1
|
Rahmuni Y, El Kadiri Y, Lyahyai J, Birouk N, Nesnassi M, Sefiani A, Ratbi I. Two Moroccan Families with Emery-Dreifuss Muscular Dystrophy and Report of a Novel LMNA Pathogenic Variant. Mol Syndromol 2024; 15:517-522. [PMID: 39634247 PMCID: PMC11614433 DOI: 10.1159/000538917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/13/2024] [Indexed: 12/07/2024] Open
Abstract
Background Emery-Dreifuss muscular dystrophy (EDMD) is a neuromuscular disorder characterized by muscle weakness and atrophy associated with early tendon retractions and late cardiomyopathy. Among several genes, EMD and LMNA are the major ones (55%). Due to intra- and inter-familial heterogeneity, only NGS allows to confirm with certainty EDMD by identifying the mutation in the causal gene. Case Presentation We report clinical and molecular data of two unrelated Moroccan patients with EDMD in whom we identified a deleterious hemizygous splicing variant NM_000117.3(EMD): c.399 + 1G>T and a novel frameshift variant NM_170707.4(LMNA): c.1549_1550delCA, respectively. Carrier status of the EMD variant was investigated in several relatives at risk. Conclusion We emphasize the importance of NGS as a powerful genetic tool in EDMD for accurate molecular diagnosis, effective clinical management of patients, and appropriate genetic counseling of families.
Collapse
Affiliation(s)
- Yasmina Rahmuni
- Research team in genomics and molecular epidemiology of genetic diseases, Genomics Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V of Rabat, Rabat, Morocco
- Department of Medical Genetics, National Institute of Health, Rabat, Morocco
| | - Youssef El Kadiri
- Research team in genomics and molecular epidemiology of genetic diseases, Genomics Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V of Rabat, Rabat, Morocco
- Department of Medical Genetics, National Institute of Health, Rabat, Morocco
| | - Jaber Lyahyai
- Research team in genomics and molecular epidemiology of genetic diseases, Genomics Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V of Rabat, Rabat, Morocco
| | - Nezha Birouk
- Neurophysiology Service, Hospital of Specialties, Ibn Sina University Hospital Center, Mohammed V University of Rabat, Rabat, Morocco
| | - Mounir Nesnassi
- Cardiology B Service, Ibn Sina University Hospital Center, Mohammed V University of Rabat, Rabat, Morocco
| | - Abdelaziz Sefiani
- Research team in genomics and molecular epidemiology of genetic diseases, Genomics Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V of Rabat, Rabat, Morocco
- Department of Medical Genetics, National Institute of Health, Rabat, Morocco
| | - Ilham Ratbi
- Research team in genomics and molecular epidemiology of genetic diseases, Genomics Center of Human Pathologies, Faculty of Medicine and Pharmacy, University Mohammed V of Rabat, Rabat, Morocco
- Unity of Medical Genetics, Children's Hospital, Ibn Sina University Hospital Center, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Rabat, Morocco
| |
Collapse
|
2
|
Wang X, Zhou X, Li C, Qu C, Shi Y, Li CJ, Kang X. Integrative analysis of whole genome bisulfite and transcriptome sequencing reveals the effect of sodium butyrate on DNA methylation in the differentiation of bovine skeletal muscle satellite cells. Genomics 2024; 116:110959. [PMID: 39521294 DOI: 10.1016/j.ygeno.2024.110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Butyric acid as a short-chain fatty acid (SCFA) is one of the key microbial metabolites of ruminants. Numerous studies indicate that butyrate is crucial in muscle growth and development, and plays an important molecular regulatory role mainly by inhibiting histone deacetylation. DNA methylation, a major epigenetic modification, is involved in cell differentiation. Butyrate, in addition to its role in acetylation modifications, can alter the DNA methylation status of cells. However, the impact of butyrate on the DNA methylation of bovine skeletal muscle satellite cells (SMSCs) remains unclear. In this study, we developed a differentiation model of SMSCs and employed RNA sequencing (RNA-seq) alongside whole genome bisulfite sequencing (WGBS) to explore the effects of butyrate treatment on DNA methylation status and its relationship with gene expression. Treatment of SMSCs with sodium butyrate (NaB) at 1.0 mM for 2 days significantly inhibited the expression of DNA methyltransferases (DNMT1, DNMT2, DNMT3A) at the mRNA and protein levels while promoting the expression of demethylases (TET1, TET2, TET3) at mRNA levels. WGBS identified 4292 differentially methylated regions (DMRs), comprising 2294 hypermethylated and 1998 hypomethylated regions. These DMRs were significantly enriched in the MAPK, cAMP, and Wnt signaling pathways, all of which are implicated in myogenesis and development. Combining RNA-seq and WGBS data revealed a total of 130 overlapping genes, including MDFIC, CREBBP, DMD, LTBP2 and KLF4. These genes are predominantly involved in regulating the FoxO, MAPK, PI3K-Akt, and Wnt signaling pathways. This study provides new insights into the effects of butyrate-mediated DNA methylation on SMSC development and enhances our understanding of butyrate as an epigenetic modifier beyond its role in acetylation.
Collapse
Affiliation(s)
- Xiaowei Wang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Ningxia Yinchuan 750002, China
| | - Xiaonan Zhou
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Chenglong Li
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Chang Qu
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yuangang Shi
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA.
| | - Xiaolong Kang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
3
|
Zeng R, Schlaeger S, Türk M, Baum T, Deschauer M, Janka R, Karampinos D, Kassubek J, Keller-Yamamura S, Kornblum C, Lehmann H, Lichtenstein T, Nagel AM, Reimann J, Rosenbohm A, Schlaffke L, Schmidt M, Schneider-Gold C, Schoser B, Trollmann R, Vorgerd M, Weber MA, Kirschke JS, Schmidt J. [Expert recommendations for magnetic resonance imaging of muscle disorders]. RADIOLOGIE (HEIDELBERG, GERMANY) 2024; 64:653-662. [PMID: 38639916 DOI: 10.1007/s00117-024-01276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Magnetic resonance (MRI) imaging of the skeletal muscles (muscle MRI for short) is increasingly being used in clinical routine for diagnosis and longitudinal assessment of muscle disorders. However, cross-centre standards for measurement protocol and radiological assessment are still lacking. OBJECTIVES The aim of this expert recommendation is to present standards for the application and interpretation of muscle MRI in hereditary and inflammatory muscle disorders. METHODS This work was developed in collaboration between neurologists, neuroradiologists, radiologists, neuropaediatricians, neuroscientists and MR physicists from different university hospitals in Germany. The recommendations are based on expert knowledge and a focused literature search. RESULTS The indications for muscle MRI are explained, including the detection and monitoring of structural tissue changes and oedema in the muscle, as well as the identification of a suitable biopsy site. Recommendations for the examination procedure and selection of appropriate MRI sequences are given. Finally, steps for a structured radiological assessment are presented. CONCLUSIONS The present work provides concrete recommendations for the indication, implementation and interpretation of muscle MRI in muscle disorders. Furthermore, it provides a possible basis for the standardisation of the measurement protocols at all clinical centres in Germany.
Collapse
Affiliation(s)
- Rachel Zeng
- Klinik für Neurologie, Universitätsmedizin Göttingen, Göttingen, Deutschland
| | - Sarah Schlaeger
- Abteilung für Diagnostische und Interventionelle Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland, Ismaningerstr. 22, 81675
- Klinik und Poliklinik für Radiologie, LMU Klinikum, LMU München, München, Deutschland
| | - Matthias Türk
- Neurologische Klinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
- Zentrum für seltene Erkrankungen Erlangen (ZSEER), Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
| | - Thomas Baum
- Abteilung für Diagnostische und Interventionelle Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland, Ismaningerstr. 22, 81675
| | - Marcus Deschauer
- Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, TUM School of Medicine and Health, Technische Universität München, München, Deutschland
| | - Rolf Janka
- Radiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
| | - Dimitrios Karampinos
- Institut für Diagnostische und Interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
| | - Jan Kassubek
- Klinik für Neurologie, Universitätsklinikum Ulm, Ulm, Deutschland
| | - Sarah Keller-Yamamura
- Klinik für Radiologie, Charité Campus Mitte, Charité Universitätsmedizin Berlin, Berlin, Deutschland
| | - Cornelia Kornblum
- Klinik und Poliklinik für Neurologie, Sektion Neuromuskuläre Erkrankungen, Universitätsklinikum Bonn, Bonn, Deutschland
| | - Helmar Lehmann
- Neurologische Klinik, Klinikum Leverkusen, akademisches Lehrkrankenhaus der Universität zu Köln, Köln, Deutschland
- Klinik und Poliklinik für Neurologie, Medizinische Fakultät und Uniklinik Köln, Universität zu Köln, Köln, Deutschland
| | - Thorsten Lichtenstein
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Fakultät und Uniklinik Köln, Universität zu Köln, Köln, Deutschland
| | - Armin M Nagel
- Radiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
| | - Jens Reimann
- Klinik und Poliklinik für Neurologie, Sektion Neuromuskuläre Erkrankungen, Universitätsklinikum Bonn, Bonn, Deutschland
| | - Angela Rosenbohm
- Klinik für Neurologie, Universitätsklinikum Ulm, Ulm, Deutschland
| | - Lara Schlaffke
- Klinik für Neurologie, BG Universitätsklinikum Bergmannsheil, Ruhr-Universität Bochum, Bochum, Deutschland
| | - Manuel Schmidt
- Neuroradiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
| | | | - Benedikt Schoser
- Friedrich-Baur-Institut an der Neurologischen Klinik und Poliklinik, LMU Klinikum, Ludwig-Maximilians-Universität München, München, Deutschland
| | - Regina Trollmann
- Zentrum für seltene Erkrankungen Erlangen (ZSEER), Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
- Abteilung Neuropädiatrie und Sozialpädiatrisches Zentrum am Universitätsklinikum, Kinder- und Jugendklinik, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
| | - Matthias Vorgerd
- Klinik für Neurologie, BG Universitätsklinikum Bergmannsheil, Ruhr-Universität Bochum, Bochum, Deutschland
| | - Marc-André Weber
- Institut für Diagnostische und Interventionelle Radiologie, Kinder- und Neuroradiologie, Universitätsmedizin Rostock, Rostock, Deutschland
| | - Jan S Kirschke
- Abteilung für Diagnostische und Interventionelle Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland, Ismaningerstr. 22, 81675.
| | - Jens Schmidt
- Klinik für Neurologie, Universitätsmedizin Göttingen, Göttingen, Deutschland.
- Abteilung für Neurologie und Schmerztherapie, Neuromuskuläres Zentrum, Zentrum für Translationale Medizin, Immanuel Klinik Rüdersdorf, Universitätsklinikum der Medizinischen Hochschule Brandenburg, Rüdersdorf bei Berlin, Deutschland, Seebad 82/83, 15562.
- Fakultät für Gesundheitswissenschaften Brandenburg, Medizinische Hochschule Brandenburg Theodor Fontane, Rüdersdorf bei Berlin, Deutschland.
| |
Collapse
|
4
|
Zeng R, Schlaeger S, Türk M, Baum T, Deschauer M, Janka R, Karampinos D, Kassubek J, Keller-Yamamura S, Kornblum C, Lehmann H, Lichtenstein T, Nagel AM, Reimann J, Rosenbohm A, Schlaffke L, Schmidt M, Schneider-Gold C, Schoser B, Trollmann R, Vorgerd M, Weber MA, Kirschke JS, Schmidt J. [Expert recommendations for magnetic resonance imaging of muscle disorders]. DER NERVENARZT 2024; 95:721-729. [PMID: 38683354 DOI: 10.1007/s00115-024-01673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
BACKGROUND Magnetic resonance (MRI) imaging of the skeletal muscles (muscle MRI for short) is increasingly being used in clinical routine for diagnosis and longitudinal assessment of muscle disorders. However, cross-centre standards for measurement protocol and radiological assessment are still lacking. OBJECTIVES The aim of this expert recommendation is to present standards for the application and interpretation of muscle MRI in hereditary and inflammatory muscle disorders. METHODS This work was developed in collaboration between neurologists, neuroradiologists, radiologists, neuropaediatricians, neuroscientists and MR physicists from different university hospitals in Germany. The recommendations are based on expert knowledge and a focused literature search. RESULTS The indications for muscle MRI are explained, including the detection and monitoring of structural tissue changes and oedema in the muscle, as well as the identification of a suitable biopsy site. Recommendations for the examination procedure and selection of appropriate MRI sequences are given. Finally, steps for a structured radiological assessment are presented. CONCLUSIONS The present work provides concrete recommendations for the indication, implementation and interpretation of muscle MRI in muscle disorders. Furthermore, it provides a possible basis for the standardisation of the measurement protocols at all clinical centres in Germany.
