1
|
Todorow V, Hintze S, Schoser B, Meinke P. Comparative Analysis of Splicing Alterations in Three Muscular Dystrophies. Biomedicines 2025; 13:606. [PMID: 40149583 PMCID: PMC11940573 DOI: 10.3390/biomedicines13030606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Missplicing caused by toxic DMPK-mRNA is described as a hallmark of myotonic dystrophy type 1 (DM1). Yet, there is an expressional misregulation of additional splicing factors described in DM1, and missplicing has been observed in other myopathies. Here, we compare the expressional misregulation of splicing factors and the resulting splicing profiles between three different hereditary myopathies. Methods: We used publicly available RNA-sequencing datasets for the three muscular dystrophies-DM1, facioscapulohumeral muscular dystrophy (FSHD) and Emery-Dreifuss muscular dystrophy (EDMD)-to compare the splicing factor expression and missplicing genome-wide using DESeq2 and MAJIQ. Results: Upregulation of alternative splicing factors and downregulation of constitutive splicing factors were detected for all three myopathies, but to different degrees. Correspondingly, the missplicing events were mostly alternative exon usage and skipping events. In DM1, most events were alternative exon usage and intron retention, while exon skipping was prevalent in FSHD, with EDMD being in between the two other myopathies in terms of splice factor regulation as well as missplicing. Accordingly, the missplicing events were only partially shared between these three myopathies, sometimes with the same locus being spliced differently. Conclusions: This indicates a combination of primary (toxic RNA) and more downstream effects (splicing factor expression) resulting in the DM1 missplicing phenotype. Furthermore, this analysis allows the distinction between disease-specific missplicing and general myopathic splicing alteration to be used as biomarkers.
Collapse
Affiliation(s)
- Vanessa Todorow
- Friedrich-Baur-Institute, Department of Neurology, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Stefan Hintze
- Friedrich-Baur-Institute, Department of Neurology, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Peter Meinke
- Friedrich-Baur-Institute, Department of Neurology, LMU Klinikum, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| |
Collapse
|
2
|
Pauper M, Hentschel A, Tiburcy M, Beltran S, Ruck T, Schara-Schmidt U, Roos A. Proteomic Profiling Towards a Better Understanding of Genetic Based Muscular Diseases: The Current Picture and a Look to the Future. Biomolecules 2025; 15:130. [PMID: 39858524 PMCID: PMC11763865 DOI: 10.3390/biom15010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/25/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Proteomics accelerates diagnosis and research of muscular diseases by enabling the robust analysis of proteins relevant for the manifestation of neuromuscular diseases in the following aspects: (i) evaluation of the effect of genetic variants on the corresponding protein, (ii) prediction of the underlying genetic defect based on the proteomic signature of muscle biopsies, (iii) analysis of pathophysiologies underlying different entities of muscular diseases, key for the definition of new intervention concepts, and (iv) patient stratification according to biochemical fingerprints as well as (v) monitoring the success of therapeutic interventions. This review presents-also through exemplary case studies-the various advantages of mass proteomics in the investigation of genetic muscle diseases, discusses technical limitations, and provides an outlook on possible future application concepts. Hence, proteomics is an excellent large-scale analytical tool for the diagnostic workup of (hereditary) muscle diseases and warrants systematic profiling of underlying pathophysiological processes. The steady development may allow to overcome existing limitations including a quenched dynamic range and quantification of different protein isoforms. Future directions may include targeted proteomics in diagnostic settings using not only muscle biopsies but also liquid biopsies to address the need for minimally invasive procedures.
Collapse
Affiliation(s)
- Marc Pauper
- Centro Nacional de Análisis Genómico (CNAG), Baldiri Reixac 4, 08028 Barcelona, Spain; (M.P.); (S.B.)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany;
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University, 37075 Göttingen, Germany;
- ZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Sergi Beltran
- Centro Nacional de Análisis Genómico (CNAG), Baldiri Reixac 4, 08028 Barcelona, Spain; (M.P.); (S.B.)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany;
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, University Duisburg-Essen, 45147 Essen, Germany;
| | - Andreas Roos
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany;
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, University Duisburg-Essen, 45147 Essen, Germany;
- Brain and Mind Research Institute, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
3
|
de Las Heras JI, Todorow V, Krečinić-Balić L, Hintze S, Czapiewski R, Webb S, Schoser B, Meinke P, Schirmer EC. Metabolic, fibrotic and splicing pathways are all altered in Emery-Dreifuss muscular dystrophy spectrum patients to differing degrees. Hum Mol Genet 2023; 32:1010-1031. [PMID: 36282542 PMCID: PMC9991002 DOI: 10.1093/hmg/ddac264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 11/14/2022] Open
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is a genetically and clinically variable disorder. Previous attempts to use gene expression changes to find its pathomechanism were unavailing, so we engaged a functional pathway analysis. RNA-Seq was performed on cells from 10 patients diagnosed with an EDMD spectrum disease with different mutations in seven genes. Upon comparing to controls, the pathway analysis revealed that multiple genes involved in fibrosis, metabolism, myogenic signaling and splicing were affected in all patients. Splice variant analysis revealed alterations of muscle-specific variants for several important muscle genes. Deeper analysis of metabolic pathways revealed a reduction in glycolytic and oxidative metabolism and reduced numbers of mitochondria across a larger set of 14 EDMD spectrum patients and 7 controls. Intriguingly, the gene expression signatures segregated the patients into three subgroups whose distinctions could potentially relate to differences in clinical presentation. Finally, differential expression analysis of miRNAs changing in the patients similarly highlighted fibrosis, metabolism and myogenic signaling pathways. This pathway approach revealed a transcriptome profile that can both be used as a template for establishing a biomarker panel for EDMD and direct further investigation into its pathomechanism. Furthermore, the segregation of specific gene changes into distinct groups that appear to correlate with clinical presentation may template development of prognostic biomarkers, though this will first require their testing in a wider set of patients with more clinical information.
