1
|
Wang C, Lin R, Yao S. Recent Advances in 18F-Labeled Amino Acids Synthesis and Application. Pharmaceutics 2022; 14:pharmaceutics14102207. [PMID: 36297641 PMCID: PMC9609324 DOI: 10.3390/pharmaceutics14102207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Radiolabeled amino acids are an important class of agents for positron emission tomography imaging that target amino acid transporters in many tumor types. Traditional 18F-labeled amino acid synthesis strategies are always based on nucleophilic aromatic substitution reactions with multistep radiosynthesis and low radiochemical yields. In recent years, new 18F-labeling methodologies such as metal-catalyzed radiofluorination and heteroatom (B, P, S, Si, etc.)-18F bond formation are being effectively used to synthesize radiopharmaceuticals. This review focuses on recent advances in the synthesis, radiolabeling, and application of a series of 18F-labeled amino acid analogs using new 18F-labeling strategies.
Collapse
|
2
|
MRI measurement of alanine uptake in a mouse xenograft model of U-87 MG glioblastoma. Magn Reson Imaging 2022; 93:189-194. [PMID: 36029935 DOI: 10.1016/j.mri.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
The potential use of alanine as an MRI contrast agent was investigated. The relaxation properties of alanine solutions were measured at 9.4 T. The T2 relaxivity caused by the chemical exchange (R2ex) between amine protons and water protons was 0.10 mM-1 s-1 at 37 °C. As a demonstration, alanine uptake in a mouse xenograft model of U-87 MG glioblastoma was measured using MRI, and was compared with immunohistochemistry staining of ASCT2, a transporter that imports amino acids into cancer cells. Statistically significant (p = 0.0079) differences in ASCT2 distribution were found between regions that show strong and weak alanine uptake in MRI. To better understand the influence of perfusion, the effect of ASCT2 inhibition on the alanine uptake in MRI was investigated, and dynamic contrast enhanced MRI was compared with alanine MRI.
Collapse
|
3
|
China’s radiopharmaceuticals on expressway: 2014–2021. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2021-1137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This review provides an essential overview on the progress of rapidly-developing China’s radiopharmaceuticals in recent years (2014–2021). Our discussion reflects on efforts to develop potential, preclinical, and in-clinical radiopharmaceuticals including the following areas: (1) brain imaging agents, (2) cardiovascular imaging agents, (3) infection and inflammation imaging agents, (4) tumor radiopharmaceuticals, and (5) boron delivery agents (a class of radiopharmaceutical prodrug) for neutron capture therapy. Especially, the progress in basic research, including new radiolabeling methodology, is highlighted from a standpoint of radiopharmaceutical chemistry. Meanwhile, we briefly reflect on the recent major events related to radiopharmaceuticals along with the distribution of major R&D forces (universities, institutions, facilities, and companies), clinical study status, and national regulatory supports. We conclude with a brief commentary on remaining limitations and emerging opportunities for China’s radiopharmaceuticals.
Collapse
|
4
|
Ekici S, Nye J, Neill S, Allen J, Shu HK, Fleischer C. Glutamine Imaging: A New Avenue for Glioma Management. AJNR Am J Neuroradiol 2022; 43:11-18. [PMID: 34737183 PMCID: PMC8757564 DOI: 10.3174/ajnr.a7333] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/04/2021] [Indexed: 01/03/2023]
Abstract
The glutamine pathway is emerging as an important marker of cancer prognosis and a target for new treatments. In gliomas, the most common type of brain tumors, metabolic reprogramming leads to abnormal consumption of glutamine as an energy source, and increased glutamine concentrations are associated with treatment resistance and proliferation. A key challenge in the development of glutamine-based biomarkers and therapies is the limited number of in vivo tools to noninvasively assess local glutamine metabolism and monitor its changes. In this review, we describe the importance of glutamine metabolism in gliomas and review the current landscape of translational and emerging imaging techniques to measure glutamine in the brain. These techniques include MRS, PET, SPECT, and preclinical methods such as fluorescence and mass spectrometry imaging. Finally, we discuss the roadblocks that must be overcome before incorporating glutamine into a personalized approach for glioma management.