Collapse
Affiliation(s)
- Rachel Zeng
- Klinik für Neurologie, Universitätsmedizin Göttingen, Göttingen, Deutschland
| | - Sarah Schlaeger
- Abteilung für Diagnostische und Interventionelle Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland, Ismaningerstr. 22, 81675
- Klinik und Poliklinik für Radiologie, LMU Klinikum, LMU München, München, Deutschland
| | - Matthias Türk
- Neurologische Klinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
- Zentrum für seltene Erkrankungen Erlangen (ZSEER), Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
| | - Thomas Baum
- Abteilung für Diagnostische und Interventionelle Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland, Ismaningerstr. 22, 81675
| | - Marcus Deschauer
- Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, TUM School of Medicine and Health, Technische Universität München, München, Deutschland
| | - Rolf Janka
- Radiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
| | - Dimitrios Karampinos
- Institut für Diagnostische und Interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
| | - Jan Kassubek
- Klinik für Neurologie, Universitätsklinikum Ulm, Ulm, Deutschland
| | - Sarah Keller-Yamamura
- Klinik für Radiologie, Charité Campus Mitte, Charité Universitätsmedizin Berlin, Berlin, Deutschland
| | - Cornelia Kornblum
- Klinik und Poliklinik für Neurologie, Sektion Neuromuskuläre Erkrankungen, Universitätsklinikum Bonn, Bonn, Deutschland
| | - Helmar Lehmann
- Neurologische Klinik, Klinikum Leverkusen, akademisches Lehrkrankenhaus der Universität zu Köln, Köln, Deutschland
- Klinik und Poliklinik für Neurologie, Medizinische Fakultät und Uniklinik Köln, Universität zu Köln, Köln, Deutschland
| | - Thorsten Lichtenstein
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Fakultät und Uniklinik Köln, Universität zu Köln, Köln, Deutschland
| | - Armin M Nagel
- Radiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
| | - Jens Reimann
- Klinik und Poliklinik für Neurologie, Sektion Neuromuskuläre Erkrankungen, Universitätsklinikum Bonn, Bonn, Deutschland
| | - Angela Rosenbohm
- Klinik für Neurologie, Universitätsklinikum Ulm, Ulm, Deutschland
| | - Lara Schlaffke
- Klinik für Neurologie, BG Universitätsklinikum Bergmannsheil, Ruhr-Universität Bochum, Bochum, Deutschland
| | - Manuel Schmidt
- Neuroradiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
| | | | - Benedikt Schoser
- Friedrich-Baur-Institut an der Neurologischen Klinik und Poliklinik, LMU Klinikum, Ludwig-Maximilians-Universität München, München, Deutschland
| | - Regina Trollmann
- Zentrum für seltene Erkrankungen Erlangen (ZSEER), Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
- Abteilung Neuropädiatrie und Sozialpädiatrisches Zentrum am Universitätsklinikum, Kinder- und Jugendklinik, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
| | - Matthias Vorgerd
- Klinik für Neurologie, BG Universitätsklinikum Bergmannsheil, Ruhr-Universität Bochum, Bochum, Deutschland
| | - Marc-André Weber
- Institut für Diagnostische und Interventionelle Radiologie, Kinder- und Neuroradiologie, Universitätsmedizin Rostock, Rostock, Deutschland
| | - Jan S Kirschke
- Abteilung für Diagnostische und Interventionelle Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, München, Deutschland, Ismaningerstr. 22, 81675.
| | - Jens Schmidt
- Klinik für Neurologie, Universitätsmedizin Göttingen, Göttingen, Deutschland.
- Abteilung für Neurologie und Schmerztherapie, Neuromuskuläres Zentrum, Zentrum für Translationale Medizin, Immanuel Klinik Rüdersdorf, Universitätsklinikum der Medizinischen Hochschule Brandenburg, Rüdersdorf bei Berlin, Deutschland, Seebad 82/83, 15562.
- Fakultät für Gesundheitswissenschaften Brandenburg, Medizinische Hochschule Brandenburg Theodor Fontane, Rüdersdorf bei Berlin, Deutschland.
| |
Collapse
|
5
|
Panicucci C, Casalini S, Traverso M, Brolatti N, Baratto S, Raffaghello L, Pedemonte M, Doglio L, Derchi M, Tasca G, Damasio BM, Fiorillo C, Bruno C. Early Muscle MRI Findings in a Pediatric Case of Emery-Dreifuss Muscular Dystrophy Type 1. Neuropediatrics 2023; 54:426-429. [PMID: 37257496 DOI: 10.1055/s-0043-1768989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is a rare disease characterized by early contractures, progressive muscle weakness, and cardiac abnormalities. Different subtypes of EDMD have been described, with the two most common forms represented by the X-linked EDMD1, caused by mutations in the EMD gene encoding emerin, and the autosomal EDMD2, due to mutations in the LMNA gene encoding lamin A/C. A clear definition of the magnetic resonance imaging (MRI) pattern in the two forms, and especially in the rarer EDMD1, is still lacking, although a preferential involvement of the medial head of the gastrocnemius has been suggested in EDMD2. We report a 13-year-old boy with mild limb girdle muscle weakness, elbow and ankle contractures, with absence of emerin at muscle biopsy, carrying a hemizygous frameshift mutation on the EMD gene (c.153dupC/p.Ser52Glufs*9) of maternal inheritance. Minor cardiac rhythm abnormalities were detected at 24-hour Holter electrocardiogram and required β-blocker therapy. MRI scan of the thighs showed a mild diffuse involvement, while tibialis anterior, extensor digitorum longus, peroneus longus, and medial gastrocnemius were the most affected muscles in the leg. We also provide a review of the muscular MRI data in EDMD patients and highlight the relative heterogeneity of the MRI patterns found in EDMDs, suggesting that muscle MRI should be studied in larger EDMD cohorts to better define disease patterns and to cover the wide disease spectrum.
Collapse
Affiliation(s)
- Chiara Panicucci
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Sara Casalini
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Monica Traverso
- Pediatric Neurology and Muscle Disease Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Noemi Brolatti
- Pediatric Neurology and Muscle Disease Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Serena Baratto
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Lizzia Raffaghello
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Marina Pedemonte
- Pediatric Neurology and Muscle Disease Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Luca Doglio
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Maria Derchi
- Cardiology Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Giorgio Tasca
- Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | | | - Chiara Fiorillo
- Pediatric Neurology and Muscle Disease Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health - DINOGMI, University of Genova, Genova, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health - DINOGMI, University of Genova, Genova, Italy
| |
Collapse
|
6
|
Maggi L, Quijano-Roy S, Bönnemann C, Bonne G. 253rd ENMC international workshop: Striated muscle laminopathies - natural history and clinical trial readiness. 24-26 June 2022, Hoofddorp, the Netherlands. Neuromuscul Disord 2023; 33:498-510. [PMID: 37235886 DOI: 10.1016/j.nmd.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Affiliation(s)
- Lorenzo Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Instituto Neurologico Carlo Besta, Milano, Italy.
| | - Susana Quijano-Roy
- APHP-Université Paris-Saclay, Neuromuscular Disorders Reference Center of Nord-Est-Île de France, FILNEMUS, ERN-Euro-NMD, Creteil, France; Pediatric Neurology and ICU Department, DMU Santé Enfant Adolescent (SEA), Raymond Poincaré University Hospital, Garches, France
| | - Carsten Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Gisèle Bonne
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.
| |
Collapse
|
7
|
Genotype-Phenotype Correlations in Human Diseases Caused by Mutations of LINC Complex-Associated Genes: A Systematic Review and Meta-Summary. Cells 2022; 11:cells11244065. [PMID: 36552829 PMCID: PMC9777268 DOI: 10.3390/cells11244065] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Mutations in genes encoding proteins associated with the linker of nucleoskeleton and cytoskeleton (LINC) complex within the nuclear envelope cause different diseases with varying phenotypes including skeletal muscle, cardiac, metabolic, or nervous system pathologies. There is some understanding of the structure of LINC complex-associated proteins and how they interact, but it is unclear how mutations in genes encoding them can cause the same disease, and different diseases with different phenotypes. Here, published mutations in LINC complex-associated proteins were systematically reviewed and analyzed to ascertain whether patterns exist between the genetic sequence variants and clinical phenotypes. This revealed LMNA is the only LINC complex-associated gene in which mutations commonly cause distinct conditions, and there are no clear genotype-phenotype correlations. Clusters of LMNA variants causing striated muscle disease are located in exons 1 and 6, and metabolic disease-associated LMNA variants are frequently found in the tail of lamin A/C. Additionally, exon 6 of the emerin gene, EMD, may be a mutation "hot-spot", and diseases related to SYNE1, encoding nesprin-1, are most often caused by nonsense type mutations. These results provide insight into the diverse roles of LINC-complex proteins in human disease and provide direction for future gene-targeted therapy development.
Collapse
|
8
|
Pinto MJ, Fromes Y, Ackermann-Bonan I, Leturcq F, Verebi C, Romero NB, Stojkovic T. Muscle MRI as a Diagnostic Challenge in Emery-Dreifuss Muscular Dystrophy. J Neuromuscul Dis 2022; 9:649-654. [DOI: 10.3233/jnd-220823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Maria João Pinto
- Department of Neurology, Centro Hospitalar Universitário de São João, E.P.E., Porto, Portugal
- Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Portugal
| | - Yves Fromes
- Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France
- Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| | - Isabelle Ackermann-Bonan
- Nuclear Magnetic Resonance Laboratory, Neuromuscular Investigation Center, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France
- Nuclear Magnetic Resonance Laboratory, CEA, DRF, IBFJ, Molecular Imaging Research Center, Paris, France
| | - France Leturcq
- Department of Genomic Medicine and Systemic Diseases, APHP, University of Paris, Cochin Hospital, Paris, France
| | - Camille Verebi
- Department of Genomic Medicine and Systemic Diseases, APHP, University of Paris, Cochin Hospital, Paris, France
| | - Norma B. Romero
- Reference Center for Neuromuscular Disorders, APHP, Myology Institute, Pitié-Salpêtrière Hospital, Paris, France
- Centre de Recherche en Myologie, GHPitié-Salpêtrière, Sorbonne Université-InsermUMRS974, Paris, France
- Neuromuscular Morphology Unit, Institute of Myology, Pitié-Salpêtrière Hospital, Paris, France
| | - Tanya Stojkovic
- Reference Center for Neuromuscular Disorders, APHP, Myology Institute, Pitié-Salpêtrière Hospital, Paris, France
- Centre de Recherche en Myologie, GHPitié-Salpêtrière, Sorbonne Université-InsermUMRS974, Paris, France
| |
Collapse
|
9
|
Yunisova G, Ceylaner S, Oflazer P, Deymeer F, Parman YG, Durmus H. Clinical and genetic characteristics of Emery-Dreifuss muscular dystrophy patients from Turkey: 30 years longitudinal follow-up study. Neuromuscul Disord 2022; 32:718-727. [DOI: 10.1016/j.nmd.2022.07.397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
|
10
|
Gómez-Andrés D, Oulhissane A, Quijano-Roy S. Two decades of advances in muscle imaging in children: from pattern recognition of muscle diseases to quantification and machine learning approaches. Neuromuscul Disord 2021; 31:1038-1050. [PMID: 34736625 DOI: 10.1016/j.nmd.2021.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 11/29/2022]
Abstract
Muscle imaging has progressively gained popularity in the neuromuscular field. Together with detailed clinical examination and muscle biopsy, it has become one of the main tools for deep phenotyping and orientation of etiological diagnosis. Even in the current era of powerful new generation sequencing, muscle MRI has arisen as a tool for prioritization of certain genetic entities, supporting the pathogenicity of variants of unknown significance and facilitating diagnosis in cases with an initially inconclusive genetic study. Although the utility of muscle imaging is increasingly clear, it has not reached its full potential in clinical practice. Pattern recognition is known for a number of diseases and will certainly be enhanced by the use of machine learning approaches. For instance, MRI heatmap representations might be confronted with molecular results by obtaining a probabilistic diagnosis based in each disease "MRI fingerprints". Muscle ultrasound as a screening tool and quantified techniques such as Dixon MRI seem still underdeveloped. In this paper, we aim to appraise the advances in recent years in pediatric muscle imaging and try to define areas of uncertainty and potential advances that might become standardized to be widely used in the future.
