1
|
Gaviraghi T, Cavalcanti EBU, Lorenzoni PJ, Cotta A, de Souza PVS, de Oliveira AD, de Moraes MT, Marques MVO, Donis KC, Winckler PB, Costa E Silva C, Pinto WBVR, Kay CSK, Ducci RD, Rodrigues PRVP, Fustes OJH, da Silva AMS, Zanoteli E, França MC, Sobreira CFR, Oliveira ASB, Carvalho EHT, Scola RH, Carvalho AAS, Saute JAM. Clinical and molecular characterization of limb-girdle muscular dystrophy 2G/R7 in a large cohort of Brazilian patients. Clin Genet 2024; 106:644-649. [PMID: 39015008 DOI: 10.1111/cge.14589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
Limb-girdle muscular dystrophy type 2G/R7 (LGMD2G/R7) is an ultra-rare condition initially identified within the Brazilian population. We aimed to expand clinical and genetic information about this disease, including its worldwide distribution. A multicenter historical cohort study was performed at 13 centers in Brazil in which data from index cases and their affected relatives from consecutive families with LGMD2G/R7 were reviewed from July 2017 to August 2023. Additionally, a systematic literature review was conducted to identify case reports and series of the disease worldwide. Forty-one LGMD2G/R7 cases were described in the Brazilian cohort, being all subjects homozygous for the c.157C>T/(p.Gln53*) variant in TCAP. Survival curves showed that the median disease duration before individuals required walking aids was 21 years. Notably, women exhibited a slower disease progression, requiring walking aids 13 years later than men. LGMD2G/R7 was frequently reported not only in Brazil but also in China and Bulgaria, with 119 cases identified globally, with possible founder effects in the Brazilian, Eastern European, and Asian populations. These findings are pivotal in raising awareness of LGMD2G/R7, understanding its progression, and identifying potential modifiers. This can significantly contribute to the development of future natural history studies and clinical trials for this disease.
Collapse
Affiliation(s)
- Tobias Gaviraghi
- Neurology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Medicine, Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Paulo José Lorenzoni
- Departamento de Medicina Interna, Divisão de Neurologia, Serviço de Doenças Neuromusculares, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Ana Cotta
- Rede SARAH de Hospitais de Reabilitação, Belo Horizonte, Brazil
| | - Paulo V S de Souza
- Department of Neurology and Neurosurgery, Division of Neuromuscular Diseases, Universidade Federal de São Paulo, São Paulo, Brazil
| | - André D de Oliveira
- Neurology Division, Hospital Universitário Polydoro Ernani de São Thiago, Florianópolis, Brazil
| | - Maria T de Moraes
- Neurology and Neurophysiology Division, Instituto de Neurologia de Curitiba/Hospital-Ecoville, Curitiba, Brazil
| | | | - Karina C Donis
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Pablo B Winckler
- Neurology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | - Wladimir B V R Pinto
- Department of Neurology and Neurosurgery, Division of Neuromuscular Diseases, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cláudia S K Kay
- Departamento de Medicina Interna, Divisão de Neurologia, Serviço de Doenças Neuromusculares, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Renata D Ducci
- Departamento de Medicina Interna, Divisão de Neurologia, Serviço de Doenças Neuromusculares, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Paula R V P Rodrigues
- Departamento de Medicina Interna, Divisão de Neurologia, Serviço de Doenças Neuromusculares, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Otto J H Fustes
- Departamento de Medicina Interna, Divisão de Neurologia, Serviço de Doenças Neuromusculares, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - André M S da Silva
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Edmar Zanoteli
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marcondes C França
- Department of Neurology, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Graduate Program in Medical Physiopathology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Cláudia F R Sobreira
- Department of Neurosciences, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Acary S B Oliveira
- Department of Neurology and Neurosurgery, Division of Neuromuscular Diseases, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Rosana H Scola