Collapse
Affiliation(s)
- S. Ekici
- From the Departments of Radiology and Imaging Sciences (S.E., J.A.N., J.W.A., C.C.F.)
| | - J.A. Nye
- From the Departments of Radiology and Imaging Sciences (S.E., J.A.N., J.W.A., C.C.F.)
| | - S.G. Neill
- Pathology and Laboratory Medicine (S.G.N.), Emory University School of Medicine, Atlanta, Georgia
| | - J.W. Allen
- From the Departments of Radiology and Imaging Sciences (S.E., J.A.N., J.W.A., C.C.F.),Neurology (J.W.A.), Emory University School of Medicine, Atlanta, Georgia
| | - H.-K. Shu
- Radiation Oncology (H.-K.S.), Emory University School of Medicine, Atlanta, Georgia
| | - C.C. Fleischer
- From the Departments of Radiology and Imaging Sciences (S.E., J.A.N., J.W.A., C.C.F.),Wallace H. Coulter Department of Biomedical Engineering (C.C.F.), Geogria Institute of Technology and Emory University, Atlanta, Georgia
| |
Collapse
|
5
|
Current status and future perspective of radiopharmaceuticals in China. Eur J Nucl Med Mol Imaging 2021; 49:2514-2530. [PMID: 34767047 PMCID: PMC8586637 DOI: 10.1007/s00259-021-05615-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022]
Abstract
Radiopharmaceuticals are essential components of nuclear medicine and serve as one of the cornerstones of molecular imaging and precision medicine. They provide new means and approaches for early diagnosis and treatment of diseases. After decades of development and hard efforts, a relatively matured radiopharmaceutical production and management system has been established in China with high-quality facilities. This review provides an overview of the current status of radiopharmaceuticals on production and distribution, clinical application, and regulatory supervision and also describes some important advances in research and development and clinical translation of radiopharmaceuticals in the past 10 years. Moreover, some prospects of research and development of radiopharmaceuticals in the near future are discussed.
Collapse
|
6
|
Lan X, Fan K, Cai W. First-in-human study of an 18F-labeled boramino acid: a new class of PET tracers. Eur J Nucl Med Mol Imaging 2021; 48:3037-3040. [PMID: 33547555 DOI: 10.1007/s00259-021-05227-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Hubei Key Laboratory of Molecular Imaging, Wuhan, China.
| | - Kevin Fan
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, 1111 Highland Avenue, Madison, WI, USA.
| |
Collapse
|
7
|
Duan D, Dong H, Tu Z, Wang C, Fu Q, Chen J, Zhong H, Du P, Sun LD, Liu Z. Desilylation Induced by Metal Fluoride Nanocrystals Enables Cleavage Chemistry In Vivo. J Am Chem Soc 2021; 143:2250-2255. [PMID: 33517656 DOI: 10.1021/jacs.0c10399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metal fluoride nanocrystals are widely used in biomedical studies owing to their unique physicochemical properties. The release of metal ions and fluorides from nanocrystals is intrinsic due to the solubility equilibrium. It used to be considered as a drawback because it is related to the decomposition and defunction of metal fluoride nanocrystals. Many strategies have been developed to stabilize the nanocrystals, and the equilibrium concentrations of fluoride are often <1 mM. Here we make good use of this minimum amount of fluoride and unveil that metal fluoride nanocrystals could effectively induce desilylation cleavage chemistry, enabling controlled release of fluorophores and drug molecules in test tubes, living cells, and tumor-bearing mice. Biocompatible PEG (polyethylene glycol)-coated CaF2 nanocrystals have been prepared to assay the efficiency of desilylation-induced controlled release of functional molecules. We apply the strategy to a prodrug activation of monomethyl auristatin E (MMAE), showing a remarkable anticancer effect, while side effects are almost negligible. In conclusion, this desilylation-induced cleavage chemistry avails the drawback on empowering metal fluoride nanocrystals with a new function of perturbing or activating for further biological applications.
Collapse
Affiliation(s)
- Dongban Duan
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao Dong
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhiyu Tu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chunhong Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qunfeng Fu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junyi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Haipeng Zhong
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ping Du
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ling-Dong Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Research progress of 18F labeled small molecule positron emission tomography (PET) imaging agents. Eur J Med Chem 2020; 205:112629. [PMID: 32956956 DOI: 10.1016/j.ejmech.2020.112629] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/07/2020] [Accepted: 06/28/2020] [Indexed: 01/12/2023]
Abstract
With the development of positron emission tomography (PET) technology, a variety of PET imaging agents labeled with radionuclide 18F have been developed and widely used in the diagnosis and treatment of various clinical diseases in recent years. For example, they have showed a great value of study in the field of tumor detection, tumor treatment and evaluation of tumor therapy in a non-invasive, qualitative and quantitative way. In this review, we highlight the recent development in chemical synthesis, structure and characterization, imaging characterization, and potential applications of these 18F labeled small molecule PET imaging agents for the past five years. The development and application of 18F labeled small molecules will expand our knowledge of the function and distribution of diseases-related molecular targets and shed light on the diagnosis and treatment of various diseases including tumors.
