1
|
Zhang X, Lin Z, Feng Y, Kang F, Wang J, Lan X. Melanin-Targeting Radiotracers and Their Preclinical, Translational, and Clinical Status: From Past to Future. J Nucl Med 2024; 65:19S-28S. [PMID: 38719238 DOI: 10.2967/jnumed.123.266945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/31/2024] [Indexed: 07/16/2024] Open
Abstract
Melanin is one of the representative biomarkers of malignant melanoma and a potential target for diagnosis and therapy. With advancements in chemistry and radiolabeling technologies, promising strides have been made to synthesize radiolabeled melanin-binding molecules for various applications. We present an overview of melanin-targeted radiolabeled molecules and compare their features reported in preclinical studies. Clinical practice and trials are also discussed to elaborate on the safety and validity of the probes, and expanded applications beyond melanoma are reviewed. Melanin-targeted imaging holds potential value in the diagnosis, staging, and prognostic assessment of melanoma and other applications. Melanin-targeted radionuclide therapy possesses immense potential but requires more clinical validation. Furthermore, an intriguing avenue for future research involves expanding the application scope of melanin-targeted probes and exploring their value.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| | - Zhaoguo Lin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| | - Yuan Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| |
Collapse
|
2
|
Zhang X, Lin Z, Li M, Gai Y, Zheng H, Fan L, Ruan W, Hu F, Chen J, Lan X. Melanin-targeted [ 18F]-PFPN PET imaging for prognosticating patients with melanoma. Eur J Nucl Med Mol Imaging 2023; 50:3062-3071. [PMID: 37191681 DOI: 10.1007/s00259-023-06258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/30/2023] [Indexed: 05/17/2023]
Abstract
PURPOSE Positron emission tomography (PET) using [18F]-PFPN, a melanin-targeted imaging tracer, has excellent diagnostic performance in patients with melanoma. This study aimed to investigate its value in prognostication and determine predictors of progression-free survival (PFS) and overall survival (OS). METHODS We reviewed melanoma patients who underwent [18F]-PFPN and [18F]-FDG PET from February 2021 to July 2022. Clinical characteristics, follow-up data, and the following [18F]-PFPN PET parameters were recorded: maximum standardized uptake value (SUVmax), whole-body melanotic tumoral volume (WBMTV), and whole-body total lesion melanin (WBTLM). Receiver operating characteristic (ROC), Kaplan-Meier and Cox regression analyses were performed. RESULTS Seventy-six patients (47 men and 29 women; mean age, 57.99 ± 10.72 years) were included for analysis. Median follow-up was 12.0 months (range: 1-22 months). Eighteen patients died and 38 experienced progression. Median OS was 17.60 months (95% confidence interval, 15.89-19.31). In the ROC analysis, [18F]-PFPN PET parameters were superior to those of [18F]-FDG PET in prognosticating death and disease progression. PFS and OS were significantly better in patients with lower SUVmax, WBMTV, and WBTLM on [18F]-PFPN PET (log-rank, P < 0.05). In the univariate analyses, distant metastasis, SUVmax, WBMTV, and WBTLM were significantly associated with cumulative incidence of PFS and OS (P < 0.05). In the multivariate analysis, SUVmax was an independent predictor of PFS and OS. CONCLUSIONS [18F]-PFPN PET has a role in prognostication of melanoma patients. Patients with higher [18F]-PFPN SUVmax have worse prognosis. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, NCT05645484. Registered 9 December, 2022, https://clinicaltrials.gov/ct2/show/NCT05645484?cond=The+Prognostic+Value+of+18F-PFPN+PET+Imaging+in+Patients+With+Malignant+Melanoma&draw=2&rank=1.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Zhaoguo Lin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Mengting Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Huaiyuan Zheng
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Li Fan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Weiwei Ruan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Fan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.
