1
|
Wang Q, Sun P, Yu M, Xie Z, Yu J, Liu X, Hong D, Lv H, Deng J, Yuan Y, Wang Z, Zhang W. Mutational and clinical spectrum of myofibrillar myopathy in one center from China. J Neuromuscul Dis 2024; 11:1247-1259. [PMID: 39973468 DOI: 10.1177/22143602241289220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND Myofibrillar myopathy (MFM) is a heterogeneous group of neuromuscular disorders characterized by degeneration of Z-disk and disintegration of myofibrils. OBJECTIVE: We aimed to analyze the mutational spectrum and phenotypic features of MFM in China. METHODS We used targeted next generation sequencing (NGS) to identify causative mutations in 39 MFM patients with confirmed myopathological diagnosis. RESULTS The results showed that variants were found in six MFM-associated genes, including DES, FLNC, BAG3, MYOT, TTN and DNAJB6, in 28 (71.7%), 3 (7.7%), 3 (7.7%), 1 (2.6%), 3 (7.7%), and 1 (2.6%), respectively. Of the total 26 variants identified, 19 were reported previously and 7 were novel variants. Missense variant (80.0%) was the most common mutant type of DES. P209L was the hotspot mutation of BAG3 while no obvious hotspot mutation was found of DES. Clinically, distal and proximal weakness were observed in 64.1% and 35.9% patients. Arrythmia and peripheral neuropathy were the most common combined symptoms of desminopathy and BAG3opathy, respectively. Pathologically, rimmed vacuoles (RVs) were present in different genetic type of MFM. Giant axonal nerve fiber was found in BAG3-releated MFM patient. CONLUSION We concluded that MFM showed a highly variable genetic spectrum, with DES as the most frequent causative gene followed by FLNC, BAG3 and TTN. This study expanded the genotypic and phenotypic spectrum of MFM among Chinese cohort.
Collapse
Affiliation(s)
- Qi Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Peng Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhiying Xie
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jiaxi Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Xiujuan Liu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
2
|
McKaige EA, Lee C, Calcinotto V, Giri S, Crawford S, McGrath MJ, Ramm G, Bryson-Richardson RJ. Mitochondrial abnormalities contribute to muscle weakness in a Dnajb6 deficient zebrafish model. Hum Mol Genet 2024; 33:1195-1206. [PMID: 38621658 PMCID: PMC11227618 DOI: 10.1093/hmg/ddae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/28/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
Mutations in DNAJB6 are a well-established cause of limb girdle muscular dystrophy type D1 (LGMD D1). Patients with LGMD D1 develop progressive muscle weakness with histology showing fibre damage, autophagic vacuoles, and aggregates. Whilst there are many reports of LGMD D1 patients, the role of DNAJB6 in the muscle is still unclear. In this study, we developed a loss of function zebrafish model in order to investigate the role of Dnajb6. Using a double dnajb6a and dnajb6b mutant model, we show that loss of Dnajb6 leads to a late onset muscle weakness. Interestingly, we find that adult fish lacking Dnajb6 do not have autophagy or myofibril defects, however, they do show mitochondrial changes and damage. This study demonstrates that loss of Dnajb6 causes mitochondrial defects and suggests that this contributes to muscle weakness in LGMD D1. These findings expand our knowledge of the role of Dnajb6 in the muscle and provides a model to screen novel therapies for LGMD D1.
Collapse
Affiliation(s)
- Emily A McKaige
- School of Biological Sciences Monash University, 25 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Clara Lee
- School of Biological Sciences Monash University, 25 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Vanessa Calcinotto
- School of Biological Sciences Monash University, 25 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Saveen Giri
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, 23 Innovation Walk, Clayton, VIC 3800, Australia
| | - Simon Crawford
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Meagan J McGrath
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, 23 Innovation Walk, Clayton, VIC 3800, Australia
| | - Georg Ramm
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, 23 Innovation Walk, Clayton, VIC 3800, Australia
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | | |
Collapse
|
3
|
Abayev-Avraham M, Salzberg Y, Gliksberg D, Oren-Suissa M, Rosenzweig R. DNAJB6 mutants display toxic gain of function through unregulated interaction with Hsp70 chaperones. Nat Commun 2023; 14:7066. [PMID: 37923706 PMCID: PMC10624832 DOI: 10.1038/s41467-023-42735-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Molecular chaperones are essential cellular components that aid in protein folding and preventing the abnormal aggregation of disease-associated proteins. Mutations in one such chaperone, DNAJB6, were identified in patients with LGMDD1, a dominant autosomal disorder characterized by myofibrillar degeneration and accumulations of aggregated protein within myocytes. The molecular mechanisms through which such mutations cause this dysfunction, however, are not well understood. Here we employ a combination of solution NMR and biochemical assays to investigate the structural and functional changes in LGMDD1 mutants of DNAJB6. Surprisingly, we find that DNAJB6 disease mutants show no reduction in their aggregation-prevention activity in vitro, and instead differ structurally from the WT protein, affecting their interaction with Hsp70 chaperones. While WT DNAJB6 contains a helical element regulating its ability to bind and activate Hsp70, in LGMDD1 disease mutants this regulation is disrupted. These variants can thus recruit and hyperactivate Hsp70 chaperones in an unregulated manner, depleting Hsp70 levels in myocytes, and resulting in the disruption of proteostasis. Interfering with DNAJB6-Hsp70 binding, however, reverses the disease phenotype, suggesting future therapeutic avenues for LGMDD1.
Collapse
Affiliation(s)
- Meital Abayev-Avraham
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 761000, Israel
| | - Yehuda Salzberg
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 761000, Israel
| | - Dar Gliksberg
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 761000, Israel
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 761000, Israel
| | - Rina Rosenzweig
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 761000, Israel.
| |
Collapse
|
4
|
Alawneh I, Stosic A, Gonorazky H. Muscle MRI patterns for limb girdle muscle dystrophies: systematic review. J Neurol 2023:10.1007/s00415-023-11722-1. [PMID: 37129643 DOI: 10.1007/s00415-023-11722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Limb girdle muscle dystrophies (LGMDs) are a group of inherited neuromuscular disorders comprising more than 20 genes. There have been increasing efforts to characterize this group with Muscle MRI. However, due to the complexity and similarities, the interpretation of the MRI patterns is usually done by experts in the field. Here, we proposed a step-by-step image interpretation of Muscle MRI in LGDM by evaluating the variability of muscle pattern involvement reported in the literature. A systematic review with an open start date to November 2022 was conducted to describe all LGMDs' muscle MRI patterns. Eighty-eight studies were included in the final review. Data were found to describe muscle MRI patterns for 15 out of 17 LGMDs types. Although the diagnosis of LGMDs is challenging despite the advanced genetic testing and other diagnostic modalities, muscle MRI is shown to help in the diagnosis of LGMDs. To further increase the yield for muscle MRI in the neuromuscular field, larger cohorts of patients need to be conducted.
