1
|
Zhou Z, Zhu T, Zheng W, Zou Z, Shan Q, Chen Q, Wang G, Wang Y. LAT1 transporter as a target for breast cancer diagnosis and therapy. Eur J Med Chem 2025; 283:117064. [PMID: 39631100 DOI: 10.1016/j.ejmech.2024.117064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
Breast cancer is the main cause of female malignant tumor death in China. Numerous cellular molecules are associated with the onset and progression of breast cancer. However, these molecules have proven ineffective for the diagnosis and treatment of the disease, indicating a need for the identification of new biomarkers. LAT1 (SLC7A5) plays a crucial role in mediating the uptake of amino acids into breast cancer cells, influencing proliferation, invasion, migration, drug resistance, and prognosis through the mTOR signaling pathway. Notably, LAT1 exhibits differential expression across various types of breast cancer, positioning it as a promising candidate for diagnostic and therapeutic applications. Recent advancements in LAT1-targeting strategies for breast cancer have been made, particularly with the rapid developments in small molecular inhibitors and nanotechnology. In this article, we review the structure and function of LAT1, its relationship with breast cancer, and LAT1-mediated diagnostic and treatment strategies. This article specifically focuses on the LAT1-targeting strategy in breast tumors, aiming to evaluate its potential role as a novel biomarker for diagnosis and treatment.
Collapse
Affiliation(s)
- Zheyang Zhou
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guang Xi Zhuang Yao Medicine Center of Engineering and Technology, Wuhe Rode, Nanning, 530200, China
| | - Tao Zhu
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guang Xi Zhuang Yao Medicine Center of Engineering and Technology, Wuhe Rode, Nanning, 530200, China
| | - Wenlong Zheng
- Guang Xi Zhuang Yao Medicine Center of Engineering and Technology, Wuhe Rode, Nanning, 530200, China; Pharmaceutical College, Guangxi University of Chinese Medicine, China
| | - Zhixiang Zou
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guang Xi Zhuang Yao Medicine Center of Engineering and Technology, Wuhe Rode, Nanning, 530200, China
| | - Qingfei Shan
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guang Xi Zhuang Yao Medicine Center of Engineering and Technology, Wuhe Rode, Nanning, 530200, China
| | - Qing Chen
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guang Xi Zhuang Yao Medicine Center of Engineering and Technology, Wuhe Rode, Nanning, 530200, China
| | - Gang Wang
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guang Xi Zhuang Yao Medicine Center of Engineering and Technology, Wuhe Rode, Nanning, 530200, China
| | - Yang Wang
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guang Xi Zhuang Yao Medicine Center of Engineering and Technology, Wuhe Rode, Nanning, 530200, China.
| |
Collapse
|
2
|
Abdelhafez YG, Wang G, Li S, Pellegrinelli V, Chaudhari AJ, Ramirez A, Sen F, Vidal-Puig A, Sidossis LS, Klein S, Badawi RD, Chondronikola M. The role of brown adipose tissue in branched-chain amino acid clearance in people. iScience 2024; 27:110559. [PMID: 39175781 PMCID: PMC11340589 DOI: 10.1016/j.isci.2024.110559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/24/2024] [Accepted: 07/17/2024] [Indexed: 08/24/2024] Open
Abstract
Brown adipose tissue (BAT) in rodents appears to be an important tissue for the clearance of plasma branched-chain amino acids (BCAAs) contributing to improved metabolic health. However, the role of human BAT in plasma BCAA clearance is poorly understood. Here, we evaluate patients with prostate cancer who underwent positron emission tomography-computed tomography imaging after an injection of 18F-fluciclovine (L-leucine analog). Supraclavicular adipose tissue (AT; primary location of human BAT) has a higher net uptake rate for 18F-fluciclovine compared to subcutaneous abdominal and upper chest AT. Supraclavicular AT 18F-fluciclovine net uptake rate is lower in patients with obesity and type 2 diabetes. Finally, the expression of genes involved in BCAA catabolism is higher in the supraclavicular AT of healthy people with high BAT volume compared to those with low BAT volume. These findings support the notion that BAT can potentially function as a metabolic sink for plasma BCAA clearance in people.
Collapse
Affiliation(s)
- Yasser G. Abdelhafez
- Department of Radiology, University of California Davis, Sacramento, CA 95817, USA
- Nuclear Medicine Unit, South Egypt Cancer Institute, Assiut University, El Fateh 71111, Egypt
| | - Guobao Wang
- Department of Radiology, University of California Davis, Sacramento, CA 95817, USA
| | - Siqi Li
- Department of Radiology, University of California Davis, Sacramento, CA 95817, USA
| | - Vanessa Pellegrinelli
- Institute of Metabolic Science-Metabolic Research Laboratories, Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Abhijit J. Chaudhari
- Department of Radiology, University of California Davis, Sacramento, CA 95817, USA
| | - Anthony Ramirez
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Fatma Sen
- Department of Radiology, University of California Davis, Sacramento, CA 95817, USA
| | - Antonio Vidal-Puig
- Institute of Metabolic Science-Metabolic Research Laboratories, Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Labros S. Sidossis
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Ramsey D. Badawi
- Department of Radiology, University of California Davis, Sacramento, CA 95817, USA
| | - Maria Chondronikola
- Department of Radiology, University of California Davis, Sacramento, CA 95817, USA
- Institute of Metabolic Science-Metabolic Research Laboratories, Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
- Department of Nutrition and Dietetics, Harokopio University of Athens, 17778 Athens, Greece
| |
Collapse
|
3
|
Bel’skaya LV, Gundyrev IA, Solomatin DV. The Role of Amino Acids in the Diagnosis, Risk Assessment, and Treatment of Breast Cancer: A Review. Curr Issues Mol Biol 2023; 45:7513-7537. [PMID: 37754258 PMCID: PMC10527988 DOI: 10.3390/cimb45090474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
This review summarizes the role of amino acids in the diagnosis, risk assessment, imaging, and treatment of breast cancer. It was shown that the content of individual amino acids changes in breast cancer by an average of 10-15% compared with healthy controls. For some amino acids (Thr, Arg, Met, and Ser), an increase in concentration is more often observed in breast cancer, and for others, a decrease is observed (Asp, Pro, Trp, and His). The accuracy of diagnostics using individual amino acids is low and increases when a number of amino acids are combined with each other or with other metabolites. Gln/Glu, Asp, Arg, Leu/Ile, Lys, and Orn have the greatest significance in assessing the risk of breast cancer. The variability in the amino acid composition of biological fluids was shown to depend on the breast cancer phenotype, as well as the age, race, and menopausal status of patients. In general, the analysis of changes in the amino acid metabolism in breast cancer is a promising strategy not only for diagnosis, but also for developing new therapeutic agents, monitoring the treatment process, correcting complications after treatment, and evaluating survival rates.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | - Ivan A. Gundyrev
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | - Denis V. Solomatin
- Department of Mathematics and Mathematics Teaching Methods, Omsk State Pedagogical University, 644043 Omsk, Russia;
| |
Collapse
|
4
|
Lindemann M, Oteiza A, Martin-Armas M, Guttormsen Y, Moldes-Anaya A, Berzaghi R, Bogsrud TV, Bach-Gansmo T, Sundset R, Kranz M. Glioblastoma PET/MRI: kinetic investigation of [ 18F]rhPSMA-7.3, [ 18F]FET and [ 18F]fluciclovine in an orthotopic mouse model of cancer. Eur J Nucl Med Mol Imaging 2023; 50:1183-1194. [PMID: 36416908 PMCID: PMC9931868 DOI: 10.1007/s00259-022-06040-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is the most common glioma and standard therapies can only slightly prolong the survival. Neo-vascularization is a potential target to image tumor microenvironment, as it defines its brain invasion. We investigate [18F]rhPSMA-7.3 with PET/MRI for quantitative imaging of neo-vascularization in GBM bearing mice and human tumor tissue and compare it to [18F]FET and [18F]fluciclovine using PET pharmacokinetic modeling (PKM). METHODS [18F]rhPSMA-7.3, [18F]FET, and [18F]fluciclovine were i.v. injected with 10.5 ± 3.1 MBq, 8.0 ± 2.2 MBq, 11.5 ± 1.9 MBq (n = 28, GL261-luc2) and up to 90 min PET/MR imaged 21/28 days after surgery. Regions of interest were delineated on T2-weighted MRI for (i) tumor, (ii) brain, and (iii) the inferior vena cava. Time-activity curves were expressed as SUV mean, SUVR and PKM performed using 1-/2-tissue-compartment models (1TCM, 2TCM), Patlak and Logan analysis (LA). Immunofluorescent staining (IFS), western blotting, and autoradiography of tumor tissue were performed for result validation. RESULTS [18F]rhPSMA-7.3 showed a tumor uptake with a tumor-to-background-ratio (TBR) = 2.1-2.5, in 15-60 min. PKM (2TCM) confirmed higher K1 (0.34/0.08, p = 0.0012) and volume of distribution VT (0.24/0.1, p = 0.0017) in the tumor region compared to the brain. Linearity in LA and similar k3 = 0.6 and k4 = 0.47 (2TCM, tumor, p = ns) indicated reversible binding. K1, an indicator for vascularization, increased (0.1/0.34, 21 to 28 days, p < 0.005). IFS confirmed co-expression of PSMA and tumor vascularization. [18F]fluciclovine showed higher TBR (2.5/1.8, p < 0.001, 60 min) and VS (1.3/0.7, p < 0.05, tumor) compared to [18F]FET and LA indicated reversible binding. VT increased (p < 0.001, tumor, 21 to 28 days) for [18F]FET (0.5-1.4) and [18F]fluciclovine (0.84-1.5). CONCLUSION [18F]rhPSMA-7.3 showed to be a potential candidate to investigate the tumor microenvironment of GBM. Following PKM, this uptake was associated with tumor vascularization. In contrast to what is known from PSMA-PET in prostate cancer, reversible binding was found for [18F]rhPSMA-7.3 in GBM, contradicting cellular trapping. Finally, [18F]fluciclovine was superior to [18F]FET rendering it more suitable for PET imaging of GBM.
