1
|
Zhou D, Chu W, Xu J, Schwarz S, Katzenellenbogen JA. [ 18F]Tosyl fluoride as a versatile [ 18F]fluoride source for the preparation of 18F-labeled radiopharmaceuticals. Sci Rep 2023; 13:3182. [PMID: 36823435 PMCID: PMC9950486 DOI: 10.1038/s41598-023-30200-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Positron emission tomography (PET) is an in vivo imaging technology that utilizes positron-emitting radioisotope-labeled compounds as PET radiotracers that are commonly used in clinic and in various research areas, including oncology, cardiology, and neurology. Fluorine-18 is the most widely used PET-radionuclide and commonly produced by proton bombardment of 18O-enriched water in a cyclotron. The [18F]fluoride thus obtained generally requires processing by azeotropic drying in order to completely remove H2O before it can be used for nucleophilic radiofluorination. In general, the drying step is important in facilitating the radiofluorination reactions and the preparation of 18F-labeled PET radiotracers. In this communication, we have demonstrated the feasibility of using [18F]tosyl fluoride ([18F]TsF) as a versatile [18F]fluoride source for radiofluorination to bypass the azeotropic drying step, and we have developed a continuous flow solid-phase radiosynthesis strategy to generate [18F]TsF in a form that is excellent for radiofluorination. [18F]TsF shows high reactivity in radiofluorination and provides the features suitable for preparing PET radiotracers on a small scale and exploring novel radiolabeling technologies. Thus, using [18F]TsF as a [18F]fluoride source is a promising strategy that facilitates radiofluorination and provides a convenient and efficient solution for the preparation of 18F-labeled radiopharmaceuticals that is well matched to the emerging trends in PET imaging technologies.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Radiology, School of Medicine, Washington University in Saint Louis, 510 S. Kingshighway Blvd, Saint Louis, MO, 63110, USA.
| | - Wenhua Chu
- Department of Radiology, School of Medicine, Washington University in Saint Louis, 510 S. Kingshighway Blvd, Saint Louis, MO, 63110, USA
| | - Jinbin Xu
- Department of Radiology, School of Medicine, Washington University in Saint Louis, 510 S. Kingshighway Blvd, Saint Louis, MO, 63110, USA
| | - Sally Schwarz
- Department of Radiology, School of Medicine, Washington University in Saint Louis, 510 S. Kingshighway Blvd, Saint Louis, MO, 63110, USA
| | - John A Katzenellenbogen
- Department of Chemistry and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| |
Collapse
|
2
|
Singh P, kumari N, Kaul A, Srivastava A, Singh VK, Srivastava K, Tiwari AK. Acetamidobenzoxazolone conjugated DOTA system for assessing 18 kDa translocator protein during pulmonary inflammation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
3
|
Martinez-Orengo N, Tahmazian S, Lai J, Wang Z, Sinharay S, Schreiber-Stainthorp W, Basuli F, Maric D, Reid W, Shah S, Hammoud DA. Assessing organ-level immunoreactivity in a rat model of sepsis using TSPO PET imaging. Front Immunol 2022; 13:1010263. [PMID: 36439175 PMCID: PMC9685400 DOI: 10.3389/fimmu.2022.1010263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
There is current need for new approaches to assess/measure organ-level immunoreactivity and ensuing dysfunction in systemic inflammatory response syndrome (SIRS) and sepsis, in order to protect or recover organ function. Using a rat model of systemic sterile inflammatory shock (intravenous LPS administration), we performed PET imaging with a translocator protein (TSPO) tracer, [18F]DPA-714, as a biomarker for reactive immunoreactive changes in the brain and peripheral organs. In vivo dynamic PET/CT scans showed increased [18F]DPA-714 binding in the brain, lungs, liver and bone marrow, 4 hours after LPS injection. Post-LPS mean standard uptake values (SUVmean) at equilibrium were significantly higher in those organs compared to baseline. Changes in spleen [18F]DPA-714 binding were variable but generally decreased after LPS. SUVmean values in all organs, except the spleen, positively correlated with several serum cytokines/chemokines. In vitro measures of TSPO expression and immunofluorescent staining validated the imaging results. Noninvasive molecular imaging with [18F]DPA-714 PET in a rat model of systemic sterile inflammatory shock, along with in vitro measures of TSPO expression, showed brain, liver and lung inflammation, spleen monocytic efflux/lymphocytic activation and suggested increased bone marrow hematopoiesis. TSPO PET imaging can potentially be used to quantify SIRS and sepsis-associated organ-level immunoreactivity and assess the effectiveness of therapeutic and preventative approaches for associated organ failures, in vivo.
Collapse
Affiliation(s)
- Neysha Martinez-Orengo
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Sarine Tahmazian
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Jianhao Lai
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Zeping Wang
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Sanhita Sinharay
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - William Schreiber-Stainthorp
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, United States
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - William Reid
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Swati Shah
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Dima A. Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Dima A. Hammoud,
| |
Collapse
|
4
|
Shah S, Sinharay S, Patel R, Solomon J, Lee JH, Schreiber-Stainthorp W, Basuli F, Zhang X, Hagen KR, Reeder R, Wakim P, Huzella LM, Maric D, Johnson RF, Hammoud DA. PET imaging of TSPO expression in immune cells can assess organ-level pathophysiology in high-consequence viral infections. Proc Natl Acad Sci U S A 2022; 119:e2110846119. [PMID: 35385353 PMCID: PMC9169664 DOI: 10.1073/pnas.2110846119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/10/2022] [Indexed: 01/08/2023] Open
Abstract
Ebola virus (EBOV) disease is characterized by lymphopenia, breach in vascular integrity, cytokine storm, and multiorgan failure. The pathophysiology of organ involvement, however, is incompletely understood. Using [18F]-DPA-714 positron emission tomography (PET) imaging targeting the translocator protein (TSPO), an immune cell marker, we sought to characterize the progression of EBOV-associated organ-level pathophysiology in the EBOV Rhesus macaque model. Dynamic [18F]-DPA-714 PET/computed tomography imaging was performed longitudinally at baseline and at multiple time points after EBOV inoculation, and distribution volumes (Vt) were calculated as a measure of peripheral TSPO binding. Using a mixed-effect linear regression model, spleen and lung Vt decreased, while the bone marrow Vt increased over time after infection. No clear trend was found for liver Vt. Multiple plasma cytokines correlated negatively with lung/spleen Vt and positively with bone marrow Vt. Multiplex immunofluorescence staining in spleen and lung sections confirmed organ-level lymphoid and monocytic loss/apoptosis, thus validating the imaging results. Our findings are consistent with EBOV-induced progressive monocytic and lymphocytic depletion in the spleen, rather than immune activation, as well as depletion of alveolar macrophages in the lungs, with inefficient reactive neutrophilic activation. Increased bone marrow Vt, on the other hand, suggests hematopoietic activation in response to systemic immune cell depletion and leukocytosis and could have prognostic relevance. In vivo PET imaging provided better understanding of organ-level pathophysiology during EBOV infection. A similar approach can be used to delineate the pathophysiology of other systemic infections and to evaluate the effectiveness of newly developed treatment and vaccine strategies.
