1
|
Tosato M, Favaretto C, Kleynhans J, Burgoyne AR, Gestin JF, van der Meulen NP, Jalilian A, Köster U, Asti M, Radchenko V. Alpha Atlas: Mapping global production of α-emitting radionuclides for targeted alpha therapy. Nucl Med Biol 2025; 142-143:108990. [PMID: 39809026 DOI: 10.1016/j.nucmedbio.2024.108990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Targeted Alpha Therapy has shown great promise in cancer treatment, sparking significant interest over recent decades. However, its broad adoption has been impeded by the scarcity of alpha-emitters and the complexities related to their use. The availability of these radionuclides is often constrained by the intricate production processes and purification, as well as regulatory and logistical challenges. Moreover, the high cost and technical difficulties associated with handling and applying alpha-emitting radionuclides pose additional barriers to their clinical implementation. This Alpha Atlas provides an in-depth overview of the leading alpha-particle emitting radionuclide candidates for clinical use, focusing on their production processes and supply chains. By mapping the current facilities that produce and supply these radionuclides, this atlas aims to assist researchers, clinicians, and industries in initiating or scaling up the applications of alpha-emitters. The Alpha Atlas aspires to act as a strategic guide, facilitating collaboration and driving forward the integration of these potent therapeutic agents into cancer treatment practices.
Collapse
Affiliation(s)
- Marianna Tosato
- Radiopharmaceutical Chemistry Laboratory (RACHEL), Nuclear Medicine Unit, AUSL-IRCCS Reggio Emilia, 42123 Reggio Emilia, Italy.
| | - Chiara Favaretto
- Radiopharmacy and Cyclotron Department, IRCCS Sacro Cuore Don Calabria, Negrar 37024, Verona, Italy
| | - Janke Kleynhans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Andrew R Burgoyne
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, United States
| | - Jean-François Gestin
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, 44000 Nantes, France
| | - Nicholas P van der Meulen
- PSI Center for Life Sciences, 5232 Villigen-PSI, Switzerland; PSI Center for Nuclear Engineering and Sciences, 5232 Villigen-PSI, Switzerland
| | - Amirreza Jalilian
- Department of Nuclear Safety and Security, International Atomic Energy Agency, 1220 Vienna, Austria
| | - Ulli Köster
- Institut Laue-Langevin, 38042 Grenoble, France
| | - Mattia Asti
- Radiopharmaceutical Chemistry Laboratory (RACHEL), Nuclear Medicine Unit, AUSL-IRCCS Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, BC V6T 2A3 Vancouver, British Columbia, Canada; Department of Chemistry, University of British Columbia, V6T 1Z1 Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Ding J, Qin S, Hou X, Zhang J, Yang M, Ma S, Zhu H, Feng Y, Yu F. Recent advances in emerging radiopharmaceuticals and the challenges in radiochemistry and analytical chemistry. Trends Analyt Chem 2025; 182:118053. [DOI: 10.1016/j.trac.2024.118053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Ismuha RR, Ritawidya R, Daruwati I, Muchtaridi M. Future Prospect of Low-Molecular-Weight Prostate-Specific Membrane Antigen Radioisotopes Labeled as Theranostic Agents for Metastatic Castration-Resistant Prostate Cancer. Molecules 2024; 29:6062. [PMID: 39770150 PMCID: PMC11679579 DOI: 10.3390/molecules29246062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Prostate cancer ranks as the fourth most common cancer among men, with approximately 1.47 million new cases reported annually. The emergence of prostate-specific membrane antigen (PSMA) as a critical biomarker has revolutionized the diagnosis and treatment of prostate cancer. Recent advancements in low-molecular-weight PSMA inhibitors, with their diverse chemical structures and binding properties, have opened new avenues for research and therapeutic applications in prostate cancer management. These novel agents exhibit enhanced tumor targeting and specificity due to their small size, facilitating rapid uptake and localization at the target site while minimizing the retention in non-target tissues. The primary aim of this study is to evaluate the potential of low-molecular-weight PSMA inhibitors labeled with radioisotopes as theranostic agents for prostate cancer. This includes assessing their efficacy in targeted imaging and therapy and understanding their pharmacokinetic properties and mechanisms of action. This study is a literature review focusing on in vitro and clinical research data. The in vitro studies utilize PSMA-targeted radioligands labeled with radioisotopes to assess their binding affinity, specificity, and internalization in prostate cancer cell lines. Additionally, the clinical studies evaluate the safety, effectiveness, and biodistribution of radiolabeled PSMA ligands in patients with advanced prostate cancer. The findings indicate promising outcomes regarding the safety and efficacy of PSMA-targeted radiopharmaceuticals in clinical settings. The specific accumulation of these agents in prostate tumor lesions suggests their potential for various applications, including imaging and therapy. This research underscores the promise of radiopharmaceuticals targeting PSMA in advancing the diagnosis and treatment of prostate cancer. These agents improve diagnostic accuracy and patients' outcomes by enhancing imaging capabilities and enabling personalized treatment strategies.
Collapse
Affiliation(s)
- Ratu Ralna Ismuha
- Department of Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Department of Pharmacy, Dharmais Cancer Hospital—National Cancer Center, Jakarta 11420, Indonesia
| | - Rien Ritawidya
- Center for Research on Radioisotope Technology, Radiopharmaceuticals, and Biodosimetry, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia; (R.R.); (I.D.)
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang 45363, Indonesia
| | - Isti Daruwati
- Center for Research on Radioisotope Technology, Radiopharmaceuticals, and Biodosimetry, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia; (R.R.); (I.D.)
