1
|
Sadraeian M, Maleki R, Moraghebi M, Bahrami A. Phage Display Technology in Biomarker Identification with Emphasis on Non-Cancerous Diseases. Molecules 2024; 29:3002. [PMID: 38998954 PMCID: PMC11243120 DOI: 10.3390/molecules29133002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 07/14/2024] Open
Abstract
In recent years, phage display technology has become vital in clinical research. It helps create antibodies that can specifically bind to complex antigens, which is crucial for identifying biomarkers and improving diagnostics and treatments. However, existing reviews often overlook its importance in areas outside cancer research. This review aims to fill that gap by explaining the basics of phage display and its applications in detecting and treating various non-cancerous diseases. We focus especially on its role in degenerative diseases, inflammatory and autoimmune diseases, and chronic non-communicable diseases, showing how it is changing the way we diagnose and treat illnesses. By highlighting important discoveries and future possibilities, we hope to emphasize the significance of phage display in modern healthcare.
Collapse
Affiliation(s)
- Mohammad Sadraeian
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Reza Maleki
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Mahta Moraghebi
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Abasalt Bahrami
- Department of Chemistry and Biochemistry, Bioengineering, and Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Abdulrehman T, Qadri S, Haik Y, Sultan A, Skariah S, Kumar S, Mendoza Z, Yadav KK, Titus A, Khader S. Advances in the targeted theragnostics of osteomyelitis caused by Staphylococcus aureus. Arch Microbiol 2024; 206:288. [PMID: 38834761 DOI: 10.1007/s00203-024-04015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Bone infections caused by Staphylococcus aureus may lead to an inflammatory condition called osteomyelitis, which results in progressive bone loss. Biofilm formation, intracellular survival, and the ability of S. aureus to evade the immune response result in recurrent and persistent infections that present significant challenges in treating osteomyelitis. Moreover, people with diabetes are prone to osteomyelitis due to their compromised immune system, and in life-threatening cases, this may lead to amputation of the affected limbs. In most cases, bone infections are localized; thus, early detection and targeted therapy may prove fruitful in treating S. aureus-related bone infections and preventing the spread of the infection. Specific S. aureus components or overexpressed tissue biomarkers in bone infections could be targeted to deliver active therapeutics, thereby reducing drug dosage and systemic toxicity. Compounds like peptides and antibodies can specifically bind to S. aureus or overexpressed disease markers and combining these with therapeutics or imaging agents can facilitate targeted delivery to the site of infection. The effectiveness of photodynamic therapy and hyperthermia therapy can be increased by the addition of targeting molecules to these therapies enabling site-specific therapy delivery. Strategies like host-directed therapy focus on modulating the host immune mechanisms or signaling pathways utilized by S. aureus for therapeutic efficacy. Targeted therapeutic strategies in conjunction with standard surgical care could be potential treatment strategies for S. aureus-associated osteomyelitis to overcome antibiotic resistance and disease recurrence. This review paper presents information about the targeting strategies and agents for the therapy and diagnostic imaging of S. aureus bone infections.
Collapse
Affiliation(s)
- Tahir Abdulrehman
- eHealth Program, DeGroote School of Business, McMaster University, Hamilton, ON, Canada
- Health Policy, Management and Informatics, Allied Health, Credit Valley Hospital, Mississauga, ON, Canada
| | - Shahnaz Qadri
- School of Pharmacy, Texas A&M University, Kingsville, USA.
| | - Yousef Haik
- Department of Mechanical & Nuclear Engineering, University of Sharjah, Sharjah, UAE.
