1
|
Börchers S, Skibicka KP. GLP-1 and Its Analogs: Does Sex Matter? Endocrinology 2025; 166:bqae165. [PMID: 39715341 PMCID: PMC11733500 DOI: 10.1210/endocr/bqae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/05/2024] [Accepted: 12/22/2024] [Indexed: 12/25/2024]
Abstract
While obesity and diabetes are prevalent in both men and women, some aspects of these diseases differ by sex. A new blockbuster class of therapeutics, glucagon-like peptide 1 (GLP-1) analogs (eg, semaglutide), shows promise at curbing both diseases. This review addresses the topic of sex differences in the endogenous and therapeutic actions of GLP-1 and its analogs. Work on sex differences in human studies and animal research is reviewed. Preclinical data on the mechanisms of potential sex differences in the endogenous GLP-1 system as well as the therapeutic effect of GLP-1 analogs, focusing on the effects of the drugs on the brain and behavior relating to appetite and metabolism, are highlighted. Moreover, recent clinical evidence of sex differences in the therapeutic effects of GLP-1 analogs in obesity, diabetes, and cardiovascular disease are discussed. Lastly, we review evidence for the role of GLP-1 analogs in mood and reproductive function, with particular attention to sex differences. Overall, while we did not find evidence for many qualitative sex differences in the therapeutic effect of clinically approved GLP-1 analogs, a growing body of literature highlights quantitative sex differences in the response to GLP-1 and its analogs as well as an interaction of these therapeutics with estrogens. What also clearly emerges is the paucity of data in female animal models or women in very basic aspects of the science of GLP-1-gaps that should be urgently mended, given the growing popularity of these medications, especially in women.
Collapse
Affiliation(s)
- Stina Börchers
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 41390 Gothenburg, Sweden
| | - Karolina P Skibicka
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 41390 Gothenburg, Sweden
- Nutritional Sciences Department, The Pennsylvania State University, University Park, PA 16803, USA
- Huck Institutes of Life Science, The Pennsylvania State University, University Park, PA 16803, USA
| |
Collapse
|
2
|
Dumiaty Y, Underwood BM, Phy-Lim J, Chee MJ. Neurocircuitry underlying the actions of glucagon-like peptide 1 and peptide YY 3-36 in the suppression of food, drug-seeking, and anxiogenesis. Neuropeptides 2024; 105:102427. [PMID: 38579490 DOI: 10.1016/j.npep.2024.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
Obesity is a critical health condition worldwide that increases the risks of comorbid chronic diseases, but it can be managed with weight loss. However, conventional interventions relying on diet and exercise are inadequate for achieving and maintaining weight loss, thus there is significant market interest for pharmaceutical anti-obesity agents. For decades, receptor agonists for the gut peptide glucagon-like peptide 1 (GLP-1) featured prominently in anti-obesity medications by suppressing appetite and food reward to elicit rapid weight loss. As the neurocircuitry underlying food motivation overlaps with that for drugs of abuse, GLP-1 receptor agonism has also been shown to decrease substance use and relapse, thus its therapeutic potential may extend beyond weight management to treat addictions. However, as prolonged use of anti-obesity drugs may increase the risk of mood-related disorders like anxiety and depression, and individuals taking GLP-1-based medication commonly report feeling demotivated, the long-term safety of such drugs is an ongoing concern. Interestingly, current research now focuses on dual agonist approaches that include GLP-1 receptor agonism to enable synergistic effects on weight loss or associated functions. GLP-1 is secreted from the same intestinal cells as the anorectic gut peptide, Peptide YY3-36 (PYY3-36), thus this review assessed the therapeutic potential and underlying neural circuits targeted by PYY3-36 when administered independently or in combination with GLP-1 to curb the appetite for food or drugs of abuse like opiates, alcohol, and nicotine. Additionally, we also reviewed animal and human studies to assess the impact, if any, for GLP-1 and/or PYY3-36 on mood-related behaviors in relation to anxiety and depression. As dual agonists targeting GLP-1 and PYY3-36 may produce synergistic effects, they can be effective at lower doses and offer an alternative approach for therapeutic benefits while mitigating undesirable side effects.
Collapse
Affiliation(s)
- Yasmina Dumiaty
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Brett M Underwood
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Jenny Phy-Lim
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Melissa J Chee
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
3
|
McElroy SL. Question: What Is the Current State of Evidence Regarding Any Mood-Improving Properties of GLP-1 Receptor Agonists, and Are Psychiatrists Prescribing Them? J Clin Psychopharmacol 2024; 44:332-333. [PMID: 38639431 DOI: 10.1097/jcp.0000000000001867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
|
4
|
Activation of glucagon-like peptide-1 receptors reduces the acquisition of aggression-like behaviors in male mice. Transl Psychiatry 2022; 12:445. [PMID: 36229445 PMCID: PMC9561171 DOI: 10.1038/s41398-022-02209-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Aggression is a complex social behavior, which is provoked in the defense of limited resources including food and mates. Recent advances show that the gut-brain hormone ghrelin modulates aggressive behaviors. As the gut-brain hormone glucagon-like peptide-1 (GLP-1) reduces food intake and sexual behaviors its potential role in aggressive behaviors is likely. Therefore, we investigated a tentative link between GLP-1 and aggressive behaviors by combining preclinical and human genetic-association studies. The influence of acute or repeated injections of a GLP-1 receptor (GLP-1R) agonist, exendin-4 (Ex4), on aggressive behaviors was assessed in male mice exposed to the resident-intruder paradigm. Besides, possible mechanisms participating in the ability of Ex4 to reduce aggressive behaviors were evaluated. Associations of polymorphisms in GLP-1R genes and overt aggression in males of the CATSS cohort were assessed. In male mice, repeated, but not acute, Ex4 treatment dose-dependently reduced aggressive behaviors. Neurochemical and western blot studies further revealed that putative serotonergic and noradrenergic signaling in nucleus accumbens, specifically the shell compartment, may participate in the interaction between Ex4 and aggression. As high-fat diet (HFD) impairs the responsiveness to GLP-1 on various behaviors the possibility that HFD blunts the ability of Ex4 to reduce aggressive behaviors was explored. Indeed, the levels of aggression was similar in vehicle and Ex4 treated mice consuming HFD. In humans, there were no associations between polymorphisms of the GLP-1R genes and overt aggression. Overall, GLP-1 signaling suppresses acquisition of aggressive behaviors via central neurotransmission and additional studies exploring this link are warranted.