| |
Collapse
|
3
|
Zhang X, Li M, Gai Y, Chen J, Tao J, Yang L, Hu F, Song W, Yen TC, Lan X. 18F-PFPN PET: A New and Attractive Imaging Modality for Patients with Malignant Melanoma. J Nucl Med 2022; 63:1537-1543. [PMID: 35115367 PMCID: PMC9536710 DOI: 10.2967/jnumed.121.263179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
18F-FDG PET has limited diagnostic applications in malignant melanoma (MM). 18F-N-(2-(diethylamino)ethyl)-5-(2-(2-(2-fluoroethoxy)ethoxy)ethoxy)picolinamide (18F-PFPN) is a novel PET probe with high affinity and selectivity for melanin. We conducted a clinical study with 2 aims, first to investigate the biodistribution and radiation dosimetry of 18F-PFPN in healthy volunteers, and second, to examine the diagnostic utility of 18F-PFPN PET imaging in patients with MM. Methods: 18F-PFPN was synthesized through a fluoro-for-tosyl exchange reaction. Five healthy volunteers were enrolled to investigate the biodistribution, pharmacokinetics, radiation dosimetry, and safety of the tracer. Subsequently, a total of 21 patients with clinically suspected or confirmed MM underwent both 18F-PFPN PET/MRI and 18F-FDG PET/CT scans. The normalized SUVmax of selected lesions was determined for both tracers and compared in patient- and lesion-based analyses. Results: 18F-PFPN has an elevated radiochemical yield and was highly stable in vivo. In healthy volunteers, 18F-PFPN was safe and well tolerated, and its effective absorbed dose was comparable to that of 18F-FDG. In patient-based analysis, 18F-PFPN uptake was higher than 18F-FDG for both primary tumors and nodal metastases. In lesion-based analysis,18F-PFPN PET imaging could detect 365 metastases that were missed on 18F-FDG PET. Additionally, 18F-PFPN PET imaging had clinical value in distinguishing false-positive lesions on 18F-FDG PET. Conclusion: 18F-PFPN is a safe and well-tolerated melanin PET tracer. In a pilot clinical study, 18F-PFPN PET imaging outperformed traditional 18F-FDG PET in identifying both primary MM and its distant spread.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Mengting Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Yang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenyu Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Tzu-Chen Yen
- Department of Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan City, Taiwan; and
- Aprinoia Therapeutics Co., Ltd., Suzhou, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
4
|
Translating Molecules into Imaging—The Development of New PET Tracers for Patients with Melanoma. Diagnostics (Basel) 2022; 12:diagnostics12051116. [PMID: 35626272 PMCID: PMC9139963 DOI: 10.3390/diagnostics12051116] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
Melanoma is a deadly disease that often exhibits relentless progression and can have both early and late metastases. Recent advances in immunotherapy and targeted therapy have dramatically increased patient survival for patients with melanoma. Similar advances in molecular targeted PET imaging can identify molecular pathways that promote disease progression and therefore offer physiological information. Thus, they can be used to assess prognosis, tumor heterogeneity, and identify instances of treatment failure. Numerous agents tested preclinically and clinically demonstrate promising results with high tumor-to-background ratios in both primary and metastatic melanoma tumors. Here, we detail the development and testing of multiple molecular targeted PET-imaging agents, including agents for general oncological imaging and those specifically for PET imaging of melanoma. Of the numerous radiopharmaceuticals evaluated for this purpose, several have made it to clinical trials and showed promising results. Ultimately, these agents may become the standard of care for melanoma imaging if they are able to demonstrate micrometastatic disease and thus provide more accurate information for staging. Furthermore, these agents provide a more accurate way to monitor response to therapy. Patients will be able to receive treatment based on tumor uptake characteristics and may be able to be treated earlier for lesions that with traditional imaging would be subclinical, overall leading to improved outcomes for patients.
Collapse
|
5
|
Development of Radiofluorinated Nicotinamide/Picolinamide Derivatives as Diagnostic Probes for the Detection of Melanoma. Int J Mol Sci 2021; 22:ijms22126432. [PMID: 34208566 PMCID: PMC8234188 DOI: 10.3390/ijms22126432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 01/18/2023] Open
Abstract
Regarding the increased incidence and high mortality rate of malignant melanoma, practical early-detection methods are essential to improve patients’ clinical outcomes. In this study, we successfully prepared novel picolinamide–benzamide (18F-FPABZA) and nicotinamide–benzamide (18F-FNABZA) conjugates and determined their biological characteristics. The radiochemical yields of 18F-FPABZA and 18F-FNABZA were 26 ± 5% and 1 ± 0.5%, respectively. 18F-FPABZA was more lipophilic (log P = 1.48) than 18F-FNABZA (log P = 0.68). The cellular uptake of 18F-FPABZA in melanotic B16F10 cells was relatively higher than that of 18F-FNABZA at 15 min post-incubation. However, both radiotracers did not retain in amelanotic A375 cells. The tumor-to-muscle ratios of 18F-FPABZA-injected B16F10 tumor-bearing mice increased from 7.6 ± 0.4 at 15 min post-injection (p.i.) to 27.5 ± 16.6 at 3 h p.i., while those administered with 18F-FNABZA did not show a similarly dramatic increase throughout the experimental period. The results obtained from biodistribution studies were consistent with those derived from microPET imaging. This study demonstrated that 18F-FPABZA is a promising melanin-targeting positron emission tomography (PET) probe for melanotic melanoma.