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang 45363, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang 45363, Indonesia
| |
Collapse
|
4
|
Zuo D, Wang H, Yu B, Li Q, Gan L, Chen W. Astatine-211 and actinium-225: two promising nuclides in targeted alpha therapy. Acta Biochim Biophys Sin (Shanghai) 2024; 57:327-343. [PMID: 39587859 PMCID: PMC11986457 DOI: 10.3724/abbs.2024206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/22/2024] [Indexed: 11/27/2024] Open
Abstract
Nuclear medicine therapy offers a promising approach for tumor treatment, as the energy emitted during radionuclide decay causes irreparable damage to tumor cells. Notably, α-decay exhibits an even more significant destructive potential. By conjugating α-nuclides with antibodies or small-molecule inhibitors, targeted alpha therapy (TAT) can enhance tumor destruction while minimizing toxic side effects, making TAT an increasingly attractive antineoplastic strategy. Astatine-211 ( 211At) and actinium-225 ( 225Ac) have emerged as highly effective agents in TAT due to their exceptional physicochemical properties and biological effects. In this review, we highlight the applications of 211At-/ 225Ac-radiopharmaceuticals, particularly in specific tumor targets, such as prostate-specific membrane antigen (PSMA) in prostate cancers, cluster of differentiation (CD) in hematological malignancies, human epidermal growth factor receptor-2 (HER2) in ovarian cancers, and somatostatin receptor (SSTR) in neuroendocrine tumors. We synthesize the progress from preclinical and clinical trials to provide insights into the promising potential of 211At-/ 225Ac-radiopharmaceuticals for future treatments.
Collapse
Affiliation(s)
- Dashan Zuo
- Institute of Modern PhysicsChinese Academy of SciencesLanzhou730000China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhou730000China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hui Wang
- Institute of Modern PhysicsChinese Academy of SciencesLanzhou730000China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhou730000China
| | - Boyi Yu
- Institute of Modern PhysicsChinese Academy of SciencesLanzhou730000China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhou730000China
| | - Qiang Li
- Institute of Modern PhysicsChinese Academy of SciencesLanzhou730000China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhou730000China
- University of Chinese Academy of SciencesBeijing100049China
- Lanhai Nuclear Medical Research CenterPutian351153China
| | - Lu Gan
- Institute of Modern PhysicsChinese Academy of SciencesLanzhou730000China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhou730000China
- University of Chinese Academy of SciencesBeijing100049China
| | - Weiqiang Chen
- Institute of Modern PhysicsChinese Academy of SciencesLanzhou730000China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhou730000China
- University of Chinese Academy of SciencesBeijing100049China
- Lanhai Nuclear Medical Research CenterPutian351153China
| |
Collapse
|
5
|
Vanermen M, Ligeour M, Oliveira MC, Gestin JF, Elvas F, Navarro L, Guérard F. Astatine-211 radiolabelling chemistry: from basics to advanced biological applications. EJNMMI Radiopharm Chem 2024; 9:69. [PMID: 39365487 PMCID: PMC11452365 DOI: 10.1186/s41181-024-00298-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND 211At-radiopharmaceuticals are currently the subject of growing studies for targeted alpha therapy of cancers, which leads to the widening of the scope of the targeting vectors, from small molecules to peptides and proteins. This has prompted, during the past decade, to a renewed interest in developing novel 211At-labelling approaches and novel prosthetic groups to address the diverse scenarios and to reach improved efficiency and robustness of procedures as well as an appropriate in vivo stability of the label. MAIN BODY Translated from the well-known (radio)iodine chemistry, the long preferred electrophilic astatodemetallation using trialkylaryltin precursors is now complemented by new approaches using electrophilic or nucleophilic At. Alternatives to the astatoaryl moiety have been proposed to improve labelling stability, and the range of prosthetic groups available to label proteins has expanded. CONCLUSION In this report, we cover the evolution of radiolabelling chemistry, from the initial strategies developed in the late 1970's to the most recent findings.
Collapse
Affiliation(s)
- Maarten Vanermen
- Molecular Imaging and Radiology (MIRA), University of Antwerp, Wilrijk, Belgium
| | - Mathilde Ligeour
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Maria-Cristina Oliveira
- Departamento de Engenharia e Ciências Nucleares and Centro de Ciências e Tecnologias Nucleares, IST, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal
| | | | - Filipe Elvas
- Molecular Imaging and Radiology (MIRA), University of Antwerp, Wilrijk, Belgium
| | | | - François Guérard
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France.
| |
Collapse
|
6
|
Tada M, Kaizuka Y, Kannaka K, Suzuki H, Joho T, Takahashi K, Uehara T, Tanaka H. Development of a Neopentyl 211At-Labeled Activated Ester Providing In Vivo Stable 211At-Labeled Antibodies for Targeted Alpha Therapy. ChemMedChem 2024; 19:e202400369. [PMID: 38847493 DOI: 10.1002/cmdc.202400369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Indexed: 08/10/2024]
Abstract
In this study we developed a neopentyl 211At-labeled activated ester that incorporates a triazole spacer and applied it to the synthesis of an 211At-labeled cetuximab. The activated ester was synthesized via the nucleophilic 211At-astatination of a neopentyl sulfonate carrying two long alkyl chains that serve as a lipid tag, which was followed by the hydrolysis of an acetal. Additionally, we developed a novel Resin-Assisted Purification and Deprotection (RAPD) protocol involving a solid-phase extraction of the protected 211At-labeled compound from the mixture of the labeling reaction, hydrolysis of the acetal on the resin, and finally an elution of the 211At-labeled activator from the resin. This method allows the synthesis of an 211At-labeled activated ester with high purity through a simplified procedure that circumvents the need for HPLC purification. Using this 211At-labeled activated ester, we efficiently synthesized 211At-labeled cetuximab in 27±1 % radiochemical yield with 95 % radiochemical purity. This 211At-activated ester demonstrated high reactivity, and enabled the completion of the reaction with the antibody within 10 min. In comparative biodistribution studies between 211At-labeled cetuximab and the corresponding 125I-labeled cetuximab in normal mice, both the thyroid and stomach showed radioactivity levels that were less than 1.0 % of the injected dose.
