1
|
Martinez P, Grant WB. Vitamin D: What role in obesity-related cancer? Semin Cancer Biol 2025; 112:135-149. [PMID: 40194750 DOI: 10.1016/j.semcancer.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/16/2025] [Accepted: 03/29/2025] [Indexed: 04/09/2025]
Abstract
Obesity is an important risk factor for incidence and death for many types of cancer. Vitamin D reduces risk of incidence and death for many types of cancer. This review outlines the mechanisms by which obesity increases risk of cancer, how vitamin D reduces risk of cancer, and the extent to which vitamin D counters the effects of obesity in cancer. Vitamin D is a partial ally against some of obesity's pro-carcinogenic effects, notably by reducing inflammation and regulating sex hormone receptors, leptin resistance, cellular energy metabolism, the microbiome, and hypoxia. However, it can act stronger in against the renin-angiotensin system, insulin resistance, and oxidative stress in cancer. Additionally, excess fat tissue sequesters vitamin D and, along with its dilution in increased body volume, further reduces its bioavailability and serum concentration, limiting its protective effects against cancer. In conclusion, while vitamin D cannot reverse obesity, it plays a significant role in mitigating its pro-carcinogenic effects by targeting several mechanisms.
Collapse
Affiliation(s)
| | - William B Grant
- Sunlight, Nutrition, and Health Research Center, 1745 Pacific Ave., Ste. 504, San Francisco, CA 94109, USA.
| |
Collapse
|
2
|
Amberntsson A, Bärebring L, Winkvist A, Lissner L, Brantsæter AL, Erlund I, Papadopoulou E, Augustin H. Maternal vitamin D status in relation to cardiometabolic risk factors in children from the Norwegian Environmental Biobank. PLoS One 2025; 20:e0318071. [PMID: 39999040 PMCID: PMC11856322 DOI: 10.1371/journal.pone.0318071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 01/09/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Maternal 25-hydroxyvitamin D (25OHD) status has been associated with birth weight and childhood growth. Further, maternal 25OHD status may also influence cardiometabolic outcomes in childhood. This study investigated the association between maternal 25OHD concentration in pregnancy and markers of cardiometabolic risk in 7-12-year-old children. METHODS Data were obtained from the Norwegian Environmental Biobank (NEB) including 244 mother-child pairs in the Norwegian Mother, Father and Child Cohort Study (MoBa) participating in NEB part I and II. Childhood outcomes investigated were z-scores of anthropometrics, blood lipids and hormones. Associations between maternal 25OHD and individual cardiometabolic risk factors in children were assessed by linear regression, adjusted for maternal pre-pregnancy BMI, maternal education, child's sex, age and BMI, and tested for interaction with pre-pregnancy BMI. RESULTS Per 10 nmol/L increase in maternal 25OHD, childhood adiponectin z-score increased by 0.067 standard deviations (p = 0.039). There were no associations between maternal 25OHD concentration and any other cardiometabolic risk factor in childhood. CONCLUSION The results indicate that higher maternal vitamin D status during pregnancy may be related to higher childhood adiponectin z-score, but not with any other cardiometabolic risk marker. Whether adiponectin could be one pathway linking vitamin D to cardiometabolic health remains to be determined.
