gibson GJ, Chinnery PF. Diagnosis of muscle diseases presenting with early respiratory failure. J Neurol 2015; 262:1101-14. [PMID: 25377282 DOI: 10.1007/s00415-014-7526-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/01/2014] [Accepted: 10/01/2014] [Indexed: 12/13/2022]
Abstract
Here we describe a clinical approach and differential diagnosis for chronic muscle diseases which include early respiratory failure as a prominent feature in their presentation (i.e. respiratory failure whilst still ambulant). These patients typically present to neurology or respiratory medicine out-patient clinics and a distinct differential diagnosis of neuromuscular aetiologies should be considered. Amyotrophic lateral sclerosis and myasthenia gravis are the important non-muscle diseases to consider, but once these have been excluded there remains a challenging differential diagnosis of muscle conditions, which will be the focus of this review. The key points in the diagnosis of these disorders are being aware of relevant symptoms, which are initially caused by nocturnal hypoventilation or diaphragmatic weakness; and identifying other features which direct further investigation. Important muscle diseases to identify, because their diagnosis has disease-specific management implications, include adult-onset Pompe disease, inflammatory myopathy, and sporadic adult-onset nemaline myopathy. Cases which are due to metabolic myopathy or muscular dystrophy are important to diagnose because of their implications for genetic counselling. Myopathy from sarcoidosis and colchicine each has a single reported case with this presentation, but should be considered because they are treatable. Disorders which have recently had their genetic aetiologies identified include hereditary myopathy with early respiratory failure (due to TTN mutations), the FHL1-related syndromes, and myofibrillar myopathy due to BAG3 mutation. Recently described syndromes include oculopharyngodistal muscular dystrophy that awaits genetic characterisation.
Collapse
Affiliation(s)
- Gerald Pfeffer
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK,
| | | | | | | |
Collapse
|
41
|
The sarcomeric M-region: a molecular command center for diverse cellular processes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:714197. [PMID: 25961035 PMCID: PMC4413555 DOI: 10.1155/2015/714197] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/08/2015] [Indexed: 02/07/2023]
Abstract
The sarcomeric M-region anchors thick filaments and withstands the mechanical stress of contractions by deformation, thus enabling distribution of physiological forces along the length of thick filaments. While the role of the M-region in supporting myofibrillar structure and contractility is well established, its role in mediating additional cellular processes has only recently started to emerge. As such, M-region is the hub of key protein players contributing to cytoskeletal remodeling, signal transduction, mechanosensing, metabolism, and proteasomal degradation. Mutations in genes encoding M-region related proteins lead to development of severe and lethal cardiac and skeletal myopathies affecting mankind. Herein, we describe the main cellular processes taking place at the M-region, other than thick filament assembly, and discuss human myopathies associated with mutant or truncated M-region proteins.
Collapse
|
42
|
Pen AE, Nyegaard M, Fang M, Jiang H, Christensen R, Mølgaard H, Andersen H, Ulhøi BP, Østergaard JR, Væth S, Sommerlund M, de Brouwer APM, Zhang X, Jensen UB. A novel single nucleotide splice site mutation in FHL1 confirms an Emery-Dreifuss plus phenotype with pulmonary artery hypoplasia and facial dysmorphology. Eur J Med Genet 2015; 58:222-9. [PMID: 25724586 DOI: 10.1016/j.ejmg.2015.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 02/12/2015] [Indexed: 10/24/2022]
Abstract
We describe a Danish family with an, until recently, unknown X-linked disease with muscular dystrophy (MD), facial dysmorphology and pulmonary artery hypoplasia. One patient died suddenly before age 20 and another was resuscitated from cardiac arrest at the age of 28. Linkage analysis pointed to a region of 25 Mb from 123.6 Mb to 148.4 Mb on chromosome X containing over 100 genes. Exome sequencing identified a single nucleotide splice site mutation c.502-2A > T, which is located 5' to exon 6 in the gene encoding four and a half LIM domain 1 (FHL1) protein. FHL1 expresses three main splice variants, known as FHL1A, FHL1B and FHL1C. In healthy individuals, FHL1A is the predominant splice variant and is mainly found in skeletal and cardiac muscle. The FHL1 transcript profiles from two affected individuals were investigated in skin fibroblasts with quantitative real-time PCR. This demonstrated loss of isoform A and B, and an almost 200-fold overexpression of isoform C confirming that lack of FHL1A and overexpression of FHL1C results in an extended phenotype of EDMD as recently shown by Tiffin et al. [2013].