| | - Ali Sultan
- Department of Immunology & Microbiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Sini Skariah
- Department of Immunology & Microbiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Shourya Kumar
- School of Engineering Medicine, Texas A&M University, Houston, TX, USA
| | - Zachary Mendoza
- School of Engineering Medicine, Texas A&M University, Houston, TX, USA
| | - Kamlesh K Yadav
- School of Engineering Medicine, Texas A&M University, Houston, TX, USA
| | - Anoop Titus
- Department of Preventive Cardiology, Houston Methodist, Houston, TX, USA
| | - Shameer Khader
- School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
3
|
Kleynhans J, Sathekge MM, Ebenhan T. Preclinical Research Highlighting Contemporary Targeting Mechanisms of Radiolabelled Compounds for PET Based Infection Imaging. Semin Nucl Med 2023; 53:630-643. [PMID: 37012169 DOI: 10.1053/j.semnuclmed.2023.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 04/04/2023]
Abstract
It is important to constantly monitor developments in the preclinical imaging arena of infection. Firstly, novel radiopharmaceuticals with the correct characteristics must be identified to funnel into the clinic. Secondly, it must be evaluated if enough innovative research is being done and adequate resources are geared towards the development of radiopharmaceuticals that could feed into the Nuclear Medicine Clinic in the near future. It is proposed that the ideal infection imaging agent will involve PET combined with CT but more ideally MRI. The radiopharmaceuticals currently presented in preclinical literature have a wide selection of vectors and targets. Ionic formulations of PET-radionuclides such 64CuCl2 and 68GaCl2 are evaluated for bacterial infection imaging. Many small molecule based radiopharmaceuticals are being investigated with the most prominent targets being cell wall synthesis, maltodextrin transport (such as [18F]F-maltotriose), siderophores (bacterial and fungal infections), the folate synthesis pathway (such as [18F]F-PABA) and protein synthesis (radiolabelled puromycin). Mycobacterial specific antibiotics, antifungals and antiviral agents are also under investigation as infection imaging agents. Peptide based radiopharmaceuticals are developed for bacterial, fungal and viral infections. The radiopharmaceutical development could even react quickly enough on a pandemic to develop a SARS-CoV-2 imaging agent in a timely fashion ([64Cu]Cu-NOTA-EK1). New immuno-PET agents for the imaging of viruses have recently been published, specifically for HIV persistence but also for SARS-CoV2. A very promising antifungal immuno-PET agent (hJ5F) is also considered. Future technologies could include the application of aptamers and bacteriophages and even going as far as the design of theranostic infection. Another possibility would be the application of nanobodies for immuno-PET applications. Standardization and optimization of the preclinical evaluation of radiopharmaceuticals could enhance clinical translation and reduce time spent in pursuing less than optimal candidates.
Collapse
Affiliation(s)
- Janke Kleynhans
- Department of Pharmaceutical and Pharmacological sciences, Radiopharmaceutical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mike Machaba Sathekge
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa; Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pretoria, South Africa
| | - Thomas Ebenhan
- Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pretoria, South Africa; Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
4
|
Freitas ED, Bataglioli RA, Oshodi J, Beppu MM. Antimicrobial peptides and their potential application in antiviral coating agents. Colloids Surf B Biointerfaces 2022; 217:112693. [PMID: 35853393 PMCID: PMC9262651 DOI: 10.1016/j.colsurfb.2022.112693] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022]
Abstract
Coronavirus pandemic has evidenced the importance of creating bioactive materials to mitigate viral infections, especially in healthcare settings and public places. Advances in antiviral coatings have led to materials with impressive antiviral performance; however, their application may face health and environmental challenges. Bio-inspired antimicrobial peptides (AMPs) are suitable building blocks for antimicrobial coatings due to their versatile design, scalability, and environmentally friendly features. This review presents the advances and opportunities on the AMPs to create virucidal coatings. The review first describes the fundamental characteristics of peptide structure and synthesis, highlighting the recent findings on AMPs and the role of peptide structure (α-helix, β-sheet, random, and cyclic peptides) on the virucidal mechanism. The following section presents the advances in AMPs coating on medical devices with a detailed description of the materials coated and the targeted pathogens. The use of peptides in vaccine formulations is also reported, emphasizing the molecular interaction of peptides with different viruses and the current clinical stage of each formulation. The role of several materials (metallic particles, inorganic materials, and synthetic polymers) in the design of antiviral coatings is also presented, discussing the advantages and the drawbacks of each material. The final section offers future directions and opportunities for using AMPs on antiviral coatings to prevent viral outbreaks.