Collapse
|
9
|
Miner MW, Liljenbäck H, Virta J, Merisaari J, Oikonen V, Westermarck J, Li XG, Roivainen A. (2S, 4R)-4-[ 18F]Fluoroglutamine for In vivo PET Imaging of Glioma Xenografts in Mice: an Evaluation of Multiple Pharmacokinetic Models. Mol Imaging Biol 2020; 22:969-978. [PMID: 31993927 PMCID: PMC7343746 DOI: 10.1007/s11307-020-01472-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The glutamine analogue (2S, 4R)-4-[18F]fluoroglutamine ([18F]FGln) was investigated to further characterize its pharmacokinetics and acquire in vivo positron emission tomography (PET) images of separate orthotopic and subcutaneous glioma xenografts in mice. PROCEDURES [18F]FGln was synthesized at a high radiochemical purity as analyzed by high-performance liquid chromatography. An orthotopic model was created by injecting luciferase-expressing patient-derived BT3 glioma cells into the right hemisphere of BALB/cOlaHsd-Foxn1nu mouse brains (tumor growth monitored via in vivo bioluminescence), the subcutaneous model by injecting rat BT4C glioma cells into the flank and neck regions of Foxn1nu/nu mice. Dynamic PET images were acquired after injecting 10-12 MBq of the tracer into mouse tail veins. Animals were sacrificed 63 min after tracer injection, and ex vivo biodistributions were measured. Tumors and whole brains (with tumors) were cryosectioned, autoradiographed, and stained with hematoxylin-eosin. All images were analyzed with CARIMAS software. Blood sampling of 6 Foxn1nu/nu and 6 C57BL/6J mice was performed after 9-14 MBq of tracer was injected at time points between 5 and 60 min then assayed for erythrocyte uptake, plasma protein binding, and plasma parent-fraction of radioactivity to correct PET image-derived whole-blood radioactivity and apply the data to multiple pharmacokinetic models. RESULTS Orthotopic human glioma xenografts displayed PET image tumor-to-healthy brain region ratio of 3.6 and 4.8 while subcutaneously xenografted BT4C gliomas displayed (n = 12) a tumor-to-muscle (flank) ratio of 1.9 ± 0.7 (range 1.3-3.4). Using PET image-derived blood radioactivity corrected by population-based stability analyses, tumor uptake pharmacokinetics fit Logan and Yokoi modeling for reversible uptake. CONCLUSIONS The results reinforce that [18F]FGln has preferential uptake in glioma tissue versus that of corresponding healthy tissue and fits well with reversible uptake models.
Collapse
Affiliation(s)
- Maxwell Wg Miner
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Heidi Liljenbäck
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, FI-20014, Turku, Finland
| | - Jenni Virta
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Joni Merisaari
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Vesa Oikonen
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Jukka Westermarck
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Xiang-Guo Li
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
- Turku PET Centre, Åbo Akademi University, FI-20520, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland.
- Turku Center for Disease Modeling, University of Turku, FI-20014, Turku, Finland.
- Turku PET Centre, Turku University Hospital, FI-20520, Turku, Finland.
| |
Collapse
|
10
|
Matés JM, Campos-Sandoval JA, de Los Santos-Jiménez J, Márquez J. Glutaminases regulate glutathione and oxidative stress in cancer. Arch Toxicol 2020; 94:2603-2623. [PMID: 32681190 DOI: 10.1007/s00204-020-02838-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022]
Abstract
Targeted therapies against cancer have improved both survival and quality of life of patients. However, metabolic rewiring evokes cellular mechanisms that reduce therapeutic mightiness. Resistant cells generate more glutathione, elicit nuclear factor erythroid 2-related factor 2 (NRF2) activation, and overexpress many anti-oxidative genes such as superoxide dismutase, catalase, glutathione peroxidase, and thioredoxin reductase, providing stronger antioxidant capacity to survive in a more oxidative environment due to the sharp rise in oxidative metabolism and reactive oxygen species generation. These changes dramatically alter tumour microenvironment and cellular metabolism itself. A rational design of therapeutic combination strategies is needed to flatten cellular homeostasis and accomplish a drop in cancer development. Context-dependent glutaminase isoenzymes show oncogenic and tumour suppressor properties, being mainly associated to MYC and p53, respectively. Glutaminases catalyze glutaminolysis in mitochondria, regulating oxidative phosphorylation, redox status and cell metabolism for tumour growth. In addition, the substrate and product of glutaminase reaction, glutamine and glutamate, respectively, can work as signalling molecules moderating redox and bioenergetic pathways in cancer. Novel synergistic approaches combining glutaminase inhibition and redox-dependent modulation are described in this review. Pharmacological or genetic glutaminase regulation along with oxidative chemotherapy can help to improve the design of combination strategies that escalate the rate of therapeutic success in cancer patients.