Collapse
Affiliation(s)
- Swati Shah
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD 20892
| | - Sanhita Sinharay
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD 20892
| | - Reema Patel
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD 20892
| | - Jeffrey Solomon
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Ji Hyun Lee
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD 21702
| | | | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, MD 20824
| | - Xiang Zhang
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, MD 20824
| | - Katie R. Hagen
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD 21702
| | - Rebecca Reeder
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD 21702
| | - Paul Wakim
- Biostatistics and Clinical Epidemiology Service, Clinical Center, NIH, Bethesda, MD 20892
| | - Louis M. Huzella
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD 21702
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892
| | - Reed F. Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD 21702
| | - Dima A. Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD 20892
| |
Collapse
|
5
|
Zhang R, Chen DY, Luo XW, Yang Y, Zhang XC, Yang RH, Chen P, Shen ZQ, He B. Comprehensive Analysis of the Effect of 20( R)-Ginsenoside Rg3 on Stroke Recovery in Rats via the Integrative miRNA-mRNA Regulatory Network. Molecules 2022; 27:1573. [PMID: 35268674 PMCID: PMC8911624 DOI: 10.3390/molecules27051573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small, endogenous, noncoding RNAs. Recent research has proven that miRNAs play an essential role in the occurrence and development of ischemic stroke. Our previous studies confirmed that 20(R)-ginsenosideRg3 [20(R)-Rg3] exerts beneficial effects on cerebral ischemia-reperfusion injury (CIRI), but its molecular mechanism has not been elucidated. In this study, we used high-throughput sequencing to investigate the differentially expressed miRNA and mRNA expression profiles of 20(R)-Rg3 preconditioning to ameliorate CIRI injury in rats and to reveal its potential neuroprotective molecular mechanism. The results show that 20(R)-Rg3 alleviated neurobehavioral dysfunction in MCAO/R-treated rats. Among these mRNAs, 953 mRNAs were significantly upregulated and 2602 mRNAs were downregulated in the model group versus the sham group, whereas 437 mRNAs were significantly upregulated and 35 mRNAs were downregulated in the 20(R)-Rg3 group in contrast with those in the model group. Meanwhile, the expression profile of the miRNAs showed that a total of 283 differentially expressed miRNAs were identified, of which 142 miRNAs were significantly upregulated and 141 miRNAs were downregulated in the model group compared with the sham group, whereas 34 miRNAs were differentially expressed in the 20(R)-Rg3 treatment group compared with the model group, with 28 miRNAs being significantly upregulated and six miRNAs being significantly downregulated. Furthermore, 415 (391 upregulated and 24 downregulated) differentially expressed mRNAs and 22 (17 upregulated and 5 downregulated) differentially expressed miRNAs were identified to be related to 20(R)-Rg3's neuroprotective effect on stroke recovery. The Kyoto Encyclopedia of Genes and Genomes (KEGG) results showed that 20(R)-Rg3 could modulate multiple signaling pathways related to these differential miRNAs, such as the cGMP-PKG, cAMP and MAPK signaling pathways. This study provides new insights into the protective mechanism of 20(R)-Rg3 against CIRI, and the mechanism may be partly associated with the regulation of brain miRNA expression and its target signaling pathways.
Collapse
Affiliation(s)
- Rui Zhang
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China; (R.Z.); (X.-W.L.); (Y.Y.); (X.-C.Z.); (R.-H.Y.)
| | - De-Yun Chen
- Faculty of Food, Drugs and Health, Yunnan Vocational and Technical College of Agriculture, Kunming 650212, China;
| | - Xing-Wei Luo
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China; (R.Z.); (X.-W.L.); (Y.Y.); (X.-C.Z.); (R.-H.Y.)
| | - Yuan Yang
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China; (R.Z.); (X.-W.L.); (Y.Y.); (X.-C.Z.); (R.-H.Y.)
| | - Xiao-Chao Zhang
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China; (R.Z.); (X.-W.L.); (Y.Y.); (X.-C.Z.); (R.-H.Y.)
| | - Ren-Hua Yang
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China; (R.Z.); (X.-W.L.); (Y.Y.); (X.-C.Z.); (R.-H.Y.)
| | - Peng Chen
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China; (R.Z.); (X.-W.L.); (Y.Y.); (X.-C.Z.); (R.-H.Y.)
| | - Zhi-Qiang Shen
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China; (R.Z.); (X.-W.L.); (Y.Y.); (X.-C.Z.); (R.-H.Y.)
| | - Bo He
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China; (R.Z.); (X.-W.L.); (Y.Y.); (X.-C.Z.); (R.-H.Y.)
| |
Collapse
|
6
|
Direct Comparison of [ 18F]F-DPA with [ 18F]DPA-714 and [ 11C]PBR28 for Neuroinflammation Imaging in the same Alzheimer's Disease Model Mice and Healthy Controls. Mol Imaging Biol 2021; 24:157-166. [PMID: 34542805 PMCID: PMC8760190 DOI: 10.1007/s11307-021-01646-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/22/2021] [Accepted: 08/23/2021] [Indexed: 11/02/2022]
Abstract
PURPOSE In this study we compared the recently developed TSPO tracer [18F]F-DPA, with [18F]DPA-714 and [11C]PBR28 by performing in vivo PET imaging on the same Alzheimer's disease mouse model APP/PS1-21 (TG) and wild-type (WT) mice with all three radiotracers. PROCEDURES To compare the radiotracer uptake, percentage of injected dose/mL (%ID/mL), standardized uptake value ratios to cerebellum (SUVRCB), and voxel-wise analyses were performed. RESULTS The peak uptake of [18F]F-DPA was higher than 4.3% ID/mL, while [18F]DPA-714 reached just over 3% ID/mL, and [11C]PBR28 was over 4% ID/mL in only one brain region in the WT mice. The peak/60-min uptake ratios of [18F]F-DPA were significantly higher (p < 0.001) than those of [18F]DPA-714 and [11C]PBR28. The differences in [18F]F-DPA SUVRCB between WT and TG mice were highly significant (p < 0.001) in the three studied time periods after injection. [18F]DPA-714 uptake was significantly higher in TG mice starting in the 20-40-min timeframe and increased thereafter, whereas [11C]PBR28 uptake became significant at 10-20 min (p < 0.05). The voxel-wise analysis confirmed the differences between the radiotracers. CONCLUSIONS [18F]F-DPA displays higher brain uptake, higher TG-to-WT SUVRCB ratios, and faster clearance than [18F]DPA-714 and [11C]PBR28, and could prove useful for detecting low levels of inflammation and allow for shorter dynamic PET scans.
Collapse
|
7
|
Cybulska KA, Bloemers V, Perk LR, Laverman P. Optimised GMP-compliant production of [ 18F]DPA-714 on the Trasis AllinOne module. EJNMMI Radiopharm Chem 2021; 6:20. [PMID: 34037896 PMCID: PMC8155128 DOI: 10.1186/s41181-021-00133-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/09/2021] [Indexed: 11/12/2022] Open
Abstract
Background The translocator protein 18 kDa is recognised as an important biomarker for neuroinflammation due to its soaring expression in microglia. This process is common for various neurological disorders. DPA-714 is a potent TSPO-specific ligand which found its use in Positron Emission Tomography following substitution of fluorine-19 with fluorine-18, a positron-emitting radionuclide. [18F]DPA-714 enables visualisation of inflammatory processes in vivo non-invasively. Radiolabelling of this tracer is well described in literature, including validation for clinical use. Here, we report significant enhancements to the process which resulted in the design of a fully GMP-compliant robust synthesis of [18F]DPA-714 on a popular cassette-based system, Trasis AllinOne, boosting reliability, throughput, and introducing a significant degree of simplicity. Results [18F]DPA-714 was synthesised using the classic nucleophilic aliphatic substitution on a good leaving group, tosylate, with [18F]fluoride using tetraethylammonium bicarbonate in acetonitrile at 100∘C. The process was fully automated on a Trasis AllinOne synthesiser using an in-house designed cassette and sequence. With a relatively small precursor load of 4 mg, [18F]DPA-714 was obtained with consistently high radiochemical yields of 55-71% (n=6) and molar activities of 117-350 GBq/µmol at end of synthesis. With a single production batch, starting with 31-42 GBq of [18F]fluoride, between 13-20 GBq of the tracer can be produced, enabling multi-centre studies. Conclusion To the best of our knowledge, the process presented herein is the most efficient [18F]DPA-714 synthesis, with advantageous GMP compliance. The use of a Trasis AllinOne synthesiser increases reliability and allows rapid training of production staff.