Collapse
Affiliation(s)
- Masatoshi Tada
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 12-12-1-H101 Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Yuta Kaizuka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Kento Kannaka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Hiroyuki Suzuki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Taiki Joho
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikariga-oka, Fukushima, 960-1295, Japan
| | - Kazuhiro Takahashi
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikariga-oka, Fukushima, 960-1295, Japan
| | - Tomoya Uehara
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Hiroshi Tanaka
- Faculty of Pharmacy, Juntendo University, 6-8-1 Hinode, Urayasu, Chiba, 279-0013, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 12-12-1-H101 Ookayama, Meguro, Tokyo, 152-8552, Japan
| |
Collapse
|
7
|
Huynh TT, Feng Y, Meshaw R, Zhao XG, Rosenfeld L, Vaidyanathan G, Papo N, Zalutsky MR. PSMA-reactive NB7 single domain antibody fragment: A potential scaffold for developing prostate cancer theranostics. Nucl Med Biol 2024; 134-135:108913. [PMID: 38703588 DOI: 10.1016/j.nucmedbio.2024.108913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Single domain antibody fragments (sdAbs) are an appealing scaffold for radiopharmaceutical development due to their small size (~15 kDa), high solubility, high stability, and excellent tumor penetration. Previously, we developed NB7 sdAb, which has very high affinity for an epitope on PSMA that is different from those targeted by small molecule PSMA inhibitors. Herein, we evaluated NB7 after radioiodination using [*I]SGMIB (1,3,4-isomer) and iso-[*I]SGMIB (1,3,5-isomer), as well as their 211At-labeled analogues. METHODS [*I]SGMIB, iso-[*I]SGMIB, [211At]SAGMB, and iso-[211At]SAGMB conjugates of NB7 sdAb were synthesized and their binding affinity, cell uptake and internalization were assessed in PSMA+ PC3 PIP and PSMA- PC3 flu cells. Biodistribution studies were performed in mice bearing PSMA+ PC3 PIP xenografts. First, a single-label experiment evaluated the tissue distribution of a NB7 bearing a His6-tag (NB7H6) and labeled with iso-[125I]SGMIB. Three paired-label experiments then were performed to compare: a) NB7 labeled using [*I]SGMIB and iso-[*I]SGMIB, b) 131I- vs 211At-labeled NB7 conjugates and c) [125I]SGMIB-NB7H6 to the small molecule PSMA inhibitor [131I]YF2. RESULTS All NB7 radioconjugates bound specifically to PSMA with dissociation constants, Kd, in the low nM range (1.4-6.4 nM). An initial biodistribution study demonstrated good tumor uptake for iso-[125I]SGMIB-NB7H6 (7.2 ± 1.5 % ID/g at 1 h) and no deleterious effect of the His6-tag on renal activity levels, which declined to 3.1 ± 1.1 % ID/g by 4 h. Paired-label biodistribution found no distinction between the two SGMIB isomer NB7 conjugates with the [131I]SGMIB-NB7-to-iso-[125I]SGMIB-NB7 tumor uptake ratios not significantly different from unity: 1.06 ± 0.08 at 1 h, 1.04 ± 0.12 at 4 h, and 1.07 ± 0.09 at 24 h. Both isomer conjugates cleared rapidly from normal tissues and exhibited very low uptake in thyroid, lacrimal and salivary glands. Paired-label biodistribution of [131I]SGMIB-NB7H6 and [211At]SAGMB-NB7H6 demonstrated similar tumor uptake and kidney clearance for the two radioconjugates. However, levels of 211At in thyroid, stomach, salivary and lacrimal glands were significantly higher (P < 0.05) that those for 131I suggesting greater dehalogenation for [211At]SAGMB-NB7H6. Finally, co-administration of [125I]SGMIB-NB7H6 and [131I]YF2 demonstrated good tumor uptake for both with considerably more rapid renal clearance for the NB7 radioconjugate. CONCLUSION NB7 radioconjugates exhibited good accumulation in PSMA-positive xenografts with rapid clearance from kidney and other normal tissues. We conclude that NB7 is a potentially useful scaffold for developing PSMA-targeted theranostics with different characteristics than current small molecule and antibody-based approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Niv Papo
- Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | |
Collapse
|
8
|
Feng Y, Meshaw RL, Finch SW, Zheng Y, Minn I, Vaidyanathan G, Pomper MG, Zalutsky MR. A third generation PSMA-targeted agent [ 211At]YF2: Synthesis and in vivo evaluation. Nucl Med Biol 2024; 134-135:108916. [PMID: 38703587 PMCID: PMC11180594 DOI: 10.1016/j.nucmedbio.2024.108916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Targeted α-particle therapy agents have shown promising responses in patients who have developed resistance to β--particle emitting radionuclides, albeit off-target toxicity remains a concern. Astatine-211 emits only one α-particle per decay and may alleviate the toxicity from α-emitting daughter radionuclides. Previously, we developed the low-molecular-weight PSMA-targeted agent [211At]L3-Lu that showed suitable therapeutic efficacy and was well tolerated in mice. Although [211At]L3-Lu had good characteristics, we now have evaluated a closely related analogue, [211At]YF2, to determine the better molecule for clinical translation. METHODS The tin precursors and unlabeled iodo standards for [211At]YF2 and [211At]L3-Lu each were synthesized and a new one-step labeling method was developed to produce [211At]YF2 and [211At]L3-Lu from the respective tin precursor. RCY and RCP were determined using RP-HPLC. Cell uptake, internalization and in vitro cell-killing (MTT) assays were performed on PSMA+ PC-3 PIP cells in parallel experiments to compare [211At]YF2 and [211At]L3-Lu directly. A paired-label biodistribution study was performed in athymic mice with subcutaneous PSMA-positive PC-3 PIP xenografts as a head-to-head comparison of [131I]YF2 and [125I]L3-Lu. The tissue distribution of [211At]YF2 and [211At]L3-Lu were determined individually in the same animal model. RESULTS The syntheses of tin precursors and unlabeled iodo standards were accomplished