Collapse
Affiliation(s)
- Emanuelle D Freitas
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Campinas, São Paulo 13083-852, Brazil
| | - Rogério A Bataglioli
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Campinas, São Paulo 13083-852, Brazil
| | - Josephine Oshodi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Marisa M Beppu
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Campinas, São Paulo 13083-852, Brazil.
| |
Collapse
|
5
|
Signore A, Conserva M, Varani M, Galli F, Lauri C, Velikyan I, Roivainen A. PET imaging of bacteria. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
6
|
Yu X, Yan J, Chen X, Wei J, Yu L, Liu F, Li L, Liu B. Identification of a peptide binding to cancer antigen Kita-kyushu lung cancer antigen 1 from a phage-display library. Cancer Sci 2021; 112:4335-4345. [PMID: 34387029 PMCID: PMC8486176 DOI: 10.1111/cas.15109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 12/18/2022] Open
Abstract
Kita‐kyushu lung cancer antigen 1 (KK‐LC‐1) is a kind of cancer‐testis antigen with anti‐tumor potential for clinical application. As a class of small‐molecule antigen conjugate, tumor‐targeting peptides have broad application prospects in gastric cancer diagnosis, imaging, and biological treatment. Here, we screened specific cyclic nonapeptides from a phage‐display library. The targeting peptide with the best affinity was selected and further verified in ex vivo tissue sections. Finally, enrichment of targeting peptides in tumor tissues was observed in vivo, and the dynamic biodistribution process was also observed with micro‐positron emission tomography (micro‐PET)/computed tomography (CT) imaging. Studies showed that the specific cyclic nonapeptide had a high binding capacity for KK‐LC‐1 protein. It has a strong affinity and specificity for KK‐LC‐1‐expressing positive tumor cells. Targeting peptides were significantly enriched at tumor sites in vivo, with very low normal tissue background. These findings demonstrated that the KK‐LC‐1 targeting peptide has high clinical potential.
Collapse
Affiliation(s)
- Xiaoxiao Yu
- The Comprehensive Cancer Center, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China
| | - Jiayao Yan
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaotong Chen
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jia Wei
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lixia Yu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fangcen Liu
- Department of Pathology of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lin Li
- Department of Pathology of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
7
|
Alstrup AKO, Jensen SB, Nielsen OL, Jødal L, Afzelius P. Preclinical Testing of Radiopharmaceuticals for the Detection and Characterization of Osteomyelitis: Experiences from a Porcine Model. Molecules 2021; 26:molecules26144221. [PMID: 34299496 PMCID: PMC8305428 DOI: 10.3390/molecules26144221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/30/2021] [Accepted: 07/10/2021] [Indexed: 12/01/2022] Open
Abstract
The development of new and better radioactive tracers capable of detecting and characterizing osteomyelitis is an ongoing process, mainly because available tracers lack selectivity towards osteomyelitis. An integrated part of developing new tracers is the performance of in vivo tests using appropriate animal models. The available animal models for osteomyelitis are also far from ideal. Therefore, developing improved animal osteomyelitis models is as important as developing new radioactive tracers. We recently published a review on radioactive tracers. In this review, we only present and discuss osteomyelitis models. Three ethical aspects (3R) are essential when exposing experimental animals to infections. Thus, we should perform experiments in vitro rather than in vivo (Replacement), use as few animals as possible (Reduction), and impose as little pain on the animal as possible (Refinement). The gain for humans should by far exceed the disadvantages for the individual experimental animal. To this end, the translational value of animal experiments is crucial. We therefore need a robust and well-characterized animal model to evaluate new osteomyelitis tracers to be sure that unpredicted variation in the animal model does not lead to a misinterpretation of the tracer behavior. In this review, we focus on how the development of radioactive tracers relies heavily on the selection of a reliable animal model, and we base the discussions on our own experience with a porcine model.