Collapse
Affiliation(s)
- Anna Amberntsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linnea Bärebring
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Winkvist
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lauren Lissner
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anne Lise Brantsæter
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Iris Erlund
- Department of Government Services, Finnish Institute for Health and Welfare, Helsinki, Finland
- Institute for Nutrition and Health Research, Helsinki, Finland
| | - Eleni Papadopoulou
- Division of Health Service, Global Health Cluster, Norwegian Institute of Public Health, Oslo, Norway
| | - Hanna Augustin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Li J, Li X, Tian J, Xu L, Chen Y, Jiang S, Zhang G, Lu J. Effects of supplementation with vitamin D 3 on growth performance, lipid metabolism and cecal microbiota in broiler chickens. Front Vet Sci 2025; 12:1542637. [PMID: 39981311 PMCID: PMC11839666 DOI: 10.3389/fvets.2025.1542637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/24/2025] [Indexed: 02/22/2025] Open
Abstract
Lower intramuscular fat (IMF) and excessive abdominal fat reduce carcass quality in broilers. The study aimed to investigate the effects of dietary VD3 on growth performance, lipid metabolism and cecal microbiota in broilers over an 84-d feeding experiment. One-day-old male Luhua broilers (210) were randomly assigned to control (basal diet) and VD group (basal diet supplemented with 3,750 IU/kg VD3). Samples were collected after a 12-h fasted feeding on days 28, 56, and 84. Supplementary VD3 significantly enhanced average daily gain (ADG) in broilers aged 57-84 d and 1-84 d, and increased leg muscle rate and fat content in breast and leg muscles and reduced abdominal fat rate of broilers at 84 d. VD3 increased TG and glycogen content in the liver of 28- and 84-d-old broilers, serum TG and VLDL-C content at 56 and 84 d, and TC, HDL-C and LDL-C at 84 d. VD3 increased mRNA expressions of genes related to de novo lipogenesis (DNL) (mTOR, SREBP-1c, FAS and ACC), lipid oxidation (AMPK, PPARα, CPT-1α and ACO) and lipid transport (ApoB and MTTP), and FAS, ACC and CPT1 enzyme activities in the liver. However, mRNA levels of genes involved in DNL and cellular lipid uptake (LPL and FATP1) and LPL activity were decreased in abdominal adipose tissue, and that of genes involved in lipid oxidation and lipolysis (HSL and ATGL) was increased by VD3. LPL and FATP1 expression in breast and leg muscles was increased by VD3. Moreover, VD3 increased the abundance of cecum Bacteroides at 28 and 84 d, Rikenellaceae_RC9_gut_group and Faecalibacterium at 56 and 84 d, and Lachnoclostridium at 84 d. These bacteria were correlated with increased DNL, lipid oxidation and lipid transport in liver, and cellular lipid uptake in muscle, as well as decreased DNL and cellular lipid uptake, and increased lipid oxidation and lipolysis in abdominal adipose tissue. Altogether, supplementary VD3 in basal diet improved growth performance, increased IMF, and reduced abdominal fat rate, which is significant for enhancing feed utilization and improving the carcass quality of broilers. The regulation of VD3 on lipid metabolism could was associated with variation in cecal microbiota composition.
Collapse
Affiliation(s)
- Jiawei Li
- School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Ximei Li
- School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jiamin Tian
- School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Linna Xu
- Gansu Provincial Animal Husbandry Technology Popularization Station, Lanzhou, China
| | - Yan Chen
- School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Susu Jiang
- School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Guohua Zhang
- School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jianxiong Lu
- School of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
4
|
Lee MJ. Vitamin D Enhancement of Adipose Biology: Implications on Obesity-Associated Cardiometabolic Diseases. Nutrients 2025; 17:586. [PMID: 39940444 PMCID: PMC11820181 DOI: 10.3390/nu17030586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Vitamin D is activated into 1α,25(OH)2D through two hydroxylation steps that are primarily catalyzed by 25-hydroxylase in the liver and 1α-hydroxylase in the kidneys. The active form of vitamin D regulates myriads of cellular functions through its nuclear receptor, vitamin D receptor (VDR). Vitamin D metabolizing enzymes and VDR are expressed in adipose tissues and vitamin D regulates multiple aspects of adipose biology including the recruitment and differentiation of adipose stem cells into adipocytes and metabolic, endocrine, and immune properties. Obesity is associated with low vitamin D status, which is thought to be explained by its sequestration in large mass of adipose tissues as well as dysregulated vitamin D metabolism. Low vitamin D status in obesity may negatively impact adipose biology leading to adipose tissue dysfunctions, the major pathological factors for cardiometabolic diseases in obesity. In this review, the current understanding of vitamin D metabolism and its molecular mechanisms of actions, focusing on vitamin D-VDR regulation of adipose biology with their implications on obesity-associated diseases, is discussed. Whether improving vitamin D status leads to reductions in adiposity and risks for cardiometabolic diseases is also discussed.