in reasonable yields. A streamlined and scalable radiolabeling method (1 h total synthesis time) was developed for the radiosynthesis of both [211At]YF2 and [211At]L3-Lu with 86 ± 7 % (n = 10) and 87 ± 5 % (n = 7) RCY, respectively, and > 95 % RCP for both. The maximum activity of [211At]YF2 produced to date was 666 MBq. An alternative method that did not involve HPLC purification was developed that provided similar RCY and RCP. Significantly higher cell uptake, internalization and cytotoxicity was seen for [211At]YF2 compared with [211At]L3-Lu. Significantly higher uptake and longer retention in tumor was seen for [131I]YF2 than for co-administered [125I]L3-Lu, while considerably higher renal uptake was seen for [131I]YF2. The biodistribution of [211At]YF2 was consistent with that of [131I]YF2. CONCLUSION [211At]YF2 exhibited higher cellular uptake, internalization and cytotoxicity than [211At]L3-Lu on PSMA-positive PC3 PIP cells. Likewise, higher uptake and longer retention in tumor was seen for [211At]YF2. Experiments to evaluate the dosimetry and therapeutic efficacy of [211At]YF2 are under way.
Collapse
Affiliation(s)
- Yutian Feng
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Rebecca L Meshaw
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sean W Finch
- Department of Physics and Triangle Universities Nuclear Laboratory, Duke University, Durham, NC 27710, USA
| | - Yongxiang Zheng
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Il Minn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
9
|
Kleynhans J, Ebenhan T, Cleeren F, Sathekge MM. Can current preclinical strategies for radiopharmaceutical development meet the needs of targeted alpha therapy? Eur J Nucl Med Mol Imaging 2024; 51:1965-1980. [PMID: 38676735 PMCID: PMC11139742 DOI: 10.1007/s00259-024-06719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Preclinical studies are essential for effectively evaluating TAT radiopharmaceuticals. Given the current suboptimal supply chain of these radionuclides, animal studies must be refined to produce the most translatable TAT agents with the greatest clinical potential. Vector design is pivotal, emphasizing harmonious physical and biological characteristics among the vector, target, and radionuclide. The scarcity of alpha-emitting radionuclides remains a significant consideration. Actinium-225 and lead-212 appear as the most readily available radionuclides at this stage. Available animal models for researchers encompass xenografts, allografts, and PDX (patient-derived xenograft) models. Emerging strategies for imaging alpha-emitters are also briefly explored. Ultimately, preclinical research must address two critical aspects: (1) offering valuable insights into balancing safety and efficacy, and (2) providing guidance on the optimal dosing of the TAT agent.
Collapse
Affiliation(s)
- Janke Kleynhans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 3000, Belgium
| | - Thomas Ebenhan
- Department of Nuclear Medicine, University of Pretoria, and Steve Biko Academic Hospital, Pretoria, 0001, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, 0001, South Africa
| | - Frederik Cleeren
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 3000, Belgium
| | - Mike Machaba Sathekge
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, 0001, South Africa.
- Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pretoria, 0001, South Africa.
| |
Collapse
|
10
|
Sallam M, Nguyen NT, Sainsbury F, Kimizuka N, Muyldermans S, Benešová-Schäfer M. PSMA-targeted radiotheranostics in modern nuclear medicine: then, now, and what of the future? Theranostics 2024; 14:3043-3079. [PMID: 38855174 PMCID: PMC11155394 DOI: 10.7150/thno.92612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/04/2024] [Indexed: 06/11/2024] Open
Abstract
In 1853, the perception of prostate cancer (PCa) as a rare ailment prevailed, was described by the eminent Londoner surgeon John Adams. Rapidly forward to 2018, the landscape dramatically altered. Currently, men face a one-in-nine lifetime risk of PCa, accentuated by improved diagnostic methods and an ageing population. With more than three million men in the United States alone grappling with this disease, the overall risk of succumbing to stands at one in 39. The intricate clinical and biological diversity of PCa poses serious challenges in terms of imaging, ongoing monitoring, and disease management. In the field of theranostics, diagnostic and therapeutic approaches that harmoniously merge targeted imaging with treatments are integrated. A pivotal player in this arena is radiotheranostics, employing radionuclides for both imaging and therapy, with prostate-specific membrane antigen (PSMA) at the forefront. Clinical milestones have been reached, including FDA- and/or EMA-approved PSMA-targeted radiodiagnostic agents, such as [18F]DCFPyL (PYLARIFY®, Lantheus Holdings), [18F]rhPSMA-7.3 (POSLUMA®, Blue Earth Diagnostics) and [68Ga]Ga-PSMA-11 (Locametz®, Novartis/ ILLUCCIX®, Telix Pharmaceuticals), as well as PSMA-targeted radiotherapeutic agents, such as [177Lu]Lu-PSMA-617 (Pluvicto®, Novartis). Concurrently, ligand-drug and immune therapies designed to target PSMA are being advanced through rigorous preclinical research and clinical trials. This review delves into the annals of PSMA-targeted radiotheranostics, exploring its historical evolution as a signature molecule in PCa management. We scrutinise its clinical ramifications, acknowledge its limitations, and peer into the avenues that need further exploration. In the crucible of scientific inquiry, we aim to illuminate the path toward a future where the enigma of PCa is deciphered and where its menace is met with precise and effective countermeasures. In the following sections, we discuss the intriguing terrain of PCa radiotheranostics through the lens of PSMA, with the fervent hope of advancing our understanding and enhancing clinical practice.