Collapse
|
6
|
Abstract
With the emergence of new therapeutic modalities, the diagnosis of melanoma at the earliest practicable stage has become more important for improving the survival of patients. We developed a positron emission tomography (PET) imaging probe, N-(2-(dimethylamino)ethyl)-5-[18F]fluoropicolinamide ([18F]DMPY2) and evaluated diagnostic performance in animal models. [18F]DMPY2 PET exhibited excellent performance in detecting primary and metastatic melanomas, demonstrating strong/prolonged tumoral uptake and rapid background clearance. This suggests that this radiotracer could be used as a novel PET imaging agent to obtain outstanding image quality in the diagnosis of melanoma. This is the pioneering report of pyridine-based benzamide derivative with reduced alkyl chains in the amine residue and ultrasensitive detection of melanoma lesions in living subjects compared to conventional PET imaging agents. Malignant melanoma has one of the highest mortality rates of any cancer because of its aggressive nature and high metastatic potential. Clinical staging of the disease at the time of diagnosis is very important for the prognosis and outcome of melanoma treatment. In this study, we designed and synthesized the 18F-labeled pyridine-based benzamide derivatives N-(2-(dimethylamino)ethyl)-5-[18F]fluoropicolinamide ([18F]DMPY2) and N-(2-(dimethylamino)ethyl)-6-[18F]fluoronicotinamide ([18F]DMPY3) to detect primary and metastatic melanoma at an early stage and evaluated their performance in this task. [18F]DMPY2 and [18F]DMPY3 were synthesized by direct radiofluorination of the bromo precursor, and radiochemical yields were ∼15–20%. Cell uptakes of [18F]DMPY2 and [18F]DMPY3 were >103-fold and 18-fold higher, respectively, in B16F10 (mouse melanoma) cells than in negative control cells. Biodistribution studies revealed strong tumor uptake and retention of [18F]DMPY2 (24.8% injected dose per gram of tissue [ID/g] at 60 min) and [18F]DMPY3 (11.7%ID/g at 60 min) in B16F10 xenografts. MicroPET imaging of both agents demonstrated strong tumoral uptake/retention and rapid washout, resulting in excellent tumor-to-background contrast in B16F10 xenografts. In particular, [18F]DMPY2 clearly visualized almost all metastatic lesions in lung and lymph nodes, with excellent image quality. [18F]DMPY2 demonstrated a significantly higher tumor-to-liver ratio than [18F]fluorodeoxyglucose ([18F]FDG) and the previously reported benzamide tracers N-[2-(diethylamino)-ethyl]-5-[18F]fluoropicolinamide ([18F]P3BZA) and N-[2-(diethylamino)-ethyl]-4-[18F]fluorobenzamide ([18F]FBZA) in B16F10-bearing or SK-MEL-3 (human melanoma)-bearing mice. In conclusion, [18F]DMPY2 might have strong potential for the diagnosis of early stage primary and metastatic melanoma using positron emission tomography (PET).