Collapse
Affiliation(s)
- Mi-Jeong Lee
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
5
|
Astani A, Maroofi A, Hekmatimoghaddam S, Sarebanhassanabadi M, Safari F. Sirtuin 1 mediates the pro-survival effects of vitamin D in angiotensin II-induced hypertrophy of H9c2 cardiomyoblasts. Mol Biol Rep 2024; 52:96. [PMID: 39738677 DOI: 10.1007/s11033-024-10168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND The role of 1,25-dihydroxyvitamin-D3 (VitD) and sirtuin-1 (SIRT1) in mitigating pathological cardiac remodeling is well recognized. However, the potential for SIRT1 to mediate the inhibitory effects of VitD on angiotensin II (Ang II) -induced hypertrophy in H9c2 cardiomyoblasts remains unclear. METHODS H9c2 cardiomyoblasts were exposed to Ang II or a combination of VitD and Ang II, both in the absence and presence of SIRT1-specific siRNA. In each cell group, cell viability, hypertrophy, and redox state were evaluated using relevant techniques. RESULTS In H9c2 cells transfected with SIRT1 siRNA, VitD failed to significantly counteract the Ang II-induced perturbations, which included a reduction in cell viability, decreased CAT and SOD activity/mRNA levels, diminished MnSOD mRNA levels, and increased MDA content. Conversely, VitD significantly inhibited Ang II-induced hypertrophy in H9c2 cells by reducing cell size and lowering ANP and BNP mRNA levels, regardless of SIRT1 status. Notably, neither Ang II nor VitD altered the expression of SIRT1 mRNA or protein in H9c2 cells. CONCLUSION SIRT1 serves as an important regulator of pro-survival, but not anti-hypertrophic functions of VitD in hypertrophied cardiomyoblasts. Indeed, the absence of SIRT1 jeopardizes the capabilities of VitD to confer its pro-survival activity in H9c2 cells. Therefore, SIRT1-centered activating compounds may augment the protective effects of VitD, providing a promising therapeutic strategy to reduce the risk of cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Akram Astani
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Seyedhossein Hekmatimoghaddam
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mohammadtaghi Sarebanhassanabadi
- Yazd Cardiovascular Research Center, Non-Communicable Disease Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Safari
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
6
|
Le Jan D, Siliman Misha M, Destrumelle S, Terceve O, Thorin C, Larcher T, Ledevin M, Desfontis JC, Betti E, Mallem Y. Omega-3 Fatty Acid and Vitamin D Supplementations Partially Reversed Metabolic Disorders and Restored Gut Microbiota in Obese Wistar Rats. BIOLOGY 2024; 13:1070. [PMID: 39765737 PMCID: PMC11673857 DOI: 10.3390/biology13121070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/03/2025]
Abstract
Obesity is a global public health issue linked to various comorbidities in both humans and animals. This study investigated the effects of vitamin D (VD) and omega-3 fatty acids (ω3FA) on obesity, gut dysbiosis, and metabolic alterations in Wistar rats. After 13 weeks on a standard (S) or High-Fat, High-Sugar (HFHS) diet, the rats received VD, ω3FA, a combination (VD/ω3), or a control (C) for another 13 weeks. The HFHS diet led to increased weight gain, abdominal circumference, glucose intolerance, insulin resistance, and gut dysbiosis. VD supplementation improved their fasting blood glucose and reduced liver damage, while ω3FA slowed BMI progression, reduced abdominal fat, liver damage, and intestinal permeability, and modulated the gut microbiota. The combination of VD/ω3 prevented weight gain, decreased abdominal circumference, improved glucose tolerance, and reduced triglycerides. This study demonstrates that VD and ω3FA, alone or combined, offer significant benefits in preventing obesity, gut dysbiosis, and metabolic alterations, with the VD/ω3 combination showing the most promise. Further research is needed to explore the mechanisms behind these effects and their long-term potential in both animal and human obesity management.