- Departamento de Medicina Interna, Divisão de Neurologia, Serviço de Doenças Neuromusculares, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Jonas Alex Morales Saute
- Neurology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Medicine, Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
2
|
Alaei Z, Zamani N, Rabbani B, Mahdieh N. TCAP gene is not a common cause of cardiomyopathy in Iranian patients. Eur J Med Res 2023; 28:376. [PMID: 37752589 PMCID: PMC10523715 DOI: 10.1186/s40001-023-01019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are the most frequent cardiomyopathies that cause acute heart failure and sudden cardiac death. Previous genetic reports have shown that pathogenic variants of genes encoding Z-disc components such as telethonin protein (TCAP) are the primary cause of DCM and HCM. METHODS This study was the first investigation on the TCAP gene among the Iranian cardiomyopathies population wherein the TCAP gene was analyzed in 40 unrelated patients (17 females and 23 males) who were clinically diagnosed with HCM and DCM. In addition, we conducted a thorough review of all published articles and the databases that were the first to report novel pathogenic or likely pathogenic variants the in TCAP gene. RESULTS In the cohort of this study, we identified only one intronic variant c.111-42G > A in one of the HCM patients that were predicted as polymorphism by in-silico analysis. Moreover, a total of 44 variants were reported for the TCAP gene in the literature where a majority of mutations were found to be missense. Pathogenic mutations in TCAP may cause diseases including limb-girdle muscular dystrophy 2G (LGMD-2G), DCM, HCM, intestinal pseudo-obstruction, and telethonin deficiency. However, a large number of affected patients were clinically diagnosed with limb-girdle 2G compared to other presenting phenotypes. DISCUSSION These findings suggest that the TCAP gene pathogenic mutations might not be a common cause of cardiomyopathies among Iranian patients. These gene disease-causing mutations may cause various manifestations, but it has a high prevalence among LGMD-2G, HCM, and DCM patients.
Collapse
Affiliation(s)
- Zahra Alaei
- Faculty of Basic Sciences, Islamic Azad University, East Tehran Branch, Tehran, Iran
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nasrin Zamani
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Rabbani
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nejat Mahdieh
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Genetics Laboratory, Rajaie Cardiovascular Medical and Research Center, Vali-E-Asr Avenue, Tehran, 1996911151, Iran.
| |
Collapse
|
3
|
Chen Z, Saini M, Koh JS, Prasad K, Koh SH, Tay KSS, Lee M, Tan YJ, Ng ASL, Tay SKH, Tan KB, Tandon A, Tan JMM, Chai JYH. Unique Clinical, Radiological and Histopathological Characteristics of a Southeast Asian Cohort of Patients with Limb-Girdle Muscular Dystrophy 2G/LGMD-R7-Telethonin-Related. J Neuromuscul Dis 2023; 10:91-106. [PMID: 36463458 DOI: 10.3233/jnd-221517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM We describe a cohort of five patients with limb-girdle muscular dystrophy (LGMD) 2G/LGMD-R7 in a South-east Asian cohort. BACKGROUND LGMD2G/LGMD-R7-telethonin-related is caused by mutations in the TCAP gene that encodes for telethonin. METHODS We identified consecutive patients with LGMD2G/LGMD-R7-telethonin-related, diagnosed at the National Neuroscience Institute (NNI) and National University Hospital (NUH) between January 2000 and June 2021. RESULTS At onset, three patients presented with proximal lower limb weakness, one patient presented with Achilles tendon contractures, and one patient presented with delayed gross motor milestones. At last follow up, three patients had a limb girdle pattern of muscle weakness and two had a facioscapular humeral pattern of weakness. Whole body muscle MRI performed for one patient with a facioscapular-humeral pattern of weakness showed a pattern of muscle atrophy similar to facioscapular-humeral dystrophy. One patient had histological features consistent with myofibrillar myopathy; electron microscopy confirmed the disruption of myofibrillar architecture. One patients also had reduced staining to telethonin antibody on immunohistochemistry. CONCLUSION We report the unique clinical and histological features of a Southeast Asian cohort of five patients with LGMD2G/LGMD-R7-telethonin-related muscular dystrophy and further expand its clinical and histopathological spectrum.