Collapse
|
7
|
Wei W, Ehlerding EB, Lan X, Luo Q, Cai W. PET and SPECT imaging of melanoma: the state of the art. Eur J Nucl Med Mol Imaging 2018; 45:132-150. [PMID: 29085965 PMCID: PMC5700861 DOI: 10.1007/s00259-017-3839-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
Melanoma represents the most aggressive form of skin cancer, and its incidence continues to rise worldwide. 18F-FDG PET imaging has transformed diagnostic nuclear medicine and has become an essential component in the management of melanoma, but still has its drawbacks. With the rapid growth in the field of nuclear medicine and molecular imaging, a variety of promising probes that enable early diagnosis and detection of melanoma have been developed. The substantial preclinical success of melanin- and peptide-based probes has recently resulted in the translation of several radiotracers to clinical settings for noninvasive imaging and treatment of melanoma in humans. In this review, we focus on the latest developments in radiolabeled molecular imaging probes for melanoma in preclinical and clinical settings, and discuss the challenges and opportunities for future development.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Road, Shanghai, 200233, China
- Department of Radiology, University of Wisconsin-Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA
| | - Emily B Ehlerding
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China.
| | - Quanyong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Road, Shanghai, 200233, China.
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53705, USA.
| |
Collapse
|
8
|
Seddik U, Aglan H, Trencsényi G, Szabó JP, Kertész I, Kandil SA. Rapid radiosynthesis of two [ 18F]-labeled nicotinamide derivatives for malignant melanoma imaging. Appl Radiat Isot 2017; 132:142-146. [PMID: 29227835 DOI: 10.1016/j.apradiso.2017.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 11/20/2017] [Accepted: 12/03/2017] [Indexed: 11/25/2022]
Abstract
The rapid synthesis of two radiofluoronicotinamide derivatives, namely, [18F]MEL050 and [18F]MEL-2F has been simply performed starting from commercial materials. [18F]MEL-2F is a new, potential analogue PET-probe for melanoma imaging. [18F]MEL050 is already an excellent PET imaging probe for early specific diagnosis. The synthesis involves coupling step to obtain the precursor followed by radiofluorination. During the synthesis of the precursors different coupling reagents, such as HBTU, TFFH, HOBT, COMU and PyCIU have been applied. PyClU was found the best to reduce the coupling period to < 1h. The labeled compounds were isolated and purified by HPLC. In the in-vitro study three kinds of cells, namely, Melur (melanin free), KB-3 carcinoma cell line (non-melanoma) and B16-F10 melanoma cell line were used to evaluate the uptake of the radiotracers.
Collapse
Affiliation(s)
- U Seddik
- Cyclotron Project, Nuclear Research Centre, Atomic Energy Authority, B.O. 13759, Cairo, Egypt
| | - H Aglan
- Cyclotron Project, Nuclear Research Centre, Atomic Energy Authority, B.O. 13759, Cairo, Egypt
| | - G Trencsényi
- Department of Nuclear Medicine, Medical Center, University of Debrecen, Nagyerdei krt 98, H-4032 Debrecen, Hungary
| | - J P Szabó
- Department of Nuclear Medicine, Medical Center, University of Debrecen, Nagyerdei krt 98, H-4032 Debrecen, Hungary
| | - I Kertész
- Department of Nuclear Medicine, Medical Center, University of Debrecen, Nagyerdei krt 98, H-4032 Debrecen, Hungary
| | - S A Kandil
- Cyclotron Project, Nuclear Research Centre, Atomic Energy Authority, B.O. 13759, Cairo, Egypt.
| |
Collapse
|
9
|
Xu X, Yuan L, Yin L, Jiang Y, Gai Y, Liu Q, Wang Y, Zhang Y, Lan X. Synthesis and Preclinical Evaluation of 18F-PEG 3-FPN for the Detection of Metastatic Pigmented Melanoma. Mol Pharm 2017; 14:3896-3905. [PMID: 29037039 DOI: 10.1021/acs.molpharmaceut.7b00607] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although 18F-5-fluoro-N-(2-[diethylamino]ethyl)picolinamide (18F-5-FPN) is considered a promising radiopharmaceutical for PET imaging of melanoma, it accumulates at high concentrations in the liver. The aim in this research was to optimize the structure of 18F-5-FPN with triethylene glycol to reduce liver uptake as well as improve pharmacokinetics, and to evaluate its performance in detection of melanoma liver and lung metastases. 18F-PEG3-FPN was successfully prepared with a high radiolabeling yield (44.68% ± 5.99%) and radiochemical purity (>99%). The uptake of 18F-PEG3-FPN by pigmented B16F10 melanoma cells was significantly higher than that by amelanotic melanoma A375 cells. The binding to B16F10 cells could be blocked by excess 19F-PEG3-FPN. On small animal PET images, B16F10 tumors, but not A375 tumors, were clearly delineated after 18F-PEG3-FPN injection. More importantly, 18F-PEG3-FPN uptake by liver (2.27 ± 0.45 and 1.74 ± 0.35% ID/g, at 1 and 2 h) was significantly lower than that of 18F-5-FPN, and the lesions in lung and liver could be clearly detected by 18F-PEG3-FPN PET imaging in mouse models of pulmonary or hepatic metastases. Overall, we successfully synthesized 18F-PEG3-FPN, which has higher labeling efficacy and better in vivo pharmacokinetics along with lower liver uptake compared to 18F-5-FPN. This suggests 18F-PEG3-FPN as a candidate for pigmented melanoma liver and lung metastasis detection.