Collapse
Affiliation(s)
| | - Vanessa Todorow
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Ludwig-Maximillians-University, Munich, Germany
| | - Lejla Krečinić-Balić
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Ludwig-Maximillians-University, Munich, Germany
| | - Stefan Hintze
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Ludwig-Maximillians-University, Munich, Germany
| | - Rafal Czapiewski
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Shaun Webb
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Ludwig-Maximillians-University, Munich, Germany
| | - Peter Meinke
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Ludwig-Maximillians-University, Munich, Germany
| | - Eric C Schirmer
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Peterson JAM, Cooper TA. Clinical and Molecular Insights into Gastrointestinal Dysfunction in Myotonic Dystrophy Types 1 & 2. Int J Mol Sci 2022; 23:ijms232314779. [PMID: 36499107 PMCID: PMC9737721 DOI: 10.3390/ijms232314779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Myotonic dystrophy (DM) is a highly variable, multisystemic disorder that clinically affects one in 8000 individuals. While research has predominantly focused on the symptoms and pathological mechanisms affecting striated muscle and brain, DM patient surveys have identified a high prevalence for gastrointestinal (GI) symptoms amongst affected individuals. Clinical studies have identified chronic and progressive dysfunction of the esophagus, stomach, liver and gallbladder, small and large intestine, and rectum and anal sphincters. Despite the high incidence of GI dysmotility in DM, little is known regarding the pathological mechanisms leading to GI dysfunction. In this review, we summarize results from clinical and molecular analyses of GI dysfunction in both genetic forms of DM, DM type 1 (DM1) and DM type 2 (DM2). Based on current knowledge of DM primary pathological mechanisms in other affected tissues and GI tissue studies, we suggest that misregulation of alternative splicing in smooth muscle resulting from the dysregulation of RNA binding proteins muscleblind-like and CUGBP-elav-like is likely to contribute to GI dysfunction in DM. We propose that a combinatorial approach using clinical and molecular analysis of DM GI tissues and model organisms that recapitulate DM GI manifestations will provide important insight into defects impacting DM GI motility.
Collapse
Affiliation(s)
- Janel A. M. Peterson
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor College of Medicine, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas A. Cooper
- Baylor College of Medicine, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor College of Medicine, Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor College of Medicine, Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
5
|
Nieuwenhuis S, Widomska J, Blom P, ‘t Hoen PBAC, van Engelen BGM, Glennon JC, on behalf of the OPTIMISTIC Consortium. Blood Transcriptome Profiling Links Immunity to Disease Severity in Myotonic Dystrophy Type 1 (DM1). Int J Mol Sci 2022; 23:3081. [PMID: 35328504 PMCID: PMC8954763 DOI: 10.3390/ijms23063081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 02/01/2023] Open
Abstract
The blood transcriptome was examined in relation to disease severity in type I myotonic dystrophy (DM1) patients who participated in the Observational Prolonged Trial In DM1 to Improve QoL- Standards (OPTIMISTIC) study. This sought to (a) ascertain if transcriptome changes were associated with increasing disease severity, as measured by the muscle impairment rating scale (MIRS), and (b) establish if these changes in mRNA expression and associated biological pathways were also observed in the Dystrophia Myotonica Biomarker Discovery Initiative (DMBDI) microarray dataset in blood (with equivalent MIRS/DMPK repeat length). The changes in gene expression were compared using a number of complementary pathways, gene ontology and upstream regulator analyses, which suggested that symptom severity in DM1 was linked to transcriptomic alterations in innate and adaptive immunity associated with muscle-wasting. Future studies should explore the role of immunity in DM1 in more detail to assess its relevance to DM1.
Collapse
Affiliation(s)
- Sylvia Nieuwenhuis
- Center for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands; (S.N.); (P.-B.A.C.‘t.H.)
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, 6525 EN Nijmegen, The Netherlands;
| | - Joanna Widomska
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, 6525 EN Nijmegen, The Netherlands;
| | - Paul Blom
- VDL Enabling Technologies Group B.V., 5651 GH Eindhoven, The Netherlands;
| | - Peter-Bram A. C. ‘t Hoen
- Center for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands; (S.N.); (P.-B.A.C.‘t.H.)
| | - Baziel G. M. van Engelen
- Department of Neurology, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands;
| | - Jeffrey C. Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, 6525 EN Nijmegen, The Netherlands;
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | | |
Collapse
|
6
|
Espinosa-Espinosa J, González-Barriga A, López-Castel A, Artero R. Deciphering the Complex Molecular Pathogenesis of Myotonic Dystrophy Type 1 through Omics Studies. Int J Mol Sci 2022; 23:ijms23031441. [PMID: 35163365 PMCID: PMC8836095 DOI: 10.3390/ijms23031441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
Omics studies are crucial to improve our understanding of myotonic dystrophy type 1 (DM1), the most common muscular dystrophy in adults. Employing tissue samples and cell lines derived from patients and animal models, omics approaches have revealed the myriad alterations in gene and microRNA expression, alternative splicing, 3′ polyadenylation, CpG methylation, and proteins levels, among others, that contribute to this complex multisystem disease. In addition, omics characterization of drug candidate treatment experiments provides crucial insight into the degree of therapeutic rescue and off-target effects that can be achieved. Finally, several innovative technologies such as single-cell sequencing and artificial intelligence will have a significant impact on future DM1 research.
Collapse
Affiliation(s)
- Jorge Espinosa-Espinosa
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; (J.E.-E.); (R.A.)
- Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Anchel González-Barriga
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, 75013 Paris, France;
| | - Arturo López-Castel
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; (J.E.-E.); (R.A.)
- Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-963543028
| | - Rubén Artero
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; (J.E.-E.); (R.A.)
- Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| |
Collapse
|
7
|
Maimaiti R, Zhu C, Zhang Y, Ding Q, Guo W. RBM20-Mediated Pre-mRNA Splicing Has Muscle-Specificity and Differential Hormonal Responses between Muscles and in Muscle Cell Cultures. Int J Mol Sci 2021; 22:2928. [PMID: 33805770 PMCID: PMC7999644 DOI: 10.3390/ijms22062928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
Pre-mRNA splicing plays an important role in muscle function and diseases. The RNA binding motif 20 (RBM20) is a splicing factor that is predominantly expressed in muscle tissues and primarily regulates pre-mRNA splicing of Ttn, encoding a giant muscle protein titin that is responsible for muscle function and diseases. RBM20-mediated Ttn splicing has been mostly studied in heart muscle, but not in skeletal muscle. In this study, we investigated splicing specificity in different muscle types in Rbm20 knockout rats and hormonal effects on RBM20-mediated splicing both in cellulo and in vivo studies. The results revealed that RBM20 is differentially expressed across muscles and RBM20-mediated splicing is muscle-type specific. In the presence of RBM20, Ttn splicing responds to hormones in a muscle-type dependent manner, while in the absence of RBM20, Ttn splicing is not affected by hormones. In differentiated and undifferentiated C2C12 cells, RBM20-mediated splicing in response to hormonal effects is mainly through genomic signaling pathway. The knowledge gained from this study may help further understand muscle-specific gene splicing in response to hormone stimuli in different muscle types.