Collapse
Affiliation(s)
- Klaudia A Cybulska
- Radboud Translational Medicine B.V., Geert Grooteplein 21, Nijmegen, 6525 EZ, Netherlands. .,Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein 10, Nijmegen, 6525 GA, Netherlands.
| | - Vera Bloemers
- Radboud Translational Medicine B.V., Geert Grooteplein 21, Nijmegen, 6525 EZ, Netherlands
| | - Lars R Perk
- Radboud Translational Medicine B.V., Geert Grooteplein 21, Nijmegen, 6525 EZ, Netherlands
| | - Peter Laverman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein 10, Nijmegen, 6525 GA, Netherlands
| |
Collapse
|
8
|
Kimm MA, Klenk C, Alunni-Fabbroni M, Kästle S, Stechele M, Ricke J, Eisenblätter M, Wildgruber M. Tumor-Associated Macrophages-Implications for Molecular Oncology and Imaging. Biomedicines 2021; 9:biomedicines9040374. [PMID: 33918295 PMCID: PMC8066018 DOI: 10.3390/biomedicines9040374] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Tumor-associated macrophages (TAMs) represent the largest group of leukocytes within the tumor microenvironment (TME) of solid tumors and orchestrate the composition of anti- as well as pro-tumorigenic factors. This makes TAMs an excellent target for novel cancer therapies. The plasticity of TAMs resulting in varying membrane receptors and expression of intracellular proteins allow the specific characterization of different subsets of TAMs. Those markers similarly allow tracking of TAMs by different means of molecular imaging. This review aims to provides an overview of the origin of tumor-associated macrophages, their polarization in different subtypes, and how characteristic markers of the subtypes can be used as targets for molecular imaging and theranostic approaches.
Collapse
Affiliation(s)
- Melanie A. Kimm
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Christopher Klenk
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Marianna Alunni-Fabbroni
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Sophia Kästle
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Matthias Stechele
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
| | - Michel Eisenblätter
- Department of Diagnostic and Interventional Radiology, Freiburg University Hospital, 79106 Freiburg, Germany;
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.A.K.); (C.K.); (M.A.-F.); (S.K.); (M.S.); (J.R.)
- Correspondence: ; Tel.: +49-0-89-4400-76640
| |
Collapse
|
9
|
Coda AR, Anzilotti S, Boscia F, Greco A, Panico M, Gargiulo S, Gramanzini M, Zannetti A, Albanese S, Pignataro G, Annunziato L, Salvatore M, Brunetti A, De Berardinis P, Quarantelli M, Palma G, Pappatà S. In vivo imaging of CNS microglial activation/macrophage infiltration with combined [ 18F]DPA-714-PET and SPIO-MRI in a mouse model of relapsing remitting experimental autoimmune encephalomyelitis. Eur J Nucl Med Mol Imaging 2020; 48:40-52. [PMID: 32378022 PMCID: PMC7835304 DOI: 10.1007/s00259-020-04842-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 04/27/2020] [Indexed: 12/26/2022]
Abstract
Purpose To evaluate the feasibility and sensitivity of multimodality PET/CT and MRI imaging for non-invasive characterization of brain microglial/macrophage activation occurring during the acute phase in a mouse model of relapsing remitting multiple sclerosis (RR-MS) using [18F]DPA-714, a selective radioligand for the 18-kDa translocator protein (TSPO), superparamagnetic iron oxide particles (SPIO), and ex vivo immunohistochemistry. Methods Experimental autoimmune encephalomyelitis (EAE) was induced in female SJL/J mice by immunization with PLP139–151. Seven symptomatic EAE mice and five controls underwent both PET/CT and MRI studies between 11 and 14 days post-immunization. SPIO was injected i.v. in the same animals immediately after [18F]DPA-714 and MRI acquisition was performed after 24 h. Regional brain volumes were defined according to a mouse brain atlas on co-registered PET and SPIO-MRI images. [18F]DPA-714 standardized uptake value (SUV) ratios (SUVR), with unaffected neocortex as reference, and SPIO fractional volumes (SPIO-Vol) were generated. Both SUVR and SPIO-Vol values were correlated with the clinical score (CS) and among them. Five EAE and four control mice underwent immunohistochemical analysis with the aim of identifying activated microglia/macrophage and TSPO expressions. Results SUVR and SPIO-Vol values were significantly increased in EAE compared with controls in the hippocampus (p < 0.01; p < 0.02, respectively), thalamus (p < 0.02; p < 0.05, respectively), and cerebellum and brainstem (p < 0.02), while only SPIO-Vol was significantly increased in the caudate/putamen (p < 0.05). Both SUVR and SPIO-Vol values were positively significantly correlated with CS and among them in the same regions. TSPO/Iba1 and F4/80/Prussian blue staining immunohistochemistry suggests that increased activated microglia/macrophages underlay TSPO expression and SPIO uptake in symptomatic EAE mice. Conclusions These preliminary results suggest that both activated microglia and infiltrated macrophages are present in vulnerable brain regions during the acute phase of PLP-EAE and contribute to disease severity. Both [18F]DPA-714-PET and SPIO-MRI appear suitable modalities for preclinical study of neuroinflammation in MS mice models.
Collapse
Affiliation(s)
- A R Coda
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy
| | - S Anzilotti
- IRCCS SDN, Via E. Gianturco 113, 80143, Naples, Italy
| | - F Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, University "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - A Greco
- Department of Advanced Biomedical Sciences, University "Federico II", Via S. Pansini 5, 80131, Naples, Italy
- Ceinge Biotecnologie Avanzate s. c. a. r. l., Via G. Salvatore 486, 80145, Naples, Italy
| | - M Panico
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy
| | - S Gargiulo
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy
| | - M Gramanzini
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy
| | - A Zannetti
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy
| | - S Albanese
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy
| | - G Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, University "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - L Annunziato
- IRCCS SDN, Via E. Gianturco 113, 80143, Naples, Italy
| | - M Salvatore
- IRCCS SDN, Via E. Gianturco 113, 80143, Naples, Italy
| | - A Brunetti
- Department of Advanced Biomedical Sciences, University "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - P De Berardinis
- Institute of Biochemistry and Cell Biology, National Research Council, Via P. Castellino 111, 80131, Naples, Italy
| | - Mario Quarantelli
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy.
| | - G Palma
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy
| | - Sabina Pappatà
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy.
| |
Collapse
|
10
|
Longitudinal mouse-PET imaging: a reliable method for estimating binding parameters without a reference region or blood sampling. Eur J Nucl Med Mol Imaging 2020; 47:2589-2601. [PMID: 32211931 PMCID: PMC7515949 DOI: 10.1007/s00259-020-04755-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/03/2020] [Indexed: 01/06/2023]
Abstract
Abstract Longitudinal mouse PET imaging is becoming increasingly popular due to the large number of transgenic and disease models available but faces challenges. These challenges are related to the small size of the mouse brain and the limited spatial resolution of microPET scanners, along with the small blood volume making arterial blood sampling challenging and impossible for longitudinal studies. The ability to extract an input function directly from the image would be useful for quantification in longitudinal small animal studies where there is no true reference region available such as TSPO imaging. Methods Using dynamic, whole-body 18F-DPA-714 PET scans (60 min) in a mouse model of hippocampal sclerosis, we applied a factor analysis (FA) approach to extract an image-derived input function (IDIF). This mouse-specific IDIF was then used for 4D-resolution recovery and denoising (4D-RRD) that outputs a dynamic image with better spatial resolution and noise properties, and a map of the total volume of distribution (VT) was obtained using a basis function approach in a total of 9 mice with 4 longitudinal PET scans each. We also calculated percent injected dose (%ID) with and without 4D-RRD. The VT and %ID parameters were compared to quantified ex vivo autoradiography using regional correlations of the specific binding from autoradiography against VT and %ID parameters. Results The peaks of the IDIFs were strongly correlated with the injected dose (Pearson R = 0.79). The regional correlations between the %ID estimates and autoradiography were R = 0.53 without 4D-RRD and 0.72 with 4D-RRD over all mice and scans. The regional correlations between the VT estimates and autoradiography were R = 0.66 without 4D-RRD and 0.79 with application of 4D-RRD over all mice and scans. Conclusion We present a FA approach for IDIF extraction which is robust, reproducible and can be used in quantification methods for resolution recovery, denoising and parameter estimation. We demonstrated that the proposed quantification method yields parameter estimates closer to ex vivo measurements than semi-quantitative methods such as %ID and is immune to tracer binding in tissue unlike reference tissue methods. This approach allows for accurate quantification in longitudinal PET studies in mice while avoiding repeated blood sampling. Electronic supplementary material The online version of this article (10.1007/s00259-020-04755-5) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Roviello GN, Oliviero G, Di Napoli A, Borbone N, Piccialli G. Synthesis, self-assembly-behavior and biomolecular recognition properties of thyminyl dipeptides. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
12
|
Srivastava P, Kakkar D, Kumar P, Tiwari AK. Modified benzoxazolone (ABO‐AA) based single photon emission computed tomography (SPECT) probes for 18 kDa translocator protein. Drug Dev Res 2019; 80:741-749. [DOI: 10.1002/ddr.21547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/09/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Pooja Srivastava
- Division of Cyclotron and Radiopharmaceutical SciencesInstitute of Nuclear Medicine and Allied Sciences Delhi India
- Molecular Neuroscience and Functional Genomic Laboratory, Department of BiotechnologyDelhi Technological University Delhi India
| | - Dipti Kakkar
- Division of Cyclotron and Radiopharmaceutical SciencesInstitute of Nuclear Medicine and Allied Sciences Delhi India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomic Laboratory, Department of BiotechnologyDelhi Technological University Delhi India
| | - Anjani Kumar Tiwari
- Division of Cyclotron and Radiopharmaceutical SciencesInstitute of Nuclear Medicine and Allied Sciences Delhi India
- Department of Chemistry, School of Physical & Decision Sciences (SPDS)Babasaheb Bhimrao Ambedkar Central University Lucknow UP India
| |
Collapse
|
13
|
(R)-[ 18F]NEBIFQUINIDE: A promising new PET tracer for TSPO imaging. Eur J Med Chem 2019; 176:410-418. [PMID: 31125895 DOI: 10.1016/j.ejmech.2019.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Positron emission tomography (PET) imaging of the 18 kDa translocator protein (TSPO), has a high diagnostic potential in neurodegenerative disorders and cancer. However, TSPO is considered a challenge for molecular imaging due to the poor availability of suitable radiotracers with adequate pharmacokinetic properties. Here, we describe the development of a radiofluorinated pyridinyl isoquinoline analogue of the established TSPO PET tracer (R)-[11C]PK11195 with improved binding properties in all known human TSPO phenotypes. We conducted a complete preclinical evaluation using in vitro, in vivo and ex vivo methods to assess the performance of this novel radiotracer and observed high specific binding of the radiotracer to TSPO, as well as high metabolic stability. Therefore, we propose this radiolabeled compound for further evaluation in animal models as well as in clinical trials.
