1
|
Balakrishnan M, Yu SF, Chin SM, Soffar DB, Windner SE, Goode BL, Baylies MK. Cofilin Loss in Drosophila Muscles Contributes to Muscle Weakness through Defective Sarcomerogenesis during Muscle Growth. Cell Rep 2021; 32:107893. [PMID: 32697999 PMCID: PMC7479987 DOI: 10.1016/j.celrep.2020.107893] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/23/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
Sarcomeres, the fundamental contractile units of muscles, are conserved structures composed of actin thin filaments and myosin thick filaments. How sarcomeres are formed and maintained is not well understood. Here, we show that knockdown of Drosophila cofilin (DmCFL), an actin depolymerizing factor, disrupts both sarcomere structure and muscle function. The loss of DmCFL also results in the formation of sarcomeric protein aggregates and impairs sarcomere addition during growth. The activation of the proteasome delays muscle deterioration in our model. Furthermore, we investigate how a point mutation in CFL2 that causes nemaline myopathy (NM) in humans affects CFL function and leads to the muscle phenotypes observed in vivo. Our data provide significant insights to the role of CFLs during sarcomere formation, as well as mechanistic implications for disease progression in NM patients. How sarcomeres are added and maintained in a growing muscle cell is unclear. Balakrishnan et al. observed that DmCFL loss in growing muscles affects sarcomere size and addition through unregulated actin polymerization. This results in a collapse of sarcomere and muscle structure, formation of large protein aggregates, and muscle weakness.
Collapse
Affiliation(s)
- Mridula Balakrishnan
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shannon F Yu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Samantha M Chin
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - David B Soffar
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stefanie E Windner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Mary K Baylies
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
2
|
Parker F, Baboolal TG, Peckham M. Actin Mutations and Their Role in Disease. Int J Mol Sci 2020; 21:ijms21093371. [PMID: 32397632 PMCID: PMC7247010 DOI: 10.3390/ijms21093371] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Actin is a widely expressed protein found in almost all eukaryotic cells. In humans, there are six different genes, which encode specific actin isoforms. Disease-causing mutations have been described for each of these, most of which are missense. Analysis of the position of the resulting mutated residues in the protein reveals mutational hotspots. Many of these occur in regions important for actin polymerization. We briefly discuss the challenges in characterizing the effects of these actin mutations, with a focus on cardiac actin mutations.
Collapse
|
3
|
Spletter ML, Barz C, Yeroslaviz A, Zhang X, Lemke SB, Bonnard A, Brunner E, Cardone G, Basler K, Habermann BH, Schnorrer F. A transcriptomics resource reveals a transcriptional transition during ordered sarcomere morphogenesis in flight muscle. eLife 2018; 7:34058. [PMID: 29846170 PMCID: PMC6005683 DOI: 10.7554/elife.34058] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/26/2018] [Indexed: 01/07/2023] Open
Abstract
Muscles organise pseudo-crystalline arrays of actin, myosin and titin filaments to build force-producing sarcomeres. To study sarcomerogenesis, we have generated a transcriptomics resource of developing Drosophila flight muscles and identified 40 distinct expression profile clusters. Strikingly, most sarcomeric components group in two clusters, which are strongly induced after all myofibrils have been assembled, indicating a transcriptional transition during myofibrillogenesis. Following myofibril assembly, many short sarcomeres are added to each myofibril. Subsequently, all sarcomeres mature, reaching 1.5 µm diameter and 3.2 µm length and acquiring stretch-sensitivity. The efficient induction of the transcriptional transition during myofibrillogenesis, including the transcriptional boost of sarcomeric components, requires in part the transcriptional regulator Spalt major. As a consequence of Spalt knock-down, sarcomere maturation is defective and fibers fail to gain stretch-sensitivity. Together, this defines an ordered sarcomere morphogenesis process under precise transcriptional control - a concept that may also apply to vertebrate muscle or heart development.