Collapse
Affiliation(s)
- Marcel Lindemann
- PET Imaging Center Tromsø, University Hospital of North Norway (UNN), Tromsø, Norway
- Nuclear Medicine and Radiation Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ana Oteiza
- PET Imaging Center Tromsø, University Hospital of North Norway (UNN), Tromsø, Norway
- Nuclear Medicine and Radiation Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Montserrat Martin-Armas
- PET Imaging Center Tromsø, University Hospital of North Norway (UNN), Tromsø, Norway
- Nuclear Medicine and Radiation Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Yngve Guttormsen
- PET Imaging Center Tromsø, University Hospital of North Norway (UNN), Tromsø, Norway
- Nuclear Medicine and Radiation Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Angel Moldes-Anaya
- PET Imaging Center Tromsø, University Hospital of North Norway (UNN), Tromsø, Norway
- Nuclear Medicine and Radiation Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Rodrigo Berzaghi
- Nuclear Medicine and Radiation Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Trond Velde Bogsrud
- PET Imaging Center Tromsø, University Hospital of North Norway (UNN), Tromsø, Norway
- PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Tore Bach-Gansmo
- PET Imaging Center Tromsø, University Hospital of North Norway (UNN), Tromsø, Norway
| | - Rune Sundset
- PET Imaging Center Tromsø, University Hospital of North Norway (UNN), Tromsø, Norway
- Nuclear Medicine and Radiation Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Mathias Kranz
- PET Imaging Center Tromsø, University Hospital of North Norway (UNN), Tromsø, Norway.
- Nuclear Medicine and Radiation Biology, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
5
|
Zhou R, Choi H, Cao J, Pantel A, Gupta M, Lee HS, Mankoff D. 18F-Fluciclovine PET Imaging of Glutaminase Inhibition in Breast Cancer Models. J Nucl Med 2023; 64:131-136. [PMID: 35772960 PMCID: PMC9841257 DOI: 10.2967/jnumed.122.264152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 01/28/2023] Open
Abstract
Aggressive cancers such as triple-negative breast cancer (TNBC) avidly metabolize glutamine as a feature of their malignant phenotype. The conversion of glutamine to glutamate by the glutaminase enzyme represents the first and rate-limiting step of this pathway and a target for drug development. Indeed, a novel glutaminase inhibitor (GLSi) has been developed and tested in clinical trials but with limited success, suggesting the potential for a biomarker to select patients who could benefit from this novel therapy. Here, we studied a nonmetabolized amino acid analog, 18F-fluciclovine, as a PET imaging biomarker for detecting the pharmacodynamic response to GLSi. Methods: Uptake of 18F-fluciclovine into human breast cancer cells was studied in the presence and absence of inhibitors of glutamine transporters and GLSi. To allow 18F-fluciclovine PET to be performed on mice, citrate in the tracer formulation is replaced by phosphate-buffered saline. Mice bearing triple-negative breast cancer (TNBC) xenografts (HCC38, HCC1806, and MBA-MD-231) and estrogen receptor-positive breast cancer xenografts (MCF-7) were imaged with dynamic PET at baseline and after a 2-d treatment of GLSi (CB839) or vehicle. Kinetic analysis suggested reversible uptake of the tracer, and the distribution volume (VD) of 18F-fluciclovine was estimated by Logan plot analysis. Results: Our data showed that cellular uptake of 18F-fluciclovine is mediated by glutamine transporters. A significant increase in VD was observed after CB839 treatment in TNBC models exhibiting high glutaminase activity (HCC38 and HCC1806) but not in TNBC or MCF-7 exhibiting low glutaminase. Changes in VD were corroborated with changes in GLS activity measured in tumors treated with CB839 versus vehicle, as well as with changes in VD of 18F-(2S,R4)-fluoroglutamine, which we previously validated as a measure of cellular glutamine pool size. A moderate, albeit significant, decrease in 18F-FDG PET signal was observed in HCC1806 tumors after CB839 treatment. Conclusion: 18F-fluciclovine PET has potential to serve as a clinically translatable pharmacodynamic biomarker of GLSi.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | | - David Mankoff
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Bulbul JE, Hashem A, Grybowski D, Joyce C, Rashad E, Gabriel MS, Wagner RH, Savir-Baruch B. Effect of hormonal therapy on 18F-fluciclovine PET/CT in the detection of prostate cancer recurrence, localization of metastatic disease, and correlation with prostate-specific antigen. Urol Oncol 2022; 40:379.e9-379.e16. [DOI: 10.1016/j.urolonc.2022.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/04/2022] [Accepted: 05/14/2022] [Indexed: 02/05/2023]
|
7
|
Effect of Androgen Deprivation Therapy on the Results of PET/CT with 18F-Fluciclovine in Patients with Metastatic Prostate Cancer. Tomography 2022; 8:1477-1484. [PMID: 35736868 PMCID: PMC9230844 DOI: 10.3390/tomography8030120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Background: 18F-fluciclovine is a positron emission tomography (PET) radiotracer approved for the detection of prostate cancer recurrence. No effect of androgen deprivation therapy (ADT) on its performance has been established. Purpose: To study the impact of concurrent ADT on disease detection with 18F-fluciclovine PET in patients with prostate cancer. Materials and Methods: Data from patients with prostate cancer who had been receiving ADT for ≥3 months at the time of undergoing an 18F-fluciclovine PET/CT at our institution were retrospectively reviewed. Seventy-three scans from 71 patients were included. The scans indicated rising prostate-specific antigen (n = 58), staging advanced disease (n = 4) or therapeutic monitoring (n = 9). Patients’ medical records provided baseline clinical data and post-scan outcomes (median follow-up 40 months). Results: Malignant lesions with increased uptake of 18F-fluciclovine were detected in 60/73 (82%) scans; 33 (45%) had lesions in the prostate/bed and 46 (63%) in extraprostatic sites. Patients received ADT for a median of 2 years (range 3 months to >10 years) pre-scan. The time on ADT did not influence detection; the detection rates were 89% for patients who had received ADT for <1 year, 63% for a treatment period of 1−<2 years, 83% for 2−4 years, 78% for >4−10 years, and 67% for a treatment period of >10 years. Conclusion: 18F-fluciclovine detected recurrent or metastatic lesions in 82% of patients with prostate cancer receiving ADT. The rates achieved in the present study are consistent with widely reported data for 18F-fluciclovine PET/CT, suggesting that withdrawal of ADT before scanning is not necessary.
Collapse
|
8
|
Johannessen K, Berntsen EM, Johansen H, Solheim TS, Karlberg A, Eikenes L. 18F-FACBC PET/MRI in the evaluation of human brain metastases: a case report. Eur J Hybrid Imaging 2021; 5:7. [PMID: 34181107 PMCID: PMC8218039 DOI: 10.1186/s41824-021-00101-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/28/2021] [Indexed: 12/31/2022] Open
Abstract
Background Patients with metastatic cancer to the brain have a poor prognosis. In clinical practice, MRI is used to delineate, diagnose and plan treatment of brain metastases. However, MRI alone is limited in detecting micro-metastases, delineating lesions and discriminating progression from pseudo-progression. Combined PET/MRI utilises superior soft tissue images from MRI and metabolic data from PET to evaluate tumour structure and function. The amino acid PET tracer 18F-FACBC has shown promising results in discriminating high- and low-grade gliomas, but there are currently no reports on its use on brain metastases. This is the first study to evaluate the use of 18F-FACBC on brain metastases. Case presentation A middle-aged female patient with brain metastases was evaluated using hybrid PET/MRI with 18F-FACBC before and after stereotactic radiotherapy, and at suspicion of recurrence. Static/dynamic PET and contrast-enhanced T1 MRI data were acquired and analysed. This case report includes the analysis of four 18F-FACBC PET/MRI examinations, investigating their utility in evaluating functional and structural metastasis properties. Conclusion Analysis showed high tumour-to-background ratios in brain metastases compared to other amino acid PET tracers, including high uptake in a very small cerebellar metastasis, suggesting that 18F-FACBC PET can provide early detection of otherwise overlooked metastases. Further studies to determine a threshold for 18F-FACBC brain tumour boundaries and explore its utility in clinical practice should be performed.