Collapse
|
14
|
Benzodifurans for biomedical applications: BZ4, a selective anti-proliferative and anti-amyloid lead compound. Future Med Chem 2019; 11:285-302. [PMID: 30801198 DOI: 10.4155/fmc-2018-0473] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AIM Our goal is to evaluate benzodifuran-based scaffolds for biomedical applications. METHODOLOGY We here explored the anticancer and anti-amyloid activities of a novel compound (BZ4) in comparison with other known benzodifuran analogs, previously studied in our group, and we have explored its ability to interact with different DNA model systems. RESULTS BZ4 shows antiproliferative activity on different cancer cells; does not affect noncancerous control cells and alters the aggregation properties of β-amyloid, as ascertained by circular dichroism, fluorescence spectroscopy and scanning electron microscopy analysis. An overall, qualitative picture on the mechanistic aspects related to the biological activities is discussed in light of the dynamic light scattering, UV, circular dichroism and fluorescence data, as well as of the metal ion-binding properties of BZ4.
Collapse
|
15
|
Srivastava P, Kumari N, Kakkar D, Kaul A, Kumar P, Tiwari AK. Comparative evaluation of 99mTc-MBIP-X/11[C] MBMP for visualization of 18 kDa translocator protein. NEW J CHEM 2019. [DOI: 10.1039/c9nj00180h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An elevated translocator protein (18 kDa, TSPO) density is observed during inflammation in the brain and peripheral organs making it a viable target for imaging.
Collapse
Affiliation(s)
- Pooja Srivastava
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi 110054
- India
- Molecular Neuroscience and Functional Genomics Laboratory
| | - Neelam Kumari
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi 110054
- India
| | - Dipti Kakkar
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi 110054
- India
| | - Ankur Kaul
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi 110054
- India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| | - Anjani K. Tiwari
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi 110054
- India
- Department of Chemistry
| |
Collapse
|
16
|
Hosomi S, Watabe T, Mori Y, Koyama Y, Adachi S, Hoshi N, Ohnishi M, Ogura H, Yoshioka Y, Hatazawa J, Yamashita T, Shimazu T. Inflammatory projections after focal brain injury trigger neuronal network disruption: An 18F-DPA714 PET study in mice. NEUROIMAGE-CLINICAL 2018; 20:946-954. [PMID: 30312938 PMCID: PMC6178196 DOI: 10.1016/j.nicl.2018.09.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/05/2018] [Accepted: 09/28/2018] [Indexed: 11/12/2022]
Abstract
Due to the heterogeneous pathology of traumatic brain injury (TBI), the exact mechanism of how initial brain damage leads to chronic inflammation and its effects on the whole brain remain unclear. Here, we report on long-term neuroinflammation, remote from the initial injury site, even after subsiding of the original inflammatory response, in a focal TBI mouse model. The use of translocator protein-positron emission tomography in conjunction with specialised magnetic resonance imaging modalities enabled us to visualize “previously undetected areas” of spreading inflammation after focal cortical injury. These clinically available modalities further revealed the pathophysiology of thalamic neuronal degeneration occurring as resident microglia sense damage to corticothalamic neuronal tracts and become activated. The resulting microglial activation plays a major role in prolonged inflammatory processes, which are deleterious to the thalamic network. In light of the association of this mechanism with neuronal tracts, we propose it can be termed “brain injury related inflammatory projection”. Our findings on multiple spatial and temporal scales provide insight into the chronic inflammation present in neurodegenerative diseases after TBI. TSPO-PET tomography enables the assessment of longitudinal neuronal inflammation Inflammatory responses at the cortical injury site diminish after about 1 week The ipsilateral thalamus exhibits remote neuroinflammation for up to 14 weeks Microglial activation is associated with remote chronic degeneration Inflammation expands to remote sites via damaged cortico-thalamic projections
Collapse
Affiliation(s)
- Sanae Hosomi
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan.
| | - Tadashi Watabe
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan; Medical Imaging Centre for Translational Research, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Yuki Mori
- Centre for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT) and Osaka University, 1-4 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Yoshihisa Koyama
- Department of Molecular Neuroscience, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Soichiro Adachi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 5-2 Kusunoki-cho 7, Chuo-ku, Kobe-shi, Hyougo 650-0017, Japan
| | - Namiko Hoshi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 5-2 Kusunoki-cho 7, Chuo-ku, Kobe-shi, Hyougo 650-0017, Japan
| | - Mitsuo Ohnishi
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Yoshichika Yoshioka
- Centre for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT) and Osaka University, 1-4 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan; Medical Imaging Centre for Translational Research, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Takeshi Shimazu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, 2-15 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| |
Collapse
|
17
|
Simmons DA, James ML, Belichenko NP, Semaan S, Condon C, Kuan J, Shuhendler AJ, Miao Z, Chin FT, Longo FM. TSPO-PET imaging using [18F]PBR06 is a potential translatable biomarker for treatment response in Huntington's disease: preclinical evidence with the p75NTR ligand LM11A-31. Hum Mol Genet 2018; 27:2893-2912. [PMID: 29860333 PMCID: PMC6077813 DOI: 10.1093/hmg/ddy202] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/04/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder that has no cure. HD therapeutic development would benefit from a non-invasive translatable biomarker to track disease progression and treatment response. A potential biomarker is using positron emission tomography (PET) imaging with a translocator protein 18 kDa (TSPO) radiotracer to detect microglial activation, a key contributor to HD pathogenesis. The ability of TSPO-PET to identify microglial activation in HD mouse models, essential for a translatable biomarker, or therapeutic efficacy in HD patients or mice is unknown. Thus, this study assessed the feasibility of utilizing PET imaging with the TSPO tracer, [18F]PBR06, to detect activated microglia in two HD mouse models and to monitor response to treatment with LM11A-31, a p75NTR ligand known to reduce neuroinflammation in HD mice. [18F]PBR06-PET detected microglial activation in striatum, cortex and hippocampus of vehicle-treated R6/2 mice at a late disease stage and, notably, also in early and mid-stage symptomatic BACHD mice. After oral administration of LM11A-31 to R6/2 and BACHD mice, [18F]PBR06-PET discerned the reductive effects of LM11A-31 on neuroinflammation in both HD mouse models. [18F]PBR06-PET signal had a spatial distribution similar to ex vivo brain autoradiography and correlated with microglial activation markers: increased IBA-1 and TSPO immunostaining/blotting and striatal levels of cytokines IL-6 and TNFα. These results suggest that [18F]PBR06-PET is a useful surrogate marker of therapeutic efficacy in HD mice with high potential as a translatable biomarker for preclinical and clinical HD trials.