Collapse
Affiliation(s)
- David Gómez-Andrés
- Pediatric Neurology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, ERN-RND - EURO-NMD, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; European Network for Reference Centers on Neuromuscular Disorders (Euro-NMD ERN)
| | - Amal Oulhissane
- Université Paris-Saclay, APHP, Neuromuscular Unit, Pediatric Neurology and ICU Department, Raymond Poincaré Hospital, 92390 Garches, France
| | - Susana Quijano-Roy
- Université Paris-Saclay, APHP, Neuromuscular Unit, Pediatric Neurology and ICU Department, Raymond Poincaré Hospital, 92390 Garches, France; UMR 1179, Laboratoire handicap neuromusculaire: physiopathologie biothérapie pharmacologie appliquées (END-ICAP), UFR Simone Veil, Montigny Le Bretonneux, France; French Network of Neuromuscular Reference Centers (FILNEMUS), France.
| |
Collapse
|
11
|
Quijano-Roy S, Haberlova J, Castiglioni C, Vissing J, Munell F, Rivier F, Stojkovic T, Malfatti E, Gómez García de la Banda M, Tasca G, Costa Comellas L, Benezit A, Amthor H, Dabaj I, Gontijo Camelo C, Laforêt P, Rendu J, Romero NB, Cavassa E, Fattori F, Beroud C, Zídková J, Leboucq N, Løkken N, Sanchez-Montañez Á, Ortega X, Kynčl M, Metay C, Gómez-Andrés D, Carlier RY. Diagnostic interest of whole-body MRI in early- and late-onset LAMA2 muscular dystrophies: a large international cohort. J Neurol 2021; 269:2414-2429. [PMID: 34559299 DOI: 10.1007/s00415-021-10806-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND LAMA2-related muscular dystrophy (LAMA2-RD) encompasses a group of recessive muscular dystrophies caused by mutations in the LAMA2 gene, which codes for the alpha-2 chain of laminin-211 (merosin). Diagnosis is straightforward in the classic congenital presentation with no ambulation and complete merosin deficiency in muscle biopsy, but is far more difficult in milder ambulant individuals with partial merosin deficiency. OBJECTIVE To investigate the diagnostic utility of muscle imaging in LAMA2-RD using whole-body magnetic resonance imaging (WBMRI). RESULTS 27 patients (2-62 years, 21-80% with acquisition of walking ability and 6 never ambulant) were included in an international collaborative study. All carried two pathogenic mutations, mostly private missense changes. An intronic variant (c.909 + 7A > G) was identified in all the Chilean cases. Three patients (two ambulant) showed intellectual disability, epilepsy, and brain structural abnormalities. WBMRI T1w sequences or T2 fat-saturated images (Dixon) revealed abnormal muscle fat replacement predominantly in subscapularis, lumbar paraspinals, gluteus minimus and medius, posterior thigh (adductor magnus, biceps femoris, hamstrings) and soleus. This involvement pattern was consistent for both ambulant and non-ambulant patients. The degree of replacement was predominantly correlated to the disease duration, rather than to the onset or the clinical severity. A "COL6-like sandwich sign" was observed in several muscles in ambulant adults, but different involvement of subscapularis, gluteus minimus, and medius changes allowed distinguishing LAMA2-RD from collagenopathies. The thigh muscles seem to be the best ones to assess disease progression. CONCLUSION WBMRI in LAMA2-RD shows a homogeneous pattern of brain and muscle imaging, representing a supportive diagnostic tool.
Collapse
Affiliation(s)
- Susana Quijano-Roy
- APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France
- Université de Versailles, U1179 INSERM-UVSQ, Versailles, France
| | - Jana Haberlova
- Department of Paediatric Neurology, Motol University Hospital, Prague, Czech Republic
| | - Claudia Castiglioni
- Pediatric Neurology Department, Clinica Las Condes, Santiago de Chile, Chile
- Instituto Nacional de Rehabilitación Pedro Aguirre Cerda, Santiago de Chile, Chile
| | - John Vissing
- Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Francina Munell
- Pediatric Neurology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain, Passeig de la Vall d'Hebron 119-129, 08035
| | - François Rivier
- Department of Pediatric Neurology and Reference Center for Neuromuscular Diseases AOC, CHU Montpellier, Montpellier, France
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Tanya Stojkovic
- APHP, Neuromuscular Reference Center, Pitié-Salpêtrière Hospital, Institute of Myology, Paris, France
| | - Edoardo Malfatti
- Univ Paris Est UPE, INSERM, U955 IMRB, APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Hôpital Henri Mondor, Créteil, France
| | - Marta Gómez García de la Banda
- APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France
| | - Giorgio Tasca
- Unità Operativa Complessa Di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Laura Costa Comellas
- Pediatric Neurology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain, Passeig de la Vall d'Hebron 119-129, 08035
| | - Audrey Benezit
- APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France
| | - Helge Amthor
- APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France
- Université de Versailles, U1179 INSERM-UVSQ, Versailles, France
| | - Ivana Dabaj
- APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France
- CHU de Rouen, Service de Néonatologie, Réanimation pédiatrique, Neuropédiatrie et Éducation Fonctionnelle de L'enfant, INSERM U 1245, ED497, 76000, Rouen, France
| | - Clara Gontijo Camelo
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Pascal Laforêt
- Nord/Est/Ile de France Neuromuscular Reference Center, PHENIX FHU, Hôpital Raymond-Poincaré, AP-HP. INSERM U1179, Garches, France
| | - John Rendu
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, GIN, Grenoble, France
| | - Norma B Romero
- Sorbonne Université, Myology Institute, Neuromuscular Morphology Unit, Center for Research in Myology, GH Pitié-Salpêtrière, Paris, France
- Centre de Référence de Pathologie Neuromusculaire Paris-Est, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Eliana Cavassa
- APHP, GH Université Paris-Saclay, Neuromuscular Center, Child Neurology and ICU Department, Raymond Poincare Hospital, Garches, France
| | - Fabiana Fattori
- Unit for Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, Rome, Italy
| | - Christophe Beroud
- APHM, Laboratoire de Génétique Moléculaire, Hôpital TIMONE Enfants; Aix Marseille University, INSERM, MMG, Marseille, France
| | - Jana Zídková
- Centre of Molecular Biology and Genetics, University Hospital Brno, Brno, Czech Republic
| | | | - Nicoline Løkken
- Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ángel Sanchez-Montañez
- Pediatric Neuroradiology, Radiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ximena Ortega
- Diagnostic Imaging Service, Clinica Las Condes, Santiago de Chile, Chile
| | - Martin Kynčl
- Department of Radiology, Motol University Hospital, Prague, Czech Republic
| | - Corinne Metay
- AP-HP, UF Cardiogénétique et Myogénétique Moléculaire et Cellulaire, Centre de Génétique Moléculaire et Chromosomique, GH Pitié Salpêtrière, Paris, France
- Sorbonne Université - Inserm UMRS974, Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Paris, France
| | - David Gómez-Andrés
- Pediatric Neurology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain, Passeig de la Vall d'Hebron 119-129, 08035.
| | - Robert Y Carlier
- APHP, GH Université Paris-Saclay, DMU Smart Imaging, Medical Imaging Department, Raymond Poincaré Teaching Hospital, Garches, France
| |
Collapse
|
12
|
Alonso-Pérez J, González-Quereda L, Bruno C, Panicucci C, Alavi A, Nafissi S, Nilipour Y, Zanoteli E, de Augusto Isihi LM, Melegh B, Hadzsiev K, Muelas N, Vílchez JJ, Dourado ME, Kadem N, Kutluk G, Umair M, Younus M, Pegorano E, Bello L, Crawford TO, Suárez-Calvet X, Töpf A, Guglieri M, Marini-Bettolo C, Gallano P, Straub V, Díaz-Manera J. Clinical and genetic spectrum of a large cohort of patients with δ-sarcoglycan muscular dystrophy. Brain 2021; 145:596-606. [PMID: 34515763 PMCID: PMC9014751 DOI: 10.1093/brain/awab301] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Sarcoglycanopathies include four subtypes of autosomal recessive limb-girdle muscular dystrophies (LGMDR3, LGMDR4, LGMDR5 and LGMDR6) that are caused, respectively, by mutations in the SGCA, SGCB, SGCG and SGCD genes. Delta-sarcoglycanopathy (LGMDR6) is the least frequent and is considered an ultra-rare disease. Our aim was to characterize the clinical and genetic spectrum of a large international cohort of LGMDR6 patients and to investigate whether or not genetic or protein expression data could predict diseasés severity. This is a retrospective study collecting demographic, genetic, clinical and histological data of patients with genetically confirmed LGMDR6 including protein expression data from muscle biopsies. We contacted 128 pediatric and adult neuromuscular units around the world that reviewed genetic data of patients with a clinical diagnosis of a neuromuscular disorder. We identified 30 patients with a confirmed diagnosis of LGMDR6 of which 23 patients were included in this study. Eighty seven percent of the patients had consanguineous parents. Ninety one percent of the patients were symptomatic at the time of the analysis. Proximal muscle weakness of the upper and lower limbs was the most common presenting symptom. Distal muscle weakness was observed early over the course of the disease in 56.5% of the patients. Cardiac involvement was reported in 5 patients (21.7%) and 4 patients (17.4%) required non-invasive ventilation. Sixty percent of patients were wheelchair-bound since early teens (median age of 12.0 years old). Patients with absent expression of the sarcoglycan complex on muscle biopsy had a significant earlier onset of symptoms and an earlier age of loss of ambulation compared to patients with residual protein expression. This study confirmed that delta-sarcoglycanopathy is an ultra-rare neuromuscular condition and described the clinical and molecular characteristics of the largest yet-reported collected cohort of patients. Our results showed that this is a very severe and quickly progressive disease characterized by generalized muscle weakness affecting predominantly proximal and distal muscles of the limbs. Similar to other forms of sarcoglycanopathies, the severity and rate of progressive weakness correlates inversely with the abundance of protein on muscle biopsy.
Collapse
Affiliation(s)
- Jorge Alonso-Pérez
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Departament of Medicine, Barcelona, 08041, Spain
| | - Lidia González-Quereda
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08041, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCSS Istituto Giannina Gaslini, Genova, 16147, Italy
| | - Chiara Panicucci
- Center of Translational and Experimental Myology, IRCSS Istituto Giannina Gaslini, Genova, 16147, Italy
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 13871, Iran
| | - Shahriar Nafissi
- Department of Neurology, Neuromuscular research center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, 14117, Iran
| | - Yalda Nilipour
- Pediatric Pathology Research Center, Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran, 14117, Iran
| | - Edmar Zanoteli
- Department of Neurology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403, Brazil
| | - Lucas Michielon de Augusto Isihi
- Department of Neurology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403, Brazil
| | - Béla Melegh
- Department of Medical Genetics, and Szentagothai Research Center, University of Pecs, School of Medicine, Pecs, 07522, Hungary
| | - Kinga Hadzsiev
- Department of Medical Genetics, and Szentagothai Research Center, University of Pecs, School of Medicine, Pecs, 07522, Hungary
| | - Nuria Muelas
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain.,Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Valencia, 46026, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
| | - Juan J Vílchez
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08041, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
| | - Mario Emilio Dourado
- Department of Integrative Medicine, Federal University of Rio Grande do Norte, Campus Universitário Lagoa Nova, 59012-300 Natal, RN, Brazil
| | - Naz Kadem
- University of Health Sciences, Antalya Research and Training Hospital, Department of Paediatric Neurology, Antalya, 07100, Turkey
| | - Gultekin Kutluk
- University of Health Sciences, Antalya Research and Training Hospital, Department of Paediatric Neurology, Antalya, 07100, Turkey
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, 14611, Saudi Arabia.,Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Muhammad Younus
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Beijing 100871, China
| | - Elena Pegorano
- Department of Neuroscience, University of Padova, Padova, 35112, Italy
| | - Luca Bello
- Department of Neuroscience, University of Padova, Padova, 35112, Italy
| | - Thomas O Crawford
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xavier Suárez-Calvet
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Departament of Medicine, Barcelona, 08041, Spain
| | - Ana Töpf
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Michela Guglieri
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Chiara Marini-Bettolo
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Pia Gallano
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08041, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Jordi Díaz-Manera
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Departament of Medicine, Barcelona, 08041, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain.,The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
13
|
Tobaly D, Laforêt P, Stojkovic T, Behin A, Petit FM, Barp A, Bello L, Carlier P, Carlier RY. Whole-body muscle MRI in McArdle disease. Neuromuscul Disord 2021; 32:5-14. [PMID: 34711478 DOI: 10.1016/j.nmd.2021.07.397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/14/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022]
Abstract
This study describes muscle involvement on whole-body MRI (WB-MRI) scans at different stages of McArdle disease. WB-MRI was performed on fifteen genetically confirmed McArdle disease patients between ages 25 to 80. The degree of fatty substitution was scored for 60 muscles using Mercuri's classification. All patients reported an intolerance to exercise and episodes of rhabdomyolysis. A mild fixed muscle weakness was observed in 13/15 patients with neck flexor weakness in 7/15 cases, and proximal muscle weakness in 6/15 cases. A moderate scapular winging was observed in five patients. A careful review of the MRI scans, as well as hierarchical clustering of patients by Mercuri scores, pointed out recurrent muscle changes particularly in the subscapularis, anterior serratus, erector spinae and quadratus femoris muscles. WB-MRI imaging provides clinically relevant information and is a useful tool to orient toward the diagnosis of McArdle disease.