Collapse
Affiliation(s)
- Maria L Spletter
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Biomedical Center, Physiological ChemistryLudwig-Maximilians-Universität MünchenMartinsriedGermany
| | - Christiane Barz
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
| | - Assa Yeroslaviz
- Computational Biology GroupMax Planck Institute of BiochemistryMartinsriedGermany
| | - Xu Zhang
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
- School of Life Science and EngineeringFoshan UniversityGuangdongChina
| | - Sandra B Lemke
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
| | - Adrien Bonnard
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
- Aix Marseille Univ, INSERM, TAGCMarseilleFrance
| | - Erich Brunner
- Institute of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Giovanni Cardone
- Imaging FacilityMax Planck Institute of BiochemistryMartinsriedGermany
| | - Konrad Basler
- Institute of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
| | - Bianca H Habermann
- Computational Biology GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
- Aix Marseille Univ, INSERM, TAGCMarseilleFrance
| | - Frank Schnorrer
- Muscle Dynamics GroupMax Planck Institute of BiochemistryMartinsriedGermany
- Aix Marseille Univ, CNRS, IBDMMarseilleFrance
| |
Collapse
|
4
|
Loison O, Weitkunat M, Kaya-Çopur A, Nascimento Alves C, Matzat T, Spletter ML, Luschnig S, Brasselet S, Lenne PF, Schnorrer F. Polarization-resolved microscopy reveals a muscle myosin motor-independent mechanism of molecular actin ordering during sarcomere maturation. PLoS Biol 2018; 16:e2004718. [PMID: 29702642 PMCID: PMC5955565 DOI: 10.1371/journal.pbio.2004718] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/16/2018] [Accepted: 04/09/2018] [Indexed: 11/18/2022] Open
Abstract
Sarcomeres are stereotyped force-producing mini-machines of striated muscles. Each sarcomere contains a pseudocrystalline order of bipolar actin and myosin filaments, which are linked by titin filaments. During muscle development, these three filament types need to assemble into long periodic chains of sarcomeres called myofibrils. Initially, myofibrils contain immature sarcomeres, which gradually mature into their pseudocrystalline order. Despite the general importance, our understanding of myofibril assembly and sarcomere maturation in vivo is limited, in large part because determining the molecular order of protein components during muscle development remains challenging. Here, we applied polarization-resolved microscopy to determine the molecular order of actin during myofibrillogenesis in vivo. This method revealed that, concomitantly with mechanical tension buildup in the myotube, molecular actin order increases, preceding the formation of immature sarcomeres. Mechanistically, both muscle and nonmuscle myosin contribute to this actin order gain during early stages of myofibril assembly. Actin order continues to increase while myofibrils and sarcomeres mature. Muscle myosin motor activity is required for the regular and coordinated assembly of long myofibrils but not for the high actin order buildup during sarcomere maturation. This suggests that, in muscle, other actin-binding proteins are sufficient to locally bundle or cross-link actin into highly regular arrays.
Collapse
Affiliation(s)
| | - Manuela Weitkunat
- Max Planck Institute of Biochemistry, Muscle Dynamics Group, Martinsried, Germany
| | - Aynur Kaya-Çopur
- Max Planck Institute of Biochemistry, Muscle Dynamics Group, Martinsried, Germany
| | | | - Till Matzat
- Institute of Neurobiology and Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), University of Münster, Münster, Germany
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Maria L. Spletter
- Max Planck Institute of Biochemistry, Muscle Dynamics Group, Martinsried, Germany
| | - Stefan Luschnig
- Institute of Neurobiology and Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), University of Münster, Münster, Germany
| | - Sophie Brasselet
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | | | - Frank Schnorrer
- Aix Marseille Université, CNRS, IBDM, Marseille, France
- Max Planck Institute of Biochemistry, Muscle Dynamics Group, Martinsried, Germany
| |
Collapse
|
5
|
Zukosky K, Meilleur K, Traynor BJ, Dastgir J, Medne L, Devoto M, Collins J, Rooney J, Zou Y, Yang ML, Gibbs JR, Meier M, Stetefeld J, Finkel RS, Schessl J, Elman L, Felice K, Ferguson TA, Ceyhan-Birsoy O, Beggs AH, Tennekoon G, Johnson JO, Bönnemann CG. Association of a Novel ACTA1 Mutation With a Dominant Progressive Scapuloperoneal Myopathy in an Extended Family. JAMA Neurol 2015; 72:689-98. [PMID: 25938801 DOI: 10.1001/jamaneurol.2015.37] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
IMPORTANCE New genomic strategies can now be applied to identify a diagnosis in patients and families with previously undiagnosed rare genetic conditions. The large family evaluated in the present study was described in 1966 and now expands the phenotype of a known neuromuscular gene. OBJECTIVE To determine the genetic cause of a slowly progressive, autosomal dominant, scapuloperoneal neuromuscular disorder by using linkage and exome sequencing. DESIGN, SETTING, AND PARTICIPANTS Fourteen affected individuals in a 6-generation family with a progressive scapuloperoneal disorder were evaluated. Participants were examined at pediatric, neuromuscular, and research clinics from March 1, 2005, to May 31, 2014. Exome and linkage were performed in genetics laboratories of research institutions. MAIN OUTCOMES AND MEASURES Examination and evaluation by magnetic resonance imaging, ultrasonography, electrodiagnostic studies, and muscle biopsies (n = 3). Genetic analysis included linkage analysis (n = 17) with exome sequencing (n = 7). RESULTS Clinical findings included progressive muscle weakness in an initially scapuloperoneal and distal distribution, including wrist extensor weakness, finger and foot drop, scapular winging, mild facial weakness, Achilles tendon contractures, and