Collapse
Affiliation(s)
- Mohamed Sallam
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- Griffith Institute for Drug Discovery (GRIDD), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Frank Sainsbury
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- Griffith Institute for Drug Discovery (GRIDD), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Research Center for Negative Emissions Technologies (K-NETs), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology (CMIM), Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Martina Benešová-Schäfer
- Research Group Molecular Biology of Systemic Radiotherapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Bidkar AP, Zerefa L, Yadav S, VanBrocklin HF, Flavell RR. Actinium-225 targeted alpha particle therapy for prostate cancer. Theranostics 2024; 14:2969-2992. [PMID: 38773983 PMCID: PMC11103494 DOI: 10.7150/thno.96403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024] Open
Abstract
Targeted alpha particle therapy (TAT) has emerged as a promising strategy for the treatment of prostate cancer (PCa). Actinium-225 (225Ac), a potent alpha-emitting radionuclide, may be incorporated into targeting vectors, causing robust and in some cases sustained antitumor responses. The development of radiolabeling techniques involving EDTA, DOTA, DOTPA, and Macropa chelators has laid the groundwork for advancements in this field. At the forefront of clinical trials with 225Ac in PCa are PSMA-targeted TAT agents, notably [225Ac]Ac-PSMA-617, [225Ac]Ac-PSMA-I&T and [225Ac]Ac-J591. Ongoing investigations spotlight [225Ac]Ac-hu11B6, [225Ac]Ac-YS5, and [225Ac]Ac-SibuDAB, targeting hK2, CD46, and PSMA, respectively. Despite these efforts, hurdles in 225Ac production, daughter redistribution, and a lack of suitable imaging techniques hinder the development of TAT. To address these challenges and additional advantages, researchers are exploring alpha-emitting isotopes including 227Th, 223Ra, 211At, 213Bi, 212Pb or 149Tb, providing viable alternatives for TAT.
Collapse
Affiliation(s)
- Anil P. Bidkar
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
| | - Luann Zerefa
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
| | - Surekha Yadav
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
| | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA-94107, USA
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA-94107, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA-94107, USA
| |
Collapse
|
12
|
Aneheim E, Hansson E, Timperanza C, Jensen H, Lindegren S. Behaviour, use and safety aspects of astatine-211 solvated in chloroform after dry distillation recovery. Sci Rep 2024; 14:9698. [PMID: 38678056 PMCID: PMC11055885 DOI: 10.1038/s41598-024-60615-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/25/2024] [Indexed: 04/29/2024] Open
Abstract
Targeted alpha therapy of disseminated cancer is an emerging technique where astatine-211 is one of the most promising candidate nuclides. Astatine-211 can be produced in medium energy cyclotrons by alpha particle bombardment of natural bismuth. The produced astatine is then commonly recovered from the irradiated solid target material through dry distillation. The dry distillation process often includes elution and solvation of condensed astatine with chloroform, forming Chloroform Eluate. In this work the handling and safe use of the high activity concentration Chloroform Eluate has been investigated. Correctly performed, evaporation of Chloroform Eluate results in a dry residue with complete recovery of the astatine. The dry residue can then serve as a versatile starting material, using appropriate oxidizing or reducing conditions, for subsequent downstream chemistry. However, it has been found that when evaporating the Chloroform Eluate, astatine can be volatilized if continuing the process beyond the point of dryness. This behavior is more pronounced when the Chloroform Eluate has received a higher absorbed dose. Upon water phase contact of the Chloroform Eluate, a major part of the astatine activity becomes water soluble, leaving the organic phase. A behavior which is also dependent on dose to the solvent.
Collapse
Affiliation(s)
- Emma Aneheim
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden.
- Department of Oncology, Region Västra Götaland, Sahlgrenska University Hospital, 41345, Gothenburg, Sweden.
| | - Ellinor Hansson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
- Atley Solutions AB, 41327, Gothenburg, Sweden
| | - Chiara Timperanza
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Holger Jensen
- Department of Clinical Physiology and Nuclear Medicine, Cyclotron and Radiochemistry unit, Copenhagen University Hospital, 2100, Copenhagen, Denmark
| | - Sture Lindegren
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| |
Collapse
|
13
|
Mattana F, Muraglia L, Barone A, Colandrea M, Saker Diffalah Y, Provera S, Cascio AS, Omodeo Salè E, Ceci F. Prostate-Specific Membrane Antigen-Targeted Therapy in Prostate Cancer: History, Combination Therapies, Trials, and Future Perspective. Cancers (Basel) 2024; 16:1643. [PMID: 38730595 PMCID: PMC11083597 DOI: 10.3390/cancers16091643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
In the last decades, the development of PET/CT radiopharmaceuticals, targeting the Prostate-Specific Membrane Antigen (PSMA), changed the management of prostate cancer (PCa) patients thanks to its higher diagnostic accuracy in comparison with conventional imaging both in staging and in recurrence. Alongside molecular imaging, PSMA was studied as a therapeutic agent targeted with various isotopes. In 2021, results from the VISION trial led to the Food and Drug Administration (FDA) approval of [177Lu]Lu-PSMA-617 as a novel therapy for metastatic castration-resistant prostate cancer (mCRPC) and set the basis for a radical change in the future perspectives of PCa treatment and the history of Nuclear Medicine. Despite these promising results, primary resistance in patients treated with single-agent [177Lu]Lu-PSMA-617 remains a real issue. Emerging trials are investigating the use of [177Lu]Lu-PSMA-617 in combination with other PCa therapies in order to cover the multiple oncologic resistance pathways and to overcome tumor heterogeneity. In this review, our aim is to retrace the history of PSMA-targeted therapy from the first preclinical studies to its future applications in PCa.