Collapse
Affiliation(s)
- Zhiyong Chen
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Monica Saini
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Jasmine S Koh
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Kalpana Prasad
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Swee Hoon Koh
- Neuromuscular Laboratory, National Neuroscience Institute, Singapore
| | - Karine S S Tay
- Neuromuscular Laboratory, National Neuroscience Institute, Singapore
| | - Ming Lee
- Department of Pathology, Singapore General Hospital, Singapore
| | - Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Singapore.,Duke NUS Graduate Medical School, Singapore
| | - Stacey Kiat Hong Tay
- Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kong Bing Tan
- Department of Pathology, National University Hospital, Singapore
| | - Ankit Tandon
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore
| | - Jeane M M Tan
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Josiah Y H Chai
- Department of Neurology, National Neuroscience Institute, Singapore.,Neuromuscular Laboratory, National Neuroscience Institute, Singapore
| |
Collapse
|
4
|
Tanboon J, Nishino I. Autosomal Recessive Limb-Girdle Muscular Dystrophies. CURRENT CLINICAL NEUROLOGY 2023:93-121. [DOI: 10.1007/978-3-031-44009-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Findings of limb-girdle muscular dystrophy R7 telethonin-related patients from a Chinese neuromuscular center. Neurogenetics 2022; 23:37-44. [PMID: 34982307 DOI: 10.1007/s10048-021-00681-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/23/2021] [Indexed: 12/29/2022]
Abstract
Limb-girdle muscular dystrophy (LGMD) is a group of clinically and genetically heterogeneous neuromuscular disorders. LGMD-R7, which is caused by telethonin gene (TCAP) mutations, is one of the rarest forms of LGMD, and only a small number of LGMD-R7 cases have been described and mostly include patients from Brazil. A total of two LGMD-R7 patients were enrolled at a Chinese neuromuscular center. Demographic and clinical data were collected. Laboratory investigations and electromyography were performed. Routine and immunohistochemistry staining of muscle specimens was performed, and a next-generation sequencing panel array for genes associated with hereditary neuromuscular disorders was used for analysis. The patients exhibited predominant muscle weakness. Electromyography revealed myopathic changes. The muscle biopsy showed myopathic features, such as increased fiber size variation, muscle fiber atrophy and regeneration, slight hyperplasia of the connective tissue, and disarray of the myofibrillar network. Two patients were confirmed to have mutations in the open reading frame of TCAP by next-generation sequencing. One patient had compound heterozygous mutations, and the other patient harbored a novel homozygous mutation. Western blotting analysis of the skeletal muscle lysate confirmed the absence of telethonin in the patients. We described two LGMD-R7 patients presenting a classical LGMD phenotype and a novel homozygous TCAP mutation. Our research expands the spectrum of LGMD-R7 due to TCAP mutations based on patients from a Chinese neuromuscular center.
Collapse
|
6
|
Zhao H, Zheng Y, Meng L, Yu M, Zhang W, Lv H, Wang Z, Hao H, Yuan Y. Chronic inflammatory demyelinating polyneuropathy with hypoglossal nerve involvement and inverted Beevor's sign: case report. BMC Neurol 2021; 21:244. [PMID: 34172017 PMCID: PMC8235827 DOI: 10.1186/s12883-021-02287-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/17/2021] [Indexed: 11/10/2022] Open
Abstract
Background Cranial nerve involvement is not commonly encountered in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP); this is especially true for involvement of the hypoglossal nerve. Neither Beevor's sign nor its inverted form has previously been described in CIDP. Case presentation A 28-year-old man presented with distal-predominant limb weakness and numbness at the age of 18. A diagnosis of CIDP was made, which was confirmed by electrodiagnostic evidence of demyelination. He responded well to intravenous immunoglobulin and glucocorticoid treatment and achieved remission for 5 years. However, the same symptoms relapsed at the age of 28 and lasted for 10 months. On examination, in addition to limb sensory impairment and muscle weakness, mild bilateral facial paresis, tongue atrophy and fasciculations, and inverted Beevor's sign were also observed. A brief literature review of cranial nerve involvements in CIDP and Beevor's sign or its inverted form were also performed. Conclusions Cranial nerves may be affected in patients with CIDP. Facial palsy is most frequently present, while hypoglossal nerve involvement is rare. Inverted Beevor's sign can appear in CIDP patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02287-5.