Collapse
Affiliation(s)
- Danielle A Simmons
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle L James
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Nadia P Belichenko
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah Semaan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Condon
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jason Kuan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Adam J Shuhendler
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Zheng Miao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Frederick T Chin
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
18
|
Tan C, Zhao S, Higashikawa K, Wang Z, Kawabori M, Abumiya T, Nakayama N, Kazumata K, Ukon N, Yasui H, Tamaki N, Kuge Y, Shichinohe H, Houkin K. [ 18F]DPA-714 PET imaging shows immunomodulatory effect of intravenous administration of bone marrow stromal cells after transient focal ischemia. EJNMMI Res 2018; 8:35. [PMID: 29717383 PMCID: PMC5930298 DOI: 10.1186/s13550-018-0392-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/23/2018] [Indexed: 12/22/2022] Open
Abstract
Background The potential application of bone marrow stromal cell (BMSC) therapy in stroke has been anticipated due to its immunomodulatory effects. Recently, positron emission tomography (PET) with [18F]DPA-714, a translocator protein (TSPO) ligand, has become available for use as a neural inflammatory indicator. We aimed to evaluate the effects of BMSC administration after transient middle cerebral artery occlusion (MCAO) using [18F]DPA-714 PET. The BMSCs or vehicle were administered intravenously to rat MCAO models at 3 h after the insult. Neurological deficits, body weight, infarct volume, and histology were analyzed. [18F]DPA-714 PET was performed 3 and 10 days after MCAO. Results Rats had severe neurological deficits and body weight loss after MCAO. Cell administration ameliorated these effects as well as the infarct volume. Although weight loss occurred in the spleen and thymus, cell administration suppressed it. In both vehicle and BMSC groups, [18F]DPA-714 PET showed a high standardized uptake value (SUV) around the ischemic area 3 days after MCAO. Although SUV was increased further 10 days after MCAO in both groups, the increase was inhibited in the BMSC group, significantly. Histological analysis showed that an inflammatory reaction occurred in the lymphoid organs and brain after MCAO, which was suppressed in the BMSC group. Conclusions The present results suggest that BMSC therapy could be effective in ischemic stroke due to modulation of systemic inflammatory responses. The [18F]DPA-714 PET/CT system can accurately demonstrate brain inflammation and evaluate the BMSC therapeutic effect in an imaging context. It has great potential for clinical application.
Collapse
Affiliation(s)
- Chengbo Tan
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan.,Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan
| | - Songji Zhao
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan.,Department of Tracer Kinetics and Bioanalysis, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kei Higashikawa
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan.,Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Zifeng Wang
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Masahito Kawabori
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Takeo Abumiya
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Naoki Nakayama
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Ken Kazumata
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Naoyuki Ukon
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan.,Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Hironobu Yasui
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan.,Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nagara Tamaki
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan.,Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideo Shichinohe
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan. .,Division of Clinical Research Administration, Hokkaido University Hospital, Sapporo, Japan.
| | - Kiyohiro Houkin
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
19
|
Regulation of Mitochondrial, Cellular, and Organismal Functions by TSPO. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 82:103-136. [PMID: 29413517 DOI: 10.1016/bs.apha.2017.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In 1999, the enigma of the 18kDa mitochondrial translocator protein (TSPO), also known as the peripheral-type benzodiazepine receptor, was the seeming disparity of the many functions attributed to TSPO, ranging from the potential of TSPO acting as a housekeeping gene at molecular biological levels to adaptations to stress, and even involvement in higher emotional and cognitive functioning, such as anxiety and depression. In the years since then, knowledge regarding the many functions modulated by TSPO has expanded, and understanding has deepened. In addition, new functions could be firmly associated with TSPO, such as regulation of programmed cell death and modulation of gene expression. Interestingly, control by the mitochondrial TSPO over both of these life and death functions appears to include Ca++ homeostasis, generation of reactive oxygen species (ROS), and ATP production. Other mitochondrial functions under TSPO control are considered to be steroidogenesis and tetrapyrrole metabolism. As TSPO effects on gene expression and on programmed cell death can be related to the wide range of functions that can be associated with TSPO, several of these five elements of Ca++, ROS, ATP, steroids, and tetrapyrroles may indeed form the basis of TSPO's capability to operate as a multifunctional housekeeping gene to maintain homeostasis of the cell and of the whole multicellular organism.
Collapse
|
20
|
Takkinen JS, López-Picón FR, Al Majidi R, Eskola O, Krzyczmonik A, Keller T, Löyttyniemi E, Solin O, Rinne JO, Haaparanta-Solin M. Brain energy metabolism and neuroinflammation in ageing APP/PS1-21 mice using longitudinal 18F-FDG and 18F-DPA-714 PET imaging. J Cereb Blood Flow Metab 2017; 37:2870-2882. [PMID: 27834284 PMCID: PMC5536795 DOI: 10.1177/0271678x16677990] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Preclinical animal model studies of brain energy metabolism and neuroinflammation in Alzheimer's disease have produced conflicting results, hampering both the elucidation of the underlying disease mechanism and the development of effective Alzheimer's disease therapies. Here, we aimed to quantify the relationship between brain energy metabolism and neuroinflammation in the APP/PS1-21 transgenic mouse model of Alzheimer's disease using longitudinal in vivo18F-FDG and 18F-DPA-714) PET imaging and ex vivo brain autoradiography. APP/PS1-21 (TG, n = 9) and wild type control mice (WT, n = 9) were studied longitudinally every third month from age 6 to 15 months with 18F-FDG and 18F-DPA-714 with a one-week interval between the scans. Additional TG (n = 52) and WT (n = 29) mice were used for ex vivo studies. In vivo, the 18F-FDG SUVs were lower and the 18F-DPA-714 binding ratios relative to the cerebellum were higher in the TG mouse cortex and hippocampus than in WT mice at age 12 to 15 months ( p < 0.05). The ex vivo cerebellum binding ratios supported the results of the in vivo18F-DPA-714 studies but not the 18F-FDG studies. This longitudinal PET study demonstrated decreased energy metabolism and increased inflammation in the brains of APP/PS1-21 mice compared to WT mice.