Collapse
Affiliation(s)
- Issa Alawneh
- Department of Neurology, The Hospital for Sick Children, Toronto, Canada
| | - Ana Stosic
- Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Hernan Gonorazky
- Department of Neurology, The Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
5
|
Savarese M, Jokela M, Udd B. Distal myopathy. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:497-519. [PMID: 37562883 DOI: 10.1016/b978-0-323-98818-6.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Distal myopathies are a group of genetic, primary muscle diseases. Patients develop progressive weakness and atrophy of the muscles of forearm, hands, lower leg, or feet. Currently, over 20 different forms, presenting a variable age of onset, clinical presentation, disease progression, muscle involvement, and histological findings, are known. Some of them are dominant and some recessive. Different variants in the same gene are often associated with either dominant or recessive forms, although there is a lack of a comprehensive understanding of the genotype-phenotype correlations. This chapter provides a description of the clinicopathologic and genetic aspects of distal myopathies emphasizing known etiologic and pathophysiologic mechanisms.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Manu Jokela
- Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland; Division of Clinical Neurosciences, Department of Neurology, Turku University Hospital, Turku, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland; Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland; Department of Neurology, Vaasa Central Hospital, Vaasa, Finland.
| |
Collapse
|
6
|
Bhadra AK, Rau MJ, Daw JA, Fitzpatrick JAJ, Weihl CC, True HL. Disease-associated mutations within the yeast DNAJB6 homolog Sis1 slow conformer-specific substrate processing and can be corrected by the modulation of nucleotide exchange factors. Nat Commun 2022; 13:4570. [PMID: 35931773 PMCID: PMC9355953 DOI: 10.1038/s41467-022-32318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Molecular chaperones, or heat shock proteins (HSPs), protect against the toxic misfolding and aggregation of proteins. As such, mutations or deficiencies within the chaperone network can lead to disease. Dominant mutations within DNAJB6 (Hsp40)-an Hsp70 co-chaperone-lead to a protein aggregation-linked myopathy termed Limb-Girdle Muscular Dystrophy Type D1 (LGMDD1). Here, we used the yeast prion model client in conjunction with in vitro chaperone activity assays to gain mechanistic insights into the molecular basis of LGMDD1. Here, we show how mutations analogous to those found in LGMDD1 affect Sis1 (a functional homolog of human DNAJB6) function by altering the structure of client protein aggregates, interfering with the Hsp70 ATPase cycle, dimerization and substrate processing; poisoning the function of wild-type protein. These results uncover the mechanisms through which LGMDD1-associated mutations alter chaperone activity, and provide insights relevant to potential therapeutic interventions.
Collapse
Affiliation(s)
- Ankan K Bhadra
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8228, St. Louis, MO, 63110, USA
| | - Michael J Rau
- Washington University Center for Cellular Imaging (WUCCI), Washington University School of Medicine, St. Louis, MO, USA
| | - Jil A Daw
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - James A J Fitzpatrick
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8228, St. Louis, MO, 63110, USA
- Washington University Center for Cellular Imaging (WUCCI), Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Conrad C Weihl
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Heather L True
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8228, St. Louis, MO, 63110, USA.
| |
Collapse
|
7
|
Ji G, Wang N, Han X, Wang Y, Zhang J, Wu Y, Wu H, Ma S, Song X. Case Report: A Novel Splice-Site Mutation in DNAJB6 Associated With Juvenile-Onset Proximal–Distal Myopathy in a Chinese Patient. Front Genet 2022; 13:925926. [PMID: 35812750 PMCID: PMC9259785 DOI: 10.3389/fgene.2022.925926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
DNAJB6 was identified as the causative gene of limb-girdle muscular dystrophy type 1D. In recent years, the phenotypic and molecular spectrum of DNAJB6-myopathy has been expanded, and several mutations of DNAJB6 have been identified in Europe, North America, and Asia. Interestingly, almost all identified mutations in previous reports were point mutations, and most of them were clustered in exon 5, which encodes the G/F domain of DNAJB6. The so-far unique splice site mutation eliminating the entire G/F domain was reported to cause a severe, early-onset phenotype. Here, we report a juvenile-onset Chinese patient who presented with proximal–distal myopathy as well as esotropia and facial weakness. Muscle pathology showed rimmed vacuolation and myofibrillar disarrangement. A novel splice-site mutation NM_058246:c.236-1_240delGGTGGA of the DNAJB6 gene was identified by targeted exome sequencing, which results in a severe defect of the G/F domain. This rare mutation type expands the molecular spectrum of DNAJB6-myopathy and further underlines the importance of the G/F region.
Collapse
Affiliation(s)
- Guang Ji
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Ning Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Xu Han
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yaye Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Jinru Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yue Wu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Hongran Wu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Shaojuan Ma
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Xueqin Song
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- *Correspondence: Xueqin Song,
| |
Collapse
|
8
|
Costa R, Rodia MT, Pacilio S, Angelini C, Cenacchi G. LGMD D2 TNPO3-Related: From Clinical Spectrum to Pathogenetic Mechanism. Front Neurol 2022; 13:840683. [PMID: 35309568 PMCID: PMC8931187 DOI: 10.3389/fneur.2022.840683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Limb-girdle muscular dystrophies (LGMDs) are clinically and genetically heterogeneous diseases presenting with a wide clinical spectrum. Autosomal dominant LGMDs represent about 10–15% of LGMDs and include disorders due to defects of DNAJB6, transportin-3 (TNPO3), HNRNPDL, Calpain-3 (CAPN3), and Bethlem myopathy. This review article aims to describe the clinical spectrum of LGMD D2 TNPO3-related, a rare disease due to heterozygous mutation in the TNPO3 gene. TNPO3 encodes for transportin-3, which belongs to the importin beta family and transports into the nucleus serine/arginine-rich (SR) proteins, such as splicing factors, and HIV-1 proteins, thus contributing to viral infection. The purpose of this review is to present and compare the clinical features and the genetic and histopathological findings described in LGMD D2, performing a comparative analytical description of all the families and sporadic cases identified. Even if the causative gene and mutations of this disease have been identified, the pathogenic mechanisms are still an open issue; therefore, we will present an overview of the hypotheses that explain the pathology of LGMD D2 TNPO3-related.