Collapse
|
5
|
Manavi MA. Neuroprotective effects of glucagon-like peptide-1 (GLP-1) analogues in epilepsy and associated comorbidities. Neuropeptides 2022; 94:102250. [PMID: 35561568 DOI: 10.1016/j.npep.2022.102250] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
Epilepsy is a common neurological condition induced by losing equilibrium of different pathway as well as neurotransmitters that affects over 50 million people globally. Furthermore, long-term administration of anti-seizure medications has been associated with psychological adverse effects. Also, epilepsy has been related to an increased prevalence of obesity and called type 2 diabetes mellitus. On the other hand, GLP-1 receptors are located throughout the brain, including the hippocampus, which have been associated to majority of neurological conditions, such as epilepsy and psychiatric disorders. Moreover, the impact of different GLP-1 analogues on diverse neurotransmitter systems and associated cellular and molecular pathways as a potential therapeutic target for epilepsy and associated comorbidities has piqued curiosity. In this regard, the anticonvulsant effects of GLP-1 analogues have been investigated in various animal models and promising results such as anticonvulsants as well as cognitive improvements have been observed. For instance, GLP-1 analogues like liraglutide in addition to their possible anticonvulsant benefits, could be utilized to alleviate mental cognitive problems caused by both epilepsy and anti-seizure medication side effects. In this review and growing protective function of GLP-1 in epilepsy induced by disturbed neurotransmitter pathways and the probable mechanisms of action of GLP-1 analogues as well as the GLP-1 receptor in these effects have been discussed.
Collapse
Affiliation(s)
- Mohammad Amin Manavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Cai T, Zheng SP, Shi X, Yuan LZ, Hu H, Zhou B, Xiao SL, Wang F. Therapeutic effect of fecal microbiota transplantation on chronic unpredictable mild stress-induced depression. Front Cell Infect Microbiol 2022; 12:900652. [PMID: 35967846 PMCID: PMC9366333 DOI: 10.3389/fcimb.2022.900652] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/11/2022] [Indexed: 12/27/2022] Open
Abstract
Background and objective Depression is a complex neuropsychiatric disease with extensive morbidity. Its pathogenesis remains unclear, and it is associated with extremely low rates of cure and complete remission. It is vital to study the pathogenesis of depression to develop effective treatments. This study aimed to explore the therapeutic effects and mechanisms of fecal microbiota transplantation (FMT) for the treatment of depression in rats. Methods Thirty Sprague-Dawley (SD) rats were randomly divided into three groups: control, chronic unpredictable mild stress (CUMS) to model depression, and CUMS+FMT. For the CUMS and CUMS+FMT groups, after CUMS intervention (four weeks), the rats were given normal saline or FMT (once/week for three weeks), respectively. Behavior, colonic motility, 16S rDNA amplicon sequencing, and untargeted metabolomics on fecal samples were compared between the three rat groups. The following markers were analyzed: 5-hydroxytryptamine (5-HT), gamma-aminobutyric acid (GABA), glutamate (Glu), and brain-derived neurotrophic factor (BDNF) levels in the hippocampus; glucagon-like peptide 1 (GLP-1), lipopolysaccharide (LPS), and interleukin (IL)-6 levels in the serum; and GLP-1, GLP-1 receptor (GLP-1R), and serotonin 4 receptor (5-HT4R) levels in colonic tissues. Results FMT improved symptoms of depression and colonic motility in rats exposed to CUMS. The expression levels of 5-HT, GABA, BDNF, and other biochemical indices, significantly differed among the three groups. Meanwhile, the intestinal microbiota in the CUMS+FMT group was more similar to that of the control group with a total of 13 different fecal metabolites. Conclusion FMT exerted antidepressant effects on CUMS-induced depression in rats, and the mechanism involved various neurotransmitters, inflammatory factors, neurotrophic factors, and glucagon-like peptides.
Collapse
Affiliation(s)
- Ting Cai
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shao-peng Zheng
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Shi
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling-zhi Yuan
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hai Hu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bai Zhou
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shi-lang Xiao
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Fen Wang,
| |
Collapse
|
7
|
De Sarro C, Tallarico M, Pisano M, Gallelli L, Citraro R, De Sarro G, Leo A. Liraglutide chronic treatment prevents development of tolerance to antiseizure effects of diazepam in genetically epilepsy prone rats. Eur J Pharmacol 2022; 928:175098. [PMID: 35700834 DOI: 10.1016/j.ejphar.2022.175098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is a hormone that can regulate several neuronal functions. The modulation of GLP-1 receptors emerged as a potential target to treat several neurological diseases, such as epilepsy. Here, we studied the effects of acute and chronic treatment with liraglutide (LIRA), in genetically epilepsy prone rats (GEPR-9s). We have also investigated the possible development of tolerance to antiseizure effects of diazepam, and how LIRA could affect this phenomenon over the same period of treatment. The present data indicate that an acute treatment with LIRA did not diminish the severity score of audiogenic seizures (AGS) in GEPR-9s. By contrast, a chronic treatment with LIRA has shown only a modest antiseizure effect that was maintained until the end of treatment, in GEPR-9s. Not surprisingly, acute administration of diazepam reduced, in a dose dependent manner, the severity of the AGS in GEPR-9s. However, when diazepam was chronically administered, an evident development of tolerance to its antiseizure effects was detected. Interestingly, following an add-on treatment with LIRA, a reduced development of tolerance and an enhanced diazepam antiseizure effect was observed in GEPR-9s. Overall, an add-on therapy with LIRA demonstrate benefits superior to single antiseizure medications and could be utilized to treat epilepsy as well as associated issues. Therefore, the potential use of GLP1 analogs for the treatment of epilepsy in combination with existing antiseizure medications could thus add a new and long-awaited dimension to its management.