Collapse
Affiliation(s)
- Knut Johannessen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Postboks 8905, 7491, Trondheim, Norway
| | - Erik Magnus Berntsen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Postboks 8905, 7491, Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Håkon Johansen
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Tora S Solheim
- Cancer Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anna Karlberg
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Postboks 8905, 7491, Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Postboks 8905, 7491, Trondheim, Norway.
| |
Collapse
|
9
|
Malviya G, Patel R, Salji M, Martinez RS, Repiscak P, Mui E, Champion S, Mrowinska A, Johnson E, AlRasheedi M, Pimlott S, Lewis D, Leung HY. 18F-Fluciclovine PET metabolic imaging reveals prostate cancer tumour heterogeneity associated with disease resistance to androgen deprivation therapy. EJNMMI Res 2020; 10:143. [PMID: 33237350 PMCID: PMC7688773 DOI: 10.1186/s13550-020-00728-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/29/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prostate cancer is highly prevalent worldwide. Androgen deprivation therapy (ADT) remains the treatment of choice for incurable prostate cancer, but majority of patients develop disease recurrence following ADT. There is therefore an urgent need for early detection of treatment resistance. METHODS Isogenic androgen-responsive (CWR22Res) and castration-resistant (22Rv1) human prostate cancer cells were implanted into the anterior lobes of the prostate in CD-1 Nu mice to generate prostate orthografts. Castrated mice bearing CWR22Res and 22Rv1 orthografts mimic clinical prostate cancer following acute and chronic ADT, respectively. 18F-Fluciclovine (1-amino-3-fluorocyclobutane-1-carboxylic acid) with a radiochemical purity of > 99% was produced on a FASTlab synthesiser. Ki67 staining in endpoint orthografts was studied. Western blot, quantitative RT-PCR and next-generation sequencing transcriptomic analyses were performed to assess the expression levels of amino acid transporters (including LAT1 and ASCT2, which have been implicated for Fluciclovine uptake). Longitudinal metabolic imaging with 18F-Fluciclovine-based positron emission tomography (PET) was performed to study tumour response following acute and chronic ADT. RESULTS Both immunohistochemistry analysis of endpoint prostate tumours and longitudinal 18F-Fluciclovine imaging revealed tumour heterogeneity, particularly following ADT, with in vivo 18F-Fluciclovine uptake correlating to viable cancer cells in both androgen-proficient and castrated environment. Highlighting tumour subpopulation following ADT, both SUVpeak and coefficient of variation (CoV) values of 18F-Fluciclovine uptake are consistent with tumour heterogeneity revealed by immunohistochemistry. We studied the expression of amino acid transporters (AATs) for 18F-Fluciclovine, namely LAT1 (SLC7A5 and SLC3A2) and ASCT2 (SLC1A5). SLC7A5 and SLC3A2 were expressed at relatively high levels in 22Rv1 castration-resistant orthografts following chronic ADT (modelling clinical castration-resistant disease), while SLC1A5 was preferentially expression in CWR22Res tumours following acute ADT. Additional AATs such as SLC43A2 (LAT4) were shown to be upregulated following chronic ADT by transcriptomic analysis; their role in Fluciclovine uptake warrants investigation. CONCLUSION We studied in vivo 18F-Fluciclovine uptake in human prostate cancer orthograft models following acute and chronic ADT. 18F-Fluciclovine uptakes highlight tumour heterogeneity that may explain castration resistance and can be exploited as a clinical biomarker.
Collapse
Affiliation(s)
- Gaurav Malviya
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Rachana Patel
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Mark Salji
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Urology, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Rafael S Martinez
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Peter Repiscak
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Ernest Mui
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Susan Champion
- West of Scotland PET Centre, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Agata Mrowinska
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Emma Johnson
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Maha AlRasheedi
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Sally Pimlott
- West of Scotland PET Centre, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - David Lewis
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - Hing Y Leung
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
- Department of Urology, NHS Greater Glasgow and Clyde, Glasgow, UK.
| |
Collapse
|
10
|
Clinical application of Fluciclovine PET, choline PET and gastrin-releasing polypeptide receptor (bombesin) targeting PET in prostate cancer. Curr Opin Urol 2020; 30:641-648. [PMID: 32701717 DOI: 10.1097/mou.0000000000000794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to explore the clinical application of different PET radiopharmaceuticals in prostate cancer (PCa), beyond inhibitors of the prostate-specific membrane antigen (PSMA). RECENT FINDINGS Choline PET represented in the last decades the standard of reference for PET imaging in PCa and has been recently included in clinical trials evaluating the efficacy of metastasis-directed therapy in oligo-metastatic disease. Fluciclovine, as synthetic amino acid, has been proposed for investigating PCa. The results obtained by the first prospective studies led to FDA approval in 2016 in patients with biochemical recurrence. Recently, phase II/III trials explored its accuracy compared with PSMA PET and its impact on patient management. Imaging the gastrin-releasing polypeptide receptor (GRPR) recently drawn attention. Radio-labelled GRPR antagonists have the potential to be used as theranostic agents. Further evaluation is needed to understand the relation between GRPR expression and hormonal-resistant PCa, and for tumors characterized by heterogeneity of receptors expressed (e.g. PSMA-negative) on their cell surface. SUMMARY Other new generation PET tracers may play an important role in PCa, namely in case of PSMA-negative phenotypes.
Collapse
|
11
|
Michaud L, Beattie BJ, Akhurst T, Dunphy M, Zanzonico P, Finn R, Mauguen A, Schöder H, Weber WA, Lassman AB, Blasberg R. 18F-Fluciclovine ( 18F-FACBC) PET imaging of recurrent brain tumors. Eur J Nucl Med Mol Imaging 2020; 47:1353-1367. [PMID: 31418054 PMCID: PMC7188736 DOI: 10.1007/s00259-019-04433-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/09/2019] [Indexed: 11/07/2022]
Abstract
PURPOSE The aim of our study was to investigate the efficacy of 18F-Fluciclovine brain PET imaging in recurrent gliomas, and to compare the utility of these images to that of contrast enhanced magnetic resonance imaging (MRI) and to [11C-methyl]-L-methionine (11C-Methionine) PET imaging. We also sought to gain insight into the factors affecting the uptake of 18F-FACBC in both tumors and normal brain, and specifically to evaluate how the uptake in these tissues varied over an extended period of time post injection. METHODS Twenty-seven patients with recurrent or progressive primary brain tumor (based on clinical and MRI/CT data) were studied using dynamic 18F-Fluciclovine brain imaging for up to 4 h. Of these, 16 patients also had 11C-Methionine brain scans. Visual findings, semi-quantitative analyses and pharmacokinetic modeling of a subset of the 18F-Fluciclovine images was conducted. The information derived from these analyses were compared to data from 11C-Methionine and to contrast-enhanced MRI. RESULTS 18F-Fluciclovine was positive for all 27 patients, whereas contrast MRI was indeterminate for three patients. Tumor 18F-Fluciclovine SUVmax ranged from 1.5 to 10.5 (average: 4.5 ± 2.3), while 11C-Methionine's tumor SUVmax ranged from 2.2 to 10.2 (average: 5.0 ± 2.2). Image contrast was higher with 18F-Fluciclovine compared to 11C-Methionine (p < 0.0001). This was due to 18F-Fluciclovine's lower background in normal brain tissue (0.5 ± 0.2 compared to 1.3 ± 0.4 for 11C-Methionine). 18F-Fluciclovine uptake in both normal brain and tumors was well described by a simple one-compartment (three-parameter: Vb,k1,k2) model. Normal brain was found to approach transient equilibrium with a half-time that varied greatly, ranging from 1.5 to 8.3 h (mean 2.7 ± 2.3 h), and achieving a consistent final distribution volume averaging 1.4 ± 0.2 ml/cc. Tumors equilibrated more rapidly (t1/2ranging from 4 to 148 min, average 57 ± 51 min), with an average distribution volume of 3.2 ± 1.1 ml/cc. A qualitative comparison showed that the rate of normal brain uptake of 11C-Methionine was much faster than that of 18F-Fluciclovine. CONCLUSION Tumor uptake of 18F-Fluciclovine correlated well with the established brain tumor imaging agent 11C-Methionine but provided significantly higher image contrast. 18F-Fluciclovine may be particularly useful when the contrast MRI is non-diagnostic. Based on the data gathered, we were unable to determine whether Fluciclovine uptake was due solely to recurrent tumor or if inflammation or other processes also contributed.