Collapse
Affiliation(s)
- Roberta Costa
- Department of Biomedical and Neuromotor Sciences–DIBINEM, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Applied Biomedical Research Center–CRBA, IRCCS St. Orsola Hospital, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Maria Teresa Rodia
- Department of Biomedical and Neuromotor Sciences–DIBINEM, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Applied Biomedical Research Center–CRBA, IRCCS St. Orsola Hospital, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Serafina Pacilio
- Department of Biomedical and Neuromotor Sciences–DIBINEM, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Applied Biomedical Research Center–CRBA, IRCCS St. Orsola Hospital, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Corrado Angelini
- Laboratory for Neuromuscular Diseases, Campus Pietro d'Abano, University of Padova, Padova, Italy
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences–DIBINEM, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Applied Biomedical Research Center–CRBA, IRCCS St. Orsola Hospital, Alma Mater Studiorum University of Bologna, Bologna, Italy
- *Correspondence: Giovanna Cenacchi
| |
Collapse
|
9
|
Linse S. High-Efficiency Expression and Purification of DNAJB6b Based on the pH-Modulation of Solubility and Denaturant-Modulation of Size. Molecules 2022; 27:418. [PMID: 35056736 PMCID: PMC8781954 DOI: 10.3390/molecules27020418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 02/05/2023] Open
Abstract
The chaperone DNAJB6b delays amyloid formation by suppressing the nucleation of amyloid fibrils and increases the solubility of amyloid-prone proteins. These dual effects on kinetics and equilibrium are related to the unusually high chemical potential of DNAJB6b in solution. As a consequence, the chaperone alone forms highly polydisperse oligomers, whereas in a mixture with an amyloid-forming protein or peptide it may form co-aggregates to gain a reduced chemical potential, thus enabling the amyloid peptide to increase its chemical potential leading to enhanced solubility of the peptide. Understanding such action at the level of molecular driving forces and detailed structures requires access to highly pure and sequence homogeneous DNAJB6b with no sequence extension. We therefore outline here an expression and purification protocol of the protein "as is" with no tags leading to very high levels of pure protein based on its physicochemical properties, including size and charge. The versatility of the protocol is demonstrated through the expression of an isotope labelled protein and seven variants, and the purification of three of these. The activity of the protein is bench-marked using aggregation assays. Two of the variants are used to produce a palette of fluorescent DNAJB6b labelled at an engineered N- or C-terminal cysteine.
Collapse
Affiliation(s)
- Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| |
Collapse
|
10
|
Kaida A, Iwakuma T. Regulation of p53 and Cancer Signaling by Heat Shock Protein 40/J-Domain Protein Family Members. Int J Mol Sci 2021; 22:13527. [PMID: 34948322 PMCID: PMC8706882 DOI: 10.3390/ijms222413527] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022] Open
Abstract
Heat shock proteins (HSPs) are molecular chaperones that assist diverse cellular activities including protein folding, intracellular transportation, assembly or disassembly of protein complexes, and stabilization or degradation of misfolded or aggregated proteins. HSP40, also known as J-domain proteins (JDPs), is the largest family with over fifty members and contains highly conserved J domains responsible for binding to HSP70 and stimulation of the ATPase activity as a co-chaperone. Tumor suppressor p53 (p53), the most frequently mutated gene in human cancers, is one of the proteins that functionally interact with HSP40/JDPs. The majority of p53 mutations are missense mutations, resulting in acquirement of unexpected oncogenic activities, referred to as gain of function (GOF), in addition to loss of the tumor suppressive function. Moreover, stability and levels of wild-type p53 (wtp53) and mutant p53 (mutp53) are crucial for their tumor suppressive and oncogenic activities, respectively. However, the regulatory mechanisms of wtp53 and mutp53 are not fully understood. Accumulating reports demonstrate regulation of wtp53 and mutp53 levels and/or activities by HSP40/JDPs. Here, we summarize updated knowledge related to the link of HSP40/JDPs with p53 and cancer signaling to improve our understanding of the regulation of tumor suppressive wtp53 and oncogenic mutp53 GOF activities.
Collapse
Affiliation(s)
- Atsushi Kaida
- Department of Oral Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Pediatrics, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
| |
Collapse
|
11
|
Qian FY, Guo YD, Zu J, Zhang JH, Zheng YM, Abdoulaye IA, Pan ZH, Xie CM, Gao HC, Zhang ZJ. A novel recessive mutation affecting DNAJB6a causes myofibrillar myopathy. Acta Neuropathol Commun 2021; 9:23. [PMID: 33557929 PMCID: PMC7869515 DOI: 10.1186/s40478-020-01046-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/02/2020] [Indexed: 11/10/2022] Open
Abstract
Mutations in the DNAJB6 gene have been identified as rare causes of myofibrillar myopathies. However, the underlying pathophysiologica mechanisms remain elusive. DNAJB6 has two known isoforms, including the nuclear isoform DNAJB6a and the cytoplasmic isoform DNAJB6b, which was thought to be the pathogenic isoform. Here, we report a novel recessive mutation c.695_699del (p. Val 232 Gly fs*7) in the DNAJB6 gene, associated with an apparently recessively inherited late onset distal myofibrillar myopathy in a Chinese family. Notably, the novel mutation localizes to exon 9 and uniquely encodes DNAJB6a. We further identified that this mutation decreases the mRNA and protein levels of DNAJB6a and results in an age-dependent recessive toxic effect on skeletal muscle in knock-in mice. Moreover, the mutant DNAJB6a showed a dose-dependent anti-aggregation effect on polyglutamine-containing proteins in vitro. Taking together, these findings reveal the pathogenic role of DNAJB6a insufficiency in myofibrillar myopathies and expand upon the molecular spectrum of DNAJB6 mutations.