Collapse
Affiliation(s)
- David Tobaly
- APHP, Service de Radiologie GH Université Paris-Saclay DMU Smart Imaging, Hôpital Raymond Poincaré, 104 boulevard Raymond Poincaré, Garches 94400, France.
| | - Pascal Laforêt
- APHP, Service de Radiologie GH Université Paris-Saclay DMU Smart Imaging, Hôpital Raymond Poincaré, 104 boulevard Raymond Poincaré, Garches 94400, France; AP-HP, Service de Neurologie, GH Université Paris-Saclay, DMU Neuro-Handicap, Hôpital Raymond-Poincaré, Garches, France; Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, France
| | | | - Anthony Behin
- Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, France
| | - Francois Michael Petit
- APHP, Laboratoire de Génétique Moléculaire, Université Paris Saclay, Hôpital Antoine Béclère, Clamart 92140, France
| | - Andrea Barp
- Neurosciences Department (DNS), University of Padova, Padova, Italy
| | - Luca Bello
- Neurosciences Department (DNS), University of Padova, Padova, Italy
| | - Pierre Carlier
- AIM & CEA NMR Laboratory, Institute of Myology, Pitié-Salpêtrière University Hospital, Paris, France
| | - Robert-Yves Carlier
- APHP, Service de Radiologie GH Université Paris-Saclay DMU Smart Imaging, Hôpital Raymond Poincaré, 104 boulevard Raymond Poincaré, Garches 94400, France; Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, France; UMR 1179, Université Versailles Saint Quentin en Yvelines, Paris Saclay, France
| |
Collapse
|
14
|
Aivazoglou LU, Guimarães JB, Link TM, Costa MAF, Cardoso FN, de Mattos Lombardi Badia B, Farias IB, de Rezende Pinto WBV, de Souza PVS, Oliveira ASB, de Siqueira Carvalho AA, Aihara AY, da Rocha Corrêa Fernandes A. MR imaging of inherited myopathies: a review and proposal of imaging algorithms. Eur Radiol 2021; 31:8498-8512. [PMID: 33881569 DOI: 10.1007/s00330-021-07931-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/05/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The aims of this review are to discuss the imaging modalities used to assess muscle changes in myopathies, to provide an overview of the inherited myopathies focusing on their patterns of muscle involvement in magnetic resonance imaging (MR), and to propose up-to-date imaging-based diagnostic algorithms that can help in the diagnostic workup. CONCLUSION Familiarization with the most common and specific patterns of muscular involvement in inherited myopathies is very important for radiologists and neurologists, as imaging plays a significant role in diagnosis and follow-up of these patients. KEY POINTS • Imaging is an increasingly important tool for diagnosis and follow-up in the setting of inherited myopathies. • Knowledge of the most common imaging patterns of muscle involvement in inherited myopathies is valuable for both radiologists and neurologists. • In this review, we present imaging-based algorithms that can help in the diagnostic workup of myopathies.
Collapse
Affiliation(s)
- Laís Uyeda Aivazoglou
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil.,Laboratório Delboni Auriemo - Grupo DASA, Av Juruá, 434, Barueri, SP, 06455-010, Brazil
| | - Julio Brandão Guimarães
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil. .,Musculoskeletal and Quantitative Imaging Research Group (MQIR), Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA.
| | - Thomas M Link
- Musculoskeletal and Quantitative Imaging Research Group (MQIR), Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Maria Alice Freitas Costa
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil.,Laboratório Delboni Auriemo - Grupo DASA, Av Juruá, 434, Barueri, SP, 06455-010, Brazil
| | - Fabiano Nassar Cardoso
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil
| | - Bruno de Mattos Lombardi Badia
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Embaú, 67, São Paulo, SP, 04039-060, Brazil
| | - Igor Braga Farias
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Embaú, 67, São Paulo, SP, 04039-060, Brazil
| | - Wladimir Bocca Vieira de Rezende Pinto
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Embaú, 67, São Paulo, SP, 04039-060, Brazil
| | - Paulo Victor Sgobbi de Souza
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Embaú, 67, São Paulo, SP, 04039-060, Brazil
| | - Acary Souza Bulle Oliveira
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Embaú, 67, São Paulo, SP, 04039-060, Brazil
| | - Alzira Alves de Siqueira Carvalho
- Laboratório de Doenças Neuromusculares da Faculdade de Medicina do ABC - Departamento de Neurociências, Av. Lauro Gomes, 2000, Santo André, SP, 09060-870, Brazil
| | - André Yui Aihara
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil.,Laboratório Delboni Auriemo - Grupo DASA, Av Juruá, 434, Barueri, SP, 06455-010, Brazil
| | - Artur da Rocha Corrêa Fernandes
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil
| |
Collapse
|
15
|
Skeletal and Cardiac Muscle Disorders Caused by Mutations in Genes Encoding Intermediate Filament Proteins. Int J Mol Sci 2021; 22:ijms22084256. [PMID: 33923914 PMCID: PMC8073371 DOI: 10.3390/ijms22084256] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023] Open
Abstract
Intermediate filaments are major components of the cytoskeleton. Desmin and synemin, cytoplasmic intermediate filament proteins and A-type lamins, nuclear intermediate filament proteins, play key roles in skeletal and cardiac muscle. Desmin, encoded by the DES gene (OMIM *125660) and A-type lamins by the LMNA gene (OMIM *150330), have been involved in striated muscle disorders. Diseases include desmin-related myopathy and cardiomyopathy (desminopathy), which can be manifested with dilated, restrictive, hypertrophic, arrhythmogenic, or even left ventricular non-compaction cardiomyopathy, Emery–Dreifuss Muscular Dystrophy (EDMD2 and EDMD3, due to LMNA mutations), LMNA-related congenital Muscular Dystrophy (L-CMD) and LMNA-linked dilated cardiomyopathy with conduction system defects (CMD1A). Recently, mutations in synemin (SYNM gene, OMIM *606087) have been linked to cardiomyopathy. This review will summarize clinical and molecular aspects of desmin-, lamin- and synemin-related striated muscle disorders with focus on LMNA and DES-associated clinical entities and will suggest pathogenetic hypotheses based on the interplay of desmin and lamin A/C. In healthy muscle, such interplay is responsible for the involvement of this network in mechanosignaling, nuclear positioning and mitochondrial homeostasis, while in disease it is disturbed, leading to myocyte death and activation of inflammation and the associated secretome alterations.
Collapse
|
16
|
Warman-Chardon J, Diaz-Manera J, Tasca G, Straub V. 247th ENMC International Workshop: Muscle magnetic resonance imaging - Implementing muscle MRI as a diagnostic tool for rare genetic myopathy cohorts. Hoofddorp, The Netherlands, September 2019. Neuromuscul Disord 2020; 30:938-947. [PMID: 33004285 DOI: 10.1016/j.nmd.2020.08.360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/19/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Jodi Warman-Chardon
- Jodi Warman Chardon, Neurology/Genetics, The Ottawa Hospital/Research Institute, Canada; Children's Hospital of Eastern Ontario/Research Institute, Canada
| | - Jordi Diaz-Manera
- Neuromuscular Disorders Unit, Neurology department, Hospital Universitari de la Santa Creu i Sant Pau, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain; John Walton Muscular Dystrophy Research Center, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, UK
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Volker Straub
- John Walton Muscular Dystrophy Research Center, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, UK.
| | | |
Collapse
|
17
|
Verdú-Díaz J, Alonso-Pérez J, Nuñez-Peralta C, Tasca G, Vissing J, Straub V, Fernández-Torrón R, Llauger J, Illa I, Díaz-Manera J. Accuracy of a machine learning muscle MRI-based tool for the diagnosis of muscular dystrophies. Neurology 2020; 94:e1094-e1102. [PMID: 32029545 DOI: 10.1212/wnl.0000000000009068] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Genetic diagnosis of muscular dystrophies (MDs) has classically been guided by clinical presentation, muscle biopsy, and muscle MRI data. Muscle MRI suggests diagnosis based on the pattern of muscle fatty replacement. However, patterns overlap between different disorders and knowledge about disease-specific patterns is limited. Our aim was to develop a software-based tool that can recognize muscle MRI patterns and thus aid diagnosis of MDs. METHODS We collected 976 pelvic and lower limbs T1-weighted muscle MRIs from 10 different MDs. Fatty replacement was quantified using Mercuri score and files containing the numeric data were generated. Random forest supervised machine learning was applied to develop a model useful to identify the correct diagnosis. Two thousand different models were generated and the one with highest accuracy was selected. A new set of 20 MRIs was used to test the accuracy of the model, and the results were compared with diagnoses proposed by 4 specialists in the field. RESULTS A total of 976 lower limbs MRIs from 10 different MDs were used. The best model obtained had 95.7% accuracy, with 92.1% sensitivity and 99.4% specificity. When compared with experts on the field, the diagnostic accuracy of the model generated was significantly higher in a new set of 20 MRIs. CONCLUSION Machine learning can help doctors in the diagnosis of muscle dystrophies by analyzing patterns of muscle fatty replacement in muscle MRI. This tool can be helpful in daily clinics and in the interpretation of the results of next-generation sequencing tests. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that a muscle MRI-based artificial intelligence tool accurately diagnoses muscular dystrophies.
Collapse
Affiliation(s)
- José Verdú-Díaz
- From the Neuromuscular Disorders Unit, Neurology Department (J.V.-D., J.A.-P., I.I., J.D.-M.), and Radiology Department (C.N.-P., J.L.), Hospital de la Santa Creu I Sant Pau, Barcelona, Spain; UOC di Neurologia (G.T.), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Copenhagen Neuromuscular Center, Department of Neurology (J.V.), Rigshospitalet, University of Copenhagen, Denmark; John Walton Muscular Dystrophy Research Centre (V.S., J.D.-M.), University of Newcastle, Newcastle Upon Tyne, UK; Hospital Universitario Donostia (R.F.-T.); and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (I.I., J.D.-M.), Madrid, Spain
| | - Jorge Alonso-Pérez
- From the Neuromuscular Disorders Unit, Neurology Department (J.V.-D., J.A.-P., I.I., J.D.-M.), and Radiology Department (C.N.-P., J.L.), Hospital de la Santa Creu I Sant Pau, Barcelona, Spain; UOC di Neurologia (G.T.), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Copenhagen Neuromuscular Center, Department of Neurology (J.V.), Rigshospitalet, University of Copenhagen, Denmark; John Walton Muscular Dystrophy Research Centre (V.S., J.D.-M.), University of Newcastle, Newcastle Upon Tyne, UK; Hospital Universitario Donostia (R.F.-T.); and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (I.I., J.D.-M.), Madrid, Spain
| | - Claudia Nuñez-Peralta
- From the Neuromuscular Disorders Unit, Neurology Department (J.V.-D., J.A.-P., I.I., J.D.-M.), and Radiology Department (C.N.-P., J.L.), Hospital de la Santa Creu I Sant Pau, Barcelona, Spain; UOC di Neurologia (G.T.), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Copenhagen Neuromuscular Center, Department of Neurology (J.V.), Rigshospitalet, University of Copenhagen, Denmark; John Walton Muscular Dystrophy Research Centre (V.S., J.D.-M.), University of Newcastle, Newcastle Upon Tyne, UK; Hospital Universitario Donostia (R.F.-T.); and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (I.I., J.D.-M.), Madrid, Spain
| | - Giorgio Tasca
- From the Neuromuscular Disorders Unit, Neurology Department (J.V.-D., J.A.-P., I.I., J.D.-M.), and Radiology Department (C.N.-P., J.L.), Hospital de la Santa Creu I Sant Pau, Barcelona, Spain; UOC di Neurologia (G.T.), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Copenhagen Neuromuscular Center, Department of Neurology (J.V.), Rigshospitalet, University of Copenhagen, Denmark; John Walton Muscular Dystrophy Research Centre (V.S., J.D.-M.), University of Newcastle, Newcastle Upon Tyne, UK; Hospital Universitario Donostia (R.F.-T.); and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (I.I., J.D.-M.), Madrid, Spain
| | - John Vissing
- From the Neuromuscular Disorders Unit, Neurology Department (J.V.-D., J.A.-P., I.I., J.D.-M.), and Radiology Department (C.N.-P., J.L.), Hospital de la Santa Creu I Sant Pau, Barcelona, Spain; UOC di Neurologia (G.T.), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Copenhagen Neuromuscular Center, Department of Neurology (J.V.), Rigshospitalet, University of Copenhagen, Denmark; John Walton Muscular Dystrophy Research Centre (V.S., J.D.-M.), University of Newcastle, Newcastle Upon Tyne, UK; Hospital Universitario Donostia (R.F.-T.); and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (I.I., J.D.-M.), Madrid, Spain
| | - Volker Straub
- From the Neuromuscular Disorders Unit, Neurology Department (J.V.-D., J.A.-P., I.I., J.D.-M.), and Radiology Department (C.N.-P., J.L.), Hospital de la Santa Creu I Sant Pau, Barcelona, Spain; UOC di Neurologia (G.T.), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Copenhagen Neuromuscular Center, Department of Neurology (J.V.), Rigshospitalet, University of Copenhagen, Denmark; John Walton Muscular Dystrophy Research Centre (V.S., J.D.-M.), University of Newcastle, Newcastle Upon Tyne, UK; Hospital Universitario Donostia (R.F.-T.); and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (I.I., J.D.-M.), Madrid, Spain
| | - Roberto Fernández-Torrón
- From the Neuromuscular Disorders Unit, Neurology Department (J.V.-D., J.A.-P., I.I., J.D.-M.), and Radiology Department (C.N.-P., J.L.), Hospital de la Santa Creu I Sant Pau, Barcelona, Spain; UOC di Neurologia (G.T.), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Copenhagen Neuromuscular Center, Department of Neurology (J.V.), Rigshospitalet, University of Copenhagen, Denmark; John Walton Muscular Dystrophy Research Centre (V.S., J.D.-M.), University of Newcastle, Newcastle Upon Tyne, UK; Hospital Universitario Donostia (R.F.-T.); and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (I.I., J.D.-M.), Madrid, Spain
| | - Jaume Llauger
- From the Neuromuscular Disorders Unit, Neurology Department (J.V.-D., J.A.-P., I.I., J.D.-M.), and Radiology Department (C.N.-P., J.L.), Hospital de la Santa Creu I Sant Pau, Barcelona, Spain; UOC di Neurologia (G.T.), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Copenhagen Neuromuscular Center, Department of Neurology (J.V.), Rigshospitalet, University of Copenhagen, Denmark; John Walton Muscular Dystrophy Research Centre (V.S., J.D.-M.), University of Newcastle, Newcastle Upon Tyne, UK; Hospital Universitario Donostia (R.F.-T.); and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (I.I., J.D.-M.), Madrid, Spain
| | - Isabel Illa
- From the Neuromuscular Disorders Unit, Neurology Department (J.V.-D., J.A.-P., I.I., J.D.-M.), and Radiology Department (C.N.-P., J.L.), Hospital de la Santa Creu I Sant Pau, Barcelona, Spain; UOC di Neurologia (G.T.), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Copenhagen Neuromuscular Center, Department of Neurology (J.V.), Rigshospitalet, University of Copenhagen, Denmark; John Walton Muscular Dystrophy Research Centre (V.S., J.D.-M.), University of Newcastle, Newcastle Upon Tyne, UK; Hospital Universitario Donostia (R.F.-T.); and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (I.I., J.D.-M.), Madrid, Spain
| | - Jordi Díaz-Manera
- From the Neuromuscular Disorders Unit, Neurology Department (J.V.-D., J.A.-P., I.I., J.D.-M.), and Radiology Department (C.N.-P., J.L.), Hospital de la Santa Creu I Sant Pau, Barcelona, Spain; UOC di Neurologia (G.T.), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Copenhagen Neuromuscular Center, Department of Neurology (J.V.), Rigshospitalet, University of Copenhagen, Denmark; John Walton Muscular Dystrophy Research Centre (V.S., J.D.-M.), University of Newcastle, Newcastle Upon Tyne, UK; Hospital Universitario Donostia (R.F.-T.); and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (I.I., J.D.-M.), Madrid, Spain.