Collapse
Affiliation(s)
- Aage Kristian Olsen Alstrup
- Department of Nuclear Medicine & PET, Aarhus University Hospital, DK-8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus, Denmark
- Correspondence: ; Tel.: +45-22899285
| | - Svend Borup Jensen
- Department of Nuclear Medicine, Aalborg University Hospital, DK-9000 Aalborg, Denmark; (S.B.J.); (L.J.)
- Department of Chemistry and Biosciences, Aalborg University, DK-9220 Aalborg, Denmark
| | - Ole Lerberg Nielsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1165 Copenhagen, Denmark;
| | - Lars Jødal
- Department of Nuclear Medicine, Aalborg University Hospital, DK-9000 Aalborg, Denmark; (S.B.J.); (L.J.)
| | - Pia Afzelius
- Zealand Hospital, Køge, Copenhagen University Hospital, DK-4600 Køge, Denmark;
| |
Collapse
|
8
|
Jødal L, Afzelius P, Alstrup AKO, Jensen SB. Radiotracers for Bone Marrow Infection Imaging. Molecules 2021; 26:3159. [PMID: 34070537 PMCID: PMC8198735 DOI: 10.3390/molecules26113159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Radiotracers are widely used in medical imaging, using techniques of gamma-camera imaging (scintigraphy and SPECT) or positron emission tomography (PET). In bone marrow infection, there is no single routine test available that can detect infection with sufficiently high diagnostic accuracy. Here, we review radiotracers used for imaging of bone marrow infection, also known as osteomyelitis, with a focus on why these molecules are relevant for the task, based on their physiological uptake mechanisms. The review comprises [67Ga]Ga-citrate, radiolabelled leukocytes, radiolabelled nanocolloids (bone marrow) and radiolabelled phosphonates (bone structure), and [18F]FDG as established radiotracers for bone marrow infection imaging. Tracers that are under development or testing for this purpose include [68Ga]Ga-citrate, [18F]FDG, [18F]FDS and other non-glucose sugar analogues, [15O]water, [11C]methionine, [11C]donepezil, [99mTc]Tc-IL-8, [68Ga]Ga-Siglec-9, phage-display selected peptides, and the antimicrobial peptide [99mTc]Tc-UBI29-41 or [68Ga]Ga-NOTA-UBI29-41. CONCLUSION Molecular radiotracers allow studies of physiological processes such as infection. None of the reviewed molecules are ideal for the imaging of infections, whether bone marrow or otherwise, but each can give information about a separate aspect such as physiology or biochemistry. Knowledge of uptake mechanisms, pitfalls, and challenges is useful in both the use and development of medically relevant radioactive tracers.