Collapse
|
12
|
Savarese M, Sarparanta J, Vihola A, Jonson PH, Johari M, Rusanen S, Hackman P, Udd B. Panorama of the distal myopathies. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:245-265. [PMID: 33458580 PMCID: PMC7783427 DOI: 10.36185/2532-1900-028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Distal myopathies are genetic primary muscle disorders with a prominent weakness at onset in hands and/or feet. The age of onset (from early childhood to adulthood), the distribution of muscle weakness (upper versus lower limbs) and the histological findings (ranging from nonspecific myopathic changes to myofibrillar disarrays and rimmed vacuoles) are extremely variable. However, despite being characterized by a wide clinical and genetic heterogeneity, the distal myopathies are a category of muscular dystrophies: genetic diseases with progressive loss of muscle fibers. Myopathic congenital arthrogryposis is also a form of distal myopathy usually caused by focal amyoplasia. Massive parallel sequencing has further expanded the long list of genes associated with a distal myopathy, and contributed identifying as distal myopathy-causative rare variants in genes more often related with other skeletal or cardiac muscle diseases. Currently, almost 20 genes (ACTN2, CAV3, CRYAB, DNAJB6, DNM2, FLNC, HNRNPA1, HSPB8, KHLH9, LDB3, MATR3, MB, MYOT, PLIN4, TIA1, VCP, NOTCH2NLC, LRP12, GIPS1) have been associated with an autosomal dominant form of distal myopathy. Pathogenic changes in four genes (ADSSL, ANO5, DYSF, GNE) cause an autosomal recessive form; and disease-causing variants in five genes (DES, MYH7, NEB, RYR1 and TTN) result either in a dominant or in a recessive distal myopathy. Finally, a digenic mechanism, underlying a Welander-like form of distal myopathy, has been recently elucidated. Rare pathogenic mutations in SQSTM1, previously identified with a bone disease (Paget disease), unexpectedly cause a distal myopathy when combined with a common polymorphism in TIA1. The present review aims at describing the genetic basis of distal myopathy and at summarizing the clinical features of the different forms described so far.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jaakko Sarparanta
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Anna Vihola
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Neuromuscular Research Center, Department of Genetics, Fimlab Laboratories, Tampere, Finland
| | - Per Harald Jonson
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Salla Rusanen
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
13
|
Bengoechea R, Findlay AR, Bhadra AK, Shao H, Stein KC, Pittman SK, Daw JA, Gestwicki JE, True HL, Weihl CC. Inhibition of DNAJ-HSP70 interaction improves strength in muscular dystrophy. J Clin Invest 2020; 130:4470-4485. [PMID: 32427588 PMCID: PMC7410071 DOI: 10.1172/jci136167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Dominant mutations in the HSP70 cochaperone DNAJB6 cause a late-onset muscle disease termed limb-girdle muscular dystrophy type D1 (LGMDD1), which is characterized by protein aggregation and vacuolar myopathology. Disease mutations reside within the G/F domain of DNAJB6, but the molecular mechanisms underlying dysfunction are not well understood. Using yeast, cell culture, and mouse models of LGMDD1, we found that the toxicity associated with disease-associated DNAJB6 required its interaction with HSP70 and that abrogating this interaction genetically or with small molecules was protective. In skeletal muscle, DNAJB6 localizes to the Z-disc with HSP70. Whereas HSP70 normally diffused rapidly between the Z-disc and sarcoplasm, the rate of diffusion of HSP70 in LGMDD1 mouse muscle was diminished, probably because it had an unusual affinity for the Z-disc and mutant DNAJB6. Treating LGMDD1 mice with a small-molecule inhibitor of the DNAJ-HSP70 complex remobilized HSP70, improved strength, and corrected myopathology. These data support a model in which LGMDD1 mutations in DNAJB6 are a gain-of-function disease that is, counterintuitively, mediated via HSP70 binding. Thus, therapeutic approaches targeting HSP70-DNAJB6 may be effective in treating this inherited muscular dystrophy.
Collapse
Affiliation(s)
| | | | - Ankan K. Bhadra
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hao Shao
- Institute for Neurodegenerative Diseases, UCSF, San Francisco, California, USA
| | - Kevin C. Stein
- Department of Biology, Stanford University, Stanford, California, USA
| | | | | | - Jason E. Gestwicki
- Institute for Neurodegenerative Diseases, UCSF, San Francisco, California, USA
| | - Heather L. True
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
14
|
Basha O, Mauer O, Simonovsky E, Shpringer R, Yeger-Lotem E. ResponseNet v.3: revealing signaling and regulatory pathways connecting your proteins and genes across human tissues. Nucleic Acids Res 2020; 47:W242-W247. [PMID: 31114913 PMCID: PMC6602570 DOI: 10.1093/nar/gkz421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/23/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022] Open
Abstract
ResponseNet v.3 is an enhanced version of ResponseNet, a web server that is designed to highlight signaling and regulatory pathways connecting user-defined proteins and genes by using the ResponseNet network optimization approach (http://netbio.bgu.ac.il/respnet). Users run ResponseNet by defining source and target sets of proteins, genes and/or microRNAs, and by specifying a molecular interaction network (interactome). The output of ResponseNet is a sparse, high-probability interactome subnetwork that connects the two sets, thereby revealing additional molecules and interactions that are involved in the studied condition. In recent years, massive efforts were invested in profiling the transcriptomes of human tissues, enabling the inference of human tissue interactomes. ResponseNet v.3 expands ResponseNet2.0 by harnessing ∼11,600 RNA-sequenced human tissue profiles made available by the Genotype-Tissue Expression consortium, to support context-specific analysis of 44 human tissues. Thus, ResponseNet v.3 allows users to illuminate the signaling and regulatory pathways potentially active in the context of a specific tissue, and to compare them with active pathways in other tissues. In the era of precision medicine, such analyses open the door for tissue- and patient-specific analyses of pathways and diseases.
Collapse
Affiliation(s)
- Omer Basha
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences
| | - Omry Mauer
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences
| | - Eyal Simonovsky
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences
| | - Rotem Shpringer
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Sciences.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
15
|
Neuromuscular Diseases Due to Chaperone Mutations: A Review and Some New Results. Int J Mol Sci 2020; 21:ijms21041409. [PMID: 32093037 PMCID: PMC7073051 DOI: 10.3390/ijms21041409] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle and the nervous system depend on efficient protein quality control, and they express chaperones and cochaperones at high levels to maintain protein homeostasis. Mutations in many of these proteins cause neuromuscular diseases, myopathies, and hereditary motor and sensorimotor neuropathies. In this review, we cover mutations in DNAJB6, DNAJB2, αB-crystallin (CRYAB, HSPB5), HSPB1, HSPB3, HSPB8, and BAG3, and discuss the molecular mechanisms by which they cause neuromuscular disease. In addition, previously unpublished results are presented, showing downstream effects of BAG3 p.P209L on DNAJB6 turnover and localization.
Collapse
|
16
|
Ko SH, Huang LM, Tarn WY. The Host Heat Shock Protein MRJ/DNAJB6 Modulates Virus Infection. Front Microbiol 2019; 10:2885. [PMID: 31921062 PMCID: PMC6917656 DOI: 10.3389/fmicb.2019.02885] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/29/2019] [Indexed: 11/17/2022] Open
Abstract
A variety of pathogens take advantage of cellular heat shock proteins (HSPs) to complete their life cycle and exert pathogenic effects. MRJ (DNAJB6), a member of the heat shock protein 40 family, acts as a molecular chaperone for a wide range of cellular processes. MRJ mutations are linked to human diseases, such as muscular dystrophy and neurodegenerative diseases. There are two MRJ isoforms generated by alternative use of terminal exons, which differ in their C-terminus. This mini-review summarizes how these two MRJ isoforms participate differentially in viral production and virulence, and the possibility for MRJ as a therapeutic target.
Collapse
Affiliation(s)
- Shih-Han Ko
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Children's Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Min Huang
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Children's Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
17
|
Palmio J, Jonson PH, Inoue M, Sarparanta J, Bengoechea R, Savarese M, Vihola A, Jokela M, Nakagawa M, Noguchi S, Olivé M, Masingue M, Kerty E, Hackman P, Weihl CC, Nishino I, Udd B. Mutations in the J domain of DNAJB6 cause dominant distal myopathy. Neuromuscul Disord 2019; 30:38-46. [PMID: 31955980 DOI: 10.1016/j.nmd.2019.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 01/28/2023]
Abstract
Eight patients from five families with undiagnosed dominant distal myopathy underwent clinical, neurophysiological and muscle biopsy examinations. Molecular genetic studies were performed using targeted sequencing of all known myopathy genes followed by segregation of the identified mutations in the affected families using Sanger sequencing. Two novel mutations in DNAJB6 J domain, c.149C>T (p.A50V) and c.161A>C (p.E54A), were identified as the cause of disease. The muscle involvement with p.A50V was distal calf-predominant, and the p.E54A was more proximo-distal. Histological findings were similar to those previously reported in DNAJB6 myopathy. In line with reported pathogenic mutations in the glycine/phenylalanine (G/F) domain of DNAJB6, both the novel mutations showed reduced anti-aggregation capacity by filter trap assay and TDP-43 disaggregation assays. Modeling of the protein showed close proximity of the mutated residues with the G/F domain. Myopathy-causing mutations in DNAJB6 are not only located in the G/F domain, but also in the J domain. The identified mutations in the J domain cause dominant distal and proximo-distal myopathy, confirming that mutations in DNAJB6 should be considered in distal myopathy cases.