Collapse
Affiliation(s)
- Xiaodong Xu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Lujie Yuan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Lianglan Yin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Yaqun Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Yichun Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| |
Collapse
|
10
|
Chang CC, Chang CH, Lo YH, Lin MH, Shen CC, Liu RS, Wang HE, Chen CL. Preparation and characterization of a novel Al(18)F-NOTA-BZA conjugate for melanin-targeted imaging of malignant melanoma. Bioorg Med Chem Lett 2016; 26:4133-9. [PMID: 27445169 DOI: 10.1016/j.bmcl.2016.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 11/16/2022]
Abstract
Melanin is an attractive target for the diagnosis and treatment of malignant melanoma. Previous studies have demonstrated the specific binding ability of benzamide moiety to melanin. In this study, we developed a novel (18)F-labeled NOTA-benzamide conjugate, Al(18)F-NOTA-BZA, which can be synthesized in 30min with a radiochemical yield of 20-35% and a radiochemical purity of >95%. Al(18)F-NOTA-BZA is highly hydrophilic (logP=-1.96) and shows good in vitro stability. Intravenous administration of Al(18)F-NOTA-BZA in two melanoma-bearing mouse models revealed highly specific uptake in B16F0 melanotic melanoma (6.67±0.91 and 1.50±0.26%ID/g at 15 and 120min p.i., respectively), but not in A375 amelanotic melanoma (0.87±0.21 and 0.24±0.09%ID/g at 15 and 120min p.i., respectively). The clearance from most normal tissues was fast. A microPET scan of Al(18)F-NOTA-BZA-injected mice also displayed high-contrast tumor images as compared with normal organs. Owing to the favorable in vivo distribution of Al(18)F-NOTA-BZA after intravenous administration, the estimated absorption dose was low in all normal organs and tissues. The melanin-specific binding ability, sustained tumor retention, fast normal tissues clearance and thelow projected human dosimetry supported that Al(18)F-NOTA-BZA is a very promising melanin-specific PET probe for melanin-positive melanoma.
Collapse
Affiliation(s)
- Chih-Chao Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou, Taipei 11221, Taiwan
| | - Chih-Hsien Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou, Taipei 11221, Taiwan; Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Yi-Hsuan Lo
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou, Taipei 11221, Taiwan
| | - Ming-Hsien Lin
- Department of Nuclear Medicine, Taipei City Hospital, Zhongxiao Branch, Taipei, Taiwan
| | - Chih-Chieh Shen
- Department of Nuclear Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Ren-Shyan Liu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou, Taipei 11221, Taiwan; Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan; National PET/Cyclotron Center and Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou, Taipei 11221, Taiwan.
| | - Chuan-Lin Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou, Taipei 11221, Taiwan.