Collapse
Affiliation(s)
- Huajian Zhao
- Neurology Department, Peking University First Hospital, No.8 Xishiku Street, Beijing, 100034, China.,Neurology Department, University of Chinese Academy of Sciences Shenzhen Hospital (Guangming), No. 4253 Matian Street, Shenzhen, 518000, China
| | - Yiming Zheng
- Neurology Department, Peking University First Hospital, No.8 Xishiku Street, Beijing, 100034, China.
| | - Lingchao Meng
- Neurology Department, Peking University First Hospital, No.8 Xishiku Street, Beijing, 100034, China
| | - Meng Yu
- Neurology Department, Peking University First Hospital, No.8 Xishiku Street, Beijing, 100034, China
| | - Wei Zhang
- Neurology Department, Peking University First Hospital, No.8 Xishiku Street, Beijing, 100034, China
| | - He Lv
- Neurology Department, Peking University First Hospital, No.8 Xishiku Street, Beijing, 100034, China
| | - Zhaoxia Wang
- Neurology Department, Peking University First Hospital, No.8 Xishiku Street, Beijing, 100034, China
| | - Hongjun Hao
- Neurology Department, Peking University First Hospital, No.8 Xishiku Street, Beijing, 100034, China
| | - Yun Yuan
- Neurology Department, Peking University First Hospital, No.8 Xishiku Street, Beijing, 100034, China.
| |
Collapse
|
7
|
Peris-Moreno D, Taillandier D, Polge C. MuRF1/TRIM63, Master Regulator of Muscle Mass. Int J Mol Sci 2020; 21:ijms21186663. [PMID: 32933049 PMCID: PMC7555135 DOI: 10.3390/ijms21186663] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
The E3 ubiquitin ligase MuRF1/TRIM63 was identified 20 years ago and suspected to play important roles during skeletal muscle atrophy. Since then, numerous studies have been conducted to decipher the roles, molecular mechanisms and regulation of this enzyme. This revealed that MuRF1 is an important player in the skeletal muscle atrophy process occurring during catabolic states, making MuRF1 a prime candidate for pharmacological treatments against muscle wasting. Indeed, muscle wasting is an associated event of several diseases (e.g., cancer, sepsis, diabetes, renal failure, etc.) and negatively impacts the prognosis of patients, which has stimulated the search for MuRF1 inhibitory molecules. However, studies on MuRF1 cardiac functions revealed that MuRF1 is also cardioprotective, revealing a yin and yang role of MuRF1, being detrimental in skeletal muscle and beneficial in the heart. This review discusses data obtained on MuRF1, both in skeletal and cardiac muscles, over the past 20 years, regarding the structure, the regulation, the location and the different functions identified, and the first inhibitors reported, and aim to draw the picture of what is known about MuRF1. The review also discusses important MuRF1 characteristics to consider for the design of future drugs to maintain skeletal muscle mass in patients with different pathologies.
Collapse
|
8
|
Distal myopathy due to TCAP variants in four unrelated Chinese patients. Neurogenetics 2020; 22:1-10. [PMID: 32761539 DOI: 10.1007/s10048-020-00623-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/01/2020] [Indexed: 10/23/2022]
Abstract
Distal myopathies are a group of clinically and genetically heterogeneous hereditary muscle disorders characterized by progressive muscular weakness starting in the distal parts of the limbs. The most common subtype of distal myopathy is GNE myopathy, a rare muscle disease with autosomal recessive inheritance. Limb-girdle muscular dystrophy 2G (LGMD2G) is a rare autosomal recessive subtype of LGMDs caused by TCAP variant. Patients with LGMD2G can present with distal myopathy and rimmed vacuoles on muscle pathology. Thus far, the most reported TCAP mutations related to LGMD2G were recessive frameshift or nonsense variants. Here, we described four Chinese patients from unrelated families with LGMD2G due to TCAP mutations. The clinical symptoms of our patients were similar to those previously reported in LGMD2G patients. Three different pathogenic TCAP variants were identified in these patients, including two frameshift variants and one intronic variant. Autophagolysosomes have been observed in one patient by electron microscopy. Our research expands the genetic spectrum of TCAP mutations in China, indicating c.165-166insG is likely the common pathogenic variant. We also provide evidences that autophagy may be involved in the pathophysiology of LGMD2G.