Collapse
Affiliation(s)
- Caterina De Sarro
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Martina Tallarico
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Maria Pisano
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Luca Gallelli
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy.
| | - Giovambattista De Sarro
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy.
| | - Antonio Leo
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
8
|
Sonali S, Ray B, Ahmed Tousif H, Rathipriya AG, Sunanda T, Mahalakshmi AM, Rungratanawanich W, Essa MM, Qoronfleh MW, Chidambaram SB, Song BJ. Mechanistic Insights into the Link between Gut Dysbiosis and Major Depression: An Extensive Review. Cells 2022; 11:cells11081362. [PMID: 35456041 PMCID: PMC9030021 DOI: 10.3390/cells11081362] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
Depression is a highly common mental disorder, which is often multifactorial with sex, genetic, environmental, and/or psychological causes. Recent advancements in biomedical research have demonstrated a clear correlation between gut dysbiosis (GD) or gut microbial dysbiosis and the development of anxiety or depressive behaviors. The gut microbiome communicates with the brain through the neural, immune, and metabolic pathways, either directly (via vagal nerves) or indirectly (via gut- and microbial-derived metabolites as well as gut hormones and endocrine peptides, including peptide YY, pancreatic polypeptide, neuropeptide Y, cholecystokinin, corticotropin-releasing factor, glucagon-like peptide, oxytocin, and ghrelin). Maintaining healthy gut microbiota (GM) is now being recognized as important for brain health through the use of probiotics, prebiotics, synbiotics, fecal microbial transplantation (FMT), etc. A few approaches exert antidepressant effects via restoring GM and hypothalamus–pituitary–adrenal (HPA) axis functions. In this review, we have summarized the etiopathogenic link between gut dysbiosis and depression with preclinical and clinical evidence. In addition, we have collated information on the recent therapies and supplements, such as probiotics, prebiotics, short-chain fatty acids, and vitamin B12, omega-3 fatty acids, etc., which target the gut–brain axis (GBA) for the effective management of depressive behavior and anxiety.
Collapse
Affiliation(s)
- Sharma Sonali
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Hediyal Ahmed Tousif
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | | | - Tuladhar Sunanda
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA;
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman;
- Aging and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman
| | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research and Policy Division, 7227 Rachel Drive, Ypsilant, MI 48917, USA;
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Correspondence: (S.B.C.); (B.-J.S.)
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA;
- Correspondence: (S.B.C.); (B.-J.S.)
| |
Collapse
|
9
|
Anti-stress effects of the glucagon-like peptide-1 receptor agonist liraglutide in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110388. [PMID: 34147534 DOI: 10.1016/j.pnpbp.2021.110388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/29/2021] [Accepted: 06/14/2021] [Indexed: 01/22/2023]
Abstract
Stress-related disorders are extremely harmful and cause significant impacts on the individual and society. Despite the limited evidence regarding glucagon-like peptide-1 receptor (GLP-1R) and mental disorders, a few clinical and preclinical studies suggest that modulating this system could improve symptoms of stress-related disorders. This study aimed to investigate the effects of liraglutide, a GLP-1R agonist, on neurobehavioral phenotypes and brain oxidative status in adult zebrafish. Acute liraglutide promoted anxiolytic-like effects in the light/dark test, while chronic treatment blocked the impact of unpredictable chronic stress on behavioral and physiological parameters. Taken together, our study demonstrates that liraglutide is active on the zebrafish brain and may counteract some of the effects induced by stress. More studies are warranted to further elucidate the potential of GLP-1R agonists for the management of brain disorders.
Collapse
|
10
|
Aygun H. Exendin-4 increases absence-like seizures and anxiety-depression-like behaviors in WAG/Rij rats. Epilepsy Behav 2021; 123:108246. [PMID: 34385055 DOI: 10.1016/j.yebeh.2021.108246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022]
Abstract
AIM Epilepsy is a neurological condition affecting millions of people worldwide. Glucagon-like peptide-1 (GLP-1) is a gut hormone, and its neuroprotective effect was investigated in previous studies. In this study, the effects of exendin-4, a GLP-1 receptor agonist, were studied in genetic absence epileptic Wistar Albino Glaxo/Rijswijk rats (WAG/Rij). WAG/Rij rat is a genetic model of the absence epilepsy and depression-like comorbidity. METHOD We examined the effects of exendin-4 (10, 50 and 100 µg/kg) on the absence seizures (Electrocorticography [ECoG] recordings), anxiety level (open-field test [OF]), and depression-like levels (forced swimming test [FST]) in the WAG/Rij rats. Basal ECoG recording was performed for all rats. Then, exendin-4 (10, 50 or 100 µg/kg) was administered intraperitoneally and ECoG recording was made for 180 min. After ECoG recording, forced swimming test and open-field test were applied. RESULTS Administration of 10, 50, or 100 µg/kg exendin-4 increased the duration and number of spike-wave discharges (SWDs) considerably without changing the amplitude. The 100 µg/kg dose of exendin-4 was the most effective in increasing the total duration of SWDs. Additionally, all exendin-4 doses increased anxiety level in OF and depression-like level in FST. CONCLUSION Our results showed that exendin-4 increased SWD incidence and anxiety- and depression-like behaviors in the WAG/Rij rats. Besides, it was also found that high doses caused the most proabsence effect.
Collapse
Affiliation(s)
- Hatice Aygun
- Department of Physiology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey.
| |
Collapse
|
11
|
Graham DL, Madkour HS, Noble BL, Schatschneider C, Stanwood GD. Long-term functional alterations following prenatal GLP-1R activation. Neurotoxicol Teratol 2021; 87:106984. [PMID: 33864929 PMCID: PMC8555578 DOI: 10.1016/j.ntt.2021.106984] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022]
Abstract
Evidence supporting the use of glucagon-like peptide-1 (GLP-1) analogues to pharmacologically treat disorders beyond type 2 diabetes and obesity is increasing. However, little is known about how activation of the GLP-1 receptor (GLP-1R) during pregnancy affects maternal and offspring outcomes. We treated female C57Bl/6 J mice prior to conception and throughout gestation with a long-lasting GLP-1R agonist, Exendin-4. While GLP-1R activation has significant effects on food and drug reward, depression, locomotor activity, and cognition in adults, we found few changes in these domains in exendin-4-exposed offspring. Repeated injections of Exendin-4 had minimal effects on the dams and may have enhanced maternal care. Offspring exposed to the drug weighed significantly more than their control counterparts during the preweaning period and demonstrated alterations in anxiety-like outcomes, which indicate a developmental role for GLP-1R modulation in the stress response that may be sex-specific.