Collapse
Affiliation(s)
- Francesco Mattana
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (A.B.); (M.C.); (A.S.C.); (F.C.)
| | - Lorenzo Muraglia
- Division of Nuclear Medicine, Humanitas IRCCS, 20141 Milan, Italy;
| | - Antonio Barone
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (A.B.); (M.C.); (A.S.C.); (F.C.)
| | - Marzia Colandrea
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (A.B.); (M.C.); (A.S.C.); (F.C.)
| | - Yasmina Saker Diffalah
- Division of Nuclear Medicine, Hospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, Spain;
| | - Silvia Provera
- Division of Pharmacy, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (S.P.); (E.O.S.)
| | - Alfio Severino Cascio
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (A.B.); (M.C.); (A.S.C.); (F.C.)
| | - Emanuela Omodeo Salè
- Division of Pharmacy, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (S.P.); (E.O.S.)
| | - Francesco Ceci
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (A.B.); (M.C.); (A.S.C.); (F.C.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| |
Collapse
|
14
|
El Fakiri M, Ayada N, Müller M, Hvass L, Gamzov TH, Clausen AS, Geis NM, Steinacker N, Hansson E, Lindegren S, Aneheim E, Jensen H, Eder AC, Jensen AI, Poulie CBM, Kjaer A, Eder M, Herth MM. Development and Preclinical Evaluation of [ 211At]PSAt-3-Ga: An Inhibitor for Targeted α-Therapy of Prostate Cancer. J Nucl Med 2024; 65:593-599. [PMID: 38423784 DOI: 10.2967/jnumed.123.267043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
The application of prostate-specific membrane antigen (PSMA)-targeted α-therapy is a promising alternative to β--particle-based treatments. 211At is among the potential α-emitters that are favorable for this concept. Herein, 211At-based PSMA radiopharmaceuticals were designed, developed, and evaluated. Methods: To identify a 211At-labeled lead, a surrogate strategy was applied. Because astatine does not exist as a stable nuclide, it is commonly replaced with iodine to mimic the pharmacokinetic behavior of the corresponding 211At-labeled compounds. To facilitate the process of structural design, iodine-based candidates were radiolabeled with the PET radionuclide 68Ga to study their preliminary in vitro and in vivo properties before the desired 211At-labeled lead compound was formed. The most promising candidate from this evaluation was chosen to be 211At-labeled and tested in biodistribution studies. Results: All 68Ga-labeled surrogates displayed affinities in the nanomolar range and specific internalization in PSMA-positive LNCaP cells. PET imaging of these compounds identified [68Ga]PSGa-3 as the lead compound. Subsequently, [211At]PSAt-3-Ga was synthesized in a radiochemical yield of 35% and showed tumor uptake of 19 ± 8 percentage injected dose per gram of tissue (%ID/g) at 1 h after injection and 7.6 ± 2.9 %ID/g after 24 h. Uptake in off-target tissues such as the thyroid (2.0 ± 1.1 %ID/g), spleen (3.0 ± 0.6 %ID/g), or stomach (2.0 ± 0.4 %ID/g) was low, indicating low in vivo deastatination of [211At]PSAt-3-Ga. Conclusion: The reported findings support the use of iodine-based and 68Ga-labeled variants as a convenient strategy for developing astatinated compounds and confirm [211At]PSAt-3 as a promising radiopharmaceutical for targeted α-therapy.