| |
Collapse
|
11
|
Roberts MP, Nguyen V, Ashford ME, Berghofer P, Wyatt NA, Krause-Heuer AM, Pham TQ, Taylor SR, Hogan L, Jiang CD, Fraser BH, Lengkeek NA, Matesic L, Gregoire MC, Denoyer D, Hicks RJ, Katsifis A, Greguric I. Synthesis and in Vivo Evaluation of [123I]Melanin-Targeted Agents. J Med Chem 2015; 58:6214-24. [PMID: 26177000 DOI: 10.1021/acs.jmedchem.5b00777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This study reports the synthesis, [(123)I]radiolabeling, and biological profile of a new series of iodinated compounds for potential translation to the corresponding [(131)I]radiolabeled compounds for radionuclide therapy of melanoma. Radiolabeling was achieved via standard electrophilic iododestannylation in 60-90% radiochemical yield. Preliminary SPECT imaging demonstrated high and distinct tumor uptake of all compounds, as well as high tumor-to-background ratios compared to the literature compound [(123)I]4 (ICF01012). The most favorable compounds ([(123)I]20, [(123)I]23, [(123)I]41, and [(123)I]53) were selected for further biological investigation. Biodistribution studies indicated that all four compounds bound to melanin containing tissue with low in vivo deiodination; [(123)I]20 and [(123)I]53 in particular displayed high and prolonged tumor uptake (13% ID/g at 48 h). [(123)I]53 had the most favorable overall profile of the cumulative uptake over time of radiosensitive organs. Metabolite analysis of the four radiotracers found [(123)I]41 and [(123)I]53 to be the most favorable, displaying high and prolonged amounts of intact tracer in melanin containing tissues, suggesting melanin specific binding. Results herein suggest that compound [(123)I]53 displays favorable in vivo pharmacokinetics and stability and hence is an ideal candidate to proceed with further preclinical [(131)I] therapeutic evaluation.
Collapse
Affiliation(s)
- Maxine P Roberts
- †LifeSciences Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Vu Nguyen
- †LifeSciences Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Mark E Ashford
- †LifeSciences Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Paula Berghofer
- †LifeSciences Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Naomi A Wyatt
- †LifeSciences Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Anwen M Krause-Heuer
- †LifeSciences Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Tien Q Pham
- †LifeSciences Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Stephen R Taylor
- †LifeSciences Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Leena Hogan
- †LifeSciences Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Cathy D Jiang
- †LifeSciences Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Benjamin H Fraser
- †LifeSciences Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Nigel A Lengkeek
- †LifeSciences Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Lidia Matesic
- †LifeSciences Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Marie-Claude Gregoire
- †LifeSciences Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Delphine Denoyer
- ‡Centre for Molecular Imaging, Peter MacCallum Cancer Centre, 12 St. Andrew's Place, East Melbourne, Victoria 3002, Australia
| | - Rodney J Hicks
- ‡Centre for Molecular Imaging, Peter MacCallum Cancer Centre, 12 St. Andrew's Place, East Melbourne, Victoria 3002, Australia
| | - Andrew Katsifis
- †LifeSciences Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Ivan Greguric
- †LifeSciences Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| |
Collapse
|
12
|
Chang CC, Chang CH, Shen CC, Chen CL, Liu RS, Lin MH, Wang HE. Synthesis and evaluation of ¹²³/¹³¹I-Iochlonicotinamide as a novel SPECT probe for malignant melanoma. Bioorg Med Chem 2015; 23:2261-9. [PMID: 25800432 DOI: 10.1016/j.bmc.2015.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/26/2015] [Accepted: 02/09/2015] [Indexed: 01/01/2023]
Abstract