Collapse
Affiliation(s)
- Lars Jødal
- Department of Nuclear Medicine, Aalborg University Hospital, DK-9000 Aalborg, Denmark;
| | - Pia Afzelius
- Zealand Hospital, Køge, Copenhagen University Hospital, DK-4600 Køge, Denmark;
| | - Aage Kristian Olsen Alstrup
- Department of Nuclear Medicine & PET, Aarhus University Hospital, DK-8200 Aarhus, Denmark;
- Department of Clinical Medicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Svend Borup Jensen
- Department of Nuclear Medicine, Aalborg University Hospital, DK-9000 Aalborg, Denmark;
- Department of Chemistry and Biosciences, Aalborg University, DK-9220 Aalborg, Denmark
| |
Collapse
|
9
|
Afzelius P, Alstrup AKO, Nielsen OL, Nielsen KM, Jensen SB. Attempts to Target Staphylococcus aureus Induced Osteomyelitis Bone Lesions in a Juvenile Pig Model by Using Radiotracers. Molecules 2020; 25:E4329. [PMID: 32967275 PMCID: PMC7570567 DOI: 10.3390/molecules25184329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
Background [18F]FDG Positron Emission Tomography cannot differentiate between sterile inflammation and infection. Therefore, we, aimed to develop more specific radiotracers fitted for differentiation between sterile and septic infection to improve the diagnostic accuracy. Consequently, the clinicians can refine the treatment of, for example, prosthesis-related infection. METHODS We examined different target points; Staphylococcus aureus biofilm (68Ga-labeled DOTA-K-A9 and DOTA-GSGK-A11), bone remodeling ([18F]NaF), bacterial cell membranes ([68Ga]Ga-Ubiquicidin), and leukocyte trafficking ([68Ga]Ga-DOTA-Siglec-9). We compared them to the well-known glucose metabolism marker [18F]FDG, in a well-established juvenile S. aureus induced osteomyelitis (OM) pig model. RESULTS [18F]FDG accumulated in the OM lesions seven days after bacterial inoculation, but disappointingly we were not able to identify any tracer accumulation in OM with any of the supposedly more specific tracers. CONCLUSION These negative results are, however, relevant to report as they may save other research groups from conducting the same animal experiments and provide a platform for developing and evaluating other new potential tracers or protocol instead.
Collapse
Affiliation(s)
- Pia Afzelius
- Department of Nuclear Medicine, Aalborg University Hospital, 9100 Aalborg, Denmark; (K.M.N.); (S.B.J.)
- North Zealand Hospital, Copenhagen University Hospital, 3400 Hillerød, Denmark
| | - Aage Kristian Olsen Alstrup
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus, Denmark;
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Ole Lerberg Nielsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2000 Copenhagen F, Denmark;
| | - Karin Michaelsen Nielsen
- Department of Nuclear Medicine, Aalborg University Hospital, 9100 Aalborg, Denmark; (K.M.N.); (S.B.J.)
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2000 Copenhagen F, Denmark;
| | - Svend Borup Jensen
- Department of Nuclear Medicine, Aalborg University Hospital, 9100 Aalborg, Denmark; (K.M.N.); (S.B.J.)
- Department of Chemistry and Biochemistry, Aalborg University, 9100 Aalborg, Denmark
| |
Collapse
|
10
|
Welling MM, Hensbergen AW, Bunschoten A, Velders AH, Roestenberg M, van Leeuwen FWB. An update on radiotracer development for molecular imaging of bacterial infections. Clin Transl Imaging 2019; 7:105-124. [DOI: 10.1007/s40336-019-00317-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/01/2019] [Indexed: 12/17/2022]
|
11
|
Nielsen KM, Jørgensen NP, Kyneb MH, Borghammer P, Meyer RL, Thomsen TR, Bender D, Jensen SB, Nielsen OL, Alstrup AKO. Preclinical evaluation of potential infection-imaging probe [ 68 Ga]Ga-DOTA-K-A9 in sterile and infectious inflammation. J Labelled Comp Radiopharm 2018; 61:780-795. [PMID: 29790580 DOI: 10.1002/jlcr.3640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/21/2018] [Accepted: 05/13/2018] [Indexed: 12/25/2022]
Abstract
The development of bacteria-specific infection radiotracers is of considerable interest to improve diagnostic accuracy and enabling therapy monitoring. The aim of this study was to determine if the previously reported radiolabelled 1,4,7,10-tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid (DOTA) conjugated peptide [68 Ga]Ga-DOTA-K-A9 could detect a staphylococcal infection in vivo and distinguish it from aseptic inflammation. An optimized [68 Ga]Ga-DOTA-K-A9 synthesis omitting the use of acetone was developed, yielding 93 ± 0.9% radiochemical purity. The in vivo infection binding specificity of [68 Ga]Ga-DOTA-K-A9 was evaluated by micro positron emission tomography/magnetic resonance imaging of 15 mice with either subcutaneous Staphylococcus aureus infection or turpentine-induced inflammation and compared with 2-deoxy-2-[18 F]fluoro-D-glucose ([18 F]FDG). The scans showed that [68 Ga]Ga-DOTA-K-A9 accumulated in all the infected mice at injected doses ≥3.6 MBq. However, the tracer was not found to be selective towards infection, since the [68 Ga]Ga-DOTA-K-A9 also accumulated in mice with inflammation. In a concurrent in vitro binding evaluation performed with a 5-carboxytetramethylrhodamine (TAMRA) fluorescence analogue of the peptide, TAMRA-K-A9, the microscopy results suggested that TAMRA-K-A9 bound to an intracellular epitope and therefore preferentially targeted dead bacteria. Thus, the [68 Ga]Ga-DOTA-K-A9 uptake observed in vivo is presumably a combination of local hyperemia, vascular leakiness and/or binding to an epitope present in dead bacteria.