Collapse
Affiliation(s)
- Laure Michaud
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 77, New York, NY, 10065, USA.
| | - B J Beattie
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - T Akhurst
- Peter MacCallum Cancer Centre, Victoria, Australia
| | - M Dunphy
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 77, New York, NY, 10065, USA
| | - P Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - R Finn
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 77, New York, NY, 10065, USA
| | - A Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - H Schöder
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 77, New York, NY, 10065, USA
| | - W A Weber
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 77, New York, NY, 10065, USA
- Department of Nuclear Medicine, Technical University, Munich, Germany
| | - A B Lassman
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Neurology & Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - R Blasberg
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
12
|
Abstract
PURPOSE This pilot study aimed to evaluate the amino acid tracer F-FACBC with simultaneous PET/MRI in diagnostic assessment and neurosurgery of gliomas. MATERIALS AND METHODS Eleven patients with suspected primary or recurrent low- or high-grade glioma received an F-FACBC PET/MRI examination before surgery. PET and MRI were used for diagnostic assessment, and for guiding tumor resection and histopathological tissue sampling. PET uptake, tumor-to-background ratios (TBRs), time-activity curves, as well as PET and MRI tumor volumes were evaluated. The sensitivities of lesion detection and to detect glioma tissue were calculated for PET, MRI, and combined PET/MRI with histopathology (biopsies for final diagnosis and additional image-localized biopsies) as reference. RESULTS Overall sensitivity for lesion detection was 54.5% (95% confidence interval [CI], 23.4-83.3) for PET, 45.5% (95% CI, 16.7-76.6) for contrast-enhanced MRI (MRICE), and 100% (95% CI, 71.5-100.0) for combined PET/MRI, with a significant difference between MRICE and combined PET/MRI (P = 0.031). TBRs increased with tumor grade (P = 0.004) and were stable from 10 minutes post injection. PET tumor volumes enclosed most of the MRICE volumes (>98%) and were generally larger (1.5-2.8 times) than the MRICE volumes. Based on image-localized biopsies, combined PET/MRI demonstrated higher concurrence with malignant findings at histopathology (89.5%) than MRICE (26.3%). CONCLUSIONS Low- versus high-grade glioma differentiation may be possible with F-FACBC using TBR. F-FACBC PET/MRI outperformed MRICE in lesion detection and in detection of glioma tissue. More research is required to evaluate F-FACBC properties, especially in grade II and III tumors, and for different subtypes of gliomas.
Collapse
|
13
|
Sergeeva O, Zhang Y, Kenyon JD, Miller-Atkins GA, Wu C, Iyer R, Sexton S, Wojtylak P, Awadallah A, Xin W, Chan ER, O’Donnel JK, Lee Z. PET imaging of hepatocellular carcinoma with anti-1-amino-3-[ 18F]fluorocyclobutanecarboxylic acid in comparison with L-[S-methyl- 11C]methionine. EJNMMI Res 2019; 9:47. [PMID: 31119488 PMCID: PMC6531569 DOI: 10.1186/s13550-019-0519-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/12/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE [11C]methionine ([11C]Met) was used for cancer imaging based on upregulated amino acid transport and protein synthesis in different tumor types. However, the short half-life of 11C decay limited further clinical development of [11C]Met. Synthetic amino acid analog anti-1-amino-3-[18F]fluoro-cyclobutyl-1-carboxylic acid ([18F]FCABC) was developed and FDA-approved for PET imaging of recurrent prostate cancer. This study investigated "repurposed" [18F]FACBC for PET imaging of primary liver cancer such as hepatocellular carcinoma (HCC) in comparison with [11C]Met. METHODS [11C]Met was synthesized in the lab, and [18F]FACBC was purchased from a commercial outlet. A clinically relevant animal model of spontaneously developed HCC in the woodchucks was used for PET imaging. Bioinformatics analysis was performed for the expression of amino acid transporters responsible for radiotracer uptake and validated by PCR. Dynamic PET scans of [11C]Met and [18F]FACBC were acquired within 1 week. Standardized uptake value (SUV) was calculated for regions of interest (ROIs) defined over HCC and a liver background region. H&E staining and immunohistochemical (IHC) staining were performed with harvested tissues post-imaging. RESULTS Higher expression of ACST2 and LAT1 was found in HCC than in the surrounding liver tissues. PCR validated this differential expression. [11C]Met and [18F]FACBC displayed some differences in their uptake and retention in HCC. Both peaked in HCC with an SUV of 3.5 after 10 min post-injection. Met maintained a plateaued contrast uptake in HCC to that in the liver while [18F]FCABC declined in HCC and liver after peak uptake. The pathological assessment revealed the liver tumor as moderately differentiated similar to the human HCC and proliferative. CONCLUSION Both [18F]FACBC and [11C]Met showed uptake in HCC through the use of a clinically relevant animal model of woodchuck HCC. The uptake and retention of [18F]FACBC and [11C]Met depend on their metabolism and also rely on the distribution of their principal amino acid transporters.
Collapse
Affiliation(s)
- Olga Sergeeva
- Radiology, Case Western Reserve University, Cleveland, OH USA
| | - Yifan Zhang
- Radiology, Case Western Reserve University, Cleveland, OH USA
| | | | | | - Chunying Wu
- Radiology, Case Western Reserve University, Cleveland, OH USA
| | - Renuka Iyer
- Medical Oncology, Rowell Park Cancer Institute, Buffalo, NY USA
| | - Sandra Sexton
- Medical Oncology, Rowell Park Cancer Institute, Buffalo, NY USA
| | - Patrick Wojtylak
- Nuclear Medicine, Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH USA
| | - Amad Awadallah
- Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH USA
| | - Wei Xin
- Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH USA
| | - E. Ricky Chan
- Institute for Computational Biology, Cleveland, OH USA
| | - James K. O’Donnel
- Nuclear Medicine, Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH USA
| | - Zhenghong Lee
- Radiology, Case Western Reserve University, Cleveland, OH USA
- Nuclear Medicine, Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH USA
| |
Collapse
|
14
|
Abstract
Amino acids are an alternate energy source to glucose, and amino acid metabolism is up-regulated in multiple malignancies, including breast cancers. Multiple amino acid radiotracers have been used to image breast cancer with unique strengths and weaknesses. 11C-methionine uptake correlates with S-phase fraction in breast cancer and may be useful for evaluation of treatment response. Invasive lobular breast cancers may demonstrate greater 18F-fluciclovine avidity than 18F-fluorodeoxyglucose. Thus, different histologic subtypes of breast cancer may use diverse metabolic pathways and may be better imaged by different tracers.
Collapse
Affiliation(s)
- Gary A Ulaner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 77, New York, NY 10065, USA; Department of Radiology, Weill Cornell Medical School, 525 East 68th Street, New York, NY 10065, USA.
| | - David M Schuster
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University Hospital, Room E152, 1364 Clifton Road, Atlanta, GA 30322, USA
| |
Collapse
|
15
|
Pantel AR, Ackerman D, Lee SC, Mankoff DA, Gade TP. Imaging Cancer Metabolism: Underlying Biology and Emerging Strategies. J Nucl Med 2018; 59:1340-1349. [PMID: 30042161 PMCID: PMC6126440 DOI: 10.2967/jnumed.117.199869] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 06/18/2018] [Indexed: 12/22/2022] Open
Abstract
Dysregulated cellular metabolism is a characteristic feature of malignancy that has been exploited for both imaging and targeted therapy. With regard to imaging, deranged glucose metabolism has been leveraged using 18F-FDG PET. Metabolic imaging with 18F-FDG, however, probes only the early steps of glycolysis; the complexities of metabolism beyond these early steps in this single pathway are not directly captured. New imaging technologies-both PET with novel radiotracers and MR-based methods-provide unique opportunities to investigate other aspects of cellular metabolism and expand the metabolic imaging armamentarium. This review will discuss the underlying biology of metabolic dysregulation in cancer, focusing on glucose, glutamine, and acetate metabolism. Novel imaging strategies will be discussed within this biologic framework, highlighting particular strengths and limitations of each technique. Emphasis is placed on the role that combining modalities will play in enabling multiparametric imaging to fully characterize tumor biology to better inform treatment.
Collapse
Affiliation(s)
- Austin R Pantel
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel Ackerman
- Penn Image-Guided Interventions Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Seung-Cheol Lee
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David A Mankoff
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Terence P Gade
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Penn Image-Guided Interventions Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
|
17
|
Selective modification of fluciclovine ( 18F) transport in prostate carcinoma xenografts. Amino Acids 2018; 50:1301-1305. [PMID: 29905905 DOI: 10.1007/s00726-018-2600-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 06/05/2018] [Indexed: 10/28/2022]
Abstract
We investigated if previously demonstrated inhibition of fluciclovine (18F) in vitro could be replicated in a PC3-Luc xenograft mouse model. Following intratumoral injection of 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH), alpha-(methylamino)isobutyric acid (MeAIB) or saline, fluciclovine PET tumor-to-background activity was 43.6 (± 5.4)% and 25.3 (± 5.2)% lower in BCH (n = 6) and MeAIB (n = 5) injected PC3 Luc xenografts, respectively, compared to saline-injected controls (n = 2). Partial inhibition of fluciclovine uptake by BCH and MeAIB can be demonstrated in vivo similar to previous in vitro modeling.