Collapse
Affiliation(s)
- José M Matés
- Department of Molecular Biology and Biochemistry, Canceromics Lab, Faculty of Sciences, University of Málaga, Campus de Teatinos, 29071, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.
| | - José A Campos-Sandoval
- Department of Molecular Biology and Biochemistry, Canceromics Lab, Faculty of Sciences, University of Málaga, Campus de Teatinos, 29071, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Juan de Los Santos-Jiménez
- Department of Molecular Biology and Biochemistry, Canceromics Lab, Faculty of Sciences, University of Málaga, Campus de Teatinos, 29071, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Javier Márquez
- Department of Molecular Biology and Biochemistry, Canceromics Lab, Faculty of Sciences, University of Málaga, Campus de Teatinos, 29071, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| |
Collapse
|
11
|
Joo CG, Yang SH, Choi Y, Son HY, Kim DH, Huh YM. L-glutamine as a T 2 exchange contrast agent. Magn Reson Med 2020; 84:2055-2062. [PMID: 32406063 DOI: 10.1002/mrm.28305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE The potential of L-glutamine as a T2 exchange contrast agent in MRI was investigated. METHODS The T2 relaxation rate of L-glutamine solutions prepared in various concentrations was measured at 9.4 T. A series of T2 -weighted images in a mouse cancer model was acquired with an L-glutamine solution infusion. RESULTS The T2 relaxivity caused by the exchange (R2ex ) at 37°C was 0.069 s-1 mM-1 and 0.102 s-1 mM-1 for glutamine and glutamate solutions at pH = 7.2, respectively. The R2ex of glutamine at pH = 6.1-6.7 was in the 0.097-0.1 s-1 mM-1 range. No significant dependence of T1 on the concentration of glutamine was observed. The dynamic measurement of T2 -weighted images in vivo showed that the glutamine uptake was primarily observed at the localized part of the tumor CONCLUSION: L-glutamine can be used as a T2 exchange contrast agent and images of glutamine uptake in vivo can be acquired.
Collapse
Affiliation(s)
- Chan Gyu Joo
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul, Korea
| | - Seung-Hyun Yang
- Department of Radiology, College of Medicine, Yonsei University, Seoul, Korea
| | - Yuna Choi
- Department of Radiology, College of Medicine, Yonsei University, Seoul, Korea
| | - Hye-Young Son
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul, Korea.,Department of Radiology, College of Medicine, Yonsei University, Seoul, Korea
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea
| | - Yong-Min Huh
- Department of Radiology, College of Medicine, Yonsei University, Seoul, Korea.,YUHS-KRIBB Medical Convergence Research Institute, Yonsei University, Seoul, Korea
| |
Collapse
|
12
|
Chen J, Li C, Hong H, Liu H, Wang C, Xu M, Han Y, Liu Z. Side Chain Optimization Remarkably Enhances the in Vivo Stability of 18F-Labeled Glutamine for Tumor Imaging. Mol Pharm 2019; 16:5035-5041. [PMID: 31670970 DOI: 10.1021/acs.molpharmaceut.9b00891] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Similar to glycolysis, glutaminolysis acts as a vital energy source in tumor cells, providing building blocks for the metabolic needs of tumor cells. To capture glutaminolysis in tumors, 18F-(2S,4R)4-fluoroglutamine ([18F]FGln) and 18F-fluoroboronoglutamine ([18F]FBQ) have been successfully developed for positron emission tomography (PET) imaging, but these two molecules lack stability, resulting in undesired yet significant bone uptake. In this study, we found that [18F]FBQ-C2 is a stable Gln PET tracer by adding two more methylene groups to the side chain of [18F]FBQ. [18F]FBQ-C2 was synthesized with a good radiochemical yield of 35% and over 98% radiochemical purity. [18F]FBQ-C2 showed extreme stability in vitro, and no defluorination was observed after 2 h in phosphate buffered saline at 37 °C. The competitive inhibition assay results indicated that [18F]FBQ-C2 enters cells via the system ASC and N, similar to natural glutamine, and can be transported by tumor-overexpressed ASCT2. PET imaging and biodistribution results indicated that [18F]FBQ-C2 is stable in vivo with low bone uptake (0.81 ± 0.20% ID/g) and can be cleared rapidly from most tissues. Dynamic scan and pharmacokinetic studies using BGC823-xenograft-bearing mice revealed that [18F]FBQ-C2 accumulates specifically in tumors, with a longer half-life (101.18 ± 6.50 min) in tumor tissues than in other tissues (52.70 ± 12.44 min in muscle). Biodistribution exhibits a high tumor-to-normal tissue ratio (4.8 ± 1.7 for the muscle, 2.5 ± 1.0 for the stomach, 2.2 ± 0.9 for the liver, and 17.8 ± 8.4 for the brain). In conclusion, [18F]FBQ-C2 can be used to perform high-contrast Gln imaging of tumors and can serve as a PET tracer for clinical research.