Collapse
Affiliation(s)
- Rexiati Maimaiti
- Animal Science Department, University of Wyoming, Laramie, WY 82071, USA; (R.M.); (C.Z.)
| | - Chaoqun Zhu
- Animal Science Department, University of Wyoming, Laramie, WY 82071, USA; (R.M.); (C.Z.)
| | - Yanghai Zhang
- Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (Q.D.)
| | - Qiyue Ding
- Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (Q.D.)
| | - Wei Guo
- Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (Q.D.)
| |
Collapse
|
8
|
Grande V, Hathazi D, O'Connor E, Marteau T, Schara-Schmidt U, Hentschel A, Gourdon G, Nikolenko N, Lochmüller H, Roos A. Dysregulation of GSK3β-Target Proteins in Skin Fibroblasts of Myotonic Dystrophy Type 1 (DM1) Patients. J Neuromuscul Dis 2021; 8:603-619. [PMID: 33682722 DOI: 10.3233/jnd-200558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is the most common monogenetic muscular disorder of adulthood. This multisystemic disease is caused by CTG repeat expansion in the 3'-untranslated region of the DM1 protein kinase gene called DMPK. DMPK encodes a myosin kinase expressed in skeletal muscle cells and other cellular populations such as smooth muscle cells, neurons and fibroblasts. The resultant expanded (CUG)n RNA transcripts sequester RNA binding factors leading to ubiquitous and persistent splicing deregulation. The accumulation of mutant CUG repeats is linked to increased activity of glycogen synthase kinase 3 beta (GSK3β), a highly conserved and ubiquitous serine/threonine kinase with functions in pathways regulating inflammation, metabolism, oncogenesis, neurogenesis and myogenesis. As GSK3β-inhibition ameliorates defects in myogenesis, muscle strength and myotonia in a DM1 mouse model, this kinase represents a key player of DM1 pathobiochemistry and constitutes a promising therapeutic target. To better characterise DM1 patients, and monitor treatment responses, we aimed to define a set of robust disease and severity markers linked to GSK3βby unbiased proteomic profiling utilizing fibroblasts derived from DM1 patients with low (80- 150) and high (2600- 3600) CTG-repeats. Apart from GSK3β increase, we identified dysregulation of nine proteins (CAPN1, CTNNB1, CTPS1, DNMT1, HDAC2, HNRNPH3, MAP2K2, NR3C1, VDAC2) modulated by GSK3β. In silico-based expression studies confirmed expression in neuronal and skeletal muscle cells and revealed a relatively elevated abundance in fibroblasts. The potential impact of each marker in the myopathology of DM1 is discussed based on respective function to inform potential uses as severity markers or for monitoring GSK3β inhibitor treatment responses.
Collapse
Affiliation(s)
- Valentina Grande
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, Germany
| | - Denisa Hathazi
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany.,Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Emily O'Connor
- Childrens Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Theo Marteau
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, Germany
| | - Ulrike Schara-Schmidt
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany
| | - Genevieve Gourdon
- Centre de Recherche en Myologie, Association Institut de Myologie, Sorbonne Université, Inserm UMR 974, Paris, France
| | - Nikoletta Nikolenko
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Hanns Lochmüller
- Childrens Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.,Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany.,Centro Nacional de AnálisisGenómico, Center for Genomic Regulation (CNAG-CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Andreas Roos
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, Germany.,Childrens Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
9
|
Costa R, Rodia MT, Zini N, Pegoraro V, Marozzo R, Capanni C, Angelini C, Lattanzi G, Santi S, Cenacchi G. Morphological study of TNPO3 and SRSF1 interaction during myogenesis by combining confocal, structured illumination and electron microscopy analysis. Mol Cell Biochem 2021; 476:1797-1811. [PMID: 33452620 PMCID: PMC7940345 DOI: 10.1007/s11010-020-04023-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Transportin3 (TNPO3) shuttles the SR proteins from the cytoplasm to the nucleus. The SR family includes essential splicing factors, such as SRSF1, that influence alternative splicing, controlling protein diversity in muscle and satellite cell differentiation. Given the importance of alternative splicing in the myogenic process and in the maintenance of healthy muscle, alterations in the splicing mechanism might contribute to the development of muscle disorders. Combining confocal, structured illumination and electron microscopy, we investigated the expression of TNPO3 and SRSF1 during myogenesis, looking at nuclear and cytoplasmic compartments. We investigated TNPO3 and its interaction with SRSF1 and we observed that SRSF1 remained mainly localized in the nucleus, while TNPO3 decreased in the cytoplasm and was strongly clustered in the nuclei of differentiated myotubes. In conclusion, combining different imaging techniques led us to describe the behavior of TNPO3 and SRSF1 during myogenesis, showing that their dynamics follow the myogenic process and could influence the proteomic network necessary during myogenesis. The combination of different high-, super- and ultra-resolution imaging techniques led us to describe the behavior of TNPO3 and its interaction with SRSF1, looking at nuclear and cytoplasmic compartments. These observations represent a first step in understanding the role of TNPO3 and SRFSF1 in complex mechanisms, such as myogenesis.