Collapse
Affiliation(s)
- Dylan Le Jan
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris, 101 Rte de Gachet, 44300 Nantes, France; (M.S.M.); (S.D.); (O.T.); (J.-C.D.); (E.B.)
| | - Mohamed Siliman Misha
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris, 101 Rte de Gachet, 44300 Nantes, France; (M.S.M.); (S.D.); (O.T.); (J.-C.D.); (E.B.)
| | - Sandrine Destrumelle
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris, 101 Rte de Gachet, 44300 Nantes, France; (M.S.M.); (S.D.); (O.T.); (J.-C.D.); (E.B.)
| | - Olivia Terceve
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris, 101 Rte de Gachet, 44300 Nantes, France; (M.S.M.); (S.D.); (O.T.); (J.-C.D.); (E.B.)
| | - Chantal Thorin
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Oniris, UMR 703, PanTher, APEX, 44307 Nantes, France; (C.T.); (T.L.); (M.L.)
| | - Thibaut Larcher
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Oniris, UMR 703, PanTher, APEX, 44307 Nantes, France; (C.T.); (T.L.); (M.L.)
| | - Mireille Ledevin
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Oniris, UMR 703, PanTher, APEX, 44307 Nantes, France; (C.T.); (T.L.); (M.L.)
| | - Jean-Claude Desfontis
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris, 101 Rte de Gachet, 44300 Nantes, France; (M.S.M.); (S.D.); (O.T.); (J.-C.D.); (E.B.)
| | - Eric Betti
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris, 101 Rte de Gachet, 44300 Nantes, France; (M.S.M.); (S.D.); (O.T.); (J.-C.D.); (E.B.)
| | - Yassine Mallem
- Nutrition, PathoPhysiology and Pharmacology (NP3) Unit, Oniris, 101 Rte de Gachet, 44300 Nantes, France; (M.S.M.); (S.D.); (O.T.); (J.-C.D.); (E.B.)
| |
Collapse
|
7
|
Provvisiero DP, Negri M, Amatrudo F, Patalano R, Montò T, de Angelis C, Graziadio C, Pugliese G, de Alteriis G, Colao A, Pivonello R, Savastano S, Pivonello C. 1,25‑Dihydroxyvitamin D3 mitigates the adipogenesis induced by bisphenol A in 3T3-L1 and hAMSC through miR-27-3p regulation. Int J Obes (Lond) 2024; 48:1793-1802. [PMID: 39256615 PMCID: PMC11584397 DOI: 10.1038/s41366-024-01629-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
PURPOSE Endocrine-disrupting compounds, including bisphenol A (BPA), may promote obesity influencing basal metabolic rate and shifting metabolism towards energy storage. The role of 1,25‑Dihydroxyvitamin D3 (VitD) in counteracting adipogenesis is still a matter of debate. Thus, the current study aims to investigate whether and how VitD exposure during adipogenesis could prevent the pro-adipogenic effect of BPA in two adipocyte models, mouse 3T3-L1 cell line and human adipose-derived mesenchymal stem cells (hAMSC). METHODS 3T3-L1, mouse pre-adipocytes and human adipose-derived mesenchymal stem cells (hAMSC) were treated with VitD (10-7 M) and BPA (10-8 M and 10-9 M), alone or in combination, throughout the differentiation in mature adipocytes. Cellular lipid droplet accumulation was assessed by Oil Red O staining, mRNA and protein expression of key adipogenic markers, transcription factors, and cytokines were investigated by RT-qPCR and WB, respectively. miRNAs involved in the regulation of adipogenic transcription factors were evaluated by RT-qPCR, and highly potent steric-blocking oligonucleotides (miRNA inhibitors) were used to modulate miRNAs expression. RESULTS Pre-adipocytes express VitD receptor (VDR) in basal condition, but during the differentiation process VDR expression reduces if not stimulated by the ligand. VitD significantly decreases lipid accumulation, with a consequent reduction in adipogenic marker expression, and counteracts the pro-adipogenic effect of BPA in 3T3-L1 and hAMSC during differentiation. This effect is associated to the increased expression of miR-27a-3p and miR-27b-3p. The blocking of miR-27a-3p and miR-27b-3p through miRNA inhibitors prevents the anti-adipogenic effect of VitD in both cell models. CONCLUSIONS These results suggest that in cultured 3T3-L1 and hAMSC VitD induces an anti-adipogenic effect and prevents BPA pro-adipogenic effect by triggering at least in part epigenetic mechanisms involving miR-27-3p.