| |
Collapse
|
18
|
Heller SA, Shih R, Kalra R, Kang PB. Emery-Dreifuss muscular dystrophy. Muscle Nerve 2019; 61:436-448. [PMID: 31840275 PMCID: PMC7154529 DOI: 10.1002/mus.26782] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 12/19/2022]
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is a rare muscular dystrophy, but is particularly important to diagnose due to frequent life-threatening cardiac complications. EDMD classically presents with muscle weakness, early contractures, cardiac conduction abnormalities and cardiomyopathy, although the presence and severity of these manifestations vary by subtype and individual. Associated genes include EMD, LMNA, SYNE1, SYNE2, FHL1, TMEM43, SUN1, SUN2, and TTN, encoding emerin, lamin A/C, nesprin-1, nesprin-2, FHL1, LUMA, SUN1, SUN2, and titin, respectively. The Online Mendelian Inheritance in Man database recognizes subtypes 1 through 7, which captures most but not all of the associated genes. Genetic diagnosis is essential whenever available, but traditional diagnostic tools can help steer the evaluation toward EDMD and assist with interpretation of equivocal genetic test results. Management is primarily supportive, but it is important to monitor patients closely, especially for potential cardiac complications. There is a high potential for progress in the treatment of EDMD in the coming years.
Collapse
Affiliation(s)
- Scott A Heller
- Department of Neurology, University of Florida College of Medicine, Gainesville, Florida
| | - Renata Shih
- Congenital Heart Center, University of Florida College of Medicine, Gainesville, Florida
| | - Raghav Kalra
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida
| | - Peter B Kang
- Department of Neurology, University of Florida College of Medicine, Gainesville, Florida.,Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida.,Genetics Institute and Myology Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
19
|
Xie Z, Xie Z, Yu M, Zheng Y, Sun C, Liu Y, Ling C, Zhu Y, Zhang W, Xiao J, Wang Z, Yuan Y. Value of muscle magnetic resonance imaging in the differential diagnosis of muscular dystrophies related to the dystrophin-glycoprotein complex. Orphanet J Rare Dis 2019; 14:250. [PMID: 31747956 PMCID: PMC6865054 DOI: 10.1186/s13023-019-1242-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/29/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Dystrophin-glycoprotein complex (DGC)-related muscular dystrophies may present similar clinical and pathological features as well as undetectable mutations thus being sometimes difficult to distinguish. We investigated the value of muscle magnetic resonance imaging (MRI) in the differential diagnosis of DGC-related muscular dystrophies and reported the largest series of Chinese patients with sarcoglycanopathies studied by muscle MRI. RESULTS Fifty-five patients with DGC-related muscular dystrophies, including 22 with confirmed sarcoglycanopathies, 11 with limb-girdle muscular dystrophy 2I (LGMD2I, FKRP-associated dystroglycanopathy), and 22 with dystrophinopathies underwent extensive clinical evaluation, muscle biopsies, genetic analysis, and muscle MRI examinations. Hierarchical clustering of patients according to the clinical characteristics showed that patients did not cluster according to the genotypes. No statistically significant differences were observed between sarcoglycanopathies and LGMD2I in terms of thigh muscle involvement. The concentric fatty infiltration pattern was observed not only in different sarcoglycanopathies (14/22) but also in LGMD2I (9/11). The trefoil with single fruit sign was observed in most patients with dystrophinopathies (21/22), and a few patients with sarcoglycanopathies (4/22) or LGMD2I (2/11). Hierarchical clustering showed that most patients with sarcoglycanopathies or LGMD2I can be distinguished from dystrophinopathies based on the concentric fatty infiltration pattern and trefoil with single fruit sign at the thigh level on muscle MRI. CONCLUSIONS Muscle MRI at the thigh level potentially allows distinction of sarcoglycanopathies or FKRP-associated dystroglycanopathy from dystrophinopathies.
Collapse
Affiliation(s)
- Zhiying Xie
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Zhihao Xie
- Department of Epidemiology and Biostatistics, West China School of Public Health, Sichuan University, Chengdu, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Yiming Zheng
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Chengyue Sun
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Yilin Liu
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Chen Ling
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Ying Zhu
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Jiangxi Xiao
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
20
|
MYO-MRI diagnostic protocols in genetic myopathies. Neuromuscul Disord 2019; 29:827-841. [DOI: 10.1016/j.nmd.2019.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/18/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022]
|
21
|
Rossi F, Martinoli C, Murialdo G, Schenone A, Grandis M, Ferone D, Tagliafico AS. The primary role of radiological imaging in the diagnosis of rare musculoskeletal diseases. Emphasis on ultrasound. J Ultrason 2019; 19:187-192. [PMID: 31807323 PMCID: PMC6856777 DOI: 10.15557/jou.2019.0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 07/18/2019] [Indexed: 12/20/2022] Open
Abstract
Objective: In July 2017 a multidisciplinary clinical Center specialized in rare diseases was activated. A rare disease can involve the musculoskeletal system. A multimodality musculoskeletal imaging approach allows for a rapid diagnosis. The purpose of this study was to assess when musculoskeletal radiology, ultrasound in particular, plays a primary role in the diagnostic path of a rare disease. Methods and materials: The Center included a list of 621 main rare diseases. Pathologies in which radiology has a primary diagnostic role were extracted from the list. From September 2017 to January 2018 all conditions involving the musculoskeletal system, including the peripheral nervous system, were systematically evaluated by one radiologist. The second radiologist, an official consultant of the Center, verified the list for consistency. Descriptive analysis was performed. Results: A total of 101/621 (16%) rare diseases can be diagnosed for the first time in the diagnostic path of the patient with medical imaging. A total of 36/101 (36%) rare diseases involve the musculoskeletal system. A total of 14/36 (39%) are pediatric diseases, 10/36 (28%) are adult age diseases, while 12/36 (33%) diseases affect all ages. A total of 23/36 (64%) of the selected rare diseases could be diagnosed with MRI, 19/36 (53%) with CT, 23/36 (64%) with X-ray, 9/36 (25%) with an US, and 1/36 (3%) with PET. Conclusions: Musculoskeletal imaging could be important for a non-invasive diagnosis in up to 36/101 (36%) rare diseases, as well as for outcome prediction, especially in pediatrics. Musculoskeletal imaging plays a crucial role in the diagnosis of rare diseases and could strongly influence the clinical pathway. Ultrasound is crucial in up to 25% of patients with rare diseases affecting the musculoskeletal system.
Collapse
Affiliation(s)
- Federica Rossi
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
| | - Carlo Martinoli
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
- Department of Radiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giovanni Murialdo
- Department of Internal Medicine, Policlinico San Martino University Hospital, University of Genoa, Genoa, Italy
| | - Angelo Schenone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genova, Genoa, Italy
| | - Marina Grandis
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genova, Genoa, Italy
| | - Diego Ferone
- Endocrinology, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genua, Włochy
| | - Alberto Stefano Tagliafico
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
- Department of Radiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
22
|
Dai X, Zheng C, Chen X, Tang Y, Zhang H, Yan C, Ma H, Li X. Targeted next-generation sequencing identified a known EMD mutation in a Chinese patient with Emery-Dreifuss muscular dystrophy. Hum Genome Var 2019; 6:42. [PMID: 31645980 PMCID: PMC6804839 DOI: 10.1038/s41439-019-0072-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is a rare X-linked recessive disease characterized by the clinical triad of early childhood joint contractures, progressive weakness in muscles and cardiac involvement and can result in sudden death. Targeted next-generation sequencing was performed for a Chinese patient with EDMD and the previously reported mutation [NM_000117.2: c.251_255del (p.Leu84Profs*7)] in exon 3 of the emerin gene (EMD) was identified.
Collapse
Affiliation(s)
- Xiafei Dai
- 1School of Medicine, University of Electronic Science and Technology of China, 610072 Chengdu, Sichuan China.,2Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072 Chengdu, Sichuan China
| | - Chenqing Zheng
- Shenzhen RealOmics (Biotech) Co., Ltd., 518081 Shenzhen, China
| | - Xuepin Chen
- 2Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072 Chengdu, Sichuan China.,4ZunYi Medical University, 563000 Zunyi, Guizhou China
| | - Yibin Tang
- 2Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072 Chengdu, Sichuan China
| | - Hongmei Zhang
- 2Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072 Chengdu, Sichuan China
| | - Chao Yan
- 1School of Medicine, University of Electronic Science and Technology of China, 610072 Chengdu, Sichuan China.,2Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072 Chengdu, Sichuan China
| | - Huihui Ma
- 1School of Medicine, University of Electronic Science and Technology of China, 610072 Chengdu, Sichuan China.,2Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072 Chengdu, Sichuan China
| | - Xiaoping Li
- 1School of Medicine, University of Electronic Science and Technology of China, 610072 Chengdu, Sichuan China.,2Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 610072 Chengdu, Sichuan China
| |
Collapse
|
23
|
Cotta A, Paim JF, Carvalho E, Valicek J, da Cunha Junior AL, Navarro MM, Vargas AP, Lima MI, de Almeida CF, Takata RI, Vainzof M. LMNA-Related Muscular Dystrophy with Clinical Intrafamilial Variability. J Mol Neurosci 2019; 69:623-627. [PMID: 31410651 DOI: 10.1007/s12031-019-01390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Abstract
The LMNA gene is associated to a huge broad of phenotypes, including congenital Emery-Dreifuss muscular dystrophy and late-onset LMNA-related muscular dystrophy. In these forms, muscle weakness, contractures, and cardiac impairment are common. In an autosomal dominant pedigree including 5 affected patients, NGS molecular analysis performed in 6 relatives identifies the heterozygous c.1129C>T p.Arg377Cys variant in the exon 6 of the LMNA gene in three of them. Clinical, laboratorial, imaging investigation of these affected patients showed a significant clinical variability: the father presented subclinical imaging muscular dystrophy masqueraded as radiculopathy. One of his sons presented cardiac arrhythmia, muscular weakness, elbow contractures, and intranuclear pseudoinclusions on muscle biopsy. A second son presented only decreased tendon reflexes. Two other brothers presenting myalgia and cramps were not carriers of the same mutation in the LMNA gene. Early diagnosis, considering these variable phenotype and genotype, is important for genetic counseling, as well as cardiac, and rehabilitation management.