Collapse
Affiliation(s)
- Anja E Pen
- Department of Clinical Genetics, Aarhus University Hospital, Skejby, Denmark
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Hui Jiang
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Genomics, Shenzhen 518083, China; The Guangdong Enterprise Key Laboratory of Human Disease Genomics, Shenzhen 518083, China
| | - Rikke Christensen
- Department of Clinical Genetics, Aarhus University Hospital, Skejby, Denmark
| | - Henning Mølgaard
- Department of Cardiology, Aarhus University, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Henning Andersen
- Department of Neurology, Aarhus University, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - John R Østergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Centre for Rare Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Signe Væth
- Department of Clinical Genetics, Aarhus University Hospital, Skejby, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mette Sommerlund
- Department of Dermatology, Aarhus University, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Arjan P M de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Holland
| | - Xiuqing Zhang
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Genomics, Shenzhen 518083, China; The Guangdong Enterprise Key Laboratory of Human Disease Genomics, Shenzhen 518083, China
| | - Uffe B Jensen
- Department of Clinical Genetics, Aarhus University Hospital, Skejby, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
43
|
Emmanuele V, Kubota A, Garcia-Diaz B, Garone C, Akman HO, Sánchez-Gutiérrez D, Escudero LM, Kariya S, Homma S, Tanji K, Quinzii CM, Hirano M. Fhl1 W122S causes loss of protein function and late-onset mild myopathy. Hum Mol Genet 2014; 24:714-26. [PMID: 25274776 DOI: 10.1093/hmg/ddu490] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A member of the four-and-a-half-LIM (FHL) domain protein family, FHL1, is highly expressed in human adult skeletal and cardiac muscle. Mutations in FHL1 have been associated with diverse X-linked muscle diseases: scapuloperoneal (SP) myopathy, reducing body myopathy, X-linked myopathy with postural muscle atrophy, rigid spine syndrome (RSS) and Emery-Dreifuss muscular dystrophy. In 2008, we identified a missense mutation in the second LIM domain of FHL1 (c.365 G>C, p.W122S) in a family with SP myopathy. We generated a knock-in mouse model harboring the c.365 G>C Fhl1 mutation and investigated the effects of this mutation at three time points (3-5 months, 7-10 months and 18-20 months) in hemizygous male and heterozygous female mice. Survival was comparable in mutant and wild-type animals. We observed decreased forelimb strength and exercise capacity in adult hemizygous male mice starting from 7 to 10 months of age. Western blot analysis showed absence of Fhl1 in muscle at later stages. Thus, adult hemizygous male, but not heterozygous female, mice showed a slowly progressive phenotype similar to human patients with late-onset muscle weakness. In contrast to SP myopathy patients with the FHL1 W122S mutation, mutant mice did not manifest cytoplasmic inclusions (reducing bodies) in muscle. Because muscle weakness was evident prior to loss of Fhl1 protein and without reducing bodies, our findings indicate that loss of function is responsible for the myopathy in the Fhl1 W122S knock-in mice.
Collapse
Affiliation(s)
- Valentina Emmanuele
- Department of Neurology Pediatric Clinic, Istituto di Ricovero e Cura a Carattere Scientifico G. Gaslini, University of Genoa, Genoa 16100, Italy and
| | | | | | | | | | - Daniel Sánchez-Gutiérrez
- Departamento de Biología Celular, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universdad de Sevilla, 41013 Seville, Spain
| | - Luis M Escudero
- Departamento de Biología Celular, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universdad de Sevilla, 41013 Seville, Spain
| | | | - Shunichi Homma
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Kurenai Tanji
- Department of Neurology Department of Pathology and Cell Biology
| | | | | |
Collapse
|
44
|
A case of adult-onset reducing body myopathy presenting a novel clinical feature, asymmetrical involvement of the sternocleidomastoid and trapezius muscles. J Neurol Sci 2014; 343:206-10. [DOI: 10.1016/j.jns.2014.05.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 11/21/2022]
|
45
|
Abstract
PURPOSE OF REVIEW Myofibrillar myopathies (MFMs) are a heterogeneous group of skeletal and cardiac muscle diseases. In this review, we highlight recent discoveries of new genes and disease mechanisms involved in this group of disorders. RECENT FINDINGS The advent of next-generation sequencing technology, laser microdissection and mass spectrometry-based proteomics has facilitated the discovery of new MFM causative genes and pathomechanisms. New mutations have also been discovered in 'older' genes, helping to find a classification niche for MFM-linked disorders showing variant phenotypes. Cell transfection experiments using primary cultured myoblasts and newer animal models provide insights into the pathogenesis of MFMs. SUMMARY An increasing number of genes are involved in the causation of variant subtypes of MFM. The application of modern technologies in combination with classical histopathological and ultrastructural studies is helping to establish the molecular diagnosis and reach a better understanding of the pathogenic mechanisms of each MFM subtype, thus putting an emphasis on the development of specific means for prevention and therapy of these incapacitating and frequently fatal diseases.