Collapse
|
9
|
Chen H, Xu G, Lin F, Jin M, Cai N, Qiu L, Ye Z, Wang L, Lin M, Wang N. Clinical and genetic characterization of limb girdle muscular dystrophy R7 telethonin-related patients from three unrelated Chinese families. Neuromuscul Disord 2019; 30:137-143. [PMID: 32005491 DOI: 10.1016/j.nmd.2019.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/30/2019] [Accepted: 12/13/2019] [Indexed: 02/02/2023]
Abstract
Limb girdle muscular dystrophy LGMD R7 telethonin-related is a rare autosomal recessive muscle disorder characterized by proximal muscle weakness of pelvic and shoulder girdles. Mutation in TCAP is responsible for LGMD R7, and the disease has a wide geographic distribution in diverse populations, but genotype-phenotype relationships remain unclear. We collected 5 LGMD R7 patients from three unrelated Chinese families. The average onset age was 16 ± 1.41; the initial symptoms included progressive proximal muscle weakness in limbs, difficulty in fast running, and asymmetric muscle atrophy in calves. Muscle MR imaging showed varying severity of fatty infiltration in the pelvic girdle, thigh, and calf muscles, and the severity of muscle infiltration was related to the length of the disease course. Muscle histopathology revealed aberrantly sized muscle fibers, internal nuclei, split fibers, rimmed vacuoles, monocyte invasion, and necrotic fibers. Sequencing identified one novel and one previously reported TCAP mutation. Our study extends the known distribution of this rare muscular dystrophy and presents the first detailed clinical and genetic characterizations of LGMD R7 cases from the Chinese population. Our work expands the mutation spectrum known for LGMD R7 and emphasizes the need for clinicians to consider TCAP mutations when evaluating patients with symptoms of limb girdle muscular dystrophy.
Collapse
Affiliation(s)
- Haizhu Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian 350005, China
| | - Guorong Xu
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian 350005, China
| | - Feng Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian 350005, China
| | - Ming Jin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian 350005, China
| | - Naiqing Cai
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian 350005, China
| | - Liangliang Qiu
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian 350005, China
| | - Zhixian Ye
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian 350005, China
| | - Lili Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian 350005, China
| | - Minting Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian 350005, China; Fujian Key Laboratory of Molecular Neurology, Fuzhou, Fujian 350005, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian 350005, China; Fujian Key Laboratory of Molecular Neurology, Fuzhou, Fujian 350005, China.
| |
Collapse
|
10
|
Blanco-Palmero VA, Hernández-Laín A, Uriarte-Pérez de Urabayen D, Cantero-Montenegro D, Olivé M, Domínguez-González C. Late onset distal myopathy: A new telethoninopathy. Neuromuscul Disord 2018; 29:80-83. [PMID: 30553702 DOI: 10.1016/j.nmd.2018.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/09/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
Affiliation(s)
| | | | | | - Diana Cantero-Montenegro
- Servicio de Neuropatología, Instituto de Investigación, Hospital Universitario 12 de Octubre, Spain
| | - Montse Olivé
- Servicio de Anatomía Patológica, Hospital Universitario de Bellvitge, Spain
| | | |
Collapse
|
11
|
Chamova T, Bichev S, Todorov T, Gospodinova M, Taneva A, Kastreva K, Zlatareva D, Krupev M, Hadjiivanov R, Guergueltcheva V, Grozdanova L, Tzoneva D, Huebner A, V der Hagen M, Schoser B, Lochmüller H, Todorova A, Tournev I. Limb girdle muscular dystrophy 2G in a religious minority of Bulgarian Muslims homozygous for the c.75G>A, p.Trp25X mutation. Neuromuscul Disord 2018; 28:625-632. [PMID: 29935994 DOI: 10.1016/j.nmd.2018.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 10/16/2022]
Abstract
Mutations in TCAP gene cause autosomal recessive limb-girdle muscular dystrophy type 2G (LGMD2G), congenital muscular dystrophy and autosomal dominant dilated and hypertrophic cardiomyopathy. We studied 18 affected individuals from 12 pedigrees, belonging to a Bulgarian Muslim minority from the South-West of Bulgaria, homozygous for the c.75G>A, p.Trp25X mutation in TCAP gene. The heterozygous carrier rate of p.Trp25X among 100 newborns in this region was found to be 2%. The clinical features in the Bulgarian TCAP group include disease onset in the first to the third decade of life, proximal muscle weakness in the lower limbs, followed or accompanied by difficulties in ankle dorsiflexion and involvement of the proximal muscles of the upper limbs 5-9 years after the disease onset. Asymmetry between left and right was present in more than 20% of the affected. Respiratory and cardiac functions were not affected. On the MRI the muscles of the posterior pelvic area, thigh and anterior leg were predominantly affected, while sartorius, gracilis and biceps femoris muscles remained relatively spared. In conclusion, LGMD2G appears to be a common form among Bulgarian Muslims. Homozygosity for c.75G>A, p.Trp25X is associated with a homogeneous clinical presentation, but the clinical course and severity of the disease show inter- and intra-familial variation.