Collapse
Affiliation(s)
- Ana Cotta
- Pathology, Neurophysiology, Radiology, Pediatrics and Genetics, and Neurology Departments, SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Julia F Paim
- Pathology, Neurophysiology, Radiology, Pediatrics and Genetics, and Neurology Departments, SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Elmano Carvalho
- Pathology, Neurophysiology, Radiology, Pediatrics and Genetics, and Neurology Departments, SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Jaquelin Valicek
- Pathology, Neurophysiology, Radiology, Pediatrics and Genetics, and Neurology Departments, SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Antonio L da Cunha Junior
- Pathology, Neurophysiology, Radiology, Pediatrics and Genetics, and Neurology Departments, SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Monica M Navarro
- Pathology, Neurophysiology, Radiology, Pediatrics and Genetics, and Neurology Departments, SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Antonio P Vargas
- Pathology, Neurophysiology, Radiology, Pediatrics and Genetics, and Neurology Departments, SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil
| | - Maria I Lima
- Electron Microscopy and Molecular Biology Departments, SARAH Network of Rehabilitation Hospitals, Brasilia, Brazil
| | - Camila F de Almeida
- Human Genome and Stem Cells Research Center, Genetics and Evolutionary Biology Department, IBUSP, University of São Paulo, Rua do Matão, Travessa 13, no. 106, São Paulo, SP, 05508-090, Brazil
| | - Reinaldo I Takata
- Electron Microscopy and Molecular Biology Departments, SARAH Network of Rehabilitation Hospitals, Brasilia, Brazil
| | - Mariz Vainzof
- Human Genome and Stem Cells Research Center, Genetics and Evolutionary Biology Department, IBUSP, University of São Paulo, Rua do Matão, Travessa 13, no. 106, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
24
|
Brisset M, Ben Yaou R, Carlier RY, Chanut A, Nicolas G, Romero NB, Wahbi K, Decrocq C, Leturcq F, Laforêt P, Malfatti E. X-linked Emery-Dreifuss muscular dystrophy manifesting with adult onset axial weakness, camptocormia, and minimal joint contractures. Neuromuscul Disord 2019; 29:678-683. [PMID: 31474437 DOI: 10.1016/j.nmd.2019.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/01/2019] [Accepted: 06/14/2019] [Indexed: 11/17/2022]
Abstract
Emery-Dreifuss muscular dystrophy is an early-onset, slowly progressive myopathy characterized by the development of multiple contractures, muscle weakness and cardiac dysfunction. We present here the case of a 65-year-old male patient with a 20 year history of slowly progressive camptocormia, bradycardia and shortness of breath. Examination showed severe spine extensor and neck flexor muscle weakness with slight upper limb proximal weakness. Cardiologic assessment revealed slow atrial fibrillation. Whole body MRI demonstrated adipose substitution of the paravertebral, limb girdle and peroneal muscles as well as the tongue. Emerin immunohistochemistry on patient muscle biopsy revealed the absence of nuclear envelope labeling confirmed by Western Blot. Genetic analysis showed a hemizygous duplication of 5 bases in exon 6 of the EMD, emerin, gene on the X chromosome. This is an unusual presentation of X-linked Emery-Dreifuss muscular dystrophy with adult onset, predominant axial muscles involvement and minimal joint contractures. Diagnosis was prompted by the analysis of emerin on muscle biopsy.
Collapse
Affiliation(s)
- Marion Brisset
- APHP, Department of Neurology, Raymond Poincaré Hospital, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, 104 Bld Raymond Poincaré, 92380 Garches, France
| | - Rabah Ben Yaou
- APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Institut de Myologie, G.H. Pitié-Salpêtrière, F-75013 Paris, France; Université Sorbonne, INSERM U974, Center of Research in Myology, Institut de Myologie, G.H. Pitié-Salpêtrière Paris F-75013, France
| | - Robert-Yves Carlier
- APHP, Medical imaging Department, Raymond Poincaré teaching Hospital, GHU GH HUPIFO, 104 Bld Raymond Poincaré, 92380 Garches, France; Service de Neurologie, U1179 UVSQ-INSERM Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie appliquées, UFR Simone Veil-Santé, Université Versailles-Saint-Quentin-en-Yvelines, Pôle neuro-locomoteur, Hôpital Raymond Poincaré, Paris-Saclay, 104 boulevard Raymond Poincaré, 92380 Garches, France
| | - Anaїs Chanut
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| | - Guillaume Nicolas
- APHP, Department of Neurology, Raymond Poincaré Hospital, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, 104 Bld Raymond Poincaré, 92380 Garches, France; Service de Neurologie, U1179 UVSQ-INSERM Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie appliquées, UFR Simone Veil-Santé, Université Versailles-Saint-Quentin-en-Yvelines, Pôle neuro-locomoteur, Hôpital Raymond Poincaré, Paris-Saclay, 104 boulevard Raymond Poincaré, 92380 Garches, France
| | - Norma B Romero
- APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Institut de Myologie, G.H. Pitié-Salpêtrière, F-75013 Paris, France; Université Sorbonne, INSERM U974, Center of Research in Myology, Institut de Myologie, G.H. Pitié-Salpêtrière Paris F-75013, France; Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| | - Karim Wahbi
- APHP, Department of Cardiology, Cochin Hospital, 75015 Paris, France
| | - Camille Decrocq
- Department of Physiology, Foch Hospital, 40 Rue Worth, 92150 Suresnes, France
| | - France Leturcq
- APHP, Laboratoire de Génétique et Biologie moléculaire, HUPC Cochin, Paris, France
| | - Pascal Laforêt
- APHP, Department of Neurology, Raymond Poincaré Hospital, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, 104 Bld Raymond Poincaré, 92380 Garches, France; Service de Neurologie, U1179 UVSQ-INSERM Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie appliquées, UFR Simone Veil-Santé, Université Versailles-Saint-Quentin-en-Yvelines, Pôle neuro-locomoteur, Hôpital Raymond Poincaré, Paris-Saclay, 104 boulevard Raymond Poincaré, 92380 Garches, France
| | - Edoardo Malfatti
- APHP, Department of Neurology, Raymond Poincaré Hospital, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, 104 Bld Raymond Poincaré, 92380 Garches, France; Service de Neurologie, U1179 UVSQ-INSERM Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie appliquées, UFR Simone Veil-Santé, Université Versailles-Saint-Quentin-en-Yvelines, Pôle neuro-locomoteur, Hôpital Raymond Poincaré, Paris-Saclay, 104 boulevard Raymond Poincaré, 92380 Garches, France.
| |
Collapse
|
25
|
Paoletti M, Pichiecchio A, Cotti Piccinelli S, Tasca G, Berardinelli AL, Padovani A, Filosto M. Advances in Quantitative Imaging of Genetic and Acquired Myopathies: Clinical Applications and Perspectives. Front Neurol 2019; 10:78. [PMID: 30804884 PMCID: PMC6378279 DOI: 10.3389/fneur.2019.00078] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
In the last years, magnetic resonance imaging (MRI) has become fundamental for the diagnosis and monitoring of myopathies given its ability to show the severity and distribution of pathology, to identify specific patterns of damage distribution and to properly interpret a number of genetic variants. The advances in MR techniques and post-processing software solutions have greatly expanded the potential to assess pathological changes in muscle diseases, and more specifically of myopathies; a number of features can be studied and quantified, ranging from composition, architecture, mechanical properties, perfusion, and function, leading to what is known as quantitative MRI (qMRI). Such techniques can effectively provide a variety of information beyond what can be seen and assessed by conventional MR imaging; their development and application in clinical practice can play an important role in the diagnostic process and in assessing disease course and treatment response. In this review, we briefly discuss the current role of muscle MRI in diagnosing muscle diseases and describe in detail the potential and perspectives of the application of advanced qMRI techniques in this field.
Collapse
Affiliation(s)
- Matteo Paoletti
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Anna Pichiecchio
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Stefano Cotti Piccinelli
- Unit of Neurology, Center for Neuromuscular Diseases, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Giorgio Tasca
- Neurology Department, Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Alessandro Padovani
- Unit of Neurology, Center for Neuromuscular Diseases, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Massimiliano Filosto
- Unit of Neurology, Center for Neuromuscular Diseases, ASST Spedali Civili and University of Brescia, Brescia, Italy
| |
Collapse
|
26
|
GóMez-Andrés D, Díaz-Manera J, Alejaldre A, Pulido-Valdeolivas I, GonzáLez-Mera L, Olivé M, Vilchez JJ, De Munain AL, Paradas C, Muelas N, SáNchez-MontáÑez Á, Alonso-Jimenez A, De la Banda MGG, Dabaj I, Bonne G, Munell F, Carlier RY, Quijano-Roy S. Muscle imaging in laminopathies: Synthesis study identifies meaningful muscles for follow-up. Muscle Nerve 2018; 58:812-817. [PMID: 30066418 DOI: 10.1002/mus.26312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 07/22/2018] [Accepted: 07/24/2018] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Particular fibroadipose infiltration patterns have been recently described by muscle imaging in congenital and later onset forms of LMNA-related muscular dystrophies (LMNA-RD). METHODS Scores for fibroadipose infiltration of 23 lower limb muscles in 34 patients with LMNA-RD were collected from heat maps of 2 previous studies. Scoring systems were homogenized. Relationships between muscle infiltration and disease duration and age of onset were modeled with random forests. RESULTS The pattern of infiltration differs according to disease duration but not to age of disease onset. The muscles whose progression best predicts disease duration were semitendinosus, biceps femoris long head, gluteus medius, and semimembranosus. DISCUSSION In LMNA-RD, our synthetic analysis of lower limb muscle infiltration did not find major differences between forms with different ages of onset but allowed the identification of muscles with characteristic infiltration during disease progression. Monitoring of these specific muscles by quantitative MRI may provide useful imaging biomarkers in LMNA-RD. Muscle Nerve 58:812-817, 2018.
Collapse
Affiliation(s)
- David GóMez-Andrés
- Neuromuscular Disorders Group, Child Neurology Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Passeig de la Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Jordi Díaz-Manera
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, CIBERER, Barcelona, Spain
| | - Aida Alejaldre
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, CIBERER, Barcelona, Spain
| | - Irene Pulido-Valdeolivas
- Center of Neuroimmunology, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Barcelona, Spain
| | - Laura GonzáLez-Mera
- Department of Neurology, Hospital de Viladecans, Barcelona, Spain.,Institute of Neuropathology, Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Montse Olivé
- Institute of Neuropathology, Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Juan José Vilchez
- Department of Neurology, Hospital Universitario Donostia, Neuroscience Area, Biodonostia Institute, CIBERER, Donostia-San Sebastián, Spain
| | - Adolfo LóPez De Munain
- Department of Neurology, Hospital Universitario Donostia, Neuroscience Area, Biodonostia Institute, CIBERER, Donostia-San Sebastián, Spain.,Neurosciences Area, Biodonostia Institute, CIBERNED, Donostia-San Sebastián, Spain
| | - Carmen Paradas
- Neuromuscular Disorders Unit, Department of Neurology and Neurophysiology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Nuria Muelas
- Department of Neurology, Hospital Universitario Donostia, Neuroscience Area, Biodonostia Institute, CIBERER, Donostia-San Sebastián, Spain
| | | | - Alicia Alonso-Jimenez
- Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, CIBERER, Barcelona, Spain
| | - Marta Gómez García De la Banda
- APHP, Neuromuscular Disorders Unit, Pediatric Department, CHU Paris IdF Ouest - Hôpital Raymond Poincaré, Garches, France
| | - Ivana Dabaj
- APHP, Neuromuscular Disorders Unit, Pediatric Department, CHU Paris IdF Ouest - Hôpital Raymond Poincaré, Garches, France
| | - Gisèle Bonne
- Sorbonne Université, INSERM UMRS974, Center for Research in Myology, Institut de Myologie, G. H. Pitié Salpêtrière, Paris, France
| | - Francina Munell
- Neuromuscular Disorders Group, Child Neurology Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Passeig de la Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Robert Y Carlier
- APHP, Radiology Department, CHU Paris IdF Ouest - Hôpital Raymond Poincaré. Paris Saclay Universities, UVSQ University of Versailles, UMR 1179 INSERM Garches, France
| | - Susana Quijano-Roy
- APHP, Neuromuscular Disorders Unit, Pediatric Department, CHU Paris IdF Ouest - Hôpital Raymond Poincaré, Paris Saclay Universities, UVSQ University of Versailles, UMR 1179 INSERM, Garches, France
| |
Collapse
|
27
|
Lin HT, Liu X, Zhang W, Liu J, Zuo YH, Xiao JX, Zhu Y, Yuan Y, Wang ZX. Muscle Magnetic Resonance Imaging in Patients with Various Clinical Subtypes of LMNA-Related Muscular Dystrophy. Chin Med J (Engl) 2018; 131:1472-1479. [PMID: 29893365 PMCID: PMC6006825 DOI: 10.4103/0366-6999.233957] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background: LMNA-related muscular dystrophy can manifest in a wide variety of disorders, including Emery-Dreifuss muscular dystrophy (EDMD), limb-girdle muscular dystrophy (LGMD), and LMNA-associated congenital muscular dystrophy (L-CMD). Muscle magnetic resonance imaging (MRI) has become a useful tool in the diagnostic workup of patients with muscle dystrophies. This study aimed to investigate whether there is a consistent pattern of MRI changes in patients with LMNA mutations in various muscle subtypes. Methods: Twenty-two patients with LMNA-related muscular dystrophies were enrolled in this study. MRI of the thigh and/or calf muscles was performed in them. The muscle MRI features of the three subtypes were compared by the Mann-Whitney U-test. The relationship between the clinical and MRI findings was also investigated by Spearman's rank analyses. Results: The present study included five EDMD, nine LGMD, and eight L-CMD patients. The thigh muscle MRI revealed that the fatty infiltration of the adductor magnus, semimembranosus, long and short heads of the biceps femoris, and vasti muscles, with relative sparing of the rectus femoris, was the predominant change observed in the EDMD, LGMD, and advanced-stage L-CMD phenotypes, although the involvement of the vasti muscles was not prominent in the early stage of L-CMD. At the level of the calf, six patients (one EDMD, four LGMD, and one L-CMD) also showed a similar pattern, in which the soleus and the medial and lateral gastrocnemius muscles were most frequently observed to have fatty infiltration. The fatty infiltration severity demonstrated higher scores associated with disease progression, with a corresponding rate of 1.483 + 0.075 × disease duration (X) (r = 0.444, P = 0.026). It was noteworthy that in six L-CMD patients with massive inflammatory cell infiltration in muscle pathology, no remarkable edema-like signals were observed in muscle MRI. Conclusions: EDMD, LGMD and advanced-staged L-CMD subtypes showed similar pattern of muscle MRI changes, while early-staged L-CMD showed somewhat different changes. Muscle MRI of L-CMD with a muscular dystrophy pattern in MRI provided important clues for differentiating it from childhood inflammatory myopathy. The fatty infiltration score could be used as a reliable biomarker for outcome measure of disease progression.