Collapse
|
18
|
Cha YJ, Kim ES, Koo JS. Amino Acid Transporters and Glutamine Metabolism in Breast Cancer. Int J Mol Sci 2018; 19:E907. [PMID: 29562706 PMCID: PMC5877768 DOI: 10.3390/ijms19030907] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 01/04/2023] Open
Abstract
Amino acid transporters are membrane transport proteins, most of which are members of the solute carrier families. Amino acids are essential for the survival of all types of cells, including tumor cells, which have an increased demand for nutrients to facilitate proliferation and cancer progression. Breast cancer is the most common malignancy in women worldwide and is still associated with high mortality rates, despite improved treatment strategies. Recent studies have demonstrated that the amino acid metabolic pathway is altered in breast cancer and that amino acid transporters affect tumor growth and progression. In breast cancer, glutamine is one of the key nutrients, and glutamine metabolism is closely related to the amino acid transporters. In this review, we focus on amino acid transporters and their roles in breast cancer. We also highlight the different subsets of upregulated amino acid transporters in breast cancer and discuss their potential applications as treatment targets, cancer imaging tracers, and drug delivery components. Glutamine metabolism as well as its regulation and therapeutic implication in breast cancer are also discussed.
Collapse
Affiliation(s)
- Yoon Jin Cha
- Department of Pathology, Yonsei University College of Medicine, Seoul, 03722, Korea.
| | - Eun-Sol Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, 03722, Korea.
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
19
|
Goodman MM, Yu W, Jarkas N. Synthesis and biological properties of radiohalogenated α,α-disubstituted amino acids for PET and SPECT imaging of amino acid transporters (AATs). J Labelled Comp Radiopharm 2018; 61:272-290. [PMID: 29143354 DOI: 10.1002/jlcr.3584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/27/2017] [Accepted: 10/30/2017] [Indexed: 11/08/2022]
Abstract
Fluorine-18 and iodine-123 labeled nonnatural alicyclic and methyl branched disubstituted α,α-amino acids are a diverse and useful class of tumor imaging agents suitable for positron emission tomography and single photon emission computed tomography. These tracers target the increased expression of the cell membrane amino acid transporter systems L, ASC, and A exhibited by many human tumor cells. The most established clinical use for these radiolabeled amino acids is imaging primary and recurrent gliomas and primary, recurrent, and metastatic prostate cancer. This review focuses on the synthesis, radiolabeling, and amino acid transport mechanism of a series of nonnatural fluorine-18 and iodine-123 labeled analogs of 1-aminocyclobutane-1-carboxylic acid, 1-aminocyclopentane-1-carboxylic acid, α-aminoisobutyric acid, and α-methylaminoisobutyric acid.
Collapse
Affiliation(s)
- Mark M Goodman
- Department of Radiology and Imaging Sciences, Center for Systems Imaging, Emory University, Atlanta, GA, USA
| | - Weiping Yu
- Department of Radiology and Imaging Sciences, Center for Systems Imaging, Emory University, Atlanta, GA, USA
| | - Nashwa Jarkas
- Department of Radiology and Imaging Sciences, Center for Systems Imaging, Emory University, Atlanta, GA, USA
| |
Collapse
|
20
|
Zanoni L, Bossert I, Matti A, Schiavina R, Pultrone C, Fanti S, Nanni C. A review discussing fluciclovine ( 18F) PET/CT imaging in the detection of recurrent prostate cancer. Future Oncol 2018; 14:1101-1115. [PMID: 29359581 DOI: 10.2217/fon-2017-0446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A significant number of patients radically treated for prostate cancer (PCa) will develop prostate-specific antigen recurrence (27-53%). Localizing the anatomical site of relapse is critical, in order to achieve the optimal treatment management. To date the diagnostic accuracy of standard imaging is low. Several desirable features have been identified for the amino-acid-based PET agent, fluciclovine (18F) including: long 18F half-life which allows more practical use in centers without a cyclotron onsite; acting as a substrate for amino acid transporters upregulated in PCa or associated with malignant phenotype; lacking of incorporation into protein; and limited urinary excretion. Fluciclovine (18F) is currently approved both in USA and Europe with specific indication in adult men with suspected recurrent PCa based on elevated prostate-specific antigen following prior treatment.
Collapse
Affiliation(s)
- Lucia Zanoni
- Nuclear Medicine, Azienda Ospedaliero Universitaria Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Irene Bossert
- Nuclear Medicine, Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy
| | - Antonella Matti
- Nuclear Medicine, Azienda Ospedaliero Universitaria Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Riccardo Schiavina
- Department of Urology, Azienda Ospedaliero Universitaria Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Cristian Pultrone
- Department of Urology, Azienda Ospedaliero Universitaria Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, Azienda Ospedaliero Universitaria Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Cristina Nanni
- Nuclear Medicine, Azienda Ospedaliero Universitaria Policlinico S.Orsola-Malpighi, Bologna, Italy
| |
Collapse
|
21
|
Liu H, Han Y, Li J, Qin M, Fu Q, Wang C, Liu Z. 18F-Alanine Derivative Serves as an ASCT2 Marker for Cancer Imaging. Mol Pharm 2018; 15:947-954. [DOI: 10.1021/acs.molpharmaceut.7b00884] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuxiang Han
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiyuan Li
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ming Qin
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qunfeng Fu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chunhong Wang
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhibo Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
22
|
18F-Fluciclovine PET/MRI for preoperative lymph node staging in high-risk prostate cancer patients. Eur Radiol 2018; 28:3151-3159. [DOI: 10.1007/s00330-017-5213-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/17/2017] [Accepted: 11/24/2017] [Indexed: 01/18/2023]
|
23
|
Vāvere AL, Scott PJH. Clinical Applications of Small-molecule PET Radiotracers: Current Progress and Future Outlook. Semin Nucl Med 2017; 47:429-453. [PMID: 28826519 DOI: 10.1053/j.semnuclmed.2017.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radiotracers, or radiopharmaceuticals, are bioactive molecules tagged with a radionuclide used for diagnostic imaging or radiotherapy and, when a positron-emitting radionuclide is chosen, the radiotracers are used for PET imaging. The development of novel PET radiotracers in many ways parallels the development of new pharmaceuticals, and small molecules dominate research and development pipelines in both disciplines. The 4 decades since the introduction of [18F]FDG have seen the development of many small molecule PET radiotracers. Ten have been approved by the US Food and Drug Administration as of 2016, whereas hundreds more are being evaluated clinically. These radiotracers are being used in personalized medicine and to support drug discovery programs where they are greatly improving our understanding of and ability to treat diseases across many areas of medicine including neuroscience, cardiovascular medicine, and oncology.
Collapse
Affiliation(s)
- Amy L Vāvere
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
24
|
Oka S, Kanagawa M, Doi Y, Schuster DM, Goodman MM, Yoshimura H. PET Tracer 18F-Fluciclovine Can Detect Histologically Proven Bone Metastatic Lesions: A Preclinical Study in Rat Osteolytic and Osteoblastic Bone Metastasis Models. Am J Cancer Res 2017; 7:2048-2064. [PMID: 28656060 PMCID: PMC5485422 DOI: 10.7150/thno.19883] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/08/2017] [Indexed: 12/22/2022] Open
Abstract
18F-Fluciclovine (trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid; anti-18F-FACBC) is a positron emission tomography (PET) tracer for diagnosing cancers (e.g., prostate and breast cancer). The most frequent metastatic organ of these cancers is bone. Fluciclovine-PET can visualize bony lesions in clinical practice; however, such lesions have not been described histologically. Methods: We investigated the potential of 14C-fluciclovine in aiding the visualization of osteolytic and osteoblastic bone metastases (with histological analyses), compared with 3H-2-deoxy-2-fluoro-D-glucose (3H-FDG), 3H-choline chloride (3H-choline), and 99mTc-hydroxymethylene diphosphonate (99mTc-HMDP) by using triple-tracer autoradiography in rat breast cancer osteolytic (on day 12 ± 1 postinjection of MRMT-1) and prostate cancer osteoblastic (on day 20 ± 3 postinjection of AT6.1) metastatic models. Results: The distribution patterns of 14C-fluciclovine, 3H-FDG, and 3H-choline, but not 99mTc-HMDP, were similar in both models, and the lesions where these tracers accumulated were, histologically, typical osteolytic and osteoblastic lesions. 99mTc-HMDP accumulated mostly in osteoblastic lesions. 14C-fluciclovine could visualize the osteolytic lesions as early as day 6 postinjection of MRMT-1. However, differential distributions in 14C-fluciclovine and 3H-FDG existed, based on histological differences: low 14C-fluciclovine and high 3H-FDG accumulation in osteolytic lesions with inflammation. In the osteoblastic metastatic model, visualization of osteoblastic lesions with 14C-fluciclovine was not clear, yet clearer than with 3H-FDG. Although half of the osteoblastic lesions with 14C-fluciclovine accumulation showed negligible 3H-choline accumulation in comparison, they were histologically similar to lesions with marked 14C-fluciclovine and 3H-choline accumulation. Conclusion: These results suggest that fluciclovine-PET can visualize true osteolytic and osteoblastic bone metastatic lesions.