Collapse
Affiliation(s)
- Roberta Costa
- Department of Biomedical and Neuromotor Sciences-DIBINEM, Alma Mater Studiorum University of Bologna, via Massarenti 9, 40138, Bologna, Italy.,Center of Applied Biomedical Research-CRBA, Alma Mater Studiorum University of Bologna, St. Orsola Hospital, via Massarenti 9, 40138, Bologna, Italy
| | - Maria Teresa Rodia
- Department of Biomedical and Neuromotor Sciences-DIBINEM, Alma Mater Studiorum University of Bologna, via Massarenti 9, 40138, Bologna, Italy.,Center of Applied Biomedical Research-CRBA, Alma Mater Studiorum University of Bologna, St. Orsola Hospital, via Massarenti 9, 40138, Bologna, Italy
| | - Nicoletta Zini
- CNR-National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, via di Barbiano 1/10, 40136, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Valentina Pegoraro
- Neuromuscular Unit, Neurobiology Research group, IRCCS San Camillo Hospital, via Alberoni 70, 30126, Venice, Italy
| | - Roberta Marozzo
- Neuromuscular Unit, Neurobiology Research group, IRCCS San Camillo Hospital, via Alberoni 70, 30126, Venice, Italy
| | - Cristina Capanni
- CNR-National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, via di Barbiano 1/10, 40136, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Corrado Angelini
- Neuromuscular Unit, Neurobiology Research group, IRCCS San Camillo Hospital, via Alberoni 70, 30126, Venice, Italy
| | - Giovanna Lattanzi
- CNR-National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, via di Barbiano 1/10, 40136, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Spartaco Santi
- CNR-National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, via di Barbiano 1/10, 40136, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences-DIBINEM, Alma Mater Studiorum University of Bologna, via Massarenti 9, 40138, Bologna, Italy. .,Center of Applied Biomedical Research-CRBA, Alma Mater Studiorum University of Bologna, St. Orsola Hospital, via Massarenti 9, 40138, Bologna, Italy.
| |
Collapse
|
10
|
An Overview of Alternative Splicing Defects Implicated in Myotonic Dystrophy Type I. Genes (Basel) 2020; 11:genes11091109. [PMID: 32971903 PMCID: PMC7564762 DOI: 10.3390/genes11091109] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 01/02/2023] Open
Abstract
Myotonic dystrophy type I (DM1) is the most common form of adult muscular dystrophy, caused by expansion of a CTG triplet repeat in the 3′ untranslated region (3′UTR) of the myotonic dystrophy protein kinase (DMPK) gene. The pathological CTG repeats result in protein trapping by expanded transcripts, a decreased DMPK translation and the disruption of the chromatin structure, affecting neighboring genes expression. The muscleblind-like (MBNL) and CUG-BP and ETR-3-like factors (CELF) are two families of tissue-specific regulators of developmentally programmed alternative splicing that act as antagonist regulators of several pre-mRNA targets, including troponin 2 (TNNT2), insulin receptor (INSR), chloride channel 1 (CLCN1) and MBNL2. Sequestration of MBNL proteins and up-regulation of CELF1 are key to DM1 pathology, inducing a spliceopathy that leads to a developmental remodelling of the transcriptome due to an adult-to-foetal splicing switch, which results in the loss of cell function and viability. Moreover, recent studies indicate that additional pathogenic mechanisms may also contribute to disease pathology, including a misregulation of cellular mRNA translation, localization and stability. This review focuses on the cause and effects of MBNL and CELF1 deregulation in DM1, describing the molecular mechanisms underlying alternative splicing misregulation for a deeper understanding of DM1 complexity. To contribute to this analysis, we have prepared a comprehensive list of transcript alterations involved in DM1 pathogenesis, as well as other deregulated mRNA processing pathways implications.
Collapse
|
11
|
Kurkiewicz A, Cooper A, McIlwaine E, Cumming SA, Adam B, Krahe R, Puymirat J, Schoser B, Timchenko L, Ashizawa T, Thornton CA, Rogers S, McClure JD, Monckton DG. Towards development of a statistical framework to evaluate myotonic dystrophy type 1 mRNA biomarkers in the context of a clinical trial. PLoS One 2020; 15:e0231000. [PMID: 32287265 PMCID: PMC7156058 DOI: 10.1371/journal.pone.0231000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a rare genetic disorder, characterised by muscular dystrophy, myotonia, and other symptoms. DM1 is caused by the expansion of a CTG repeat in the 3'-untranslated region of DMPK. Longer CTG expansions are associated with greater symptom severity and earlier age at onset. The primary mechanism of pathogenesis is thought to be mediated by a gain of function of the CUG-containing RNA, that leads to trans-dysregulation of RNA metabolism of many other genes. Specifically, the alternative splicing (AS) and alternative polyadenylation (APA) of many genes is known to be disrupted. In the context of clinical trials of emerging DM1 treatments, it is important to be able to objectively quantify treatment efficacy at the level of molecular biomarkers. We show how previously described candidate mRNA biomarkers can be used to model an effective reduction in CTG length, using modern high-dimensional statistics (machine learning), and a blood and muscle mRNA microarray dataset. We show how this model could be used to detect treatment effects in the context of a clinical trial.
Collapse
Affiliation(s)
- Adam Kurkiewicz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anneli Cooper
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Emily McIlwaine
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sarah A. Cumming
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Berit Adam
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ralf Krahe
- Department of Genetics, University of Texas, MD Anderson Cancer Center, Houston, TX, United States of America
| | - Jack Puymirat
- Laboratory of Human Genetics, CHUL Medical Research Centre, University of Laval, Quebec City, QC, Canada
| | - Benedikt Schoser
- Department of Neurology, Friedrich Baur Institute, Ludwig Maximilians University, Munich, Germany
| | - Lubov Timchenko
- Department of Pediatrics, Division of Neurology, Cincinnati Children’s Hosptial, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States of America
| | | | - Charles A. Thornton
- University of Rochester, Medical Center School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Simon Rogers
- School of Computing Science, University of Glasgow, Glasgow, United Kingdom
| | - John D. McClure
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Darren G. Monckton
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
12
|
Bosè F, Renna LV, Fossati B, Arpa G, Labate V, Milani V, Botta A, Micaglio E, Meola G, Cardani R. TNNT2 Missplicing in Skeletal Muscle as a Cardiac Biomarker in Myotonic Dystrophy Type 1 but Not in Myotonic Dystrophy Type 2. Front Neurol 2019; 10:992. [PMID: 31611837 PMCID: PMC6776629 DOI: 10.3389/fneur.2019.00992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/02/2019] [Indexed: 12/31/2022] Open
Abstract
Cardiac involvement is one of the most important manifestations of the multisystemic phenotype of patients affected by myotonic dystrophy (DM) and represents the second cause of premature death. Molecular mechanisms responsible for DM cardiac defects are still unclear; however, missplicing of the cardiac isoform of troponin T (TNNT2) and of the cardiac sodium channel (SCN5A) genes might contribute to the reduced myocardial function and conduction abnormalities seen in DM patients. Since, in DM skeletal muscle, the TNNT2 gene shows the same aberrant splicing pattern observed in cardiac muscle, the principal aim of this work was to verify if the TNNT2 aberrant fetal isoform expression could be secondary to myopathic changes or could reflect the DM cardiac phenotype. Analysis of alternative splicing of TNNT2 and of several genes involved in DM pathology has been performed on muscle biopsies from patients affected by DM type 1 (DM1) or type 2 (DM2) with or without cardiac involvement. Our analysis shows that missplicing of muscle-specific genes is higher in DM1 and DM2 than in regenerating control muscles, indicating that these missplicing could be effectively important in DM skeletal muscle pathology. When considering the TNNT2 gene, missplicing appears to be more evident in DM1 than in DM2 muscles since, in DM2, the TNNT2 fetal isoform appears to be less expressed than the adult isoform. This evidence does not seem to be related to less severe muscle histopathological alterations that appear to be similar in DM1 and DM2 muscles. These results seem to indicate that the more severe TNNT2 missplicing observed in DM1 could not be related only to myopathic changes but could reflect the more severe general phenotype compared to DM2, including cardiac problems that appear to be more severe and frequent in DM1 than in DM2 patients. Moreover, TNNT2 missplicing significantly correlates with the QRS cardiac parameter in DM1 but not in DM2 patients, indicating that this splicing event has good potential to function as a biomarker of DM1 severity and it should be considered in pharmacological clinical trials to monitor the possible effects of different therapeutic approaches on skeletal muscle tissues.