Collapse
Affiliation(s)
- Jatta S Takkinen
- 1 MediCity Research Laboratory, University of Turku, Turku, Finland.,2 Turku PET Centre, University of Turku, Turku, Finland
| | - Francisco R López-Picón
- 1 MediCity Research Laboratory, University of Turku, Turku, Finland.,2 Turku PET Centre, University of Turku, Turku, Finland
| | - Rana Al Majidi
- 1 MediCity Research Laboratory, University of Turku, Turku, Finland.,2 Turku PET Centre, University of Turku, Turku, Finland
| | - Olli Eskola
- 2 Turku PET Centre, University of Turku, Turku, Finland
| | | | - Thomas Keller
- 2 Turku PET Centre, University of Turku, Turku, Finland
| | | | - Olof Solin
- 2 Turku PET Centre, University of Turku, Turku, Finland.,4 Turku PET Centre, Åbo Akademi University, Turku, Finland.,5 Department of Chemistry, University of Turku, Turku, Finland
| | - Juha O Rinne
- 6 Turku PET Centre, Turku University Hospital, Turku, Finland.,7 Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Merja Haaparanta-Solin
- 1 MediCity Research Laboratory, University of Turku, Turku, Finland.,2 Turku PET Centre, University of Turku, Turku, Finland
| |
Collapse
|
21
|
Kashiyama N, Miyagawa S, Fukushima S, Kawamura T, Kawamura A, Yoshida S, Harada A, Watabe T, Kanai Y, Toda K, Hatazawa J, Sawa Y. Development of PET Imaging to Visualize Activated Macrophages Accumulated in the Transplanted iPSc-Derived Cardiac Myocytes of Allogeneic Origin for Detecting the Immune Rejection of Allogeneic Cell Transplants in Mice. PLoS One 2016; 11:e0165748. [PMID: 27930666 PMCID: PMC5145152 DOI: 10.1371/journal.pone.0165748] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/16/2016] [Indexed: 12/27/2022] Open
Abstract
Allogeneic transplantation (Tx) of induced pluripotent stem cells (iPSCs) is a promising tissue regeneration therapy. However, this inevitably induces macrophage-mediated immune response against the graft, limiting its therapeutic efficacy. Monitoring the magnitude of the immune response using imaging tools would be useful for prolonging graft survival and increasing the therapy longevity. Minimally invasive quantitative detection of activated macrophages by medical imaging technologies such as positron emission tomography (PET) imaging targets translocator protein (TSPO), which is highly expressed on mitochondrial membrane, especially in activated macrophage. N,N-diethyl-2-[4-(2-fluoroethoxy) phenyl]-5,7-dimethylpyrazolo[1,5-a]pyrimidine-3-acetamide (DPA-714) is known as a TSPO ligand used in clinical settings. We herein hypothesized that immune rejection of the transplanted iPSC-derived cardiomyocytes (iPSC-CMs) of allogeneic origin may be quantitated using 18F-DPA-714-PET imaging study. iPSC-CM cell-sheets of C57BL/6 mice origin were transplanted on the surface of the left ventricle (LV) of C57BL/6 mice as a syngeneic cell-transplant model (syngeneic Tx group), or Balb/c mice as an allogeneic model (allogeneic Tx group). 18F-DPA-714-PET was used to determine the uptake ratio, calculated as the maximum standardized uptake value in the anterior and septal wall of the LV. The uptake ratio was significantly higher in the allogeneic Tx group than in the syngeneic group or the sham group at days 7 and day 10 after the cell transplantation. In addition, the immunochemistry showed significant presence of CD68 and CD3-positive cells at day 7 and 10 in the transplanted graft of the allogeneic Tx group. The expression of TSPO, CD68, IL-1 beta, and MCP-1 was significantly higher in the allogeneic Tx group than in the syngeneic Tx and the sham groups at day 7. The 18F-DPA-714-PET imaging study enabled quantitative visualization of the macrophages-mediated immune rejection of the allogeneic iPSC-cardiac. This imaging tool may enable the understanding and monitoring host-immune response of the host, allogeneic cell transplantation therapy.
Collapse
Affiliation(s)
- Noriyuki Kashiyama
- Dept. Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shigeru Miyagawa
- Dept. Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satsuki Fukushima
- Dept. Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takuji Kawamura
- Dept. Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ai Kawamura
- Dept. Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shohei Yoshida
- Dept. Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akima Harada
- Dept. Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tadashi Watabe
- Dept. Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan
- PET Molecular Imaging Center, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasukazu Kanai
- Dept. Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichi Toda
- Dept. Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Hatazawa
- Dept. Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan
- PET Molecular Imaging Center, Osaka University Graduate School of Medicine, Osaka, Japan
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yoshiki Sawa
- Dept. Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- * E-mail:
| |
Collapse
|
22
|
Evaluation of PET Imaging Performance of the TSPO Radioligand [18F]DPA-714 in Mouse and Rat Models of Cancer and Inflammation. Mol Imaging Biol 2016; 18:127-34. [PMID: 26194010 PMCID: PMC4722075 DOI: 10.1007/s11307-015-0877-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Purpose Many radioligands have been explored for imaging the 18-kDa translocator protein (TSPO), a diagnostic and therapeutic target for inflammation and cancer. Here, we investigated the TSPO radioligand [18F]DPA-714 for positron emission tomography (PET) imaging of cancer and inflammation. Procedures [18F]DPA-714 PET imaging was performed in 8 mouse and rat models of breast and brain cancer and 4 mouse and rat models of muscular and bowel inflammation. Results [18F]DPA-714 showed different uptake levels in healthy organs and malignant tissues of mice and rats. Although high and displaceable [18F]DPA-714 binding is observed ex vivo, TSPO-positive PET imaging of peripheral lesions of cancer and inflammation in mice did not show significant lesion-to-background signal ratios. Slower [18F]DPA-714 metabolism and muscle clearance in mice compared to rats may explain the elevated background signal in peripheral organs in this species. Conclusion Although TSPO is an evolutionary conserved protein, inter- and intra-species differences call for further exploration of the pharmacological parameters of TSPO radioligands. Electronic supplementary material The online version of this article (doi:10.1007/s11307-015-0877-x) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Kim T, Pae AN. Translocator protein (TSPO) ligands for the diagnosis or treatment of neurodegenerative diseases: a patent review (2010-2015; part 1). Expert Opin Ther Pat 2016; 26:1325-1351. [PMID: 27607364 DOI: 10.1080/13543776.2016.1230606] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The translocator protein (TSPO) is an emerging target in diverse neurodegenerative diseases. Up-regulated TSPO in the central nervous system (CNS) appears to be involved in neuroinflammatory processes; therefore, the development of potent TSPO ligands is a promising method for alleviating or imaging patients with neurodegenerative diseases. Areas covered: This review will provide an overview of recently developed TSPO ligands patented from 2010 to 2015. Part 1 will present a summary focusing on TSPO ligands other than indole-based or cholesterol-like compounds, which will be discussed in part 2. Part 1 covers diverse benzodiazepine-derived analogues such as isoquinoline carboxamides and aryloxyanilides. Moreover, bicyclic ring structures such as imidazopyridine, pyrazolopyrimidine, and phenylpurine will be highlighted as promising scaffolds for TSPO ligands. A brief analysis of currently reported TSPO structures will also be covered in part 1. Expert opinion: Although the underlying pharmacological mechanism of TSPO remains to be elucidated, several TSPO ligands have shown therapeutic efficacy in experimental animal models of neurodegenerative diseases. In addition, radioactive TSPO ligands have been extensively studied for the diagnosis of neurodegenerative processes. Thus, further studies on both the basic and applied mechanisms of TSPO are warranted in the pursuit of successful pharmacological applications of TSPO ligands.
Collapse
Affiliation(s)
- TaeHun Kim
- a Convergence Research Center for Diagnosis, Treatment and Care System of Dementia , Korea Institute of Science and Technology (KIST) , Seongbuk-Gu , Seoul , Republic of Korea.,b Biological Chemistry , Korea University of Science and Technology , Yuseong-Gu , Daejon , Republic of Korea
| | - Ae Nim Pae
- a Convergence Research Center for Diagnosis, Treatment and Care System of Dementia , Korea Institute of Science and Technology (KIST) , Seongbuk-Gu , Seoul , Republic of Korea.,b Biological Chemistry , Korea University of Science and Technology , Yuseong-Gu , Daejon , Republic of Korea
| |
Collapse
|
24
|
Slavik R, Müller Herde A, Haider A, Krämer SD, Weber M, Schibli R, Ametamey SM, Mu L. Discovery of a fluorinated 4-oxo-quinoline derivative as a potential positron emission tomography radiotracer for imaging cannabinoid receptor type 2. J Neurochem 2016; 138:874-86. [PMID: 27385045 DOI: 10.1111/jnc.13716] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 11/28/2022]
Abstract
The cannabinoid receptor type 2 (CB2) is part of the endocannabinoid system and has gained growing attention in recent years because of its important role in neuroinflammatory/neurodegenerative diseases. Recently, we reported on a carbon-11 labeled 4-oxo-quinoline derivative, designated RS-016, as a promising radiotracer for imaging CB2 using PET. In this study, three novel fluorinated analogs of RS-016 were designed, synthesized, and pharmacologically evaluated. The results of our efforts led to the identification of N-(1-adamantyl)-1-(2-(2-fluoroethoxy)ethyl)-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxamide (RS-126) as the most potent candidate for evaluation as a CB2 PET ligand. [(18) F]RS-126 was obtained in ≥ 99% radiochemical purity with an average specific radioactivity of 98 GBq/μmol at the end of the radiosynthesis. [(18) F]RS-126 showed a logD7.4 value of 1.99 and is stable in vitro in rat and human plasma over 120 min, whereas 55% intact parent compound was found in vivo in rat blood plasma at 10 min post injection. In vitro autoradiographic studies with CB2-positive rat spleen tissue revealed high and blockable binding which was confirmed in in vivo displacement experiments with rats by dynamic PET imaging. Ex vivo biodistribution studies confirmed accumulation of [(18) F]RS-126 in rat spleen with a specificity of 79% under blocking conditions. The moderate elevated CB2 levels in LPS-treated mice brain did not permit the detection of CB2 by [(18) F]RS-126 using PET imaging. In summary, [(18) F]RS-126 demonstrated high specificity toward CB2 receptor in vitro and in vivo and is a promising radioligand for imaging CB2 receptor expression. Cannabinoid receptor type 2 (CB2) is an interesting target for PET imaging. Specific binding of [(18) F]RS-126 in CB2-positive spleen tissue (white arrow head) was confirmed in in vivo displacement experiments with rats. Time activity curve of [(18) F]RS-126 in the spleen after the addition of GW405833 (CB2 specific ligand, green) demonstrates faster radiotracer elimination (blue) compared to the tracer only (red).