diminished or absent deep tendon reflexes. Both age at onset and progression of the disease showed clinical variability within the family. Muscle biopsy specimens demonstrated type I fiber atrophy and trabeculated fibers without nemaline rods. Analysis of exome sequences within the linkage region (4.8 megabases) revealed missense mutation c.591C>A p.Glu197Asp in a highly conserved residue in exon 4 of ACTA1. The mutation cosegregated with disease in all tested individuals and was not present in unaffected individuals. CONCLUSIONS AND RELEVANCE This family defines a new scapuloperoneal phenotype associated with an ACTA1 mutation. A highly conserved protein, ACTA1 is implicated in multiple muscle diseases, including nemaline myopathy, actin aggregate myopathy, fiber-type disproportion, and rod-core myopathy. To our knowledge, mutations in Glu197 have not been reported previously. This residue is highly conserved and located in an exposed position in the protein; the mutation affects the intermolecular and intramolecular electrostatic interactions as shown by structural modeling. The mutation in this residue does not appear to lead to rod formation or actin accumulation in vitro or in vivo, suggesting a different molecular mechanism from that of other ACTA1 diseases.
Collapse
Affiliation(s)
- Kristen Zukosky
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Katherine Meilleur
- National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, Porter Neuroscience Research Center, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Jahannaz Dastgir
- Division of Child Neurology, Columbia University Medical Center, New York, New York
| | - Livija Medne
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Marcella Devoto
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia7Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia8Department of Molecular Medicine, Universit
| | - James Collins
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jachinta Rooney
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland11Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC
| | - Yaqun Zou
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Michele L Yang
- Department of Pediatrics and Neurology, Children's Hospital Colorado, Aurora
| | - J Raphael Gibbs
- Computational Biology Core, Laboratory of Neurogenetics, Porter Neuroscience Research Center, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Markus Meier
- Department of Chemistry, Microbiology, Biochemistry, and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Joerg Stetefeld
- Department of Chemistry, Microbiology, Biochemistry, and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard S Finkel
- Department of Pediatrics, Nemours Children's Hospital, Orlando, Florida
| | - Joachim Schessl
- Department of Neurology, Friedrich-Baur Institute, Ludwig-Maximillans University of Munich, Munich, Germany
| | - Lauren Elman
- Department of Neurology, University of Pennsylvania, Philadelphia
| | - Kevin Felice
- Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, Connecticut
| | - Toby A Ferguson
- Shriners Pediatric Research Center, Department of Neurology, Temple University, Philadelphia, Pennsylvania
| | - Ozge Ceyhan-Birsoy
- The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alan H Beggs
- The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gihan Tennekoon
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Janel O Johnson
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, Porter Neuroscience Research Center, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
6
|
Ravenscroft G, Laing NG, Bönnemann CG. Pathophysiological concepts in the congenital myopathies: blurring the boundaries, sharpening the focus. ACTA ACUST UNITED AC 2014; 138:246-68. [PMID: 25552303 DOI: 10.1093/brain/awu368] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The congenital myopathies are a diverse group of genetic skeletal muscle diseases, which typically present at birth or in early infancy. There are multiple modes of inheritance and degrees of severity (ranging from foetal akinesia, through lethality in the newborn period to milder early and later onset cases). Classically, the congenital myopathies are defined by skeletal muscle dysfunction and a non-dystrophic muscle biopsy with the presence of one or more characteristic histological features. However, mutations in multiple different genes can cause the same pathology and mutations in the same gene can cause multiple different pathologies. This is becoming ever more apparent now that, with the increasing use of next generation sequencing, a genetic diagnosis is achieved for a greater number of patients. Thus, considerable genetic and pathological overlap is emerging, blurring the classically established boundaries. At the same time, some of the pathophysiological concepts underlying the congenital myopathies are moving into sharper focus. Here we explore whether our emerging understanding of disease pathogenesis and underlying pathophysiological mechanisms, rather than a strictly gene-centric approach, will provide grounds for a different and perhaps complementary grouping of the congenital myopathies, that at the same time could help instil the development of shared potential therapeutic approaches. Stemming from recent advances in the congenital myopathy field, five key pathophysiology themes have emerged: defects in (i) sarcolemmal and intracellular membrane remodelling and excitation-contraction coupling; (ii) mitochondrial distribution and function; (iii) myofibrillar force generation; (iv) atrophy; and (v) autophagy. Based on numerous emerging lines of evidence from recent studies in cell lines and patient tissues, mouse models and zebrafish highlighting these unifying pathophysiological themes, here we review the congenital myopathies in relation to these emerging pathophysiological concepts, highlighting both areas of overlap between established entities, as well as areas of distinction within single gene disorders.