Collapse
Affiliation(s)
- Devon L Graham
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL 32306, United States of America
| | - Haley S Madkour
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL 32306, United States of America
| | - Brenda L Noble
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL 32306, United States of America
| | - Chris Schatschneider
- Department of Psychology, Florida State University, Tallahassee, FL 32306, United States of America
| | - Gregg D Stanwood
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL 32306, United States of America.
| |
Collapse
|
12
|
Guerrero-Hreins E, Goldstone AP, Brown RM, Sumithran P. The therapeutic potential of GLP-1 analogues for stress-related eating and role of GLP-1 in stress, emotion and mood: a review. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110303. [PMID: 33741445 DOI: 10.1016/j.pnpbp.2021.110303] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/19/2021] [Accepted: 03/09/2021] [Indexed: 01/11/2023]
Abstract
Stress and low mood are powerful triggers for compulsive overeating, a maladaptive form of eating leading to negative physical and mental health consequences. Stress-vulnerable individuals, such as people with obesity, are particularly prone to overconsumption of high energy foods and may use it as a coping mechanism for general life stressors. Recent advances in the treatment of obesity and related co-morbidities have focused on the therapeutic potential of anorexigenic gut hormones, such as glucagon-like peptide 1 (GLP-1), which acts both peripherally and centrally to reduce energy intake. Besides its appetite suppressing effect, GLP-1 acts on areas of the brain involved in stress response and emotion regulation. However, the role of GLP-1 in emotion and stress regulation, and whether it is a viable treatment for stress-induced compulsive overeating, has yet to be established. A thorough review of the pre-clinical literature measuring markers of stress, anxiety and mood after GLP-1 exposure points to potential divergent effects based on temporality. Specifically, acute GLP-1 injection consistently stimulates the physiological stress response in rodents whereas long-term exposure indicates anxiolytic and anti-depressive benefits. However, the limited clinical evidence is not as clear cut. While prolonged GLP-1 analogue treatment in people with type 2 diabetes improved measures of mood and general psychological wellbeing, the mechanisms underlying this may be confounded by associated weight loss and improved blood glucose control. There is a paucity of longitudinal clinical literature on mechanistic pathways by which stress influences eating behavior and how centrally-acting gut hormones such as GLP-1, can modify these. (250).
Collapse
Affiliation(s)
- Eva Guerrero-Hreins
- The Florey Institute of Neuroscience and Mental Health, Mental Health Theme, Parkville, Melbourne, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia; PsychoNeuroEndocrinology Research Group, Centre for Neuropsychopharmacology, Division of Psychiatry, and Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Anthony P Goldstone
- PsychoNeuroEndocrinology Research Group, Centre for Neuropsychopharmacology, Division of Psychiatry, and Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Robyn M Brown
- The Florey Institute of Neuroscience and Mental Health, Mental Health Theme, Parkville, Melbourne, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Priya Sumithran
- Department of Medicine (St Vincent's), University of Melbourne, Victoria, Australia; Dept. of Endocrinology, Austin Health, Victoria, Australia.
| |
Collapse
|
13
|
Diz-Chaves Y, Herrera-Pérez S, González-Matías LC, Lamas JA, Mallo F. Glucagon-Like Peptide-1 (GLP-1) in the Integration of Neural and Endocrine Responses to Stress. Nutrients 2020; 12:nu12113304. [PMID: 33126672 PMCID: PMC7692797 DOI: 10.3390/nu12113304] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Glucagon like-peptide 1 (GLP-1) within the brain is produced by a population of preproglucagon neurons located in the caudal nucleus of the solitary tract. These neurons project to the hypothalamus and another forebrain, hindbrain, and mesolimbic brain areas control the autonomic function, feeding, and the motivation to feed or regulate the stress response and the hypothalamic-pituitary-adrenal axis. GLP-1 receptor (GLP-1R) controls both food intake and feeding behavior (hunger-driven feeding, the hedonic value of food, and food motivation). The activation of GLP-1 receptors involves second messenger pathways and ionic events in the autonomic nervous system, which are very relevant to explain the essential central actions of GLP-1 as neuromodulator coordinating food intake in response to a physiological and stress-related stimulus to maintain homeostasis. Alterations in GLP-1 signaling associated with obesity or chronic stress induce the dysregulation of eating behavior. This review summarized the experimental shreds of evidence from studies using GLP-1R agonists to describe the neural and endocrine integration of stress responses and feeding behavior.
Collapse
Affiliation(s)
- Yolanda Diz-Chaves
- CINBIO, Universidade de Vigo, Grupo FB3A, Laboratorio de Endocrinología, 36310 Vigo, Spain;
- Correspondence: (Y.D.-C.); (F.M.); Tel.: +34-(986)-130226 (Y.D.-C.); +34-(986)-812393 (F.M.)
| | - Salvador Herrera-Pérez
- CINBIO, Universidade de Vigo, Grupo FB3B, Laboratorio de Neurociencia, 36310 Vigo, Spain; (S.H.-P.); (J.A.L.)
| | | | - José Antonio Lamas
- CINBIO, Universidade de Vigo, Grupo FB3B, Laboratorio de Neurociencia, 36310 Vigo, Spain; (S.H.-P.); (J.A.L.)
| | - Federico Mallo
- CINBIO, Universidade de Vigo, Grupo FB3A, Laboratorio de Endocrinología, 36310 Vigo, Spain;
- Correspondence: (Y.D.-C.); (F.M.); Tel.: +34-(986)-130226 (Y.D.-C.); +34-(986)-812393 (F.M.)