Malignant melanoma expresses a highly aggressive metastasis. Early diagnosis of malignant melanoma is important for patient survival. Radiolabeled benzamides and nicotinamides have been reported to be attractive candidates for malignant melanoma diagnosis as they bind to melanin, a characteristic substance that displays in malignant melanoma, and show high tumor accumulation and retention. Herein, we designed and synthesized a novel (123/131)I-labeled nicotinamide derivative that specifically binds to melanin. (123/131)I-Iochlonicotinamide was prepared with good radiochemical yield (50-70%, decay corrected) and high specific radioactivity (50-80 GBq/μmol). (131)I-Iochlonicotinamide exhibited good in vitro stability (radiochemical purity >95% after a 24-h incubation) in human serum. High uptake of (123/131)I-Iochlonicotinamide in B16F0 melanoma cells compared to that in A375 amelanotic cells demonstrated its selective binding to melanin. Intravenous administration of (123/131)I-Iochlonicotinamide in a melanoma-bearing mouse model revealed high uptake in melanotic melanoma and high tumor-to-muscle ratio. MicroSPECT scan of (123/131)I-Iochlonicotinamide injected mice also displayed high contrast tumor imaging as compared with normal organs. The radiation-absorbed dose projection for the administration of (131)I-Iochlonicotinamide to human was based on the results of biodistribution study. The effective dose appears to be approximately 0.44 mSv/MBq(-1). The specific binding of (123/131)I-Iochlonicotinamide to melanin along with a prolonged tumor retention and acceptable projected human dosimetry suggest that it may be a promising theranostic agent for treating malignant melanoma.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Humans
- Iodine Radioisotopes
- Male
- Melanoma/diagnosis
- Melanoma/drug therapy
- Melanoma/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Nude
- Molecular Probes/administration & dosage
- Molecular Probes/chemistry
- Molecular Probes/pharmacokinetics
- Molecular Structure
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Niacinamide/administration & dosage
- Niacinamide/chemistry
- Niacinamide/pharmacology
- Positron-Emission Tomography
- Radiopharmaceuticals/administration & dosage
- Radiopharmaceuticals/chemistry
- Radiopharmaceuticals/pharmacokinetics
- Structure-Activity Relationship
- Tissue Distribution
- Tomography, Emission-Computed, Single-Photon
Collapse
Affiliation(s)
- Chih-Chao Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou District, Taipei 11221, Taiwan
| | - Chih-Hsien Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou District, Taipei 11221, Taiwan; Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Chih-Chieh Shen
- Department of Nuclear Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Chuan-Lin Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou District, Taipei 11221, Taiwan
| | - Ren-Shyan Liu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou District, Taipei 11221, Taiwan; Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Hsien Lin
- Department of Nuclear Medicine, Taipei City Hospital, Zhongxiao Branch, No. 87, Tong-De Rd., Nan-Gang District, Taipei 11556, Taiwan.
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou District, Taipei 11221, Taiwan.
| |
Collapse
|
13
|
Synthesis, radioiodination and in vivo screening of novel potent iodinated and fluorinated radiotracers as melanoma imaging and therapeutic probes. Eur J Med Chem 2013; 63:840-53. [DOI: 10.1016/j.ejmech.2012.11.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 11/14/2012] [Accepted: 11/17/2012] [Indexed: 11/18/2022]
|
14
|
Taylor SR, Roberts MP, Wyatt NA, Pham TQ, Stark D, Bourdier T, Roselt P, Katsifis A, Greguric I. Synthesis and Radiosynthesis of a Novel PET Fluorobenzyl Piperazine for Melanoma Tumour Imaging; [18F]MEL054. Aust J Chem 2013. [DOI: 10.1071/ch12489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
2-{2-[4-(4-[18F]-Fluorobenzyl)piperazin-1-yl]-2-oxoethyl}isoindolin-1-one ([18F]MEL054), is a new potent indolinone-based melanin binder designed to target melanotic tumours. [18F]MEL054 was prepared by an automated two-step radiosynthesis, comprising of the preparation of 4-[18F]fluorobenzaldehyde from 4-formyl-N,N,N-trimethylanilinium triflate, followed by reductive alkylation with 2-(2-oxo-2-piperazin-1-ylethyl)isoindolin-1-one. 4-[18F]Fluorobenzaldehyde was prepared on a GE TRACERlab FXFN module in 68 ± 8 % radiochemical yield (RCY, non-decay corrected), purified by a Sep-Pak Plus C18 cartridge and eluted into the reactor of an in-house modified Nuclear Interface [18F]FDG synthesis module for the subsequent reductive alkylation reaction. HPLC purification produced [18F]MEL054 in a collected RCY of 34 ± 9 % (non-decay corrected), the total preparation time (including Sep-Pak Plus C18 and HPLC purification) did not exceed 105 min. The radiochemical purity of [18F]MEL054 was greater than 99 % with a specific radioactivity of 71–119 GBq μmol–1 and [18F]MEL054 remained stable in saline solution (>98 %) after 3 h.