Collapse
Affiliation(s)
- Teodora Chamova
- Department of Neurology, University Hospital "Alexandrovska", Medical University, Sofia, Bulgaria.
| | - Stoyan Bichev
- National Genetics Laboratory, Medical University, Sofia, Bulgaria
| | - Tihomir Todorov
- Genetic Medico-Diagnostic Laboratory 'Genica", Sofia, Bulgaria
| | - Mariana Gospodinova
- Department of Cardiology, Medical Institute of Ministry of Interior Affairs, Sofia, Bulgaria
| | - Ani Taneva
- Department of Neurology, University Hospital "Alexandrovska", Medical University, Sofia, Bulgaria
| | - Kristina Kastreva
- Department of Neurology, University Hospital "Alexandrovska", Medical University, Sofia, Bulgaria
| | - Dora Zlatareva
- Department of Diagnostic Imaging, University Hospital "Alexandrovska", Medical University, Sofia, Bulgaria
| | - Martin Krupev
- Department of Diagnostic Imaging, University Hospital "Alexandrovska", Medical University, Sofia, Bulgaria
| | | | | | - Liliana Grozdanova
- Department of Medical genetic, University Hospital "St. George", Plovdiv, Bulgaria
| | - Dochka Tzoneva
- Department of Anesthesiology and Intensive Care, University Hospital "Alexandrovska", Sofia, Bulgaria
| | - Angela Huebner
- Children's Hospital Technical University Dresden, Germany
| | | | - Benedikt Schoser
- Friedrich-Baur-Institut, Neurologische Klinik, Klinikum der Universität München, München, Germany
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Albena Todorova
- Genetic Medico-Diagnostic Laboratory 'Genica", Sofia, Bulgaria; Department of Medical Chemistry and Biochemistry, Sofia, Bulgaria
| | - Ivailo Tournev
- Department of Neurology, University Hospital "Alexandrovska", Medical University, Sofia, Bulgaria; Department of Cognitive Science and Psychology, New Bulgarian University, Sofia, Bulgaria
| |
Collapse
|
12
|
Brusa R, Magri F, Papadimitriou D, Govoni A, Del Bo R, Ciscato P, Savarese M, Cinnante C, Walter MC, Abicht A, Bulst S, Corti S, Moggio M, Bresolin N, Nigro V, Comi GP. A new case of limb girdle muscular dystrophy 2G in a Greek patient, founder effect and review of the literature. Neuromuscul Disord 2018; 28:532-537. [PMID: 29759638 DOI: 10.1016/j.nmd.2018.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/16/2018] [Accepted: 04/10/2018] [Indexed: 12/01/2022]
Abstract
Limb girdle muscular dystrophy (LGMD) type 2G is a rare form of muscle disease, described only in a few patients worldwide, caused by mutations in TCAP gene, encoding the protein telethonin. It is characterised by proximal limb muscle weakness associated with distal involvement of lower limbs, starting in the first or second decade of life. We describe the case of a 37-year-old woman of Greek origin, affected by disto-proximal lower limb weakness. No cardiac or respiratory involvement was detected. Muscle biopsy showed myopathic changes with type I fibre hypotrophy, cytoplasmic vacuoles, lipid overload, multiple central nuclei and fibre splittings; ultrastructural examination showed metabolic abnormalities. Next generation sequencing analysis detected a homozygous frameshift mutation in the TCAP gene (c.90_91del), previously described in one Turkish family. Immunostaining and Western blot analysis showed complete absence of telethonin. Interestingly, Single Nucleotide Polymorphism analysis of the 10 Mb genomic region containing the TCAP gene showed a shared homozygous haplotype of both the Greek and the Turkish patients, thus suggesting a possible founder effect of TCAP gene c.90_91del mutation in this part of the Mediterranean area.