Collapse
|
46
|
Bertrand AT, Bönnemann CG, Bonne G. 199th ENMC international workshop: FHL1 related myopathies, June 7-9, 2013, Naarden, The Netherlands. Neuromuscul Disord 2014; 24:453-62. [PMID: 24613424 DOI: 10.1016/j.nmd.2014.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/04/2014] [Indexed: 02/04/2023]
Affiliation(s)
- Anne T Bertrand
- Inserm, U974, Paris F-75013, France; Sorbonne Universités, UPMC Univ Paris 06, Myology Center of Research, UM76; CNRS FRE 3617, Institut de Myologie, Paris F-75013, France
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Gisèle Bonne
- Inserm, U974, Paris F-75013, France; Sorbonne Universités, UPMC Univ Paris 06, Myology Center of Research, UM76; CNRS FRE 3617, Institut de Myologie, Paris F-75013, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, U.F. Cardiogénétique et Myogénétique Moléculaire, Service de Biochimie Métabolique, Paris F-75013, France.
| | | |
Collapse
|
47
|
Wilding BR, McGrath MJ, Bonne G, Mitchell CA. FHL1 mutations that cause clinically distinct human myopathies form protein aggregates and impair myoblast differentiation. J Cell Sci 2014; 127:2269-81. [DOI: 10.1242/jcs.140905] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
FHL1 mutations cause several clinically heterogeneous myopathies including Reducing Body Myopathy (RBM), Scapuloperoneal Myopathy (SPM) and X-Linked Myopathy with Postural Muscle Atrophy (XMPMA). The molecular mechanisms underlying the pathogenesis of FHL1 myopathies are unknown. Protein aggregates designated “Reducing Bodies” (RBs) containing mutant FHL1 are detected in RBM muscle but not several other FHL1 myopathies. Here RBM, SPM and XMPMA FHL1 mutants were expressed in C2C12 cells and showed equivalent protein expression to wild-type FHL1 and formed aggregates positive for the RB stain Menadione-NBT, analogous to RBM muscle aggregates. However HCM and EDMD FHL1 mutants generally exhibited reduced expression. Wild-type FHL1 promotes myoblast differentiation however RBM, SPM and XMPMA mutations impaired differentiation, consistent with loss-of-normal function. Furthermore, SPM and XMPMA mutants retarded myotube formation relative to vector control consistent with a dominant-negative/toxic function. Mutant FHL1 myotube formation was partially rescued by expression of the FHL1-binding partner constitutively-active NFATc1. This is the first study to show FHL1 mutations identified in several clinically distinct myopathies lead to similar protein aggregation and impaired myotube formation suggesting a common pathogenic mechanism despite heterogenous clinical features.
Collapse
|
48
|
Tarone G, Sbroggiò M, Brancaccio M. Key role of ERK1/2 molecular scaffolds in heart pathology. Cell Mol Life Sci 2013; 70:4047-54. [PMID: 23532408 PMCID: PMC11114054 DOI: 10.1007/s00018-013-1321-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/22/2013] [Accepted: 03/06/2013] [Indexed: 12/21/2022]
Abstract
The ability of cardiomyocytes to detect mechanical and humoral stimuli is critical for adaptation of the myocardium in response to new conditions and for sustaining the increased workload during stress. While certain stimuli mediate a beneficial adaptation to stress conditions, others result in maladaptive remodelling, ultimately leading to heart failure. Specific signalling pathways activating either adaptive or maladaptive cardiac remodelling have been identified. Paradoxically, however, in a number of cases, the transduction pathways involved in such opposing responses engage the same signalling proteins. A notable example is the Raf-MEK1/2-ERK1/2 signalling pathway that can control both adaptive and maladaptive remodelling. ERK1/2 signalling requires a signalosome complex where a scaffold protein drives the assembly of these three kinases into a linear pathway to facilitate their sequential phosphorylation, ultimately targeting specific effector molecules. Interestingly, a number of different Raf-MEK1/2-ERK1/2 scaffold proteins have been identified, and their role in determining the adaptive or maladaptive cardiac remodelling is a promising field of investigation for the development of therapeutic strategies capable of selectively potentiating the adaptive response.