| |
Collapse
|
14
|
López-Ferreras L, Eerola K, Shevchouk OT, Richard JE, Nilsson FH, Jansson LE, Hayes MR, Skibicka KP. The supramammillary nucleus controls anxiety-like behavior; key role of GLP-1R. Psychoneuroendocrinology 2020; 119:104720. [PMID: 32563174 DOI: 10.1016/j.psyneuen.2020.104720] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/30/2020] [Accepted: 05/18/2020] [Indexed: 01/04/2023]
Abstract
Anxiety disorders are among the most prevalent categories of mental illnesses. The gut-brain axis, along with gastrointestinally-derived neuropeptides, like glucagon-like peptide-1 (GLP-1), are emerging as potential key regulators of emotionality, including anxiety behavior. However, the neuroanatomical substrates from which GLP-1 exerts its anxiogenic effect remain poorly characterized. Here we focus on a relatively new candidate nucleus, the supramammillary nucleus (SuM), located just caudal to the lateral hypothalamus and ventral to the ventral tegmental area. Our focus on the SuM is supported by previous data showing expression of GLP-1R mRNA throughout the SuM and activation of the SuM during anxiety-inducing behaviors in rodents. Data show that chemogenetic activation of neurons in the SuM results in an anxiolytic response in male and female rats. In contrast, selective activation of SuM GLP-1R, by microinjection of a GLP-1R agonist exendin-4 into the SuM resulted in potent anxiety-like behavior, measured in both open field and elevated plus maze tests in male and female rats. This anxiogenic effect of GLP-1R activation persisted after high-fat diet exposure. Importantly, reduction of GLP-1R expression in the SuM, by AAV-shRNA GLP-1R knockdown, resulted in a clear anxiolytic response; an effect only observed in female rats. Our data identify a new neural substrate for GLP-1 control of anxiety-like behavior and indicate that the SuM GLP-1R are sufficient for anxiogenesis in both sexes, but necessary only in females.
Collapse
Affiliation(s)
- L López-Ferreras
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - K Eerola
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Research Centre of Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - O T Shevchouk
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - J E Richard
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - F H Nilsson
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - L E Jansson
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - M R Hayes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - K P Skibicka
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden; Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
15
|
Jena A, Montoya CA, Mullaney JA, Dilger RN, Young W, McNabb WC, Roy NC. Gut-Brain Axis in the Early Postnatal Years of Life: A Developmental Perspective. Front Integr Neurosci 2020; 14:44. [PMID: 32848651 PMCID: PMC7419604 DOI: 10.3389/fnint.2020.00044] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence suggests that alterations in the development of the gastrointestinal (GI) tract during the early postnatal period can influence brain development and vice-versa. It is increasingly recognized that communication between the GI tract and brain is mainly driven by neural, endocrine, immune, and metabolic mediators, collectively called the gut-brain axis (GBA). Changes in the GBA mediators occur in response to the developmental changes in the body during this period. This review provides an overview of major developmental events in the GI tract and brain in the early postnatal period and their parallel developmental trajectories under physiological conditions. Current knowledge of GBA mediators in context to brain function and behavioral outcomes and their synthesis and metabolism (site, timing, etc.) is discussed. This review also presents hypotheses on the role of the GBA mediators in response to the parallel development of the GI tract and brain in infants.
Collapse
Affiliation(s)
- Ankita Jena
- School of Food & Advanced Technology, College of Sciences, Massey University, Palmerston North, New Zealand.,The Riddet Institute, Massey University, Palmerston North, New Zealand.,Food Nutrition & Health, Grasslands Research Centre, AgResearch, Palmerston North, New Zealand
| | - Carlos A Montoya
- The Riddet Institute, Massey University, Palmerston North, New Zealand.,Food Nutrition & Health, Grasslands Research Centre, AgResearch, Palmerston North, New Zealand
| | - Jane A Mullaney
- The Riddet Institute, Massey University, Palmerston North, New Zealand.,Food Nutrition & Health, Grasslands Research Centre, AgResearch, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Ryan N Dilger
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Wayne Young
- The Riddet Institute, Massey University, Palmerston North, New Zealand.,Food Nutrition & Health, Grasslands Research Centre, AgResearch, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Warren C McNabb
- The Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole C Roy
- The Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Liggins Institute, The University of Auckland, Auckland, New Zealand.,Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
Ilie IR. Neurotransmitter, neuropeptide and gut peptide profile in PCOS-pathways contributing to the pathophysiology, food intake and psychiatric manifestations of PCOS. Adv Clin Chem 2019; 96:85-135. [PMID: 32362321 DOI: 10.1016/bs.acc.2019.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a major health problem with a heterogeneous hormone-imbalance and clinical presentation across the lifespan of women. Increased androgen production and abnormal gonadotropin-releasing hormone (GnRH) release and gonadotropin secretion, resulting in chronic anovulation are well-known features of the PCOS. The brain is both at the top of the neuroendocrine axis regulating ovarian function and a sensitive target of peripheral gonadal hormones and peptides. Current literature illustrates that neurotransmitters regulate various functions of the body, including reproduction, mood and body weight. Neurotransmitter alteration could be one of the reasons for disturbed GnRH release, consequently directing the ovarian dysfunction in PCOS, since there is plenty evidence for altered catecholamine metabolism and brain serotonin or opioid activity described in PCOS. Further, the dysregulated neurotransmitter and neuropeptide profile in PCOS could also be the reason for low self-esteem, anxiety, mood swings and depression or obesity, features closely associated with PCOS women. Can these altered central brain circuits, or the disrupted gut-brain axis be the tie that would both explain and link the pathogenesis of this disorder, the occurrence of depression, anxiety and other mood disorders as well as of obesity, insulin resistance and abnormal appetite in PCOS? This review intends to provide the reader with a comprehensive overview of what is known about the relatively understudied, but very complex role that neurotransmitters, neuropeptides and gut peptides play in PCOS. The answer to the above question may help the development of drugs to specifically target these central and peripheral circuits, thereby providing a valuable treatment for PCOS patients that present to the clinic with GnRH/LH hypersecretion, obesity or psychiatric manifestations.