Collapse
Affiliation(s)
- Roberta Brusa
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Magri
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Dimitra Papadimitriou
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efesiou 4, Athens, 115 27, Greece
| | - Alessandra Govoni
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberto Del Bo
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Patrizia Ciscato
- Neuromuscular Unit, Department of Neurological Sciences, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, Dino Ferrari Centre, Milan, Italy
| | - Marco Savarese
- "Luigi Vanvitelli" University and Telethon Institute of Genetics and Medicine (TIGEM), Italy; Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
| | - Claudia Cinnante
- U.O. Neuroradiologia, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Maggie C Walter
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Angela Abicht
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany; Medical Genetic Centre, Munich, Germany
| | | | - Stefania Corti
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Moggio
- Neuromuscular Unit, Department of Neurological Sciences, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, Dino Ferrari Centre, Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Vincenzo Nigro
- "Luigi Vanvitelli" University and Telethon Institute of Genetics and Medicine (TIGEM), Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, I.R.C.C.S. Foundation Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
13
|
Liewluck T, Milone M. Untangling the complexity of limb-girdle muscular dystrophies. Muscle Nerve 2018; 58:167-177. [PMID: 29350766 DOI: 10.1002/mus.26077] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2018] [Indexed: 12/16/2022]
Abstract
The limb-girdle muscular dystrophies (LGMDs) are a group of genetically heterogeneous, autosomal inherited muscular dystrophies with a childhood to adult onset, manifesting with hip- and shoulder-girdle muscle weakness. When the term LGMD was first conceptualized in 1954, it was thought to be a single entity. Currently, there are 8 autosomal dominant (LGMD1A-1H) and 26 autosomal recessive (LGMD2A-2Z) variants according to the Online Mendelian Inheritance in Man database. In addition, there are other genetically identified muscular dystrophies with an LGMD phenotype not yet classified as LGMD. This highlights the entanglement of LGMDs, which represents an area in continuous expansion. Herein we aim to simplify the complexity of LGMDs by subgrouping them on the basis of the underlying defective protein and impaired function. Muscle Nerve 58: 167-177, 2018.
Collapse
Affiliation(s)
- Teerin Liewluck
- Department of Neurology, Mayo Clinic, 200 First Street SW Rochester, Minnesota, 55905, USA
| | - Margherita Milone
- Department of Neurology, Mayo Clinic, 200 First Street SW Rochester, Minnesota, 55905, USA
| |
Collapse
|
14
|
Polge C, Cabantous S, Deval C, Claustre A, Hauvette A, Bouchenot C, Aniort J, Béchet D, Combaret L, Attaix D, Taillandier D. A muscle-specific MuRF1-E2 network requires stabilization of MuRF1-E2 complexes by telethonin, a newly identified substrate. J Cachexia Sarcopenia Muscle 2018; 9:129-145. [PMID: 29271608 PMCID: PMC5803617 DOI: 10.1002/jcsm.12249] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/21/2017] [Accepted: 09/05/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Muscle wasting is observed in the course of many diseases and also during physiological conditions (disuse, ageing). Skeletal muscle mass is largely controlled by the ubiquitin-proteasome system and thus by the ubiquitinating enzymes (E2s and E3s) that target substrates for subsequent degradation. MuRF1 is the only E3 ubiquitin ligase known to target contractile proteins (α-actin, myosins) during catabolic situations. However, MuRF1 depends on E2 ubiquitin-conjugating enzymes for ubiquitin chain formation on the substrates. MuRF1-E2 couples are therefore putative targets for preventing muscle wasting. METHODS We focused on 14 E2 enzymes that are either expressed in skeletal muscle or up-regulated during atrophying conditions. In this work, we demonstrated that only highly sensitive and complementary interactomic approaches (surface plasmon resonance, yeast three-hybrid, and split green fluorescent protein) allowed the identification of MuRF1 E2 partners. RESULTS Five E2 enzymes physically interacted with MuRF1, namely, E2E1, E2G1, E2J1, E2J2, and E2L3. Moreover, we demonstrated that MuRF1-E2E1 and MuRF1-E2J1 interactions are facilitated by telethonin, a newly identified MuRF1 substrate. We next showed that the five identified E2s functionally interacted with MuRF1 since, in contrast to the non-interacting E2D2, their co-expression in HEK293T cells with MuRF1 led to increased telethonin degradation. Finally, we showed that telethonin governed the affinity between MuRF1 and E2E1 or E2J1. CONCLUSIONS We report here the first MuRF1-E2s network, which may prove valuable for deciphering the precise mechanisms involved in the atrophying muscle programme and for proposing new therapeutical approaches.