Collapse
Affiliation(s)
- Mohamed El Fakiri
- Department of Nuclear Medicine, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium Partner Site, Freiburg, Germany
- German Cancer Research Center, Heidelberg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nawal Ayada
- Department of Nuclear Medicine, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium Partner Site, Freiburg, Germany
- German Cancer Research Center, Heidelberg, Germany
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marius Müller
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Lars Hvass
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Teodor H Gamzov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Skovsbo Clausen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolas M Geis
- Department of Nuclear Medicine, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium Partner Site, Freiburg, Germany
- German Cancer Research Center, Heidelberg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nils Steinacker
- Department of Nuclear Medicine, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium Partner Site, Freiburg, Germany
- German Cancer Research Center, Heidelberg, Germany
| | | | - Sture Lindegren
- Atley Solutions AB, Gothenburg, Sweden
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; and
| | - Emma Aneheim
- Atley Solutions AB, Gothenburg, Sweden
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; and
| | - Holger Jensen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Ann-Christin Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium Partner Site, Freiburg, Germany
- German Cancer Research Center, Heidelberg, Germany
| | - Andreas I Jensen
- Center for Nanomedicine and Theranostics, DTU Health Technology, DTU, Lyngby, Denmark
| | - Christian B M Poulie
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark;
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium Partner Site, Freiburg, Germany
- German Cancer Research Center, Heidelberg, Germany
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark;
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
15
|
Deshayes E, Fersing C, Thibault C, Roumiguie M, Pourquier P, Houédé N. Innovation in Radionuclide Therapy for the Treatment of Prostate Cancers: Radiochemical Perspective and Recent Therapeutic Practices. Cancers (Basel) 2023; 15:3133. [PMID: 37370743 DOI: 10.3390/cancers15123133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Prostate cancer represents the second cause of death by cancer in males in western countries. While early-stage diseases are accessible to surgery and/or external radiotherapy, advanced metastatic prostate cancers are primarily treated with androgen deprivation therapy, to which new generation androgen receptor antagonists or taxane-based chemotherapies are added in the case of tumor relapse. Nevertheless, patients become invariably resistant to castration with a median survival that rarely exceeds 3 years. This fostered the search for alternative strategies, independent of the androgen receptor signaling pathway. In this line, radionuclide therapies may represent an interesting option as they could target either the microenvironment of sclerotic bone metastases with the use of radiopharmaceuticals containing samarium-153, strontium-89 or radium-223 or tumor cells expressing the prostate-specific membrane antigen (PSMA), a protein found at the surface of prostate cancer cells. This review gives highlights the chemical properties of radioligands targeting prostate cancer cells and recapitulates the clinical trials evaluating the efficacy of radionuclide therapies, alone or in combination with other approved treatments, in patients with castration-resistant prostate tumors. It discusses some of the encouraging results obtained, especially the benefit on overall survival that was reported with [177Lu]-PSMA-617. It also addresses the specific requirements for the use of this particular class of drugs, both in terms of medical staff coordination and adapted infrastructures for efficient radioprotection.
Collapse
Affiliation(s)
- Emmanuel Deshayes
- INSERM U1194, Montpellier Cancer Research Institute, University of Montpellier, 34298 Montpellier, France
- Department of Nuclear Medicine, Institute du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Cyril Fersing
- Department of Nuclear Medicine, Institute du Cancer de Montpellier (ICM), 34298 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Constance Thibault
- Department of Medical Oncology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, AP-HP Centre, 75015 Paris, France
| | - Mathieu Roumiguie
- Urology Department, Andrology and Renal Transplantation, CHU Rangueil, 31059 Toulouse, France
| | - Philippe Pourquier
- INSERM U1194, Montpellier Cancer Research Institute, University of Montpellier, 34298 Montpellier, France
| | - Nadine Houédé
- INSERM U1194, Montpellier Cancer Research Institute, University of Montpellier, 34298 Montpellier, France
- Medical Oncology Department, Institute de Cancérologie du Gard-CHU Caremeau, 30009 Nîmes, France
| |
Collapse
|
16
|
Pallares RM, Abergel RJ. Development of radiopharmaceuticals for targeted alpha therapy: Where do we stand? Front Med (Lausanne) 2022; 9:1020188. [PMID: 36619636 PMCID: PMC9812962 DOI: 10.3389/fmed.2022.1020188] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Targeted alpha therapy is an oncological treatment, where cytotoxic doses of alpha radiation are locally delivered to tumor cells, while the surrounding healthy tissue is minimally affected. This therapeutic strategy relies on radiopharmaceuticals made of medically relevant radionuclides chelated by ligands, and conjugated to targeting vectors, which promote the drug accumulation in tumor sites. This review discusses the state-of-the-art in the development of radiopharmaceuticals for targeted alpha therapy, breaking down their key structural components, such as radioisotope, targeting vector, and delivery formulation, and analyzing their pros and cons. Moreover, we discuss current drawbacks that are holding back targeted alpha therapy in the clinic, and identify ongoing strategies in field to overcome those issues, including radioisotope encapsulation in nanoformulations to prevent the release of the daughters. Lastly, we critically discuss potential opportunities the field holds, which may contribute to targeted alpha therapy becoming a gold standard treatment in oncology in the future.
Collapse
Affiliation(s)
- Roger M. Pallares
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States
| | - Rebecca J. Abergel
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States,Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA, United States,*Correspondence: Rebecca J. Abergel,
| |
Collapse
|
17
|
Jeitner TM, Babich JW, Kelly JM. Advances in PSMA theranostics. Transl Oncol 2022; 22:101450. [PMID: 35597190 PMCID: PMC9123266 DOI: 10.1016/j.tranon.2022.101450] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 12/15/2022] Open
Abstract
PSMA is an appealing target for theranostic because it is a transmembrane protein with a known substrate that is overexpessed on prostate cancer cells and internalizes upon ligand binding. There are a number of PSMA theranostic ligands in clinical evaluation, clinical trial, or clinically approved. PSMA theranostic ligands increase progression-free survival, overall survival, and pain in patients with metastatic castration resistant prostate cancer. A major obstacle to PSMA-targeted radioligand therapy is off-target toxicity in salivary glands.