Collapse
Affiliation(s)
- Ioana R Ilie
- Department of Endocrinology, University of Medicine and Pharmacy 'Iuliu-Hatieganu', Cluj-Napoca, Romania.
| |
Collapse
|
17
|
Zheng H, Reiner DJ, Hayes MR, Rinaman L. Chronic Suppression of Glucagon-Like Peptide-1 Receptor (GLP1R) mRNA Translation in the Rat Bed Nucleus of the Stria Terminalis Reduces Anxiety-Like Behavior and Stress-Induced Hypophagia, But Prolongs Stress-Induced Elevation of Plasma Corticosterone. J Neurosci 2019; 39:2649-2663. [PMID: 30683681 PMCID: PMC6445994 DOI: 10.1523/jneurosci.2180-18.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 01/26/2023] Open
Abstract
The anterior lateral bed nucleus of the stria terminalis (alBST) expresses glucagon-like peptide-1 receptors (GLP1Rs) and receives input from caudal brainstem GLP1 neurons. GLP1 administered centrally reduces food intake and increases anxiety-like behavior and plasma corticosterone (cort) levels in rats, whereas central GLP1R antagonism has opposite effects. Anxiogenic threats and other stressors robustly activate c-fos expression in both GLP1-producing neurons and also in neurons within alBST subregions expressing GLP1R. To examine the functional role of GLP1R signaling within the alBST, adult male Sprague Dawley rats received bilateral alBST-targeted injections of an adeno-associated virus (AAV) vector expressing short hairpin RNA (shRNA) to knock down the translation of GLP1R mRNA (GLP1R-KD rats), or similar injections of a control AAV (CTRL rats). In situ hybridization revealed that GLP1R mRNA is expressed in a subset of GABAergic alBST neurons, and quantitative real-time PCR confirmed that GLP1R-KD rats displayed a significant 60% reduction in translatable GLP1R mRNA. Compared with CTRL rats, GLP1R-KD rats gained more body weight over time and displayed less anxiety-like behavior, including a loss of light-enhanced acoustic startle and less stress-induced hypophagia. Conversely, while baseline plasma cort levels were similar in GLP1R-KD and CTRL rats, GLP1R-KD rats displayed a prolonged stress-induced elevation of plasma cort levels. GLP1R-KD and CTRL rats displayed similar home cage food intake and a similar hypophagic response to systemic Exendin-4, a GLP1R agonist that crosses the blood-brain barrier. We conclude that GLP1R expressed within the alBST contributes to multiple behavioral responses to anxiogenic threats, yet also serves to limit the plasma cort response to acute stress.SIGNIFICANCE STATEMENT Anxiety is an affective and physiological state that supports threat avoidance. Identifying the neural bases of anxiety-like behaviors in animal models is essential for understanding mechanisms that contribute to normative and pathological anxiety in humans. In rats, anxiety/avoidance behaviors can be elicited or enhanced by visceral or cognitive threats that increase glucagon-like peptide-1 (GLP1) signaling from the caudal brainstem to the hypothalamus and limbic forebrain. Data reported here support a role for limbic GLP1 receptor signaling to enhance anxiety-like behavior and to attenuate stress-induced elevations in plasma cort levels in rats. Improved understanding of central GLP1 neural pathways that impact emotional responses to stress could expand potential therapeutic options for anxiety and other stress-related disorders in humans.
Collapse
MESH Headings
- Animals
- Anxiety/metabolism
- Anxiety/prevention & control
- Anxiety/psychology
- Appetite Regulation/drug effects
- Appetite Regulation/physiology
- Biomarkers/blood
- Corticosterone/blood
- Glucagon-Like Peptide-1 Receptor/antagonists & inhibitors
- Glucagon-Like Peptide-1 Receptor/genetics
- Glucagon-Like Peptide-1 Receptor/metabolism
- Male
- Protein Biosynthesis/drug effects
- Protein Biosynthesis/physiology
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/administration & dosage
- Rats
- Rats, Sprague-Dawley
- Reflex, Startle/drug effects
- Reflex, Startle/physiology
- Septal Nuclei/metabolism
- Stress, Psychological/blood
- Stress, Psychological/genetics
- Stress, Psychological/psychology
Collapse
Affiliation(s)
- Huiyuan Zheng
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32303, and
| | - David J Reiner
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Matthew R Hayes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32303, and
| |
Collapse
|
18
|
Wolfe M, Wisniewska H, Tariga H, Ibanez G, Collins JC, Wisniewski K, Qi S, Srinivasan K, Hargrove D, Lindstrom BF. Selective and non-selective OT receptor agonists induce different locomotor behaviors in male rats via central OT receptors and peripheral V1a receptors. Neuropeptides 2018; 70:64-75. [PMID: 29807652 DOI: 10.1016/j.npep.2018.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 10/16/2022]
Abstract
Oxytocin (OT) continues to inspire much research due to its diverse physiological effects. While the best-understood actions of OT are uterine contraction and milk ejection, OT is also implicated in maternal and bonding behaviors, and potentially in CNS disorders such as autism, schizophrenia, and pain. The dissection of the mechanism of action of OT is complicated by the fact that this peptide activates not only its cognate receptor but also vasopressin type 1a (V1a) receptors. In this study, we evaluated OT and a selective OT receptor (OTR) agonist, FE 204409, in an automated assay that measures rat locomotor activity. The results showed: 1) Subcutaneous (sc) administration of OT decreased locomotor behavior (distance traveled, stereotypy, and rearing). This effect was reversed by a V1a receptor (V1aR) antagonist ([Pmp1,Tyr(ME)2]AVP, sc), suggesting that OT acts through peripheral V1aR to inhibit locomotor activity. 2) A selective OTR agonist (FE 204409, sc) increased stereotypy. This effect was reversed by an OTR antagonist dosed icv, suggesting a central OTR site of action. Our findings identify distinct behavioral effects for OT and the selective agonist FE 204409, adding to the growing body of evidence that the V1aR mediates many effects attributed to OT and that peptides administered systemically at supra-physiological doses may activate receptors in the brain. Our studies further emphasize the importance of utilizing selective agonists and antagonists to assess therapeutic indications.