Collapse
Affiliation(s)
- Junyi Chen
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Cong Li
- Peking University-Tsinghua University Center for Life Sciences, Beijing 100871, China
| | - Hanyu Hong
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hui Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chunhong Wang
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mengxin Xu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuxiang Han
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhibo Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking University-Tsinghua University Center for Life Sciences, Beijing 100871, China
| |
Collapse
|
13
|
Li J, Shi Y, Zhang Z, Liu H, Lang L, Liu T, Chen X, Liu Z. A Metabolically Stable Boron-Derived Tyrosine Serves as a Theranostic Agent for Positron Emission Tomography Guided Boron Neutron Capture Therapy. Bioconjug Chem 2019; 30:2870-2878. [PMID: 31593447 DOI: 10.1021/acs.bioconjchem.9b00578] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Boronophenylalanine (BPA) is the dominant boron delivery agent for boron neutron capture therapy (BNCT), and [18F]FBPA has been developed to assist the treatment planning for BPA-BNCT. However, the clinical application of BNCT has been limited by its inadequate tumor specificity due to the metabolic instability. In addition, the distinctive molecular structures between [18F]FBPA and BPA can be of concern as [18F]FBPA cannot quantitate boron concentration of BPA in a real-time manner. In this study, a metabolically stable boron-derived tyrosine (denoted as fluoroboronotyrosine, FBY) was developed as a theranostic agent for both boron delivery and cancer diagnosis, leading to PET imaging-guided BNCT of cancer. [18F]FBY was synthesized in high radiochemical yield (50%) and high radiochemical purity (98%). FBY showed high similarity with natural tyrosine. As shown in in vitro assays, the uptake of FBY in murine melanoma B16-F10 cells was L-type amino acid transporter (LAT-1) dependent and reached up to 128 μg/106 cells. FBY displayed high stability in PBS solution. [18F]FBY PET showed up to 6 %ID/g in B16-F10 tumor and notably low normal tissue uptake (tumor/muscle = 3.16 ± 0.48; tumor/blood = 3.13 ± 0.50; tumor/brain = 14.25 ± 1.54). Moreover, administration of [18F]FBY tracer along with a therapeutic dose of FBY showed high accumulation in B16-F10 tumor and low normal tissue uptake. Correlation between PET-image and boron biodistribution was established, indicating the possibility of estimating boron concentration via a noninvasive approach. At last, with thermal neutron irradiation, B16-F10 tumor-bearing mice injected with FBY showed significantly prolonged median survival without exhibiting obvious systemic toxicity. In conclusion, FBY holds great potential as an efficient theranostic agent for imaging-guided BNCT by offering a possible solution of measuring local boron concentration through PET imaging.
Collapse
Affiliation(s)
- Jiyuan Li
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Yaxin Shi
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zizhu Zhang
- Beijing Capture Tech Co., Ltd. , Beijing 102413 , China
| | - Hui Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Lixin Lang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN) , National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Tong Liu
- Beijing Capture Tech Co., Ltd. , Beijing 102413 , China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN) , National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Zhibo Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China.,Peking University-Tsinghua University Center for Life Sciences , Beijing 100871 , China
| |
Collapse
|