Collapse
|
25
|
Schuster DM, Nanni C, Fanti S. Evaluation of Prostate Cancer with Radiolabeled Amino Acid Analogs. J Nucl Med 2017; 57:61S-66S. [PMID: 27694174 DOI: 10.2967/jnumed.115.170209] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/20/2016] [Indexed: 12/14/2022] Open
Abstract
Conventional imaging of prostate cancer has limitations related to the frequently indolent biology of the disease. PET is a functional imaging method that can exploit various aspects of tumor biology to enable greater detection of prostate cancer than can be provided by morphologic imaging alone. Radiotracers that are in use or under investigation for targeting salient features of prostate cancer include those directed to glucose, choline, acetate, prostate-specific membrane antigen, bombesin, and amino acids. The tumor imaging features of this last class of radiotracers mirror the upregulation of transmembrane amino acid transport that is necessary in carcinomas because of increased amino acid use for energy requirements and protein synthesis. Natural and synthetic amino acids radiolabeled for PET imaging have been investigated in prostate cancer patients. Early work with naturally occurring amino acid-derived radiotracers, such as l-11C-methionine and l-1-11C-5-hydroxytryptophan, demonstrated promising results, including greater sensitivity than 18F-FDG for intraprostatic and extraprostatic cancer detection. However, limitations with naturally occurring amino acid-derived compounds, including metabolism of the radiotracer itself, led to the development of synthetic amino acid radiotracers, which are not metabolized and therefore more accurately reflect transmembrane amino acid transport. Of the synthetic amino acid-derived PET radiotracers, anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid (18F-FACBC or 18F-fluciclovine) has undergone the most promising translation to human use, including the availability of simplified radiosynthesis. Several studies have indicated advantageous biodistribution in the abdomen and pelvis with little renal excretion and bladder activity-characteristics beneficial for prostate cancer imaging. Studies have demonstrated improved lesion detection and diagnostic performance of 18F-fluciclovine in comparison with conventional imaging, especially for recurrent prostate cancer, although issues with nonspecific uptake limit the potential role of 18F-fluciclovine in the diagnosis of primary prostate cancer. Although work is ongoing, recently published intrapatient comparisons of 18F-fluciclovine with 11C-choline reported higher overall diagnostic performance of the former, especially for the detection of disease relapse. This review is aimed at providing a detailed overview of amino acid-derived PET compounds that have been studied for use in prostate cancer imaging.
Collapse
Affiliation(s)
- David M Schuster
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia; and
| | - Cristina Nanni
- Department of Nuclear Medicine, Policlinico S. Orsola, University of Bologna, Bologna, Italy
| | - Stefano Fanti
- Department of Nuclear Medicine, Policlinico S. Orsola, University of Bologna, Bologna, Italy
| |
Collapse
|
26
|
Fasting Enhances the Contrast of Bone Metastatic Lesions in 18F-Fluciclovine-PET: Preclinical Study Using a Rat Model of Mixed Osteolytic/Osteoblastic Bone Metastases. Int J Mol Sci 2017; 18:ijms18050934. [PMID: 28468238 PMCID: PMC5454847 DOI: 10.3390/ijms18050934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/21/2017] [Accepted: 04/26/2017] [Indexed: 12/21/2022] Open
Abstract
18F-fluciclovine (trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid) is an amino acid positron emission tomography (PET) tracer used for cancer staging (e.g., prostate and breast). Patients scheduled to undergo amino acid-PET are usually required to fast before PET tracer administration. However, there have been no reports addressing whether fasting improves fluciclovine-PET imaging. In this study, the authors investigated the influence of fasting on fluciclovine-PET using triple-tracer autoradiography with 14C-fluciclovine, [5,6-3H]-2-fluoro-2-deoxy-d-glucose (3H-FDG), and 99mTc-hydroxymethylene diphosphonate (99mTc-HMDP) in a rat breast cancer model of mixed osteolytic/osteoblastic bone metastases in which the animals fasted overnight. Lesion accumulation of each tracer was evaluated using the target-to-background (muscle) ratio. The mean ratios of 14C-fluciclovine in osteolytic lesions were 4.6 ± 0.8 and 2.8 ± 0.6, respectively, with and without fasting, while those for 3H-FDG were 6.9 ± 2.5 and 5.1 ± 2.0, respectively. In the peri-tumor bone formation regions (osteoblastic), where 99mTc-HMDP accumulated, the ratios of 14C-fluciclovine were 4.3 ± 1.4 and 2.4 ± 0.7, respectively, and those of 3H-FDG were 6.2 ± 3.8 and 3.3 ± 2.2, respectively, with and without fasting. These results suggest that fasting before 18F-fluciclovine-PET improves the contrast between osteolytic and osteoblastic bone metastatic lesions and background, as well as 18F-FDG-PET.
Collapse
|
27
|
Abstract
Prostate cancer is the most common cancer and the second leading cause of cancer death in men in the United States. Despite high disease prevalence, diagnosis and surveillance of the disease with conventional imaging are limited typically because of indolent biology. Functional imaging with advanced molecular techniques improves the ability to detect disease. Amino acids are building blocks of proteins, and intracellular transport of amino acids is upregulated in prostate cancer. This review provides a detailed overview of the use of F-18 fluciclovine PET in prostate cancer imaging.
Collapse
|
28
|
Abstract
Conventional anatomical imaging with CT and MRI has limitations in the evaluation of prostate cancer. PET is a powerful imaging technique, which can be directed toward molecular targets as diverse as glucose metabolism, density of prostate-specific membrane antigen receptors, and skeletal osteoblastic activity. Although 2-deoxy-2-18F-FDG-PET is the mainstay of molecular imaging, FDG has limitations in typically indolent prostate cancer. Yet, there are many useful and emerging PET tracers beyond FDG, which provide added value. These include radiotracers interrogating prostate cancer via molecular mechanisms related to the biology of choline, acetate, amino acids, bombesin, and dihydrotestosterone, among others. Choline is used for cell membrane synthesis and its metabolism is upregulated in prostate cancer. 11C-choline and 18F-choline are in wide clinical use outside the United States, and they have proven most beneficial for detection of recurrent prostate cancer. 11C-acetate is an indirect biomarker of fatty acid synthesis, which is also upregulated in prostate cancer. Imaging of prostate cancer with 11C-acetate is overall similar to the choline radiotracers yet is not as widely used. Upregulation of amino acid transport in prostate cancer provides the biologic basis for amino acid-based radiotracers. Most recent progress has been made with the nonnatural alicyclic amino acid analogue radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid (FACBC or fluciclovine) also proven most useful for the detection of recurrent prostate cancer. Other emerging PET radiotracers for prostate cancer include the bombesin group directed to the gastrin-releasing peptide receptor, 16β-18F-fluoro-5α-dihydrotestosterone (FDHT) that binds to the androgen receptor, and those targeting the vasoactive intestinal polypeptide receptor 1 (VPAC-1) and urokinase plasminogen activator receptor (uPAR), which are also overexpressed in prostate cancer.
Collapse
Affiliation(s)
- David M Schuster
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA.
| | - Cristina Nanni
- Department of Nuclear Medicine, Policlinico S. Orsola, University of Bologna, Bologna, Italy
| | - Stefano Fanti
- Department of Nuclear Medicine, Policlinico S. Orsola, University of Bologna, Bologna, Italy
| |
Collapse
|
29
|
Assessment of Amino Acid/Drug Transporters for Renal Transport of [ 18F]Fluciclovine (anti-[ 18F]FACBC) in Vitro. Int J Mol Sci 2016; 17:ijms17101730. [PMID: 27754421 PMCID: PMC5085761 DOI: 10.3390/ijms17101730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/14/2016] [Accepted: 10/08/2016] [Indexed: 01/19/2023] Open
Abstract
[18F]Fluciclovine (trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid; anti-[18F]FACBC), a positron emission tomography tracer used for the diagnosis of recurrent prostate cancer, is transported via amino acid transporters (AATs) with high affinity (Km: 97-230 μM). However, the mechanism underlying urinary excretion is unknown. In this study, we investigated the involvement of AATs and drug transporters in renal [18F]fluciclovine reuptake. [14C]Fluciclovine (trans-1-amino-3-fluoro[1-14C]cyclobutanecarboxylic acid) was used because of its long half-life. The involvement of AATs in [14C]fluciclovine transport was measured by apical-to-basal transport using an LLC-PK1 monolayer as model for renal proximal tubules. The contribution of drug transporters herein was assessed using vesicles/cells expressing the drug transporters P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), multidrug resistance-associated protein 4 (MRP4), organic anion transporter 1 (OAT1), organic anion transporter 3 (OAT3) , organic cation transporter 2 (OCT2), organic anion transporting polypeptide 1B1 (OATP1B1), and organic anion transporting polypeptide 1B3 (OATP1B3). The apical-to-basal transport of [14C]fluciclovine was attenuated by l-threonine, the substrate for system alanine-serine-cysteine (ASC) AATs. [14C]Fluciclovine uptake by drug transporter-expressing vesicles/cells was not significantly different from that of control vesicles/cells. Fluciclovine inhibited P-gp, MRP4, OAT1, OCT2, and OATP1B1 (IC50 > 2.95 mM). Therefore, system ASC AATs may be partly involved in the renal reuptake of [18F]fluciclovine. Further, given that [18F]fluciclovine is recognized as an inhibitor with millimolar affinity for the tested drug transporters, slow urinary excretion of [18F]fluciclovine may be mediated by system ASC AATs, but not by drug transporters.