Collapse
Affiliation(s)
- Hui-Ting Lin
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Xiao Liu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Jing Liu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Yue-Huan Zuo
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Jiang-Xi Xiao
- Department of Radiology, Peking University First Hospital, Beijing 100034, China
| | - Ying Zhu
- Department of Radiology, Peking University First Hospital, Beijing 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Zhao-Xia Wang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
28
|
Diaz-Manera J, Fernandez-Torron R, LLauger J, James MK, Mayhew A, Smith FE, Moore UR, Blamire AM, Carlier PG, Rufibach L, Mittal P, Eagle M, Jacobs M, Hodgson T, Wallace D, Ward L, Smith M, Stramare R, Rampado A, Sato N, Tamaru T, Harwick B, Rico Gala S, Turk S, Coppenrath EM, Foster G, Bendahan D, Le Fur Y, Fricke ST, Otero H, Foster SL, Peduto A, Sawyer AM, Hilsden H, Lochmuller H, Grieben U, Spuler S, Tesi Rocha C, Day JW, Jones KJ, Bharucha-Goebel DX, Salort-Campana E, Harms M, Pestronk A, Krause S, Schreiber-Katz O, Walter MC, Paradas C, Hogrel JY, Stojkovic T, Takeda S, Mori-Yoshimura M, Bravver E, Sparks S, Bello L, Semplicini C, Pegoraro E, Mendell JR, Bushby K, Straub V. Muscle MRI in patients with dysferlinopathy: pattern recognition and implications for clinical trials. J Neurol Neurosurg Psychiatry 2018; 89:1071-1081. [PMID: 29735511 PMCID: PMC6166612 DOI: 10.1136/jnnp-2017-317488] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/02/2018] [Accepted: 03/26/2018] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVE Dysferlinopathies are a group of muscle disorders caused by mutations in the DYSF gene. Previous muscle imaging studies describe a selective pattern of muscle involvement in smaller patient cohorts, but a large imaging study across the entire spectrum of the dysferlinopathies had not been performed and previous imaging findings were not correlated with functional tests. METHODS We present cross-sectional T1-weighted muscle MRI data from 182 patients with genetically confirmed dysferlinopathies. We have analysed the pattern of muscles involved in the disease using hierarchical analysis and presented it as heatmaps. Results of the MRI scans have been correlated with relevant functional tests for each region of the body analysed. RESULTS In 181 of the 182 patients scanned, we observed muscle pathology on T1-weighted images, with the gastrocnemius medialis and the soleus being the most commonly affected muscles. A similar pattern of involvement was identified in most patients regardless of their clinical presentation. Increased muscle pathology on MRI correlated positively with disease duration and functional impairment. CONCLUSIONS The information generated by this study is of high diagnostic value and important for clinical trial development. We have been able to describe a pattern that can be considered as characteristic of dysferlinopathy. We have defined the natural history of the disease from a radiological point of view. These results enabled the identification of the most relevant regions of interest for quantitative MRI in longitudinal studies, such as clinical trials. CLINICAL TRIAL REGISTRATION NCT01676077.
Collapse
Affiliation(s)
- Jordi Diaz-Manera
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain.,Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Roberto Fernandez-Torron
- Neuromuscular Area, Biodonostia Health Research Institute, Neurology Service, Donostia University Hospital, Donostia-San Sebastian, Spain.,The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Jaume LLauger
- Radiology Department, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Meredith K James
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Anna Mayhew
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Fiona E Smith
- Magnetic Resonance Centre, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ursula R Moore
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Andrew M Blamire
- Magnetic Resonance Centre, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Pierre G Carlier
- AIM & CEA NMR Laboratory, Institute of Myology, Pitié-Salpêtrière University Hospital, Paris, France
| | | | | | - Michelle Eagle
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Marni Jacobs
- Center for Translational Science, Division of Biostatistics and Study Methodology, Children's National Health System, Washington, District of Columbia, USA.,Department of Pediatrics, Epidemiology and Biostatistics, George Washington University, Washington, District of Columbia, USA
| | - Tim Hodgson
- Magnetic Resonance Centre, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Dorothy Wallace
- Magnetic Resonance Centre, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Louise Ward
- Magnetic Resonance Centre, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Mark Smith
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Roberto Stramare
- Radiology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Alessandro Rampado
- Radiology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Noriko Sato
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takeshi Tamaru
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Bruce Harwick
- Department of Radiology, CMC Mercy Charlotte, Carolinas Healthcare System Neurosciences Institute, Charlotte, North Carolina, USA
| | - Susana Rico Gala
- Department of Radiology, Hospital U. Virgen de Valme, Sevilla, Spain
| | - Suna Turk
- AIM & CEA NMR Laboratory, Institute of Myology, Pitié-Salpêtrière University Hospital, Paris, France
| | - Eva M Coppenrath
- Department of Clinical Radiology, Ludwig-Maximilians-University, Munich, Germany
| | - Glenn Foster
- Center for Clinical Imaging Research CCIR, Washington University, St. Louis, Missouri, USA
| | - David Bendahan
- Centre de Résonance, Magnétique Biologique et Médicale, Marseille, France.,Aix-Marseille Université, Marseille, France
| | | | - Stanley T Fricke
- Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, District of Columbia, USA
| | - Hansel Otero
- Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, District of Columbia, USA
| | - Sheryl L Foster
- Department of Radiology, Westmead Hospital, Westmead, New South Wales, Australia.,Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - Anthony Peduto
- Department of Radiology, Westmead Hospital, Westmead, New South Wales, Australia.,Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - Anne Marie Sawyer
- Lucas Center for Imaging, Stanford University School of Medicine, Stanford, California, USA
| | - Heather Hilsden
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Hanns Lochmuller
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Ulrike Grieben
- Charite Muscle Research Unit, Experimental and Clinical Research Center, A Joint Co-operation of the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Simone Spuler
- Charite Muscle Research Unit, Experimental and Clinical Research Center, A Joint Co-operation of the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Carolina Tesi Rocha
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - John W Day
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Kristi J Jones
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, University of Sydney, Sydney, New South Wales, Australia
| | - Diana X Bharucha-Goebel
- Department of Neurology, Children's National Health System, Washington, District of Columbia, USA.,National Institutes of Health (NINDS), Bethesda, Maryland, USA
| | | | - Matthew Harms
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alan Pestronk
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sabine Krause
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Olivia Schreiber-Katz
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Maggie C Walter
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Carmen Paradas
- Neuromuscular Unit, Department of Neurology, Hospital U. Virgen del Rocío/Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Jean-Yves Hogrel
- Institut de Myologie, AP-HP, G.H. Pitié-Salpêtrière, Paris, Île-de-France, France
| | - Tanya Stojkovic
- Institut de Myologie, AP-HP, G.H. Pitié-Salpêtrière, Paris, Île-de-France, France
| | - Shin'ichi Takeda
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Elena Bravver
- Neurosciences Institute, Carolinas Healthcare System, Charlotte, North Carolina, USA
| | - Susan Sparks
- Neurosciences Institute, Carolinas Healthcare System, Charlotte, North Carolina, USA
| | - Luca Bello
- Department of Neurosciences, University of Padova, Padova, Italy
| | | | - Elena Pegoraro
- Department of Neurosciences, University of Padova, Padova, Italy
| | | | - Kate Bushby
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | | |
Collapse
|
29
|
Tordjman M, Dabaj I, Laforet P, Felter A, Ferreiro A, Biyoukar M, Law-Ye B, Zanoteli E, Castiglioni C, Rendu J, Beroud C, Chamouni A, Richard P, Mompoint D, Quijano-Roy S, Carlier RY. Muscular MRI-based algorithm to differentiate inherited myopathies presenting with spinal rigidity. Eur Radiol 2018; 28:5293-5303. [PMID: 29802573 DOI: 10.1007/s00330-018-5472-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/01/2018] [Accepted: 04/10/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Inherited myopathies are major causes of muscle atrophy and are often characterized by rigid spine syndrome, a clinical feature designating patients with early spinal contractures. We aim to present a decision algorithm based on muscular whole body magnetic resonance imaging (mWB-MRI) as a unique tool to orientate the diagnosis of each inherited myopathy long before the genetically confirmed diagnosis. METHODS This multicentre retrospective study enrolled 79 patients from referral centres in France, Brazil and Chile. The patients underwent 1.5-T or 3-T mWB-MRI. The protocol comprised STIR and T1 sequences in axial and coronal planes, from head to toe. All images were analyzed manually by multiple raters. Fatty muscle replacement was evaluated on mWB-MRI using both the Mercuri scale and statistical comparison based on the percentage of affected muscle. RESULTS Between February 2005 and December 2015, 76 patients with genetically confirmed inherited myopathy were included. They were affected by Pompe disease or harbored mutations in RYR1, Collagen VI, LMNA, SEPN1, LAMA2 and MYH7 genes. Each myopathy had a specific pattern of affected muscles recognizable on mWB-MRI. This allowed us to create a novel decision algorithm for patients with rigid spine syndrome by segregating these signs. This algorithm was validated by five external evaluators on a cohort of seven patients with a diagnostic accuracy of 94.3% compared with the genetic diagnosis. CONCLUSION We provide a novel decision algorithm based on muscle fat replacement graded on mWB-MRI that allows diagnosis and differentiation of inherited myopathies presenting with spinal rigidity. KEY POINTS • Inherited myopathies are rare, diagnosis is challenging and genetic tests require specialized centres and often take years. • Inherited myopathies are often characterized by spinal rigidity. • Whole body magnetic resonance imaging is a unique tool to orientate the diagnosis of each inherited myopathy presenting with spinal rigidity. • Each inherited myopathy in this study has a specific pattern of affected muscles that orientate diagnosis. • A novel MRI-based algorithm, usable by every radiologist, can help the early diagnosis of these myopathies.
Collapse
Affiliation(s)
- Mickael Tordjman
- Assistance Publique des Hôpitaux de Paris (AP-HP), Service d'Imagerie Médicale, Pôle Neuro-locomoteur, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Garches, France.
| | - Ivana Dabaj
- Pôle Pédiatrie, Hôpital Raymond Poincaré, Garches, France - Centre de Référence Maladies Neuromusculaires GNMH, FILNEMUS, Garches, France
| | - Pascal Laforet
- Département de Neurologie, Unité Clinique de Pathologie Neuromusculaire, Institut de Myologie, CHU La Pitié Salpêtrière, APHP, Paris, France
| | - Adrien Felter
- Assistance Publique des Hôpitaux de Paris (AP-HP), Service d'Imagerie Médicale, Pôle Neuro-locomoteur, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Garches, France
| | - Ana Ferreiro
- Service de Génétique, Hôpital Raymond Poincaré, APHP, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Garches, France
| | - Moustafa Biyoukar
- Unité de Recherche Clinique, Hôpital Saint-Antoine, APHP, Paris, Hôpitaux Universitaires Est Parisien, Garches, France
| | - Bruno Law-Ye
- Assistance Publique des Hôpitaux de Paris (AP-HP), Service d'Imagerie Médicale, Pôle Neuro-locomoteur, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Garches, France
| | - Edmar Zanoteli
- Department of Neurology, Medical School of the University of São Paulo, São Paulo, Brazil
| | - Claudia Castiglioni
- Neuromuscular and Motor Disorders Program Clinica Las Condes, Pediatric Neurology, Santiago, Chile
| | - John Rendu
- Département de Biochimie, Toxicologie, Pharmacologie et Génétique Moléculaire, CHU Grenoble Alpes, Grenoble, France
| | - Christophe Beroud
- Département de Génétique Médicale, AP-HM, Hôpital Timone Enfants, Marseille, France
| | | | - Pascale Richard
- UF de Cardiogénétique et Myogénétique Moléculaire et Cellulaire, Centre de Génétique Moléculaire et Chromosomique, CHU La Pitié Salpêtrière, APHP, Paris, France
| | - Dominique Mompoint
- Assistance Publique des Hôpitaux de Paris (AP-HP), Service d'Imagerie Médicale, Pôle Neuro-locomoteur, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Garches, France
| | - Susana Quijano-Roy
- Pôle Pédiatrie, Hôpital Raymond Poincaré, Garches, France - Centre de Référence Maladies Neuromusculaires GNMH, FILNEMUS, Garches, France
| | - Robert-Yves Carlier
- Assistance Publique des Hôpitaux de Paris (AP-HP), Service d'Imagerie Médicale, Pôle Neuro-locomoteur, Hôpital Raymond Poincaré, Garches, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Garches, France
| |
Collapse
|
30
|
Jungbluth H. Myopathology in times of modern imaging. Neuropathol Appl Neurobiol 2018; 43:24-43. [PMID: 28111795 DOI: 10.1111/nan.12385] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Abstract
Over the last two decades, muscle (magnetic resonance) imaging has become an important complementary tool in the diagnosis and differential diagnosis of inherited neuromuscular disorders, particularly in conditions where the pattern of selective muscle involvement is often more predictive of the underlying genetic background than associated clinical and histopathological features. Following an overview of different imaging modalities, the present review will give a concise introduction to systematic image analysis and interpretation in genetic neuromuscular disorders. The pattern of selective muscle involvement will be presented in detail in conditions such as the congenital or myofibrillar myopathies where muscle imaging is particularly useful to inform the (differential) diagnosis, and in disorders such as Duchenne or fascioscapulohumeral muscular dystrophy where the diagnosis is usually made on clinical grounds but where detailed knowledge of disease progression on the muscle imaging level may inform better understanding of the natural history. Utilizing the group of the congenital myopathies as an example, selected case studies will illustrate how muscle MRI can be used to inform the diagnostic process in the clinico-pathological context. Future developments, in particular, concerning the increasing use of whole-body MRI protocols and novel quantitative fat assessments techniques potentially relevant as an outcome measure, will be briefly outlined.