Collapse
Affiliation(s)
- Cécile Polge
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition HumaineCRNH AuvergneF‐63000Clermont‐FerrandFrance
| | - Stéphanie Cabantous
- Cancer Research Center of Toulouse, INSERM UMR 1037F‐31037ToulouseFrance
- Université de ToulouseF‐31062ToulouseFrance
| | - Christiane Deval
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition HumaineCRNH AuvergneF‐63000Clermont‐FerrandFrance
| | - Agnès Claustre
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition HumaineCRNH AuvergneF‐63000Clermont‐FerrandFrance
| | - Antoine Hauvette
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition HumaineCRNH AuvergneF‐63000Clermont‐FerrandFrance
| | - Catherine Bouchenot
- Cancer Research Center of Toulouse, INSERM UMR 1037F‐31037ToulouseFrance
- Université de ToulouseF‐31062ToulouseFrance
| | - Julien Aniort
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition HumaineCRNH AuvergneF‐63000Clermont‐FerrandFrance
- Service de Néphrologie Réanimation Médicale, Pôle Respiratoire, Endocrinologie‐Diabétologie, Urologie, Néphrologie‐Dialyse, Nutrition Clinique, InfectiologieRéanimation Médicale, Hygiène Hospitalière (REUNNIRH)F‐63000Clermont‐FerrandFrance
| | - Daniel Béchet
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition HumaineCRNH AuvergneF‐63000Clermont‐FerrandFrance
| | - Lydie Combaret
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition HumaineCRNH AuvergneF‐63000Clermont‐FerrandFrance
| | - Didier Attaix
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition HumaineCRNH AuvergneF‐63000Clermont‐FerrandFrance
| | - Daniel Taillandier
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition HumaineCRNH AuvergneF‐63000Clermont‐FerrandFrance
| |
Collapse
|
15
|
Ikenberg E, Karin I, Ertl-Wagner B, Abicht A, Bulst S, Krause S, Schoser B, Reilich P, Walter MC. Rare diagnosis of telethoninopathy (LGMD2G) in a Turkish patient. Neuromuscul Disord 2017; 27:856-860. [PMID: 28666572 DOI: 10.1016/j.nmd.2017.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/01/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
Telethoninopathy is one of the rarest forms of Limb-girdle muscular dystrophy (LGMD). So far, only a small number of LGMD type 2 G (LGMD2G) patients have been described, mostly patients from Brazil. Here we present a 35-year-old female patient of Turkish ethnicity with LGMD2G due to a novel homozygous frame-shift mutation c.90_91del (p.Ser31Hisfs*11) in the telethonin gene, probably leading to truncated protein or nonsense mediated decay. Myalgia and walking on tiptoes were the first symptoms starting in early childhood, around age 22 proximal, later distal leg muscles became affected. Muscle biopsy showed a degenerative myopathy with lobulated fibers, creatine kinase levels were elevated to 1200 U/l. No cardiomyopathy has been detected but ventricular extrasystoles were treated with verapamil. Even though telethoninopathy represents a rare condition, testing for LGMD2G should be included into the diagnostic work-up of mild myopathies with early toe walking and distal and proximal involvement.
Collapse
Affiliation(s)
- Elena Ikenberg
- Friedrich-Baur-Institute, Dept. of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Ivan Karin
- Friedrich-Baur-Institute, Dept. of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Birgit Ertl-Wagner
- Dept. of Radiology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Angela Abicht
- Friedrich-Baur-Institute, Dept. of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany; Medical Genetics Center - MGZ, Munich, Germany
| | | | - Sabine Krause
- Friedrich-Baur-Institute, Dept. of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Dept. of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Peter Reilich
- Friedrich-Baur-Institute, Dept. of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Maggie C Walter
- Friedrich-Baur-Institute, Dept. of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany.
| |
Collapse
|