Collapse
Affiliation(s)
- Johanna Palmio
- Neuromuscular Research Center, Tampere University Hospital and Tampere University, P.O. box 100, FIN-33014 Tampere, Finland.
| | - Per Harald Jonson
- Folkhälsan Research Center, Helsinki, Finland and University of Helsinki, Medicum, Helsinki, Finland
| | - Michio Inoue
- National Center of Neurology and Psychiatry (NCNP), Department of Neuromuscular Research, National Institute of Neuroscience, Tokyo, Japan
| | - Jaakko Sarparanta
- Folkhälsan Research Center, Helsinki, Finland and University of Helsinki, Medicum, Helsinki, Finland
| | - Rocio Bengoechea
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland and University of Helsinki, Medicum, Helsinki, Finland
| | - Anna Vihola
- Neuromuscular Research Center, Tampere University Hospital and Tampere University, P.O. box 100, FIN-33014 Tampere, Finland; Folkhälsan Research Center, Helsinki, Finland and University of Helsinki, Medicum, Helsinki, Finland
| | - Manu Jokela
- Neuromuscular Research Center, Tampere University Hospital and Tampere University, P.O. box 100, FIN-33014 Tampere, Finland; Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Masanori Nakagawa
- North Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoru Noguchi
- National Center of Neurology and Psychiatry (NCNP), Department of Neuromuscular Research, National Institute of Neuroscience, Tokyo, Japan
| | - Montse Olivé
- Department of Pathology and Neuromuscular Unit, IDIBELL-Hospital de Bellvitge, Barcelona, Spain
| | - Marion Masingue
- University Hospital of Salpêtrière, UPMC, Institute of Myology, National Reference Center for Neuromuscular Disorders, Paris, France
| | - Emilia Kerty
- Department of Neurology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland and University of Helsinki, Medicum, Helsinki, Finland
| | - Conrad C Weihl
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ichizo Nishino
- National Center of Neurology and Psychiatry (NCNP), Department of Neuromuscular Research, National Institute of Neuroscience, Tokyo, Japan
| | - Bjarne Udd
- Neuromuscular Research Center, Tampere University Hospital and Tampere University, P.O. box 100, FIN-33014 Tampere, Finland; Folkhälsan Research Center, Helsinki, Finland and University of Helsinki, Medicum, Helsinki, Finland
| |
Collapse
|
18
|
Angelini C, Pegoraro V, Cenacchi G. The clinical and molecular spectrum of autosomal dominant limb-girdle muscular dystrophies focusing on transportinopathy. Expert Opin Orphan Drugs 2019. [DOI: 10.1080/21678707.2019.1622412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | | | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
Intrafamilial variability of limb-girdle muscular dystrophy, LGMD1D type. Eur J Med Genet 2019; 63:103655. [PMID: 31034989 DOI: 10.1016/j.ejmg.2019.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 04/12/2019] [Accepted: 04/21/2019] [Indexed: 12/20/2022]
Abstract
LGMD1D is an autosomal dominant limb girdle muscular dystrophy caused by variants in the DNAJB6 gene. This is typically an adult-onset disorder characterized by moderately progressive proximal muscle weakness without respiratory or bulbar involvement; however phenotypic variability is often observed with some individuals having earlier onset and more severe symptoms. Here, we present a family with a novel NM_005494.2:c.271T > G p.(Phe91Val) variant in DNAJB6 with a late-onset, mild and slowly progressive form of the disease, including one individual, who in her 7th decade of life has subclinical LGMD1D with only mild features on muscle biopsy and MRI. Unlike previously reported cases where missense variants affecting the Phe91 amino acid residue are associated with a more severe form of the disease, this family represents the mild end of the LGMD1D clinical spectrum. Therefore, this family adds further complexity to the genotype-phenotype correlation in DNAJB6-associated muscular dystrophies.
Collapse
|
20
|
Nallamilli BRR, Chakravorty S, Kesari A, Tanner A, Ankala A, Schneider T, da Silva C, Beadling R, Alexander JJ, Askree SH, Whitt Z, Bean L, Collins C, Khadilkar S, Gaitonde P, Dastur R, Wicklund M, Mozaffar T, Harms M, Rufibach L, Mittal P, Hegde M. Genetic landscape and novel disease mechanisms from a large LGMD cohort of 4656 patients. Ann Clin Transl Neurol 2018; 5:1574-1587. [PMID: 30564623 PMCID: PMC6292381 DOI: 10.1002/acn3.649] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022] Open
Abstract
Objective Limb‐girdle muscular dystrophies (LGMDs), one of the most heterogeneous neuromuscular disorders (NMDs), involves predominantly proximal‐muscle weakness with >30 genes associated with different subtypes. The clinical‐genetic overlap among subtypes and with other NMDs complicate disease‐subtype identification lengthening diagnostic process, increases overall costs hindering treatment/clinical‐trial recruitment. Currently seven LGMD clinical trials are active but still no gene‐therapy‐related treatment is available. Till‐date no nation‐wide large‐scale LGMD sequencing program was performed. Our objectives were to understand LGMD genetic basis, different subtypes’ relative prevalence across US and investigate underlying disease mechanisms. Methods A total of 4656 patients with clinically suspected‐LGMD across US were recruited to conduct next‐generation sequencing (NGS)‐based gene‐panel testing during June‐2015 to June‐2017 in CLIA‐CAP‐certified Emory‐Genetics‐Laboratory. Thirty‐five LGMD‐subtypes‐associated or LGMD‐like other NMD‐associated genes were investigated. Main outcomes were diagnostic yield, gene‐variant spectrum, and LGMD subtypes’ prevalence in a large US LGMD‐suspected population. Results Molecular diagnosis was established in 27% (1259 cases; 95% CI, 26–29%) of the patients with major contributing genes to LGMD phenotypes being: CAPN3(17%), DYSF(16%), FKRP(9%) and ANO5(7%). We observed an increased prevalence of genetically confirmed late‐onset Pompe disease, DNAJB6‐associated LGMD subtype1E and CAPN3‐associated autosomal‐dominant LGMDs. Interestingly, we identified a high prevalence of patients with pathogenic variants in more than one LGMD gene suggesting possible synergistic heterozygosity/digenic/multigenic contribution to disease presentation/progression that needs consideration as a part of diagnostic modality. Interpretation Overall, this study has improved our understanding of the relative prevalence of different LGMD subtypes, their respective genetic etiology, and the changing paradigm of their inheritance modes and novel mechanisms that will allow for improved timely treatment, management, and enrolment of molecularly diagnosed individuals in clinical trials.