Collapse
Affiliation(s)
- Francesca Bosè
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, Milan, Italy
| | - Laura Valentina Renna
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, Milan, Italy
| | - Barbara Fossati
- Department of Neurology, IRCCS-Policlinico San Donato, Milan, Italy.,Department of Neurorehabilitation Sciences, Casa Cura Policlinico (CCP), Milan, Italy
| | - Giovanni Arpa
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Valentina Labate
- University Cardiology Unit, IRCCS-Policlinico San Donato, Milan, Italy
| | - Valentina Milani
- Scientific Directorate, IRCCS Policlinico San Donato, Milan, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Emanuele Micaglio
- Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy
| | - Giovanni Meola
- Department of Neurology, IRCCS-Policlinico San Donato, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, Milan, Italy
| |
Collapse
|
13
|
Activation of the interferon type I response rather than autophagy contributes to myogenesis inhibition in congenital DM1 myoblasts. Cell Death Dis 2018; 9:1071. [PMID: 30341284 PMCID: PMC6195593 DOI: 10.1038/s41419-018-1080-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022]
Abstract
Congenital myotonic dystrophy type 1 (CDM1) is characterized by severe symptoms that affect patients from birth, with 40% mortality in the neonatal period and impaired skeletal muscle development. In this paper, we examined the relationship between autophagy and abnormal myogenic differentiation of CDM1 myoblasts. We investigated these pathological features at both ultrastructural and molecular levels, utilizing two CDM1 foetal myoblasts, CDM13 and CDM15, with 1800 and 3200 repeats, respectively. The congenital nature of these CDM1 myoblasts was confirmed by the high methylation level at the DMPK locus. Our results indicated that abnormal autophagy was independent of myogenic differentiation, as CDM13 myoblasts differentiated as well as control myoblasts but underwent autophagy like CDM15, displaying impaired differentiation. miRNA expression profiles revealed that CDM15 myoblasts failed to upregulate the complex network of myo-miRNAs under MYOD and MEF2A control, while this network was upregulated in CDM13 myoblasts. Interestingly, the abnormal differentiation of CDM15 myoblasts was associated with cellular stress accompanied by the induction of the interferon type 1 pathway (innate immune response). Indeed, inhibition of the interferon (IFN) type I pathway restores myogenic differentiation of CDM15 myoblasts, suggesting that the inappropriate activation of the innate immune response might contribute to impaired myogenic differentiation and severe muscle symptoms observed in some CDM1 patients. These findings open up the possibility of new therapeutic approaches to treat CDM1.
Collapse
|
14
|
Yin Z, Zhang K, Peng X, Jiang Z, Yuan W, Wang Y, Li Y, Ye X, Dong Y, Wan Y, Ni B, Zhu P, Fan X, Wu X, Mo X. SIVA1 Regulates the Stability of Single-Stranded DNA-Binding Protein 3 Isoforms. Mol Biol 2018. [DOI: 10.1134/s0026893318050163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
André LM, Ausems CRM, Wansink DG, Wieringa B. Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy. Front Neurol 2018; 9:368. [PMID: 29892259 PMCID: PMC5985300 DOI: 10.3389/fneur.2018.00368] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In addition, manifestation in DM1 is generally more severe, with possible congenital or childhood-onset of disease and prominent CNS involvement. DM1 and DM2 are caused by expansion of (CTG•CAG)n and (CCTG•CAGG)n repeats in the 3' non-coding region of DMPK and in intron 1 of CNBP, respectively, and in overlapping antisense genes. This critical review will focus on the pleiotropic problems that occur during development, growth, regeneration, and aging of skeletal muscle in patients who inherited these expansions. The current best-accepted idea is that most muscle symptoms can be explained by pathomechanistic effects of repeat expansion on RNA-mediated pathways. However, aberrations in DNA replication and transcription of the DM loci or in protein translation and proteome homeostasis could also affect the control of proliferation and differentiation of muscle progenitor cells or the maintenance and physiological integrity of muscle fibers during a patient's lifetime. Here, we will discuss these molecular and cellular processes and summarize current knowledge about the role of embryonic and adult muscle-resident stem cells in growth, homeostasis, regeneration, and premature aging of healthy and diseased muscle tissue. Of particular interest is that also progenitor cells from extramuscular sources, such as pericytes and mesoangioblasts, can participate in myogenic differentiation. We will examine the potential of all these types of cells in the application of regenerative medicine for muscular dystrophies and evaluate new possibilities for their use in future therapy of DM.
Collapse
Affiliation(s)
- Laurène M André
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - C Rosanne M Ausems
- Department of Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Derick G Wansink
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
16
|
Intron retention induced by microsatellite expansions as a disease biomarker. Proc Natl Acad Sci U S A 2018; 115:4234-4239. [PMID: 29610297 DOI: 10.1073/pnas.1716617115] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Expansions of simple sequence repeats, or microsatellites, have been linked to ∼30 neurological-neuromuscular diseases. While these expansions occur in coding and noncoding regions, microsatellite sequence and repeat length diversity is more prominent in introns with eight different trinucleotide to hexanucleotide repeats, causing hereditary diseases such as myotonic dystrophy type 2 (DM2), Fuchs endothelial corneal dystrophy (FECD), and C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). Here, we test the hypothesis that these GC-rich intronic microsatellite expansions selectively trigger host intron retention (IR). Using DM2, FECD, and C9-ALS/FTD as examples, we demonstrate that retention is readily detectable in affected tissues and peripheral blood lymphocytes and conclude that IR screening constitutes a rapid and inexpensive biomarker for intronic repeat expansion disease.