Collapse
|
30
|
Moghanaki D, Turkbey B, Vapiwala N, Ehdaie B, Frank SJ, McLaughlin PW, Harisinghani M. Advances in Prostate Cancer Magnetic Resonance Imaging and Positron Emission Tomography-Computed Tomography for Staging and Radiotherapy Treatment Planning. Semin Radiat Oncol 2016; 27:21-33. [PMID: 27986208 DOI: 10.1016/j.semradonc.2016.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Conventional prostate cancer staging strategies have limited accuracy to define the location, grade, and burden of disease. Evaluations have historically relied upon prostate-specific antigen levels, digital rectal examinations, random systematic biopsies, computed tomography, pelvic lymphadenectomy, or 99mtechnetium methylene diphosphonate bone scans. Today, risk-stratification tools incorporate these data in a weighted format to guide management. However, the limitations and potential consequences of their uncertainties are well known. Inaccurate information may contribute to understaging and undertreatment, or overstaging and overtreatment. Meanwhile, advances in multiparametric magnetic resonance imaging (MRI), whole-body MRI, lymphotropic nanoparticle-enhanced MRI, and positron emission tomography are now available to improve the accuracy of risk stratification to facilitate more informed medical decisions. They also guide radiation oncologists to develop more accurate treatment plans. This review provides a primer to incorporate these advances into routine clinical workflow.
Collapse
Affiliation(s)
- Drew Moghanaki
- Radiation Oncology Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA; Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA.
| | - Baris Turkbey
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Neha Vapiwala
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Behfar Ehdaie
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Steven J Frank
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Mukesh Harisinghani
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
31
|
McConathy J. 18F-Fluciclovine (FACBC) and Its Potential Use for Breast Cancer Imaging. J Nucl Med 2016; 57:1329-30. [DOI: 10.2967/jnumed.116.175489] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 04/25/2016] [Indexed: 12/17/2022] Open
|
32
|
[14C]Fluciclovine (alias anti-[14C]FACBC) uptake and ASCT2 expression in castration-resistant prostate cancer cells. Nucl Med Biol 2015; 42:887-92. [DOI: 10.1016/j.nucmedbio.2015.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/13/2015] [Accepted: 07/13/2015] [Indexed: 11/22/2022]
|
33
|
Accumulation of trans-1-amino-3-[(18)F]fluorocyclobutanecarboxylic acid in prostate cancer due to androgen-induced expression of amino acid transporters. Mol Imaging Biol 2015; 16:756-64. [PMID: 24943499 DOI: 10.1007/s11307-014-0756-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Androgens play a crucial role in prostate cancer progression, and trans-1-amino-3-[(18)F]fluorocyclobutanecarboxylic acid (anti-[(18) F]FACBC) are used for visualization of prostate cancer. We examined the effect of androgen on the expression of amino acid transporters related to anti-[(18)F]FACBC transport and uptake of trans-1-amino-3-fluoro-[1-(14)C]cyclobutanecarboxylic acid (anti-[(14)C]FACBC). PROCEDURES Expression of amino acid transporters and uptake of anti-[(14)C]FACBC in androgen receptor (AR)-positive LNCaP and AR-negative DU145 human prostate cancer cells cultured with/without 5α-dihydrotestosterone (DHT) and the effect of bicalutamide, an AR antagonist, on DHT-associated changes were investigated. RESULTS DHT stimulated the expression of amino acid transporters ASCT2, SNAT5, 4F2 heavy chain, and LAT3 in LNCaP but not in DU145 cells. Anti-[(14)C]FACBC uptake was enhanced, in a DHT-dependent manner, in LNCaP cells only. CONCLUSIONS DHT enhanced the expression of ASCT2, the transporter responsible for anti-[(18)F]FACBC uptake, thereby increasing anti-[(14)C]FACBC uptake in AR-positive LNCaP cells. Androgen-mediated induction may contribute to the distinct anti-[(18)F]FACBC accumulation pattern in prostate cancer.
Collapse
|
34
|
Hardwick LJA, Philpott A. An oncologist׳s friend: How Xenopus contributes to cancer research. Dev Biol 2015; 408:180-7. [PMID: 25704511 PMCID: PMC4684227 DOI: 10.1016/j.ydbio.2015.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/27/2015] [Accepted: 02/10/2015] [Indexed: 01/10/2023]
Abstract
One of the most striking features of the Xenopus system is the versatility in providing a unique range of both in vitro and in vivo models that are rapid, accessible and easily manipulated. Here we present an overview of the diverse contribution that Xenopus has made to advance our understanding of tumour biology and behaviour; a contribution that goes beyond the traditional view of Xenopus as a developmental model organism. From the utility of the egg and oocyte extract system to the use of whole embryos as developmental or induced tumour models, the Xenopus system has been fundamental to investigation of cell cycle mechanisms, cell metabolism, cell signalling and cell behaviour, and has allowed an increasing appreciation of the parallels between early development and the pathogenesis of tumour progression and metastasis. Although not the prototypical oncological model system, we propose that Xenopus is an adaptable and multifunctional tool in the oncologist׳s arsenal.
Collapse
Affiliation(s)
- Laura J A Hardwick
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK.
| |
Collapse
|
35
|
Oka S, Okudaira H, Ono M, Schuster DM, Goodman MM, Kawai K, Shirakami Y. Differences in transport mechanisms of trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid in inflammation, prostate cancer, and glioma cells: comparison with L-[methyl-11C]methionine and 2-deoxy-2-[18F]fluoro-D-glucose. Mol Imaging Biol 2015; 16:322-9. [PMID: 24136390 DOI: 10.1007/s11307-013-0693-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE We aimed to elucidate trans-1-amino-3-[(18)F]fluorocyclobutanecarboxylic acid (anti-[(18)F]FACBC) uptake mechanisms in inflammatory and tumor cells, in comparison with those of L-[methyl-(11)C]methionine ([(11)C]Met) and 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG). PROCEDURES Using carbon-14-labeled tracers, in vitro time-course, pH dependence, and competitive inhibition uptake experiments were performed in rat inflammatory (T cells, B cells, granulocytes, macrophages), prostate cancer (MLLB2), and glioma (C6) cells. RESULTS Anti-[(14)C]FACBC uptake ratios of T/B cells to tumor cells were comparable, while those of granulocytes/macrophages to tumor cells were lower than those for [(14)C]FDG. Over half of anti-[(14)C]FACBC uptake by T/B and tumor cells was mediated by Na(+)-dependent amino acid transporters (system ASC), whereas most [(14)C]Met transport in all cells was mediated by Na(+)-independent carriers (system L). CONCLUSIONS The low anti-[(18)F]FACBC accumulation in granulocytes/macrophages may be advantageous in discriminating inflamed regions from tumors. The significant anti-[(18)F]FACBC uptake in T/B cells may cause false-positives in some cancer patients who undergo FACBC-positron emission tomography (PET).
Collapse
Affiliation(s)
- Shuntaro Oka
- Research Center, Nihon Medi-Physics Co., Ltd, Chiba, Japan,
| | | | | | | | | | | | | |
Collapse
|
36
|
Schuster DM, Nanni C, Fanti S, Oka S, Okudaira H, Inoue Y, Sörensen J, Owenius R, Choyke P, Turkbey B, Bogsrud TV, Bach-Gansmo T, Halkar RK, Nye JA, Odewole OA, Savir-Baruch B, Goodman MM. Anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid: physiologic uptake patterns, incidental findings, and variants that may simulate disease. J Nucl Med 2014; 55:1986-92. [PMID: 25453047 DOI: 10.2967/jnumed.114.143628] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Anti-1-amino-3-(18)F-fluorocyclobutane-1-carboxylic acid ((18)F-FACBC) is a synthetic amino acid analog PET radiotracer undergoing clinical trials for the evaluation of prostate and other cancers. We aimed to describe common physiologic uptake patterns, incidental findings, and variants in patients who had undergone (18)F-FACBC PET. METHODS Sixteen clinical trials involving 611 (18)F-FACBC studies from 6 centers, which included dosimetry studies on 12 healthy volunteers, were reviewed. Qualitative observations of common physiologic patterns, incidental uptake, and variants that could simulate disease were recorded and compared with similar observations in studies of the healthy volunteers. Quantitative analysis of select data and review of prior published reports and observations were also made. RESULTS The liver and pancreas demonstrated the most intense uptake. Moderate salivary and pituitary uptake and variable mild to moderate bowel activity were commonly visualized. Moderate bone marrow and mild muscle activity were present on early images, with marrow activity decreasing and muscle activity increasing with time. Brain and lungs demonstrated activity less than blood pool. Though (18)F-FACBC exhibited little renal excretion or bladder uptake during the clinically useful early imaging time window, mild to moderate activity might accumulate in the bladder and interfere with evaluation of adjacent prostate bed and seminal vesicles in 5%-10% of patients. Uptake might also occur from benign processes such as infection, inflammation, prostatic hyperplasia, and metabolically active benign bone lesions such as osteoid osteoma. CONCLUSION Common physiologic uptake patterns were similar to those noted in healthy volunteers. The activity in organs followed the presence of amino acid transport and metabolism described with other amino acid-based PET radiotracers. As with other PET radiotracers such as (18)F-FDG, focal nonphysiologic uptake may represent incidental malignancy. Uptake due to benign etiologies distinct from physiologic background also occurred and could lead to misinterpretations if the reader is unaware of them.