Collapse
Affiliation(s)
| | | | - Akanchha Kesari
- Emory University Department of Human Genetics Atlanta Georgia 30322.,EGL Genetics-Eurofins Tucker Atlanta Georgia 30084
| | - Alice Tanner
- Emory University Department of Human Genetics Atlanta Georgia 30322.,EGL Genetics-Eurofins Tucker Atlanta Georgia 30084
| | - Arunkanth Ankala
- Emory University Department of Human Genetics Atlanta Georgia 30322.,EGL Genetics-Eurofins Tucker Atlanta Georgia 30084
| | | | | | | | - John J Alexander
- Emory University Department of Human Genetics Atlanta Georgia 30322.,EGL Genetics-Eurofins Tucker Atlanta Georgia 30084
| | - Syed Hussain Askree
- Emory University Department of Human Genetics Atlanta Georgia 30322.,EGL Genetics-Eurofins Tucker Atlanta Georgia 30084
| | - Zachary Whitt
- Emory University Department of Human Genetics Atlanta Georgia 30322.,Augusta University Augusta Georgia 30912
| | - Lora Bean
- Emory University Department of Human Genetics Atlanta Georgia 30322.,EGL Genetics-Eurofins Tucker Atlanta Georgia 30084
| | - Christin Collins
- Emory University Department of Human Genetics Atlanta Georgia 30322
| | - Satish Khadilkar
- Department of Neurology Bombay Hospital Mumbai Maharashtra India.,Department of Neurology Sir J J Group of Hospitals Grant Medical College Mumbai Maharashtra India
| | - Pradnya Gaitonde
- Centre for Advanced Molecular Diagnostics in Neuromuscular Disorders (CAMDND) 400022 Mumbai India
| | - Rashna Dastur
- Centre for Advanced Molecular Diagnostics in Neuromuscular Disorders (CAMDND) 400022 Mumbai India
| | - Matthew Wicklund
- Neurology The University of Colorado at Denver - Anschutz Medical Campus Aurora Colorado 80045
| | - Tahseen Mozaffar
- Neurology University of California, Irvine Orange California 92868
| | - Matthew Harms
- Department of Neurology Columbia University New York New York 10032
| | | | | | - Madhuri Hegde
- Emory University Department of Human Genetics Atlanta Georgia 30322
| |
Collapse
|
21
|
Kim K, Choi YC. The Author Reply: Genotypic and Phenotypic Heterogeneity of LGMD1D due to DNAJB6 Mutations. Yonsei Med J 2018; 59:1010-1011. [PMID: 30187711 PMCID: PMC6127422 DOI: 10.3349/ymj.2018.59.8.1010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Indexed: 11/27/2022] Open
Affiliation(s)
- Kitae Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Young Chul Choi
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
22
|
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Veterinary University of Vienna, Vienna, Austria.
| |
Collapse
|
23
|
Kim K, Park HJ, Lee JH, Hong J, Ahn SW, Choi YC. Two Korean Families with Limb-Girdle Muscular Dystrophy Type 1D Associated with DNAJB6 Mutations. Yonsei Med J 2018; 59:698-701. [PMID: 29869469 PMCID: PMC5990685 DOI: 10.3349/ymj.2018.59.5.698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 01/02/2023] Open
Abstract
Limb-girdle muscular dystrophies (LGMD) are heterogeneous disorders with autosomal inheritance. Autosomal dominant LGMD mapped to 7q36.3 has been classified as LGMD type 1D (LGMD1D) in the Human Gene Nomenclature Committee Database. LGMD1D is characterized predominantly by limb-girdle weakness and may also show a bulbar symptom in some cases. In the past, the frequency of this disease was uncommon, and this disorder was mainly found in Europe and the United States. However, recently, this disorder has been reported in Asia, including Japan, Korea, and Taiwan. Here, we report on three LGMD1D patients, including one with a novel mutation in DNAJB6, c.298T>A. While two patients complained of limb-girdle weakness, as would be expected, one patient had distal weakness. They had various serum creatine kinase levels. Radiologic findings in one patient showed fatty degeneration and atrophy in the posterior part of distal muscles. Pathologic findings in one of the patients showed rimmed vacuoles. Although LGMD1D is still uncommon in Korea, we discovered three Korean patients with LGMD1D, including one novel mutation in DNAJB6, p.Phe100Ile (c.298T>A).
Collapse
Affiliation(s)
- Kitae Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung Jun Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Hwan Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Jiman Hong
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Suk Won Ahn
- Department of Neurology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Young Chul Choi
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
24
|
Jonson PH, Palmio J, Johari M, Penttilä S, Evilä A, Nelson I, Bonne G, Wiart N, Meyer V, Boland A, Deleuze JF, Masson C, Stojkovic T, Chapon F, Romero NB, Solé G, Ferrer X, Ferreiro A, Hackman P, Richard I, Udd B. Novel mutations in DNAJB6
cause LGMD1D and distal myopathy in French families. Eur J Neurol 2018; 25:790-794. [DOI: 10.1111/ene.13598] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/19/2018] [Indexed: 01/24/2023]
Affiliation(s)
- P. H. Jonson
- Folkhälsan Institute of Genetics; University of Helsinki, Medicum; Helsinki Finland
| | - J. Palmio
- Neuromuscular Research Center; Tampere University Hospital; University of Tampere; Tampere Finland
| | - M. Johari
- Folkhälsan Institute of Genetics; University of Helsinki, Medicum; Helsinki Finland
| | - S. Penttilä
- Neuromuscular Research Center; Tampere University Hospital; University of Tampere; Tampere Finland
| | - A. Evilä
- Folkhälsan Institute of Genetics; University of Helsinki, Medicum; Helsinki Finland
| | - I. Nelson
- UPMC Univ Paris 06; INSERM UMRS 974; Center of Research in Myology; Institut de Myologie; Sorbonne Universités; Paris France
| | - G. Bonne
- UPMC Univ Paris 06; INSERM UMRS 974; Center of Research in Myology; Institut de Myologie; Sorbonne Universités; Paris France
| | - N. Wiart
- Centre National de Recherche en Génomique Humaine (CNRGH); CEA; Evry France
| | - V. Meyer
- Centre National de Recherche en Génomique Humaine (CNRGH); CEA; Evry France
| | - A. Boland
- Centre National de Recherche en Génomique Humaine (CNRGH); CEA; Evry France
| | - J.-F. Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH); CEA; Evry France
| | - C. Masson
- Bioinformatics Core Facility; INSERM US24/CNRS UMS3633; INSERM UMR 1163; Institut Imagine; Université Paris Descartes − Structure Fédérative de Recherche Necker; Paris France
| | - T. Stojkovic
- UPMC Univ Paris 06; INSERM UMRS 974; Center of Research in Myology; Institut de Myologie; Sorbonne Universités; Paris France
| | - F. Chapon
- INSERM U1075; Neuromuscular Competence Center; CHU Caen; Université de Normandie; Caen France
| | - N. B. Romero
- Unit of Neuromuscular Morphology; Institute of Myology; UPMC Paris 6; INSERM UMRS 974; Pitié-Salpêtrière Hospital; Paris France
| | - G. Solé
- Neuromuscular Reference Center; CHU Bordeaux; Bordeaux France
| | - X. Ferrer
- Neuromuscular Reference Center; CHU Bordeaux; Bordeaux France
| | - A. Ferreiro
- Unité de Biologie Fonctionnelle et Adaptative; Université Paris Diderot/CNRS; Paris France
- Reference Center for Neuromuscular Disorders; Pitié-Salpêtrière Hospital; AP-HP; Paris France
| | - P. Hackman
- Folkhälsan Institute of Genetics; University of Helsinki, Medicum; Helsinki Finland
| | - I. Richard
- Généthon INSERM; U951; INTEGRARE Research Unit; University Paris-Saclay; Evry France
| | - B. Udd
- Folkhälsan Institute of Genetics; University of Helsinki, Medicum; Helsinki Finland
- Neuromuscular Research Center; Tampere University Hospital; University of Tampere; Tampere Finland