Collapse
|
17
|
Thomas JD, Oliveira R, Sznajder ŁJ, Swanson MS. Myotonic Dystrophy and Developmental Regulation of RNA Processing. Compr Physiol 2018; 8:509-553. [PMID: 29687899 PMCID: PMC11323716 DOI: 10.1002/cphy.c170002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myotonic dystrophy (DM) is a multisystemic disorder caused by microsatellite expansion mutations in two unrelated genes leading to similar, yet distinct, diseases. DM disease presentation is highly variable and distinguished by differences in age-of-onset and symptom severity. In the most severe form, DM presents with congenital onset and profound developmental defects. At the molecular level, DM pathogenesis is characterized by a toxic RNA gain-of-function mechanism that involves the transcription of noncoding microsatellite expansions. These mutant RNAs disrupt key cellular pathways, including RNA processing, localization, and translation. In DM, these toxic RNA effects are predominantly mediated through the modulation of the muscleblind-like and CUGBP and ETR-3-like factor families of RNA binding proteins (RBPs). Dysfunction of these RBPs results in widespread RNA processing defects culminating in the expression of developmentally inappropriate protein isoforms in adult tissues. The tissue that is the focus of this review, skeletal muscle, is particularly sensitive to mutant RNA-responsive perturbations, as patients display a variety of developmental, structural, and functional defects in muscle. Here, we provide a comprehensive overview of DM1 and DM2 clinical presentation and pathology as well as the underlying cellular and molecular defects associated with DM disease onset and progression. Additionally, fundamental aspects of skeletal muscle development altered in DM are highlighted together with ongoing and potential therapeutic avenues to treat this muscular dystrophy. © 2018 American Physiological Society. Compr Physiol 8:509-553, 2018.
Collapse
Affiliation(s)
- James D. Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Ruan Oliveira
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Łukasz J. Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Maurice S. Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
18
|
Imbriano C, Molinari S. Alternative Splicing of Transcription Factors Genes in Muscle Physiology and Pathology. Genes (Basel) 2018; 9:genes9020107. [PMID: 29463057 PMCID: PMC5852603 DOI: 10.3390/genes9020107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle formation is a multi-step process that is governed by complex networks of transcription factors. The regulation of their functions is in turn multifaceted, including several mechanisms, among them alternative splicing (AS) plays a primary role. On the other hand, altered AS has a role in the pathogenesis of numerous muscular pathologies. Despite these premises, the causal role played by the altered splicing pattern of transcripts encoding myogenic transcription factors in neuromuscular diseases has been neglected so far. In this review, we systematically investigate what has been described about the AS patterns of transcription factors both in the physiology of the skeletal muscle formation process and in neuromuscular diseases, in the hope that this may be useful in re-evaluating the potential role of altered splicing of transcription factors in such diseases.
Collapse
Affiliation(s)
- Carol Imbriano
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| | - Susanna Molinari
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW This article describes clinical and electrical myotonia and provides an update on the classification, diagnosis, and management of myotonic disorders. RECENT FINDINGS In the myotonic dystrophies, antisense oligonucleotides provide a general strategy to correct RNA gain of function and modulate the expression of CTG expanded repeats; they are currently being tested in a phase 1-2 randomized controlled trial in patients with adult-onset myotonic dystrophy type 1. New genetic mutations are continuously being identified in the nondystrophic myotonias involving sodium and chloride channels. This contributes to the difficulty in describing genotype-phenotype correlations as the same mutations can give rise to different phenotypes, and the same phenotypes can arise from different mutations. Pharmacologic therapy is moving toward mutation-targeted treatments. SUMMARY This article describes the clinical and diagnostic characteristics and management of the myotonic dystrophies and the nondystrophic myotonias. Clinical features of the congenital, juvenile, and classic adult forms of myotonic dystrophy type 1 are reviewed, and for the adult form, reference is made to the main diagnostic and follow-up tests for which general consensus exists. The different clinical presentations of myotonic dystrophy type 2 and its main differential diagnostic options are also discussed. The clinical spectrum of the sodium and chloride channelopathies is described, and clinical diagnostic clues to differentiate between these two groups are provided. Therapeutic options for patients with nondystrophic myotonias are also presented with reference to literature review and the author's personal experience.
Collapse
|
20
|
Nakamori M, Hamanaka K, Thomas JD, Wang ET, Hayashi YK, Takahashi MP, Swanson MS, Nishino I, Mochizuki H. Aberrant Myokine Signaling in Congenital Myotonic Dystrophy. Cell Rep 2017; 21:1240-1252. [PMID: 29091763 PMCID: PMC5689469 DOI: 10.1016/j.celrep.2017.10.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/02/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023] Open
Abstract
Myotonic dystrophy types 1 (DM1) and 2 (DM2) are dominantly inherited neuromuscular disorders caused by a toxic gain of function of expanded CUG and CCUG repeats, respectively. Although both disorders are clinically similar, congenital myotonic dystrophy (CDM), a severe DM form, is found only in DM1. CDM is also characterized by muscle fiber immaturity not observed in adult DM, suggesting specific pathological mechanisms. Here, we revealed upregulation of the interleukin-6 (IL-6) myokine signaling pathway in CDM muscles. We also found a correlation between muscle immaturity and not only IL-6 expression but also expanded CTG repeat length and CpG methylation status upstream of the repeats. Aberrant CpG methylation was associated with transcriptional dysregulation at the repeat locus, increasing the toxic RNA burden that upregulates IL-6. Because the IL-6 pathway is involved in myocyte maturation and muscle atrophy, our results indicate that enhanced RNA toxicity contributes to severe CDM phenotypes through aberrant IL-6 signaling.