Collapse
Affiliation(s)
- Gianina Ravenscroft
- 1 Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Nigel G Laing
- 1 Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Carsten G Bönnemann
- 2 National Institute of Neurological Disorders and Stroke/NIH, Porter Neuroscience Research Centre, Bethesda, MD, USA
| |
Collapse
|
7
|
Silencing of drpr leads to muscle and brain degeneration in adult Drosophila. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2653-61. [PMID: 25111228 DOI: 10.1016/j.ajpath.2014.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 01/26/2023]
Abstract
Mutations in the gene encoding the single transmembrane receptor multiple epidermal growth factor-like domain 10 (MEGF10) cause an autosomal recessive congenital muscle disease in humans. Although mammalian MEGF10 is expressed in the central nervous system as well as in skeletal muscle, patients carrying mutations in MEGF10 do not show symptoms of central nervous system dysfunction. drpr is the sole Drosophila homolog of the human genes MEGF10, MEGF11, and MEGF12 (JEDI, PEAR). The functional domains of MEGF10 and drpr bear striking similarities, and residues affected by MEGF10 mutations in humans are conserved in drpr. Our analysis of drpr mutant flies revealed muscle degeneration with fiber size variability and vacuolization, as well as reduced motor performance, features that have been observed in human MEGF10 myopathy. Vacuolization was also seen in the brain. Tissue-specific RNAi experiments demonstrated that drpr deficiency in muscle, but not in the brain, leads to locomotor defects. The histological and behavioral abnormalities seen in the affected flies set the stage for further studies examining the signaling pathway modulated by MEGF10/Drpr in muscle, as well as assessing the effects of genetic and/or pharmacological manipulations on the observed muscle defects. In addition, the absence of functional redundancy for Drpr in Drosophila may help elucidate whether paralogs of MEGF10 in humans (eg, MEGF11) contribute to maintaining wild-type function in the human brain.
Collapse
|
8
|
Rubenstein PA, Wen KK. Insights into the effects of disease-causing mutations in human actins. Cytoskeleton (Hoboken) 2014; 71:211-29. [PMID: 24574087 DOI: 10.1002/cm.21169] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/13/2013] [Accepted: 02/19/2014] [Indexed: 01/04/2023]
Abstract
Mutations in all six actins in humans have now been shown to cause diseases. However, a number of factors have made it difficult to gain insight into how the changes in actin functions brought about by these pathogenic mutations result in the disease phenotype. These include the presence of multiple actins in the same cell, limited accessibility to pure mutant material, and complexities associated with the structures and their component cells that manifest the diseases. To try to circumvent these difficulties, investigators have turned to the use of model systems. This review describes these various approaches, the initial results obtained using them, and the insight they have provided into allosteric mechanisms that govern actin function. Although results so far have not explained a particular disease phenotype at the molecular level, they have provided valuable insight into actin function at the mechanistic level which can be utilized in the future to delineate the molecular bases of these different actinopathies.
Collapse
Affiliation(s)
- Peter A Rubenstein
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | | |
Collapse
|
9
|
Spletter ML, Schnorrer F. Transcriptional regulation and alternative splicing cooperate in muscle fiber-type specification in flies and mammals. Exp Cell Res 2013; 321:90-8. [PMID: 24145055 PMCID: PMC4040393 DOI: 10.1016/j.yexcr.2013.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/06/2013] [Accepted: 10/09/2013] [Indexed: 11/21/2022]
Abstract
Muscles coordinate body movements throughout the animal kingdom. Each skeletal muscle is built of large, multi-nucleated cells, called myofibers, which are classified into several functionally distinct types. The typical fiber-type composition of each muscle arises during development, and in mammals is extensively adjusted in response to postnatal exercise. Understanding how functionally distinct muscle fiber-types arise is important for unraveling the molecular basis of diseases from cardiomyopathies to muscular dystrophies. In this review, we focus on recent advances in Drosophila and mammals in understanding how muscle fiber-type specification is controlled by the regulation of transcription and alternative splicing. We illustrate the cooperation of general myogenic transcription factors with muscle fiber-type specific transcriptional regulators as a basic principle for fiber-type specification, which is conserved from flies to mammals. We also examine how regulated alternative splicing of sarcomeric proteins in both flies and mammals can directly instruct the physiological and biophysical differences between fiber-types. Thus, research in Drosophila can provide important mechanistic insight into muscle fiber specification, which is relevant to homologous processes in mammals and to the pathology of muscle diseases.