- Department of Neurology; Vaasa Central Hospital; Vaasa Finland
| |
Collapse
|
25
|
Zarouchlioti C, Parfitt DA, Li W, Gittings LM, Cheetham ME. DNAJ Proteins in neurodegeneration: essential and protective factors. Philos Trans R Soc Lond B Biol Sci 2018; 373:20160534. [PMID: 29203718 PMCID: PMC5717533 DOI: 10.1098/rstb.2016.0534] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2017] [Indexed: 12/16/2022] Open
Abstract
Maintenance of protein homeostasis is vitally important in post-mitotic cells, particularly neurons. Neurodegenerative diseases such as polyglutamine expansion disorders-like Huntington's disease or spinocerebellar ataxia (SCA), Alzheimer's disease, fronto-temporal dementia (FTD), amyotrophic lateral sclerosis (ALS) and Parkinson's disease-are often characterized by the presence of inclusions of aggregated protein. Neurons contain complex protein networks dedicated to protein quality control and maintaining protein homeostasis, or proteostasis. Molecular chaperones are a class of proteins with prominent roles in maintaining proteostasis, which act to bind and shield hydrophobic regions of nascent or misfolded proteins while allowing correct folding, conformational changes and enabling quality control. There are many different families of molecular chaperones with multiple functions in proteostasis. The DNAJ family of molecular chaperones is the largest chaperone family and is defined by the J-domain, which regulates the function of HSP70 chaperones. DNAJ proteins can also have multiple other protein domains such as ubiquitin-interacting motifs or clathrin-binding domains leading to diverse and specific roles in the cell, including targeting client proteins for degradation via the proteasome, chaperone-mediated autophagy and uncoating clathrin-coated vesicles. DNAJ proteins can also contain ER-signal peptides or mitochondrial leader sequences, targeting them to specific organelles in the cell. In this review, we discuss the multiple roles of DNAJ proteins and in particular focus on the role of DNAJ proteins in protecting against neurodegenerative diseases caused by misfolded proteins. We also discuss the role of DNAJ proteins as direct causes of inherited neurodegeneration via mutations in DNAJ family genes.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
| | - David A Parfitt
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1 V 9EL, UK
| | - Wenwen Li
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1 V 9EL, UK
| | - Lauren M Gittings
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1 V 9EL, UK
| | | |
Collapse
|
26
|
Angelini C, Fanin M. Limb girdle muscular dystrophies: clinical-genetical diagnostic update and prospects for therapy. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1367283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Corrado Angelini
- Department of Neurodegenerative Disorders, Neuromuscular Center, San Camillo Hospital IRCCS, Venice, Italy
| | - Marina Fanin
- Department of Neurosciences, University of Padova, Padova, Italy
| |
Collapse
|
27
|
Tsai PC, Tsai YS, Soong BW, Huang YH, Wu HT, Chen YH, Lin KP, Liao YC, Lee YC. A novelDNAJB6mutation causes dominantly inherited distal-onset myopathy and compromises DNAJB6 function. Clin Genet 2017; 92:150-157. [DOI: 10.1111/cge.13001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/30/2022]
Affiliation(s)
- P.-C. Tsai
- Department of Neurology; Taipei Veterans General Hospital; Taipei Taiwan
- Department of Neurology; National Yang-Ming University School of Medicine; Taipei Taiwan
- Brain Research Center; National Yang-Ming University; Taipei Taiwan
| | - Y.-S. Tsai
- Center for Systems and Synthetic Biology; National Yang-Ming University; Taipei Taiwan
| | - B.-W. Soong
- Department of Neurology; Taipei Veterans General Hospital; Taipei Taiwan
- Department of Neurology; National Yang-Ming University School of Medicine; Taipei Taiwan
- Brain Research Center; National Yang-Ming University; Taipei Taiwan
| | - Y.-H. Huang
- Center for Systems and Synthetic Biology; National Yang-Ming University; Taipei Taiwan
- Institute of Biomedical Informatics; National Yang-Ming University; Taipei Taiwan
| | - H.-T. Wu
- Department of Radiology; Taipei Veterans General Hospital; Taipei Taiwan
- Department of Radiology; National Yang-Ming University School of Medicine; Taipei Taiwan
| | - Y.-H. Chen
- Department of Neurology; Taipei Veterans General Hospital; Taipei Taiwan
- Department of Neurology; National Yang-Ming University School of Medicine; Taipei Taiwan
| | - K.-P. Lin
- Department of Neurology; Taipei Veterans General Hospital; Taipei Taiwan
- Department of Neurology; National Yang-Ming University School of Medicine; Taipei Taiwan
| | - Y.-C. Liao
- Department of Neurology; Taipei Veterans General Hospital; Taipei Taiwan
- Department of Neurology; National Yang-Ming University School of Medicine; Taipei Taiwan
| | - Y.-C. Lee
- Department of Neurology; Taipei Veterans General Hospital; Taipei Taiwan
- Department of Neurology; National Yang-Ming University School of Medicine; Taipei Taiwan
- Brain Research Center; National Yang-Ming University; Taipei Taiwan
| |
Collapse
|
28
|
|
29
|
Ruggieri A, Saredi S, Zanotti S, Pasanisi MB, Maggi L, Mora M. DNAJB6 Myopathies: Focused Review on an Emerging and Expanding Group of Myopathies. Front Mol Biosci 2016; 3:63. [PMID: 27747217 PMCID: PMC5043021 DOI: 10.3389/fmolb.2016.00063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022] Open
Abstract
Mutations in the DNAJB6 gene have been associated with the autosomal dominant limb girdle muscular dystrophy type 1D (LGMD1D), a disorder characterized by abnormal protein aggregates and rimmed vacuoles in muscle fibers. DNAJB6 is a ubiquitously expressed Hsp40 co-chaperone characterized by a J domain that specifies Hsp70 functions in the cellular environment. DNAJB6 is also a potent inhibitor of expanded polyglutamine (polyQ) aggregation preventing aggregate toxicity in cells. In DNAJB6-mutated patients this anti-aggregation property is significantly reduced, albeit not completely lost. To elucidate the pathogenetic mechanisms underlying the DNAJB6-related myopathy, animal models have been created showing that, indeed, conditional muscular expression of a DNAJB6 mutant in the mouse causes a LGMD1D myofibrillary muscle tissue phenotype. Both mutations and phenotypes reported until recently were rather homogeneous, being exclusively missense mutations of a few amino acids of the protein G/F domain, and with a phenotype characterized by adult-onset slowly progressive muscular dystrophy predominantly affecting proximal muscles. Lately, several novel mutations and new phenotypes of DNAJB6 have been described. These mutations once more affect the G/F domain of DNAJB6 with missense changes and a splice site mutation; and the phenotypes include childhood onset and distal involvement of muscles, or childhood-onset LGMD1D with loss of ambulation in early adulthood and respiratory involvement. Thus, the spectrum of DNAJB6-related phenotypes is widening. Although our knowledge about the role of DNAJB6 in the pathogenesis of muscle diseases has made great progression, several questions remain unsolved, including why a ubiquitous protein affects only, or predominantly, skeletal muscle; why only the G/F domain is involved; and what is the possible role of the DNAJB6a isoform. Clarification of these issues will provide clues to implement possible therapeutic strategies for DNAJB6-related myopathies.