Collapse
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Kohei Hamanaka
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - James D Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Eric T Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Yukiko K Hayashi
- Department of Pathophysiology, Tokyo Medical University, Shinjuku, Tokyo 160-0022, Japan
| | - Masanori P Takahashi
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
21
|
Shao D, Zhu X, Sun W, Huo L, Chen W, Wang H, Liu B, Pan P. Investigation of the molecular mechanisms underlying myotonic dystrophy types 1 and 2 cataracts using microRNA‑target gene networks. Mol Med Rep 2017; 16:3737-3744. [PMID: 28731161 PMCID: PMC5646950 DOI: 10.3892/mmr.2017.7059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 02/23/2017] [Indexed: 01/03/2023] Open
Abstract
The purpose of the present study was to investigate the molecular mechanisms of myotonic dystrophy (DM) 1 and 2 cataracts using bioinformatics methods. A microarray dataset (E‑MEXP‑3365) downloaded from the Array Express database included lens epithelial samples of DM1 and DM2 cataract patients (n=3/group) and non‑DM lens epithelial samples as a control (n=4). Differentially expressed genes (DEGs) were identified between DM1 and control samples, and between DM2 and control samples. Pathway enrichment analyses were performed for the DEGs. Potential micro (mi)RNAs regulating these DEGs were predicted. An miRNA‑target gene network was constructed for DM1 and DM2. The study identified 223 DEGs in DM1, and 303 DEGs in DM2. DM1 and DM2 shared 172 DEGs. The DEGs in DM1 were enriched with calcium, Wnt and axon guidance signaling pathways. The DEGs in DM2 were linked by adherens junction signaling pathways. miRNA (miR)‑197, miR‑29b and miR‑29c were included in the network modules of DM1. miR‑197, miR‑29c and miR‑29a were involved in the network modules of DM2. It is therefore hypothesized that these signaling pathways and miRNAs underlie DM1 and DM2 cataracts, and may represent potential therapeutic targets for the treatment of this disorder.
Collapse
Affiliation(s)
- Dewang Shao
- Department of Ophthalmology, Air Force Aviation Medicine Research Institute Affiliated Hospital, Beijing 100089, P.R. China
| | - Xiaoquan Zhu
- Department of Ophthalmology, Air Force Aviation Medicine Research Institute Affiliated Hospital, Beijing 100089, P.R. China
| | - Wei Sun
- Department of Ophthalmology, Air Force Aviation Medicine Research Institute Affiliated Hospital, Beijing 100089, P.R. China
| | - Lu Huo
- Department of Ophthalmology, Air Force Aviation Medicine Research Institute Affiliated Hospital, Beijing 100089, P.R. China
| | - Wei Chen
- Department of Ophthalmology, Air Force General Hospital, Beijing 100089, P.R. China
| | - Hua Wang
- Department of Ophthalmology, Air Force General Hospital, Beijing 100089, P.R. China
| | - Bing Liu
- Department of Ophthalmology, Air Force General Hospital, Beijing 100089, P.R. China
| | - Peng Pan
- Department of Ophthalmology, Air Force Aviation Medicine Research Institute Affiliated Hospital, Beijing 100089, P.R. China
| |
Collapse
|
22
|
Thomas JD, Sznajder ŁJ, Bardhi O, Aslam FN, Anastasiadis ZP, Scotti MM, Nishino I, Nakamori M, Wang ET, Swanson MS. Disrupted prenatal RNA processing and myogenesis in congenital myotonic dystrophy. Genes Dev 2017; 31:1122-1133. [PMID: 28698297 PMCID: PMC5538435 DOI: 10.1101/gad.300590.117] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023]
Abstract
Thomas et al. demonstrate that RNA misprocessing is a major pathogenic factor in congenital myotonic dystrophy and provide novel mouse models to further examine roles for cotranscriptional/post-transcriptional gene regulation during tissue development. Myotonic dystrophy type 1 (DM1) is a CTG microsatellite expansion (CTGexp) disorder caused by expression of CUGexp RNAs. These mutant RNAs alter the activities of RNA processing factors, including MBNL proteins, leading to re-expression of fetal isoforms in adult tissues and DM1 pathology. While this pathogenesis model accounts for adult-onset disease, the molecular basis of congenital DM (CDM) is unknown. Here, we test the hypothesis that disruption of developmentally regulated RNA alternative processing pathways contributes to CDM disease. We identify prominent alternative splicing and polyadenylation abnormalities in infant CDM muscle, and, although most are also misregulated in adult-onset DM1, dysregulation is significantly more severe in CDM. Furthermore, analysis of alternative splicing during human myogenesis reveals that CDM-relevant exons undergo prenatal RNA isoform transitions and are predicted to be disrupted by CUGexp-associated mechanisms in utero. To test this possibility and the contribution of MBNLs to CDM pathogenesis, we generated mouse Mbnl double (Mbnl1; Mbnl2) and triple (Mbnl1; Mbnl2; Mbnl3) muscle-specific knockout models that recapitulate the congenital myopathy, gene expression, and spliceopathy defects characteristic of CDM. This study demonstrates that RNA misprocessing is a major pathogenic factor in CDM and provides novel mouse models to further examine roles for cotranscriptional/post-transcriptional gene regulation during development.
Collapse
Affiliation(s)
- James D Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Łukasz J Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Olgert Bardhi
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Faaiq N Aslam
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Zacharias P Anastasiadis
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Marina M Scotti
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Center of Neurology and Psychiatry, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Eric T Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
23
|
Larsen M, Kress W, Schoser B, Hehr U, Müller CR, Rost S. Identification of variants in MBNL1 in patients with a myotonic dystrophy-like phenotype. Eur J Hum Genet 2016; 24:1467-72. [PMID: 27222292 DOI: 10.1038/ejhg.2016.41] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 03/22/2016] [Accepted: 04/12/2016] [Indexed: 11/09/2022] Open
Abstract
The myotonic dystrophies (DMs) are the most common inherited muscular disorders in adults. In most of the cases, the disease is caused by (CTG)n/(CCTG)n repeat expansions (EXPs) in non-coding regions of the genes DMPK (dystrophia myotonica-protein kinase) and CNBP (CCHC-type zinc-finger nucleic acid-binding protein). The EXP is transcribed into mutant RNAs, which provoke a common pathomechanism that is characterized by misexpression and mis-splicing. In this study, we screened 138 patients with typical clinical features of DM being negative for EXP in the known genes. We sequenced DMPK and CNBP - associated with DM, as well as CELF1 (CUGBP, Elav-like family member 1) and MBNL1 (muscleblind-like splicing regulator 1) - associated with the pathomechanism of DM, for pathogenic variants, addressing the question whether defects in other genes could cause a DM-like phenotype. We identified variants in three unrelated patients in the MBNL1 gene, two of them were heterozygous missense mutations and one an in-frame deletion of three amino acids. The variants were located in different conserved regions of the protein. The missense mutations were classified as potentially pathogenic by prediction tools. Analysis of MBNL1 splice target genes was carried out for one of the patients using RNA from peripheral blood leukocytes (PBL). Analysis of six genes known to show mis-splicing in the skeletal muscle gave no informative results on the effect of this variant when tested in PBL. The association of these variants with the DM phenotype therefore remains unconfirmed, but we hope that in view of the key role of MBNL1 in DM pathogenesis our observations may foster further studies in this direction.