Collapse
Affiliation(s)
- Maria L Spletter
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Frank Schnorrer
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
10
|
Colpan M, Moroz NA, Kostyukova AS. Tropomodulins and tropomyosins: working as a team. J Muscle Res Cell Motil 2013; 34:247-60. [PMID: 23828180 DOI: 10.1007/s10974-013-9349-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/24/2013] [Indexed: 11/25/2022]
Abstract
Actin filaments are major components of the cytoskeleton in eukaryotic cells and are involved in vital cellular functions such as cell motility and muscle contraction. Tmod and TM are crucial constituents of the actin filament network, making their presence indispensable in living cells. Tropomyosin (TM) is an alpha-helical, coiled coil protein that covers the grooves of actin filaments and stabilizes them. Actin filament length is optimized by tropomodulin (Tmod), which caps the slow growing (pointed end) of thin filaments to inhibit polymerization or depolymerization. Tmod consists of two structurally distinct regions: the N-terminal and the C-terminal domains. The N-terminal domain contains two TM-binding sites and one TM-dependent actin-binding site, whereas the C-terminal domain contains a TM-independent actin-binding site. Tmod binds to two TM molecules and at least one actin molecule during capping. The interaction of Tmod with TM is a key regulatory factor for actin filament organization. The binding efficacy of Tmod to TM is isoform-dependent. The affinities of Tmod/TM binding influence the proper localization and capping efficiency of Tmod at the pointed end of actin filaments in cells. Here we describe how a small difference in the sequence of the TM-binding sites of Tmod may result in dramatic change in localization of Tmod in muscle cells or morphology of non-muscle cells. We also suggest most promising directions to study and elucidate the role of Tmod-TM interaction in formation and maintenance of sarcomeric and cytoskeletal structure.
Collapse
Affiliation(s)
- Mert Colpan
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, 118 Dana Hall, Spokane St., Pullman, WA, 99164, USA
| | | | | |
Collapse
|
11
|
Ravenscroft G, McNamara E, Griffiths LM, Papadimitriou JM, Hardeman EC, Bakker AJ, Davies KE, Laing NG, Nowak KJ. Cardiac α-actin over-expression therapy in dominant ACTA1 disease. Hum Mol Genet 2013; 22:3987-97. [PMID: 23736297 DOI: 10.1093/hmg/ddt252] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
More than 200 mutations in the skeletal muscle α-actin gene (ACTA1) cause either dominant or recessive skeletal muscle disease. Currently, there are no specific therapies. Cardiac α-actin is 99% identical to skeletal muscle α-actin and the predominant actin isoform in fetal muscle. We previously showed cardiac α-actin can substitute for skeletal muscle α-actin, preventing the early postnatal death of Acta1 knock-out mice, which model recessive ACTA1 disease. Dominant ACTA1 disease is caused by the presence of 'poison' mutant actin protein. Experimental and anecdotal evidence nevertheless indicates that the severity of dominant ACTA1 disease is modulated by the relative amount of mutant skeletal muscle α-actin protein present. Thus, we investigated whether transgenic over-expression of cardiac α-actin in postnatal skeletal muscle could ameliorate the phenotype of mouse models of severe dominant ACTA1 disease. In one model, lethality of ACTA1(D286G). Acta1(+/-) mice was reduced from ∼59% before 30 days of age to ∼12%. In the other model, Acta1(H40Y), in which ∼80% of male mice die by 5 months of age, the cardiac α-actin transgene did not significantly improve survival. Hence cardiac α-actin over-expression is likely to be therapeutic for at least some dominant ACTA1 mutations. The reason cardiac α-actin was not effective in the Acta1(H40Y) mice is uncertain. We showed that the Acta1(H40Y) mice had endogenously elevated levels of cardiac α-actin in skeletal muscles, a finding not reported in dominant ACTA1 patients.
Collapse
|