Collapse
Affiliation(s)
- Guido Tarone
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, via Nizza, 52, 10126, Turin, Italy,
| | | | | |
Collapse
|
49
|
Skeletal muscle biopsy analysis in reducing body myopathy and other FHL1-related disorders. J Neuropathol Exp Neurol 2013; 72:833-45. [PMID: 23965743 DOI: 10.1097/nen.0b013e3182a23506] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
FHL1 mutations have been associated with various disorders that include reducing body myopathy (RBM), Emery-Dreifuss-like muscular dystrophy, isolated hypertrophic cardiomyopathy, and some overlapping conditions. We report a detailed histochemical, immunohistochemical, electron microscopic, and immunoelectron microscopic analyses of muscle biopsies from 18 patients carrying mutations in FHL1: 14 RBM patients (Group 1), 3 Emery-Dreifuss muscular dystrophy patients (Group 2), and 1 patient with hypertrophic cardiomyopathy and muscular hypertrophy (Group 2). Group 1 muscle biopsies consistently showed RBs associated with cytoplasmic bodies. The RBs showed prominent FHL1 immunoreactivity whereas desmin, αB-crystallin, and myotilin immunoreactivity surrounded RBs. By electron microscopy, RBs were composed of electron-dense tubulofilamentous material that seemed to spread progressively between the myofibrils and around myonuclei. By immunoelectron microscopy, FHL1 protein was found exclusively inside RBs. Group 2 biopsies showed mild dystrophic abnormalities without RBs; only minor nonspecific myofibrillar abnormalities were observed under electron microscopy. Molecular analysis revealed missense mutations in the second FHL1 LIM domain in Group 1 patients and ins/del or missense mutations within the fourth FHL1 LIM domain in Group 2 patients. Our findings expand the morphologic features of RBM, clearly demonstrate the localization of FHL1 in RBs, and further illustrate major morphologic differences among different FHL1-related myopathies.
Collapse
|
50
|
Hartmannova H, Kubanek M, Sramko M, Piherova L, Noskova L, Hodanova K, Stranecky V, Pristoupilova A, Sovova J, Marek T, Maluskova J, Ridzon P, Kautzner J, Hulkova H, Kmoch S. Isolated X-linked hypertrophic cardiomyopathy caused by a novel mutation of the four-and-a-half LIM domain 1 gene. ACTA ACUST UNITED AC 2013; 6:543-51. [PMID: 24114807 DOI: 10.1161/circgenetics.113.000245] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Hypertrophic cardiomyopathy with severe left ventricular diastolic dysfunction has been associated with marked exercise intolerance and poor prognosis. However, molecular pathogenesis of this phenotype remains unexplained in a large proportion of cases. METHODS AND RESULTS We performed whole exome sequencing as an initial genetic test in a large Czech family with 3 males affected by nonobstructive hypertrophic cardiomyopathy with severe left ventricular diastolic dysfunction in end-stage disease. A novel frameshift mutation of four-and-a-half LIM domain 1 gene (FHL1) (c.599_600insT; p.F200fs32X) was detected in these individuals. The mutation does not affect transcription, splicing, and stability of FHL1 mRNA and results in production of truncated FHL1 protein, which is contrary to heart tissue homogenate not detectable in frozen tissue sections of myocardial biopsy of affected males. The identified mutation cosegregated also with abnormal ECG and with 1 case of apical hypertrophic cardiomyopathy in heterozygous females. Although skeletal muscle involvement is a common finding in FHL1-related diseases, we could exclude myopathy in all mutation carriers. CONCLUSIONS We identified a novel FHL1 mutation causing isolated hypertrophic cardiomyopathy with X-chromosomal inheritance.
Collapse
Affiliation(s)
- Hana Hartmannova
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|