Collapse
Affiliation(s)
- Mirjam Larsen
- Department of Human Genetics, Julius-Maximilians-University, Würzburg, Germany
| | - Wolfram Kress
- Department of Human Genetics, Julius-Maximilians-University, Würzburg, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Ute Hehr
- Center for and Department of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Clemens R Müller
- Department of Human Genetics, Julius-Maximilians-University, Würzburg, Germany
| | - Simone Rost
- Department of Human Genetics, Julius-Maximilians-University, Würzburg, Germany
| |
Collapse
|
24
|
Hisama FM, Oshima J, Martin GM. How Research on Human Progeroid and Antigeroid Syndromes Can Contribute to the Longevity Dividend Initiative. Cold Spring Harb Perspect Med 2016; 6:a025882. [PMID: 26931459 DOI: 10.1101/cshperspect.a025882] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Although translational applications derived from research on basic mechanisms of aging are likely to enhance health spans and life spans for most of us (the longevity dividend), there will remain subsets of individuals with special vulnerabilities. Medical genetics is a discipline that describes such "private" patterns of aging and can reveal underlying mechanisms, many of which support genomic instability as a major mechanism of aging. We review examples of three classes of informative disorders: "segmental progeroid syndromes" (those that appear to accelerate multiple features of aging), "unimodal progeroid syndromes" (those that impact on a single disorder of aging), and "unimodal antigeroid syndromes," variants that provide enhanced protection against specific disorders of aging; we urge our colleagues to expand our meager research efforts on the latter, including ancillary somatic cell genetic approaches.
Collapse
Affiliation(s)
- Fuki M Hisama
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98195 International Registry of Werner Syndrome, University of Washington School of Medicine, Seattle, Washington 98195
| | - Junko Oshima
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195 International Registry of Werner Syndrome, University of Washington School of Medicine, Seattle, Washington 98195 Department of Medicine, Chiba University, Chiba 260-8670, Japan
| | - George M Martin
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195 International Registry of Werner Syndrome, University of Washington School of Medicine, Seattle, Washington 98195
| |
Collapse
|
25
|
Abstract
Myotonic dystrophy (dystrophia myotonica, DM) is one of the most common lethal monogenic disorders in populations of European descent. DM type 1 was first described over a century ago. More recently, a second form of the disease, DM type 2 was recognized, which results from repeat expansion in a different gene. Both disorders have autosomal dominant inheritance and multisystem features, including myotonic myopathy, cataract, and cardiac conduction disease. This article reviews the clinical presentation and pathophysiology of DM and discusses current management and future potential for developing targeted therapies.
Collapse
Affiliation(s)
- Charles A Thornton
- Department of Neurology, Center for Neural Development and Disease, Center for RNA Biology, University of Rochester Medical Center, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
26
|
Meola G, Cardani R. Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta Mol Basis Dis 2014; 1852:594-606. [PMID: 24882752 DOI: 10.1016/j.bbadis.2014.05.019] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 01/18/2023]
Abstract
Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia and multiorgan involvement. To date two distinct forms caused by similar mutations have been identified. Myotonic dystrophy type 1 (DM1, Steinert's disease) is caused by a (CTG)n expansion in DMPK, while myotonic dystrophy type 2 (DM2) is caused by a (CCTG)n expansion in ZNF9/CNBP. When transcribed into CUG/CCUG-containing RNA, mutant transcripts aggregate as nuclear foci that sequester RNA-binding proteins, resulting in spliceopathy of downstream effector genes. However, it is now clear that additional pathogenic mechanism like changes in gene expression, protein translation and micro-RNA metabolism may also contribute to disease pathology. Despite clinical and genetic similarities, DM1 and DM2 are distinct disorders requiring different diagnostic and management strategies. This review is an update on the recent advances in the understanding of the molecular mechanisms behind myotonic dystrophies. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Neurology, IRCCS Policlinico San Donato, University of Milan, San Donato Milanese, Milan, Italy; Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| |
Collapse
|
27
|
Genome wide identification of aberrant alternative splicing events in myotonic dystrophy type 2. PLoS One 2014; 9:e93983. [PMID: 24722564 PMCID: PMC3983107 DOI: 10.1371/journal.pone.0093983] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 03/10/2014] [Indexed: 02/01/2023] Open
Abstract
Myotonic dystrophy type 2 (DM2) is a genetic, autosomal dominant disease due to expansion of tetraplet (CCTG) repetitions in the first intron of the ZNF9/CNBP gene. DM2 is a multisystemic disorder affecting the skeletal muscle, the heart, the eye and the endocrine system. According to the proposed pathological mechanism, the expanded tetraplets have an RNA toxic effect, disrupting the splicing of many mRNAs. Thus, the identification of aberrantly spliced transcripts is instrumental for our understanding of the molecular mechanisms underpinning the disease. The aim of this study was the identification of new aberrant alternative splicing events in DM2 patients. By genome wide analysis of 10 DM2 patients and 10 controls (CTR), we identified 273 alternative spliced exons in 218 genes. While many aberrant splicing events were already identified in the past, most were new. A subset of these events was validated by qPCR assays in 19 DM2 and 15 CTR subjects. To gain insight into the molecular pathways involving the identified aberrantly spliced genes, we performed a bioinformatics analysis with Ingenuity system. This analysis indicated a deregulation of development, cell survival, metabolism, calcium signaling and contractility. In conclusion, our genome wide analysis provided a database of aberrant splicing events in the skeletal muscle of DM2 patients. The affected genes are involved in numerous pathways and networks important for muscle physio-pathology, suggesting that the identified variants may contribute to DM2 pathogenesis.
Collapse
|