Collapse
Affiliation(s)
- Alessandra Ruggieri
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Italy
| | - Simona Saredi
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Italy
| | - Simona Zanotti
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Italy
| | - Maria Barbara Pasanisi
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Italy
| | - Lorenzo Maggi
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Italy
| |
Collapse
|
30
|
Sandell S, Huovinen S, Palmio J, Raheem O, Lindfors M, Zhao F, Haapasalo H, Udd B. Diagnostically important muscle pathology in DNAJB6 mutated LGMD1D. Acta Neuropathol Commun 2016; 4:9. [PMID: 26847086 PMCID: PMC4743201 DOI: 10.1186/s40478-016-0276-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/15/2016] [Indexed: 11/17/2022] Open
Abstract
Introduction Limb girdle muscular dystrophies are a large group of both dominantly and recessively inherited muscle diseases. LGMD1D is caused by mutated DNAJB6 and the molecular pathogenesis is mediated by defective chaperonal function leading to impaired handling of misfolded proteins which normally would be degraded. Here we aim to clarify muscle pathology of LGMD1D in order to facilitate diagnostic accuracy. After following six Finnish LGMD1D families, we analysed 21 muscle biopsies obtained from 15 patients at different time points after the onset of symptoms. All biopsies were obtained from the lower limb muscles and processed for routine histochemistry, extensive immunohistochemistry and electron microscopy. Results Histopathological findings were myopathic or dystrophic combined with rimmed vacuolar pathology, and small myofibrillar aggregates. These myofibrillar inclusions contained abnormal accumulation of a number of proteins such as myotilin, αB-crystallin and desmin on immunohistochemistry, and showed extensive myofibrillar disorganization with excess of Z-disk material on ultrastructure. Later in the disease process the rimmed vacuolar pathology dominated with rare cases of pronounced larger pleomorphic myofibrillar aggregates. The rimmed vacuoles were reactive for several markers of defect autophagy such as ubiquitin, TDP-43, p62 and SMI-31. Conclusions Since DNAJB6 is known to interact with members of the chaperone assisted selective autophagy complex (CASA), including BAG3 – a known myofibrillar myopathy causing gene, the molecular muscle pathology is apparently mediated through impaired functions of CASA and possibly other complexes needed for the maintenance of the Z-disk and sarcomeric structures. The corresponding findings on histopathology offer clues for the diagnosis.
Collapse
|
31
|
Bengoechea R, Pittman SK, Tuck EP, True HL, Weihl CC. Myofibrillar disruption and RNA-binding protein aggregation in a mouse model of limb-girdle muscular dystrophy 1D. Hum Mol Genet 2015; 24:6588-602. [PMID: 26362252 PMCID: PMC4634370 DOI: 10.1093/hmg/ddv363] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 12/15/2022] Open
Abstract
Limb-girdle muscular dystrophy type 1D (LGMD1D) is caused by dominantly inherited missense mutations in DNAJB6, an Hsp40 co-chaperone. LGMD1D muscle has rimmed vacuoles and inclusion bodies containing DNAJB6, Z-disc proteins and TDP-43. DNAJB6 is expressed as two isoforms; DNAJB6a and DNAJB6b. Both isoforms contain LGMD1D mutant residues and are expressed in human muscle. To identify which mutant isoform confers disease pathogenesis and generate a mouse model of LGMD1D, we evaluated DNAJB6 expression and localization in skeletal muscle as well as generating DNAJB6 isoform specific expressing transgenic mice. DNAJB6a localized to myonuclei while DNAJB6b was sarcoplasmic. LGMD1D mutations in DNAJB6a or DNAJB6b did not alter this localization in mouse muscle. Transgenic mice expressing the LGMD1D mutant, F93L, in DNAJB6b under a muscle-specific promoter became weak, had early lethality and developed muscle pathology consistent with myopathy after 2 months; whereas mice expressing the same F93L mutation in DNAJB6a or overexpressing DNAJB6a or DNAJB6b wild-type transgenes remained unaffected after 1 year. DNAJB6b localized to the Z-disc and DNAJB6b-F93L expressing mouse muscle had myofibrillar disorganization and desmin inclusions. Consistent with DNAJB6 dysfunction, keratin 8/18, a DNAJB6 client also accumulated in DNAJB6b-F93L expressing mouse muscle. The RNA-binding proteins hnRNPA1 and hnRNPA2/B1 accumulated and co-localized with DNAJB6 at sarcoplasmic stress granules suggesting that these proteins maybe novel DNAJB6b clients. Similarly, hnRNPA1 and hnRNPA2/B1 formed sarcoplasmic aggregates in patients with LGMD1D. Our data support that LGMD1D mutations in DNAJB6 disrupt its sarcoplasmic function suggesting a role for DNAJB6b in Z-disc organization and stress granule kinetics.
Collapse
Affiliation(s)
| | | | | | - Heather L True
- Department of Cell Biology and Physiology and and The Hope Center for Neurological Diseases, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Conrad C Weihl
- Department of Neurology, The Hope Center for Neurological Diseases, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|