Collapse
|
15
|
Maisonial A, Kuhnast B, Papon J, Boisgard R, Bayle M, Vidal A, Auzeloux P, Rbah L, Bonnet-Duquennoy M, Miot-Noirault E, Galmier MJ, Borel M, Askienazy S, Dollé F, Tavitian B, Madelmont JC, Moins N, Chezal JM. Single photon emission computed tomography/positron emission tomography imaging and targeted radionuclide therapy of melanoma: new multimodal fluorinated and iodinated radiotracers. J Med Chem 2011; 54:2745-2766. [PMID: 21417462 DOI: 10.1021/jm101574q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study reports a series of 14 new iodinated and fluorinated compounds offering both early imaging ((123)I, (124)I, (18)F) and systemic treatment ((131)I) of melanoma potentialities. The biodistribution of each (125)I-labeled tracer was evaluated in a model of melanoma B16F0-bearing mice, using in vivo serial γ scintigraphic imaging. Among this series, [(125)I]56 emerged as the most promising compound in terms of specific tumoral uptake and in vivo kinetic profile. To validate our multimodality concept, the radiosynthesis of [(18)F]56 was then optimized and this radiotracer has been successfully investigated for in vivo PET imaging of melanoma in B16F0- and B16F10-bearing mouse model. The therapeutic efficacy of [(131)I]56 was then evaluated in mice bearing subcutaneous B16F0 melanoma, and a significant slow down in tumoral growth was demonstrated. These data support further development of 56 for PET imaging ((18)F, (124)I) and targeted radionuclide therapy ((131)I) of melanoma using a single chemical structure.
Collapse
Affiliation(s)
- Aurélie Maisonial
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rapid and efficient synthesis of [18F]fluoronicotinamides, [18F]fluoroisonicotinamides and [18F]fluorobenzamides as potential pet radiopharmaceuticals for melanoma imaging. J Labelled Comp Radiopharm 2011. [DOI: 10.1002/jlcr.1869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Greguric I, Taylor S, Pham T, Wyatt N, Jiang CD, Bourdier T, Loc'h C, Roselt P, Neels OC, Katsifis A. Radiosynthesis of a Novel PET Fluoronicotinamide for Melanoma Tumour PET Imaging; [18F]MEL050. Aust J Chem 2011. [DOI: 10.1071/ch11048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
[18F]6-Fluoro-N-[2-(diethylamino)ethyl]nicotinamide [18F]MEL050 is a novel nicotinamide-based radiotracer, designed to target random metastatic dissemination of melanoma tumours by targeting melanin. Preclinical studies suggest that [18F]MEL050 has an excellent potential to improve diagnosis and staging of melanoma. Here we report the radiochemical optimization conditions of [18F]MEL050 and its large scale automated synthesis using a GE FXFN automated radiosynthesis module for clinical, phase-1 investigation. [18F]MEL050 was prepared via a one-step synthesis using no-carrier added K[18F]F-Krytpofix® 222 (DMSO, 170°C, 5 min) followed by HPLC purification. Using 6-chloro-N-[2-(diethylamino)ethyl]nicotinamide as precursor, [18F]MEL050 was obtained in 40–46% radiochemical yield (non-decay corrected), in greater than 99.9% radiochemical purity and specific activity ranging from 240 to 325 GBq μmol–1. Total synthesis time including formulation was 40 min and [18F]MEL050 was stable (99.8%) in PBS for 6 h.
Collapse
|
18
|
Greguric I, Taylor SR, Denoyer D, Ballantyne P, Berghofer P, Roselt P, Pham TQ, Mattner F, Bourdier T, Neels OC, Dorow DS, Loc'h C, Hicks RJ, Katsifis A. Discovery of [18F]N-(2-(diethylamino)ethyl)-6-fluoronicotinamide: a melanoma positron emission tomography imaging radiotracer with high tumor to body contrast ratio and rapid renal clearance. J Med Chem 2009; 52:5299-302. [PMID: 19691348 DOI: 10.1021/jm9008423] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The high melanoma uptake and rapid body clearance displayed by our series of [(123)I]iodonicotinamides prompted the development of [(18)F]N-(2-(diethylamino)ethyl)-6-fluoronicotinamide ([(18)F]2), a novel radiotracer for PET melanoma imaging. Significantly, unlike fluorobenzoates, [(18)F]fluorine incorporation on the nicotinamide ring is one step, facile, and high yielding. [(18)F]2 displayed high tumor uptake, rapid body clearance via predominantly renal excretion, and is currently being evaluated in preclinical studies for progression into clinical trials to assess the responsiveness of therapeutic agents.
Collapse
Affiliation(s)
- Ivan Greguric
- Radiopharmaceuticals Research Institute, Australian Nuclear Science and Technology Organisation, Menai, NSW 2234, Sydney, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|