Collapse
Affiliation(s)
- Monica Wolfe
- Ferring Research Institute, Inc, San Diego, CA, United States
| | | | - Hiroe Tariga
- Ferring Research Institute, Inc, San Diego, CA, United States
| | - Gerardo Ibanez
- Ferring Research Institute, Inc, San Diego, CA, United States
| | - James C Collins
- Ferring Research Institute, Inc, San Diego, CA, United States
| | | | - Steve Qi
- Ferring Research Institute, Inc, San Diego, CA, United States
| | | | - Diane Hargrove
- Ferring Research Institute, Inc, San Diego, CA, United States
| | | |
Collapse
|
19
|
Mietlicki-Baase EG, McGrath LE, Koch-Laskowski K, Krawczyk J, Reiner DJ, Pham T, Nguyen CTN, Turner CA, Olivos DR, Wimmer ME, Schmidt HD, Hayes MR. Amylin receptor activation in the ventral tegmental area reduces motivated ingestive behavior. Neuropharmacology 2017; 123:67-79. [PMID: 28552704 DOI: 10.1016/j.neuropharm.2017.05.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/01/2017] [Accepted: 05/23/2017] [Indexed: 12/22/2022]
Abstract
Amylin is produced in the pancreas and the brain, and acts centrally to reduce feeding and body weight. Recent data show that amylin can act in the ventral tegmental area (VTA) to reduce palatable food intake and promote negative energy balance, but the behavioral mechanisms by which these effects occur are not fully understood. The ability of VTA amylin signaling to reduce intake of specific palatable macronutrients (fat or carbohydrate) was tested in rats in several paradigms, including one-bottle acceptance tests, two-bottle choice tests, and a free-choice diet. Data show that VTA amylin receptor activation with the amylin receptor agonist salmon calcitonin (sCT) preferentially and potently reduces intake of fat, with more variable suppression of sucrose intake. Intake of a non-nutritive sweetener is also decreased by intra-VTA administration of sCT. As several feeding-related signals that act in the mesolimbic system also impact motivated behaviors besides feeding, we tested the hypothesis that the suppressive effects of amylin signaling in the VTA extend to other motivationally relevant stimuli. Results show that intra-VTA sCT reduces water intake in response to central administration of the dipsogenic peptide angiotensin II, but has no effect on ad libitum water intake in the absence of food. Importantly, open field and social interaction studies show that VTA amylin signaling does not produce anxiety-like behaviors. Collectively, these findings reveal a novel ability of VTA amylin receptor activation to alter palatable macronutrient intake, and also demonstrate a broader role of VTA amylin signaling for the control of motivated ingestive behaviors beyond feeding.
Collapse
Affiliation(s)
- Elizabeth G Mietlicki-Baase
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Lauren E McGrath
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kieran Koch-Laskowski
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joanna Krawczyk
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David J Reiner
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tram Pham
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chan Tran N Nguyen
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher A Turner
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diana R Olivos
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mathieu E Wimmer
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heath D Schmidt
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Anderberg RH, Richard JE, Hansson C, Nissbrandt H, Bergquist F, Skibicka KP. GLP-1 is both anxiogenic and antidepressant; divergent effects of acute and chronic GLP-1 on emotionality. Psychoneuroendocrinology 2016; 65:54-66. [PMID: 26724568 DOI: 10.1016/j.psyneuen.2015.11.021] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/31/2015] [Accepted: 11/20/2015] [Indexed: 01/04/2023]
Abstract
Glucagon-like peptide 1 (GLP-1), produced in the intestine and hindbrain, is known for its glucoregulatory and appetite suppressing effects. GLP-1 agonists are in clinical use for treatment of type 2 diabetes and obesity. GLP-1, however, may also affect brain areas associated with emotionality regulation. Here we aimed to characterize acute and chronic impact of GLP-1 on anxiety and depression-like behavior. Rats were subjected to anxiety and depression behavior tests following acute or chronic intracerebroventricular or intra-dorsal raphe (DR) application of GLP-1 receptor agonists. Serotonin or serotonin-related genes were also measured in the amygdala, DR and the hippocampus. We demonstrate that both GLP-1 and its long lasting analog, Exendin-4, induce anxiety-like behavior in three rodent tests of this behavior: black and white box, elevated plus maze and open field test when acutely administered intraperitoneally, into the lateral ventricle, or directly into the DR. Acute central GLP-1 receptor stimulation also altered serotonin signaling in the amygdala. In contrast, chronic central administration of Exendin-4 did not alter anxiety-like behavior but significantly reduced depression-like behavior in the forced swim test. Importantly, this positive effect of Exendin-4 was not due to significant body weight loss and reduced food intake, since rats pair-fed to Exendin-4 rats did not show altered mood. Collectively we show a striking impact of central GLP-1 on emotionality and the amygdala serotonin signaling that is divergent under acute versus chronic GLP-1 activation conditions. We also find a novel role for the DR GLP-1 receptors in regulation of behavior. These results may have direct relevance to the clinic, and indicate that Exendin-4 may be especially useful for obese patients manifesting with comorbid depression.
Collapse
Affiliation(s)
- Rozita H Anderberg
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Jennifer E Richard
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Caroline Hansson
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Hans Nissbrandt
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Filip Bergquist
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Karolina P Skibicka
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden.
| |
Collapse
|
21
|
Biological correlates of psychological states among young children: a cross-sectional examination of roles of aspartate transaminase/alanine aminotransferase, insulin, and cytokines. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Wang Z, Fan Y, Xu J, Li L, Heng D, Han S, Yin J, Peng B, Liu W, He X. Transcriptome analysis of the hippocampus in novel rat model of febrile seizures. PLoS One 2014; 9:e95237. [PMID: 24736375 PMCID: PMC3988142 DOI: 10.1371/journal.pone.0095237] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/24/2014] [Indexed: 01/12/2023] Open
Abstract
Febrile seizures (FS) are the most common type of convulsive events in infants and young children, but the precise underlying genetic mechanism remains to be explored. To investigate the underlying pathogenic factors in FS and subsequent epilepsy, alterations in gene expression between the two new strains of rats (hyperthermia-prone [HP] vs hyperthermia-resistant [HR]), were investigated by using the Whole Rat Genome Oligo Microarray. This process identified 1,140 differentially expressed genes (DEGs; 602 upregulated and 538 downregulated), which were analyzed to determine significant Gene Ontology (GO) categories, signaling pathways and gene networks. Based on the GO analyses, the modified genes are closely related to various FS pathogenesis factors, including immune and inflammatory responses and ion transport. Certain DEGs identified have not been previously examined in relation to FS pathogenesis. Among these genes is dipeptidyl peptidase 4 (DPP4), a gene closely linked to interleukin 6 (IL-6), which played a key role in the gene network analysis. Furthermore, sitagliptin, a DPP4 inhibitor significantly decreased epileptic discharge in rats, observed via electroencephalogram, suggesting an important role for DPP4 in FS. The effectiveness of sitagliptin in reducing seizure activity may occur through a mechanism that stabilizes cellular Ca2+ homeostasis. In addition, DPP4 expression may be regulated by DNA methylation. The hippocampal gene expression profiles in novel rat models of FS provides a large database of candidate genes and pathways, which will be useful for researchers interested in disorders of neuronal excitability.