The validation of prostate specific membrane antigen (PSMA) as a molecular target in metastatic castration-resistant prostate cancer has stimulated the development of multiple classes of theranostic ligands that specifically target PSMA. Theranostic ligands are used to image disease or selectively deliver cytotoxic radioactivity to cells expressing PSMA according to the radioisotope conjugated to the ligand. PSMA theranostics is a rapidly advancing field that is now integrating into clinical management of prostate cancer patients. In this review we summarize published research describing the biological role(s) and activity of PSMA, highlight the most clinically advanced PSMA targeting molecules and biomacromolecules, and identify next generation PSMA ligands that aim to further improve treatment efficacy. The goal of this review is to provide a comprehensive assessment of the current state-of-play and a roadmap to achieving further advances in PSMA theranostics.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA
| | - John W Babich
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA; Weill Cornell Medicine, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA; Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY 10021, USA
| | - James M Kelly
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA; Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY 10021, USA.
| |
Collapse
|
18
|
Recent progress of astatine-211 in endoradiotherapy: Great advances from fundamental properties to targeted radiopharmaceuticals. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
El Fakiri M, Geis NM, Ayada N, Eder M, Eder AC. PSMA-Targeting Radiopharmaceuticals for Prostate Cancer Therapy: Recent Developments and Future Perspectives. Cancers (Basel) 2021; 13:cancers13163967. [PMID: 34439121 PMCID: PMC8393521 DOI: 10.3390/cancers13163967] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary One of the most frequently diagnosed cancer in men is adenocarcinoma of the prostate. Once the disease is metastatic, only very limited treatment options are available, resulting in a very short median survival time of 13 months; however, this reality is gradually changing due to the discovery of prostate-specific membrane antigen (PSMA), a protein that is present in cancerous prostate tissue. Researchers have developed pharmaceuticals specific for PSMA, ranging from antibodies (mAb) to low-molecular weight molecules coupled to beta minus and alpha-emitting radionuclides for their use in targeted radionuclide therapy (TRT). TRT offers the possibility of selectively removing cancer tissue via the emission of radiation or radioactive particles within the tumour. In this article, the major milestones in PSMA ligand research and the therapeutic developments are summarised, together with a future perspective on the enhancement of current therapeutic approaches. Abstract Prostate cancer (PC) is the second most common cancer among men, with 1.3 million yearly cases worldwide. Among those cancer-afflicted men, 30% will develop metastases and some will progress into metastatic castration-resistant prostate cancer (mCRPC), which is associated with a poor prognosis and median survival time that ranges from nine to 13 months. Nevertheless, the discovery of prostate specific membrane antigen (PSMA), a marker overexpressed in the majority of prostatic cancerous tissue, revolutionised PC care. Ever since, PSMA-targeted radionuclide therapy has gained remarkable international visibility in translational oncology. Furthermore, on first clinical application, it has shown significant influence on therapeutic management and patient care in metastatic and hormone-refractory prostate cancer, a disease that previously had remained immedicable. In this article, we provide a general overview of the main milestones in the development of ligands for PSMA-targeted radionuclide therapy, ranging from the firstly developed monoclonal antibodies to the current state-of-the-art low molecular weight entities conjugated with various radionuclides, as well as potential future efforts related to PSMA-targeted radionuclide therapy.
Collapse
Affiliation(s)
- Mohamed El Fakiri
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Nicolas M. Geis
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Nawal Ayada
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-761-270-74220
| | - Ann-Christin Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (M.E.F.); (N.M.G.); (N.A.); (A.-C.E.)
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Mease RC, Kang C, Kumar V, Ray S, Minn IL, Brummet M, Gabrielson K, Feng Y, Park A, Kiess A, Sgouros G, Vaidyanathan G, Zalutsky M, Pomper MG. An improved 211At-labeled agent for PSMA-targeted alpha therapy. J Nucl Med 2021; 63:259-267. [PMID: 34088772 DOI: 10.2967/jnumed.121.262098] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
α-Particle emitters targeting the prostate-specific membrane antigen (PSMA) proved effective in treating patients with prostate cancer who were unresponsive to the corresponding β-particle therapy. Astatine-211 is an α-emitter that may engender less toxicity than other α-emitting agents. We synthesized a new 211At-labeled radiotracer targeting PSMA that resulted from the search for a pharmacokinetically optimized agent. Methods: A small series of 125I-labeled compounds were synthesized from their tin precursors to evaluate the effect of location of radiohalogen within the molecule and the presence of lutetium in the chelate on biodistribution. On that basis, 211At-VK-02-90-Lu was selected and evaluated in cell uptake and internalization studies, biodistribution and PSMA+ PC3 PIP tumor growth control in experimental flank and metastatic (PC3-ML-Luc) models. A long-term (13-month) toxicity study was performed for 211At-VK-02-90-Lu, including tissue chemistries and histopathology. Results: The radiochemical yield of 211At-VK-02-90-Lu was 17.8 ± 8.2%. Lead compound 211At-VK-02-90-Lu demonstrated total uptake within PSMA+ PC3 PIP cells of 13.4 ± 0.5% of the input dose after 4 h of incubation with little uptake in control cells. In SCID mice, 211At-VK-02-90-Lu provided 30.6 ± 4.8 percentage of injected dose per gram (%ID/g) of uptake in PSMA+ PC3 PIP tumor at 1 h post-injection that decreased to 9.46 ± 0.96 %ID/g by 24 h. Tumor-to-salivary gland and tumor-to-kidney ratios were 129 ± 99 at 4 h and 130 ± 113 at 24 h, respectively. De-astatination was not significant (stomach 0.34 ± 0.20%ID/g at 4 h). Dose-dependent survival was demonstrated at higher doses (>1.48 MBq) in both flank and metastatic models. There was little off-target toxicity as demonstrated by hematopoietic stability, unchanged tissue chemistries, weight gain rather than loss throughout treatment, and favorable histopathology. Conclusion: Compound 211At-VK-02-90-Lu or close analogs may provide limited and acceptable toxicity while retaining efficacy in management of prostate cancer.
Collapse
Affiliation(s)
| | | | - Vivek Kumar
- Johns Hopkins Medical Institutions, United States
| | | | | | - Mary Brummet
- Johns Hopkins Medical Institutions, United States
| | | | | | - Andrew Park
- Johns Hopkins Medical Institutions, United States
| | | | | | | | | | | |
Collapse
|