Collapse
Affiliation(s)
- H Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK.,Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, London, UK.,Department of Clinical and Basic Neuroscience, IoPPN, King's College, London, UK
| |
Collapse
|
31
|
Tasca G, Monforte M, Díaz-Manera J, Brisca G, Semplicini C, D'Amico A, Fattori F, Pichiecchio A, Berardinelli A, Maggi L, Maccagnano E, Løkken N, Marini-Bettolo C, Munell F, Sanchez A, Alshaikh N, Voermans NC, Dastgir J, Vlodavets D, Haberlová J, Magnano G, Walter MC, Quijano-Roy S, Carlier RY, van Engelen BGM, Vissing J, Straub V, Bönnemann CG, Mercuri E, Muntoni F, Pegoraro E, Bertini E, Udd B, Ricci E, Bruno C. MRI in sarcoglycanopathies: a large international cohort study. J Neurol Neurosurg Psychiatry 2018; 89:72-77. [PMID: 28889091 DOI: 10.1136/jnnp-2017-316736] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To characterise the pattern and spectrum of involvement on muscle MRI in a large cohort of patients with sarcoglycanopathies, which are limb-girdle muscular dystrophies (LGMD2C-2F) caused by mutations in one of the four genes coding for muscle sarcoglycans. METHODS Lower limb MRI scans of patients with LGMD2C-2F, ranging from severe childhood variants to milder adult-onset forms, were collected in 17 neuromuscular referral centres in Europe and USA. Muscle involvement was evaluated semiquantitatively on T1-weighted images according to a visual score, and the global pattern was assessed as well. RESULTS Scans from 69 patients were examined (38 LGMD2D, 18 LGMD2C, 12 LGMD2E and 1 LGMD2F). A common pattern of involvement was found in all the analysed scans irrespective of the mutated gene. The most and earliest affected muscles were the thigh adductors, glutei and posterior thigh groups, while lower leg muscles were relatively spared even in advanced disease. A proximodistal gradient of involvement of vasti muscles was a consistent finding in these patients, including the most severe ones. CONCLUSIONS Muscle involvement on MRI is consistent in patients with LGMD2C-F and can be helpful in distinguishing sarcoglycanopathies from other LGMDs or dystrophinopathies, which represent the most common differential diagnoses. Our data provide evidence about selective susceptibility or resistance to degeneration of specific muscles when one of the sarcoglycans is deficient, as well as preliminary information about progressive involvement of the different muscles over time.
Collapse
Affiliation(s)
- Giorgio Tasca
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario 'A Gemelli', Rome, Italy
| | - Mauro Monforte
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario 'A Gemelli', Rome, Italy
| | - Jordi Díaz-Manera
- Department of Neurology, Neuromuscular Disorders Unit, Universitat Autonoma de Barcelona, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain.,Muscular and Neurodegenerative Disease, Centro de Investigación Biomédica en Red en Enfermedades Raras, Barcelona, Spain
| | - Giacomo Brisca
- Center of Translational Myology and Neurodegenerative Diseases, Istituto Giannina Gaslini, Genova, Italy
| | | | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neurosciences, Bambino Gesù Children's Hospital, Rome, Italy
| | - Fabiana Fattori
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neurosciences, Bambino Gesù Children's Hospital, Rome, Italy
| | - Anna Pichiecchio
- Department of Neuroradiology, National Neurological Institute C Mondino, Pavia, Italy
| | - Angela Berardinelli
- Child Neurology and Psychiatry Unit, National Neurological Institute C Mondino, Pavia, Italy
| | - Lorenzo Maggi
- UO Neuroimmunologia e Malattie Neuromuscolari, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elio Maccagnano
- UO Neuroradiologia, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Servizio di Diagnostica per Immagini, Centro Diagnostico Italiano, Milan, Italy
| | - Nicoline Løkken
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Chiara Marini-Bettolo
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Francina Munell
- Department of Pediatric Neurology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Angel Sanchez
- Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Nahla Alshaikh
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jahannaz Dastgir
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Dmitry Vlodavets
- Russian Children Neuromuscular Center, Veltischev Scientific Research Clinical Institute of Pediatrics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Jana Haberlová
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | | | - Maggie C Walter
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Susana Quijano-Roy
- Assistance Publique des Hôpitaux de Paris (AP-HP), Unité Neuromusculaire, Service de Pédiatrie, Hôpital Raymond Poincaré, Hôpitaux Universitaires Paris-Ile-de-France Ouest, Garches, U1179 INSERM, Université de Versailles (UVSQ), Centre de Référence Neuromusculaire GNMH, FILNEMUS, France
| | - Robert-Yves Carlier
- Department of Radiology, Neurolocomotor Division, Raymond Poincaré Hospital, University Hospitals Paris-Ile-de-France West, Public Hospital Network of Paris, Garches, France
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John Vissing
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Eugenio Mercuri
- Neuropsichiatria Infantile, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Elena Pegoraro
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neurosciences, Bambino Gesù Children's Hospital, Rome, Italy
| | - Bjarne Udd
- Department of Neurology, Neuromuscular Research Center, Tampere University and University Hospital, Rome, Italy.,Folkhälsan Institute of Genetics and the Department of Medical Genetics, University of Helsinki, Helsinki, Finland.,Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| | - Enzo Ricci
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario 'A Gemelli', Rome, Italy
| | - Claudio Bruno
- Center of Translational Myology and Neurodegenerative Diseases, Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
32
|
Magnetic resonance imaging patterns of muscle involvement in genetic muscle diseases: a systematic review. J Neurol 2016; 264:1320-1333. [PMID: 27888415 DOI: 10.1007/s00415-016-8350-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022]
Abstract
A growing body of the literature supports the use of magnetic resonance imaging as a potential biomarker for disease severity in the hereditary myopathies. We performed a systematic review of the medical literature to evaluate patterns of fat infiltration observed in magnetic resonance imaging studies of muscular dystrophy and congenital myopathy. Searches were performed using MEDLINE, EMBASE, and grey literature databases. Studies that described fat infiltration of muscles in patients with muscular dystrophy or congenital myopathy were selected for full-length review. Data on preferentially involved or spared muscles were extracted for analysis. A total of 2172 titles and abstracts were screened, and 70 publications met our criteria for inclusion in the systematic review. There were 23 distinct genetic disorders represented in this analysis. In most studies, preferential involvement and sparing of specific muscles were reported. We conclude that magnetic resonance imaging studies can be used to identify distinct patterns of muscle involvement in the hereditary myopathies. However, larger studies and standardized methods of reporting are needed to develop imaging as a diagnostic tool in these diseases.
Collapse
|
33
|
Figueroa-Bonaparte S, Segovia S, Llauger J, Belmonte I, Pedrosa I, Alejaldre A, Mayos M, Suárez-Cuartín G, Gallardo E, Illa I, Díaz-Manera J. Muscle MRI Findings in Childhood/Adult Onset Pompe Disease Correlate with Muscle Function. PLoS One 2016; 11:e0163493. [PMID: 27711114 PMCID: PMC5053479 DOI: 10.1371/journal.pone.0163493] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/09/2016] [Indexed: 11/18/2022] Open
Abstract
Objectives Enzyme replacement therapy has shown to be effective for childhood/adult onset Pompe disease (AOPD). The discovery of biomarkers useful for monitoring disease progression is one of the priority research topics in Pompe disease. Muscle MRI could be one possible test but the correlation between muscle MRI and muscle strength and function has been only partially addressed so far. Methods We studied 34 AOPD patients using functional scales (Manual Research Council scale, hand held myometry, 6 minutes walking test, timed to up and go test, time to climb up and down 4 steps, time to walk 10 meters and Motor Function Measure 20 Scale), respiratory tests (Forced Vital Capacity seated and lying, Maximun Inspiratory Pressure and Maximum Expiratory Pressure), daily live activities scales (Activlim) and quality of life scales (Short Form-36 and Individualized Neuromuscular Quality of Life questionnaire). We performed a whole body muscle MRI using T1w and 3-point Dixon imaging centered on thighs and lower trunk region. Results T1w whole body muscle MRI showed a homogeneous pattern of muscle involvement that could also be found in pre-symptomatic individuals. We found a strong correlation between muscle strength, muscle functional scales and the degree of muscle fatty replacement in muscle MRI analyzed using T1w and 3-point Dixon imaging studies. Moreover, muscle MRI detected mild degree of fatty replacement in paraspinal muscles in pre-symptomatic patients. Conclusion Based on our findings, we consider that muscle MRI correlates with muscle function in patients with AOPD and could be useful for diagnosis and follow-up in pre-symptomatic and symptomatic patients under treatment. Take home message Muscle MRI correlates with muscle function in patients with AOPD and could be useful to follow-up patients in daily clinic.
Collapse
Affiliation(s)
- Sebastián Figueroa-Bonaparte
- Neuromuscular Disorders Unit. Neurology Department. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona, Spain
- Centro de Investigación en Red en Enfermedades Raras (CIBERER)
| | - Sonia Segovia
- Neuromuscular Disorders Unit. Neurology Department. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona, Spain
- Centro de Investigación en Red en Enfermedades Raras (CIBERER)
| | - Jaume Llauger
- Radiology department. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona, Spain
| | - Izaskun Belmonte
- Rehabilitation and physiotherapy department. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona, Spain
| | - Irene Pedrosa
- Rehabilitation and physiotherapy department. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona, Spain
| | - Aída Alejaldre
- Neuromuscular Disorders Unit. Neurology Department. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona, Spain
- Centro de Investigación en Red en Enfermedades Raras (CIBERER)
| | - Mercè Mayos
- Respiratory diseases department. Hospital de la Santa Creu i Sant Pau. Barcelona. Universitat Autònoma de Barcelona, Spain
| | - Guillermo Suárez-Cuartín
- Respiratory diseases department. Hospital de la Santa Creu i Sant Pau. Barcelona. Universitat Autònoma de Barcelona, Spain
| | - Eduard Gallardo
- Neuromuscular Disorders Unit. Neurology Department. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona, Spain
- Centro de Investigación en Red en Enfermedades Raras (CIBERER)
| | - Isabel Illa
- Neuromuscular Disorders Unit. Neurology Department. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona, Spain
- Centro de Investigación en Red en Enfermedades Raras (CIBERER)
| | - Jordi Díaz-Manera
- Neuromuscular Disorders Unit. Neurology Department. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona, Spain
- Centro de Investigación en Red en Enfermedades Raras (CIBERER)
- * E-mail:
| | | |
Collapse
|
34
|
|
35
|
Skeletal Muscle Laminopathies: A Review of Clinical and Molecular Features. Cells 2016; 5:cells5030033. [PMID: 27529282 PMCID: PMC5040975 DOI: 10.3390/cells5030033] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 01/12/2023] Open
Abstract
LMNA-related disorders are caused by mutations in the LMNA gene, which encodes for the nuclear envelope proteins, lamin A and C, via alternative splicing. Laminopathies are associated with a wide range of disease phenotypes, including neuromuscular, cardiac, metabolic disorders and premature aging syndromes. The most frequent diseases associated with mutations in the LMNA gene are characterized by skeletal and cardiac muscle involvement. This review will focus on genetics and clinical features of laminopathies affecting primarily skeletal muscle. Although only symptomatic treatment is available for these patients, many achievements have been made in clarifying the pathogenesis and improving the management of these diseases.
Collapse
|