Collapse
Affiliation(s)
- Zhongcheng Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yuanteng Fan
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jian Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Liang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Duanhe Heng
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Song Han
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Biwen Peng
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wanhong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- * E-mail: (WL); (XH)
| | - Xiaohua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- * E-mail: (WL); (XH)
| |
Collapse
|
23
|
Neuropeptides and the microbiota-gut-brain axis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:195-219. [PMID: 24997035 DOI: 10.1007/978-1-4939-0897-4_9] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuropeptides are important mediators both within the nervous system and between neurons and other cell types. Neuropeptides such as substance P, calcitonin gene-related peptide and neuropeptide Y (NPY), vasoactive intestinal polypeptide, somatostatin and corticotropin-releasing factor are also likely to play a role in the bidirectional gut-brain communication. In this capacity they may influence the activity of the gastrointestinal microbiota and its interaction with the gut-brain axis. Current efforts in elucidating the implication of neuropeptides in the microbiota-gut-brain axis address four information carriers from the gut to the brain (vagal and spinal afferent neurons; immune mediators such as cytokines; gut hormones; gut microbiota-derived signalling molecules) and four information carriers from the central nervous system to the gut (sympathetic efferent neurons; parasympathetic efferent neurons; neuroendocrine factors involving the adrenal medulla; neuroendocrine factors involving the adrenal cortex). Apart from operating as neurotransmitters, many biologically active peptides also function as gut hormones. Given that neuropeptides and gut hormones target the same cell membrane receptors (typically G protein-coupled receptors), the two messenger roles often converge in the same or similar biological implications. This is exemplified by NPY and peptide YY (PYY), two members of the PP-fold peptide family. While PYY is almost exclusively expressed by enteroendocrine cells, NPY is found at all levels of the gut-brain and brain-gut axis. The function of PYY-releasing enteroendocrine cells is directly influenced by short chain fatty acids generated by the intestinal microbiota from indigestible fibre, while NPY may control the impact of the gut microbiota on inflammatory processes, pain, brain function and behaviour. Although the impact of neuropeptides on the interaction between the gut microbiota and brain awaits to be analysed, biologically active peptides are likely to emerge as neural and endocrine messengers in orchestrating the microbiota-gut-brain axis in health and disease.
Collapse
|
24
|
Holzer P, Reichmann F, Farzi A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides 2012; 46:261-74. [PMID: 22979996 PMCID: PMC3516703 DOI: 10.1016/j.npep.2012.08.005] [Citation(s) in RCA: 349] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/04/2012] [Accepted: 08/09/2012] [Indexed: 02/06/2023]
Abstract
The gut-brain axis refers to the bidirectional communication between the gut and the brain. Four information carriers (vagal and spinal afferent neurons, immune mediators such as cytokines, gut hormones and gut microbiota-derived signalling molecules) transmit information from the gut to the brain, while autonomic neurons and neuroendocrine factors carry outputs from the brain to the gut. The members of the neuropeptide Y (NPY) family of biologically active peptides, NPY, peptide YY (PYY) and pancreatic polypeptide (PP), are expressed by cell systems at distinct levels of the gut-brain axis. PYY and PP are exclusively expressed by endocrine cells of the digestive system, whereas NPY is found at all levels of the gut-brain and brain-gut axis. The major systems expressing NPY comprise enteric neurons, primary afferent neurons, several neuronal pathways throughout the brain and sympathetic neurons. In the digestive tract, NPY and PYY inhibit gastrointestinal motility and electrolyte secretion and in this way modify the input to the brain. PYY is also influenced by the intestinal microbiota, and NPY exerts, via stimulation of Y1 receptors, a proinflammatory action. Furthermore, the NPY system protects against distinct behavioural disturbances caused by peripheral immune challenge, ameliorating the acute sickness response and preventing long-term depression. At the level of the afferent system, NPY inhibits nociceptive input from the periphery to the spinal cord and brainstem. In the brain, NPY and its receptors (Y1, Y2, Y4, Y5) play important roles in regulating food intake, energy homeostasis, anxiety, mood and stress resilience. In addition, PP and PYY signal to the brain to attenuate food intake, anxiety and depression-related behaviour. These findings underscore the important role of the NPY-Y receptor system at several levels of the gut-brain axis in which NPY, PYY and PP operate both as neural and endocrine messengers.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| | | | | |
Collapse
|
25
|
Krass M, Rünkorg K, Vasar E, Volke V. Acute administration of GLP-1 receptor agonists induces hypolocomotion but not anxiety in mice. Acta Neuropsychiatr 2012; 24:296-300. [PMID: 25286994 DOI: 10.1111/j.1601-5215.2012.00648.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Krass M, Rünkorg K, Vasar E, Volke V. Acute administration of GLP-1 receptor agonists induces hypolocomotion but not anxiety in mice.Objective: The aim of this study was to compare the behavioural and hormonal effects of systemic (subcutaneous) treatment with glucaemically equipotent doses of exenatide and liraglutide in mice.Methods: The effects of glucagon-like peptide-1 (GLP-1) receptor agonists were determined on anxiety level in the light–dark compartment test, the motor activity in automated activity cages and finally the forced swimming test was performed.Results: Both exenatide (1–20 µg/kg) and liraglutide (200–1200 µg/kg) decreased the glucose levels up to 30% in freely fed animals. In glucaemically equipotent doses the drugs induced very similar behavioural and hormonal effects: there was no change on anxiety level or immobility time, however, both drugs suppressed motor activity and increased corticosterone levels.Conclusion: We conclude that the two clinically approved GLP-1 receptor agonists induce very similar suppression of motor activity and stimulation of corticosterone release in mice.
Collapse
Affiliation(s)
- Maarja Krass
- Department of Physiology, University of Tartu, 50411 Tartu, Estonia
| | - Kertu Rünkorg
- Department of Physiology, University of Tartu, 50411 Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, University of Tartu, 50411 Tartu, Estonia
| | - Vallo Volke
- Department of Physiology, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|