Collapse
Affiliation(s)
- David M Schuster
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Cristina Nanni
- Department of Nuclear Medicine, Policlinico S. Orsola, University of Bologna, Bologna, Italy
| | - Stefano Fanti
- Department of Nuclear Medicine, Policlinico S. Orsola, University of Bologna, Bologna, Italy
| | - Shuntaro Oka
- Research Center, Nihon Medi-Physics Co., Ltd., Chiba, Japan
| | | | - Yusuke Inoue
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Kitasato, Japan
| | - Jens Sörensen
- Department of Radiology, Oncology and Radiation Sciences, Uppsala University, Uppsala, Sweden
| | - Rikard Owenius
- GE Healthcare, Life Sciences, Imaging R&D, Uppsala, Sweden
| | - Peter Choyke
- Molecular Imaging Program, National Cancer Institute, Bethesda, Maryland
| | - Baris Turkbey
- Molecular Imaging Program, National Cancer Institute, Bethesda, Maryland
| | - Trond V Bogsrud
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway; and Department of Nuclear Medicine and PET-Center, Aarhus University Hospital, Aarhus, Denmark
| | - Tore Bach-Gansmo
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway; and
| | - Raghuveer K Halkar
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Oluwaseun A Odewole
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Bital Savir-Baruch
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Mark M Goodman
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| |
Collapse
|
37
|
Wu Z, Zha Z, Li G, Lieberman BP, Choi SR, Ploessl K, Kung HF. [(18)F](2S,4S)-4-(3-Fluoropropyl)glutamine as a tumor imaging agent. Mol Pharm 2014; 11:3852-66. [PMID: 25095908 PMCID: PMC4224545 DOI: 10.1021/mp500236y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
Although
the growth and proliferation of most tumors is fueled
by glucose, some tumors are more likely to metabolize glutamine. In
particular, tumor cells with the upregulated c-Myc gene are generally
reprogrammed to utilize glutamine. We have developed new 3-fluoropropyl
analogs of glutamine, namely [18F](2S,4R)- and [18F](2S,4S)-4-(3-fluoropropyl)glutamine, 3 and 4,
to be used as probes for studying glutamine metabolism in these tumor
cells. Optically pure isomers labeled with 18F and 19F (2S,4S) and (2S,4R)-4-(3-fluoropropyl)glutamine were synthesized via
different routes and isolated in high radiochemical purity (≥95%).
Cell uptake studies of both isomers showed that they were taken up
efficiently by 9L tumor cells with a steady increase over a time frame
of 120 min. At 120 min, their uptake was approximately two times higher
than that of l-[3H]glutamine ([3H]Gln).
These in vitro cell uptake studies suggested that the new probes are
potential tumor imaging agents. Yet, the lower chemical yield of the
precursor for 3, as well as the low radiochemical yield
for 3, limits the availability of [18F](2S,4R)-4-(3-fluoropropyl)glutamine, 3. We, therefore, focused on [18F](2S,4S)-4-(3-fluoropropyl)glutamine, 4. The in vitro cell uptake studies suggested that the new probe,
[18F](2S,4S)-4-(3-fluoropropyl)glutamine, 4, is most sensitive to the LAT transport system, followed
by System N and ASC transporters. A dual-isotope experiment using l-[3H]glutamine and the new probe showed that the
uptake of [3H]Gln into 9L cells was highly associated with
macromolecules (>90%), whereas the [18F](2S,4S)-4-(3-fluoropropyl)glutamine, 4, was not (<10%). This suggests a different mechanism of retention.
In vivo PET imaging studies demonstrated tumor-specific uptake in
rats bearing 9L xenographs with an excellent tumor to muscle ratio
(maximum of ∼8 at 40 min). [18F](2S,4S)-4-(3-fluoropropyl)glutamine, 4, may be useful for testing tumors that may metabolize glutamine
related amino acids.
Collapse
Affiliation(s)
- Zehui Wu
- Departments of Radiology and ‡Pharmacology, University of Pennsylvania , 3700 Market Street, Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | | | | | |
Collapse
|
38
|
Comparison of trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid (anti-[18F]FACBC) accumulation in lymph node prostate cancer metastasis and lymphadenitis in rats. Nucl Med Biol 2014; 41:545-51. [DOI: 10.1016/j.nucmedbio.2014.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 02/02/2023]
|
39
|
Müller A, Chiotellis A, Keller C, Ametamey SM, Schibli R, Mu L, Krämer SD. Imaging Tumour ATB0,+ Transport Activity by PET with the Cationic Amino Acid O-2((2-[18F]fluoroethyl)methyl-amino)ethyltyrosine. Mol Imaging Biol 2013; 16:412-20. [DOI: 10.1007/s11307-013-0711-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/03/2013] [Accepted: 11/22/2013] [Indexed: 11/28/2022]
|
40
|
Abstract
Molecular imaging is paving the way for precision and personalized medicine. In view of the significant biologic and clinical heterogeneity of prostate cancer, molecular imaging is expected to play an important role in the evaluation of this prevalent disease. The natural history of prostate cancer spans from an indolent localized process to biochemical relapse after radical treatment with curative intent to a lethal castrate-resistant metastatic disease. The ongoing unraveling of the complex tumor biology of prostate cancer uniquely positions molecular imaging with PET to contribute significantly to every clinical phase of prostate cancer evaluation. The purpose of this article was to provide a concise review of the current state of affairs and potential future developments in the diagnostic utility of PET in prostate cancer.
Collapse
|
41
|
Ono M, Oka S, Okudaira H, Schuster DM, Goodman MM, Kawai K, Shirakami Y. Comparative evaluation of transport mechanisms of trans-1-amino-3-[¹⁸F]fluorocyclobutanecarboxylic acid and L-[methyl-¹¹C]methionine in human glioma cell lines. Brain Res 2013; 1535:24-37. [PMID: 23994214 DOI: 10.1016/j.brainres.2013.08.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/08/2013] [Accepted: 08/21/2013] [Indexed: 12/01/2022]
Abstract
Positron emission tomography (PET) with amino acid tracers is useful for the visualization and assessment of therapeutic effects on gliomas. Our purpose is to elucidate the transport mechanisms of trans-1-amino-3-[¹⁸F]fluorocyclobutanecarboxylic acid (anti-[¹⁸F]FACBC) and L-[methyl-¹¹C]methionine ([¹¹C]Met) in normal human astrocytes (NHA), low-grade (Hs683, SW1088), and high-grade (U87MG, T98G) human glioma cell lines. Because the short half-lives of fluorine-18 and carbon-11 are inconvenient for in vitro experiments, trans-1-amino-3-fluoro[1-¹⁴C]cyclobutanecarboxylic acid (anti-[¹⁴C]FACBC) and L-[methyl-¹⁴C]methionine ([¹⁴C]Met) were used instead of the PET tracers. Time-course uptake experiments showed that uptake of anti-[¹⁴C]FACBC was 1.4-2.6 times higher than that of [¹⁴C]Met in NHA and low-grade glioma cells, and was almost equal to that of [¹⁴C]Met in high-grade glioma cells. To identify the amino acid transporters (AATs) involved in the transport of anti-[¹⁴C]FACBC and [¹⁴C]Met, we carried out competitive inhibition experiments using synthetic/naturally-occurring amino acids as inhibitors. We found that anti-[¹⁴C]FACBC uptake in the presence of Na⁺ was strongly inhibited by L-glutamine and L-serine (the substrates for ASC system AATs), whereas L-phenylalanine and 2-amino-bicyclo[2,2,1]heptane-2-carboxylic acid (BCH, the substrates for L system AATs) robustly inhibited Na⁺-independent anti-[¹⁴C]FACBC uptake. Regardless of Na⁺, [¹⁴C]Met uptake was inhibited strongly by L-phenylalanine and BCH. Moreover, the exchange transport activity of L-glutamine for anti-[¹⁴C]FACBC was stronger than that of BCH in the presence of Na⁺, whereas that for [¹⁴C]Met was almost equal to BCH. These results demonstrate that ASC and L are important transport systems for anti-[¹⁸F]FACBC uptake, while system L is predominantly involved in [¹¹C]Met transport in human astrocytes and glioma cells.
Collapse
Affiliation(s)
- Masahiro Ono
- Research Center, Nihon Medi-Physics Co., Ltd., Chiba 299-0266, Japan; Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Ishikawa 920-0942, Japan
| | | | | | | | | | | | | |
Collapse
|