Collapse
Affiliation(s)
- Roger Slavik
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Achi Haider
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Stefanie D Krämer
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Roger Schibli
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland.
| | - Linjing Mu
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland.
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
In Vivo Detection of Age- and Disease-Related Increases in Neuroinflammation by 18F-GE180 TSPO MicroPET Imaging in Wild-Type and Alzheimer's Transgenic Mice. J Neurosci 2016; 35:15716-30. [PMID: 26609163 DOI: 10.1523/jneurosci.0996-15.2015] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Alzheimer's disease (AD) is the most common cause of dementia. Neuroinflammation appears to play an important role in AD pathogenesis. Ligands of the 18 kDa translocator protein (TSPO), a marker for activated microglia, have been used as positron emission tomography (PET) tracers to reflect neuroinflammation in humans and mouse models. Here, we used the novel TSPO-targeted PET tracer (18)F-GE180 (flutriciclamide) to investigate differences in neuroinflammation between young and old WT and APP/PS1dE9 transgenic (Tg) mice. In vivo PET scans revealed an overt age-dependent elevation in whole-brain uptake of (18)F-GE180 in both WT and Tg mice, and a significant increase in whole-brain uptake of (18)F-GE180 (peak-uptake and retention) in old Tg mice compared with young Tg mice and all WT mice. Similarly, the (18)F-GE180 binding potential in hippocampus was highest to lowest in old Tg > old WT > young Tg > young WT mice using MRI coregistration. Ex vivo PET and autoradiography analysis further confirmed our in vivo PET results: enhanced uptake and specific binding (SUV75%) of (18)F-GE180 in hippocampus and cortex was highest in old Tg mice followed by old WT, young Tg, and finally young WT mice. (18)F-GE180 specificity was confirmed by an in vivo cold tracer competition study. We also examined (18)F-GE180 metabolites in 4-month-old WT mice and found that, although total radioactivity declined over 2 h, of the remaining radioactivity, ∼90% was due to parent (18)F-GE180. In conclusion, (18)F-GE180 PET scans may be useful for longitudinal monitoring of neuroinflammation during AD progression and treatment. SIGNIFICANCE STATEMENT Microglial activation, a player in Alzheimer's disease (AD) pathogenesis, is thought to reflect neuroinflammation. Using in vivo microPET imaging with a novel TSPO radioligand, (18)F-GE180, we detected significantly enhanced neuroinflammation during normal aging in WT mice and in response to AD-associated pathology in APP/PS1dE9 Tg mice, an AD mouse model. Increased uptake and specific binding of (18)F-GE180 in whole brain and hippocampus were confirmed by ex vivo PET and autoradiography. The binding specificity and stability of (18)F-GE180 was further confirmed by a cold tracer competition study and a metabolite study, respectively. Therefore, (18)F-GE180 PET imaging may be useful for longitudinal monitoring of neuroinflammation during AD progression and treatment and may also be useful for other neurodegenerative diseases.
Collapse
|
26
|
Roviello GN, Vicidomini C, Di Gaetano S, Capasso D, Musumeci D, Roviello V. Solid phase synthesis and RNA-binding activity of an arginine-containing nucleopeptide. RSC Adv 2016; 6:14140-14148. [PMID: 29057071 PMCID: PMC5635565 DOI: 10.1039/c5ra25809j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/15/2016] [Indexed: 01/22/2023] Open
Abstract
Here we report the solid phase synthesis and characterization (LC-ESIMS, CD) of a cationic nucleobase-containing α-peptide, composed of both l-arginine residues and l-lysine-based nucleoamino acids sequentially present in the structure. The binding properties of this novel basic nucleopeptide towards nucleic acids were investigated by CD spectroscopy which revealed the ability of the thymine-containing oligomer to bind both adenine-containing DNA (dA12) and RNA (poly rA) molecules inducing high conformational variations in the nucleic acid structures. Moreover, the artificial oligonucleotide inhibited the enzymatic activity of HIV reverse transcriptase, opening the door to the exploitation of novel antiviral strategies inspired to this molecular tool.
Collapse
Affiliation(s)
- G N Roviello
- CNR , Istituto di Biostrutture e Bioimmagini - (Mezzacannone site and Headquarters) , 80134 Napoli , Italy . ; ; Tel: +39-081-2534585
| | - C Vicidomini
- CNR , Istituto di Biostrutture e Bioimmagini - (Mezzacannone site and Headquarters) , 80134 Napoli , Italy . ; ; Tel: +39-081-2534585
| | - S Di Gaetano
- CNR , Istituto di Biostrutture e Bioimmagini - (Mezzacannone site and Headquarters) , 80134 Napoli , Italy . ; ; Tel: +39-081-2534585
| | - D Capasso
- Università di Napoli "Federico II" , Dipartimento di Farmacia , 80134 Napoli , Italy
| | - D Musumeci
- CNR , Istituto di Biostrutture e Bioimmagini - (Mezzacannone site and Headquarters) , 80134 Napoli , Italy . ; ; Tel: +39-081-2534585
- Università di Napoli "Federico II" , Dipartimento di Scienze Chimiche , 80126 Napoli , Italy
| | - V Roviello
- Università di Napoli "Federico II" , Dipartimento di Ingegneria Chimica , dei Materiali e della Produzione Industriale (DICMaPI) , 80125 Napoli , Italy
| |
Collapse
|
27
|
Gargiulo S, Anzilotti S, Coda ARD, Gramanzini M, Greco A, Panico M, Vinciguerra A, Zannetti A, Vicidomini C, Dollé F, Pignataro G, Quarantelli M, Annunziato L, Brunetti A, Salvatore M, Pappatà S. Imaging of brain TSPO expression in a mouse model of amyotrophic lateral sclerosis with (18)F-DPA-714 and micro-PET/CT. Eur J Nucl Med Mol Imaging 2016; 43:1348-59. [PMID: 26816193 DOI: 10.1007/s00259-016-3311-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE To evaluate the feasibility and sensitivity of (18)F-DPA-714 for the study of microglial activation in the brain and spinal cord of transgenic SOD1(G93A) mice using high-resolution PET/CT and to evaluate the Iba1 and TSPO expression with immunohistochemistry. METHODS Nine symptomatic SOD1(G93A) mice (aged 117 ± 12.7 days, clinical score range 1 - 4) and five WT SOD1 control mice (aged 108 ± 28.5 days) underwent (18)F-DPA-714 PET/CT. SUV ratios were calculated by normalizing the cerebellar (rCRB), brainstem (rBS), motor cortex (rMCX) and cervical spinal cord (rCSC) activities to that of the frontal association cortex. Two WT SOD1 and six symptomatic SOD1(G93A) mice were studied by immunohistochemistry. RESULTS In the symptomatic SOD1(G93A) mice, rCRB, rBS and rCSC were increased as compared to the values in WT SOD1 mice, with a statistically significantly difference in rBS (2.340 ± 0.784 vs 1.576 ± 0.287, p = 0.014). Immunofluorescence studies showed that TSPO expression was increased in the trigeminal, facial, ambiguus and hypoglossal nuclei, as well as in the spinal cord, of symptomatic SOD1(G93A) mice and was colocalized with increased Iba1 staining. CONCLUSION Increased (18)F-DPA-714 uptake can be detected with high-resolution PET/CT in the brainstem of transgenic SOD1(G93A) mice, a region known to be a site of degeneration and increased microglial activation in amyotrophic lateral sclerosis, in agreement with increased TSPO expression in the brainstem nuclei shown by immunostaining. Therefore, (18)F-DPA-714 PET/CT might be a suitable tool to evaluate microglial activation in the SOD1(G93A) mouse model.