Collapse
Affiliation(s)
- Karin M Nielsen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Herlev, Denmark
- Department of Nuclear Medicine, Aalborg University Hospital, Aalborg, Denmark
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nis P Jørgensen
- Department of Infectious Diseases and Department of Clinical Microbiology, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Majbritt H Kyneb
- Biotech, Life Science, Danish Technological Institute, Aarhus, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke L Meyer
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Trine R Thomsen
- Biotech, Life Science, Danish Technological Institute, Aarhus, Denmark
- Department of Biotechnology, Aalborg University, Aalborg, Denmark
| | - Dirk Bender
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Svend B Jensen
- Department of Nuclear Medicine, Aalborg University Hospital, Aalborg, Denmark
- Department of Chemistry and Biochemistry, Aalborg University, Aalborg, Denmark
| | - Ole L Nielsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aage K O Alstrup
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
12
|
Prospective of 68Ga Radionuclide Contribution to the Development of Imaging Agents for Infection and Inflammation. CONTRAST MEDIA & MOLECULAR IMAGING 2018. [PMID: 29531507 PMCID: PMC5817300 DOI: 10.1155/2018/9713691] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During the last decade, the utilization of 68Ga for the development of imaging agents has increased considerably with the leading position in the oncology. The imaging of infection and inflammation is lagging despite strong unmet medical needs. This review presents the potential routes for the development of 68Ga-based agents for the imaging and quantification of infection and inflammation in various diseases and connection of the diagnosis to the treatment for the individualized patient management.
Collapse
|
13
|
Mousavizadeh A, Jabbari A, Akrami M, Bardania H. Cell targeting peptides as smart ligands for targeting of therapeutic or diagnostic agents: a systematic review. Colloids Surf B Biointerfaces 2017; 158:507-517. [PMID: 28738290 DOI: 10.1016/j.colsurfb.2017.07.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/30/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022]
Abstract
Cell targeting peptides (CTP) are small peptides which have high affinity and specificity to a cell or tissue targets. They are typically identified by using phage display and chemical synthetic peptide library methods. CTPs have attracted considerable attention as a new class of ligands to delivery specifically therapeutic and diagnostic agents, because of the fact they have several advantages including easy synthesis, smaller physical sizes, lower immunogenicity and cytotoxicity and their simple and better conjugation to nano-carriers and therapeutic or diagnostic agents compared to conventional antibodies. In this systematic review, we will focus on the basic concepts concerning the use of cell-targeting peptides (CTPs), following the approaches of selecting them from peptide libraries. We discuss several developed strategies for cell-specific delivery of different cargos by CTPs, which are designed for drug delivery and diagnostic applications.
Collapse
Affiliation(s)
- Ali Mousavizadeh
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Jabbari
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
14
|
Fluorimetric sandwich affinity assay for Staphylococcus aureus based on dual-peptide recognition on magnetic nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2396-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|