Collapse
Affiliation(s)
- S Gargiulo
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy.,Ceinge Biotecnologie Avanzate s. c. a r. l., Via G. Salvatore 486, 80145, Naples, Italy
| | - S Anzilotti
- IRCCS SDN, Via E. Gianturco 113, 80143, Naples, Italy
| | - A R D Coda
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy
| | - M Gramanzini
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy.,Ceinge Biotecnologie Avanzate s. c. a r. l., Via G. Salvatore 486, 80145, Naples, Italy
| | - A Greco
- Ceinge Biotecnologie Avanzate s. c. a r. l., Via G. Salvatore 486, 80145, Naples, Italy.,Department of Advanced Biomedical Sciences, University "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - M Panico
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy
| | - A Vinciguerra
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - A Zannetti
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy
| | - C Vicidomini
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy
| | - F Dollé
- CEA, Institute for Biomedical Imaging, 4 Place du Général Leclerc, 91401, Orsay, France
| | - G Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - M Quarantelli
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy
| | - L Annunziato
- IRCCS SDN, Via E. Gianturco 113, 80143, Naples, Italy.,Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - A Brunetti
- Ceinge Biotecnologie Avanzate s. c. a r. l., Via G. Salvatore 486, 80145, Naples, Italy.,Department of Advanced Biomedical Sciences, University "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - M Salvatore
- IRCCS SDN, Via E. Gianturco 113, 80143, Naples, Italy
| | - S Pappatà
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy.
| |
Collapse
|
28
|
Srivastava P, Kaul A, Ojha H, Kumar P, Tiwari AK. Design, synthesis and biological evaluation of methyl-2-(2-(5-bromo benzoxazolone)acetamido)-3-(1H-indol-3-yl)propanoate: TSPO ligand for SPECT. RSC Adv 2016. [DOI: 10.1039/c6ra19514h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The translator protein (TSPO, 18 kDa), a transmembrane mitochondrial protein, has been explored as an important biomarker by researchers for inflammation, immune modulation and cell proliferation. Here we report a new SPECT agent99mTc-MBIP for TSPO imaging and quantification.
Collapse
Affiliation(s)
- Pooja Srivastava
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi-110054
- India
- Molecular Neuroscience and Functional Genomics Laboratory
| | - Ankur Kaul
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi-110054
- India
| | - Himanshu Ojha
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi-110054
- India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| | - Anjani K. Tiwari
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi-110054
- India
| |
Collapse
|
29
|
Janssen B, Vugts DJ, Funke U, Molenaar GT, Kruijer PS, van Berckel BNM, Lammertsma AA, Windhorst AD. Imaging of neuroinflammation in Alzheimer's disease, multiple sclerosis and stroke: Recent developments in positron emission tomography. Biochim Biophys Acta Mol Basis Dis 2015; 1862:425-41. [PMID: 26643549 DOI: 10.1016/j.bbadis.2015.11.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/09/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022]
Abstract
Neuroinflammation is thought to play a pivotal role in many diseases affecting the brain, including Alzheimer's disease, multiple sclerosis and stroke. Neuroinflammation is characterised predominantly by microglial activation, which can be visualised using positron emission tomography (PET). Traditionally, translocator protein 18kDa (TSPO) is the target for imaging of neuroinflammation using PET. In this review, recent preclinical and clinical research using PET in Alzheimer's disease, multiple sclerosis and stroke is summarised. In addition, new molecular targets for imaging of neuroinflammation, such as monoamine oxidases, adenosine receptors and cannabinoid receptor type 2, are discussed. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
Affiliation(s)
- Bieneke Janssen
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.
| | - Danielle J Vugts
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Uta Funke
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands; BV Cyclotron VU, Amsterdam, The Netherlands
| | - Ger T Molenaar
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands; BV Cyclotron VU, Amsterdam, The Netherlands
| | | | - Bart N M van Berckel
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Lee DE, Yue X, Ibrahim WG, Lentz MR, Peterson KL, Jagoda EM, Kassiou M, Maric D, Reid WC, Hammoud DA. Lack of neuroinflammation in the HIV-1 transgenic rat: an [(18)F]-DPA714 PET imaging study. J Neuroinflammation 2015; 12:171. [PMID: 26377670 PMCID: PMC4574011 DOI: 10.1186/s12974-015-0390-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 09/02/2015] [Indexed: 11/29/2022] Open
Abstract
Background HIV-associated neuroinflammation is believed to be a major contributing factor in the development of HIV-associated neurocognitive disorders (HAND). In this study, we used micropositron emission tomography (PET) imaging to quantify neuroinflammation in HIV-1 transgenic rat (Tg), a small animal model of HIV, known to develop neurological and behavioral problems. Methods Dynamic [18F]DPA-714 PET imaging was performed in Tg and age-matched wild-type (WT) rats in three age groups: 3-, 9-, and 16-month-old animals. As a positive control for neuroinflammation, we performed unilateral intrastriatal injection of quinolinic acid (QA) in a separate group of WT rats. To confirm our findings, we performed multiplex immunofluorescent staining for Iba1 and we measured cytokine/chemokine levels in brain lysates of Tg and WT rats at different ages. Results [18F]DPA-714 uptake in HIV-1 Tg rat brains was generally higher than in age-matched WT rats but this was not statistically significant in any age group. [18F]DPA-714 uptake in the QA-lesioned rats was significantly higher ipsilateral to the lesion compared to contralateral side indicating neuroinflammatory changes. Iba1 immunofluorescence showed no significant differences in microglial activation between the Tg and WT rats, while the QA-lesioned rats showed significant activation. Finally, cytokine/chemokine levels in brain lysates of the Tg rats and WT rats were not significantly different. Conclusion Microglial activation might not be the primary mechanism for neuropathology in the HIV-1 Tg rats. Although [18F]DPA-714 is a good biomarker of neuroinflammation, it cannot be reliably used as an in vivo biomarker of neurodegeneration in the HIV-1 Tg rat. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0390-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dianne E Lee
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, National Institutes of Health/Clinical Center, 10 Center Drive, Room 1C368, Bethesda, MD, 20814-9692, USA
| | - Xuyi Yue
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wael G Ibrahim
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, National Institutes of Health/Clinical Center, 10 Center Drive, Room 1C368, Bethesda, MD, 20814-9692, USA
| | - Margaret R Lentz
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, National Institutes of Health/Clinical Center, 10 Center Drive, Room 1C368, Bethesda, MD, 20814-9692, USA
| | - Kristin L Peterson
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, National Institutes of Health/Clinical Center, 10 Center Drive, Room 1C368, Bethesda, MD, 20814-9692, USA
| | - Elaine M Jagoda
- Molecular Imaging Program (MIP), National Cancer Institute (NCI), Bethesda, MD, USA
| | - Michael Kassiou
- Chemistry Department, The University of Sydney, Sydney, Australia
| | - Dragan Maric
- Division of Intermural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - William C Reid
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, National Institutes of Health/Clinical Center, 10 Center Drive, Room 1C368, Bethesda, MD, 20814-9692, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, National Institutes of Health/Clinical Center, 10 Center Drive, Room 1C368, Bethesda, MD, 20814-9692, USA.
| |
Collapse
|
31
|
Tiwari AK, Yui J, Zhang Y, Fujinaga M, Yamasaki T, Xie L, Shimoda Y, Kumata K, Hatori A, Zhang MR. [18F]FPBMP: – a potential new positron emission tomography radioligand for imaging of translocator protein (18 kDa) in peripheral organs of rats. RSC Adv 2015. [DOI: 10.1039/c5ra22594a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The five transmembrane translocator protein (18 kDa, TSPO) is abundantly expressed in the mitochondria of activated microglia (brain) and peripheral tissues, including those of the heart, lung and kidney.
Collapse
|