Collapse
Affiliation(s)
- Donatella Paola Provvisiero
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - Mariarosaria Negri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
- Dipartimento di Benessere, Nutrizione e Sport, Università Telematica Pegaso, Naples, Italy
| | - Feliciana Amatrudo
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
- Dipartimento di Benessere, Nutrizione e Sport, Università Telematica Pegaso, Naples, Italy
| | - Roberta Patalano
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - Tatiana Montò
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - Cristina de Angelis
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - Chiara Graziadio
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - Gabriella Pugliese
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - Giulia de Alteriis
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
- UNESCO Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
- UNESCO Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| | - Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - Claudia Pivonello
- Dipartimento di Sanità Pubblica, Università Federico II di Napoli, Naples, Italy.
| |
Collapse
|
8
|
Zhang L, Cai H, Bai X, Xiao W, Cao ZB, Zhang Y. 25-Hydroxyvitamin D status does not affect energy metabolism among young, healthy, non-obese adults: a metabolic chamber study. Front Endocrinol (Lausanne) 2024; 15:1501818. [PMID: 39624819 PMCID: PMC11608976 DOI: 10.3389/fendo.2024.1501818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024] Open
Abstract
Purpose here is a general consensus that an inverse relationship exists between vitamin D status and body mass index (BMI) in overweight and obese individuals, leading to the hypothesis that vitamin D deficiency may contribute to the development of unfavorable metabolic phenotypes. However, evidence from non-obese adults remains limited. This study measured energy metabolism in non-obese adults using a metabolic chamber and explored its association with vitamin D status. Methods Sixty-nine healthy adults (mean age = 22.8 years, mean BMI = 20.7 kg/m2) participated in this cross-sectional study. Participants were categorized into vitamin D-deficient, insufficient, and sufficient groups based on the Chinese classification for total 25(OH)D levels (WS/T 677-2020). They performed typical daily activities in a metabolic chamber, where their baseline lipid profile, 24-hour energy expenditure, and substrate oxidation were measured. Results A two-way ANOVA (seasonality × 25(OH)D) revealed no statistically significant differences in total energy expenditure, resting energy expenditure, sleeping energy expenditure, walking energy expenditure, carbohydrate oxidation rate, or fat oxidation rate among the three groups (p > 0.05). These results remained consistent even after adjusting for fat-free mass. Although statistically significant correlations were found between 25(OH)D status and certain lipid profile markers (i.e., total cholesterol, high-density lipoprotein, and free fatty acid) (p < 0.05), these correlations were weak, with Pearson's correlation coefficients below 0.3. Conclusions Total 25(OH)D status does not affect energy metabolism in young, healthy, non-obese adults. Along with existing evidence, this suggests that low 25(OH)D status is more likely a consequence of unfavorable metabolic phenotypes rather than a contributing factor. Clinical trial registration https://www.chictr.org.cn, identifier ChiCTR-IIR-17010604.
Collapse
Affiliation(s)
- Lin Zhang
- Institute of Physical Education, Jiangsu Normal University, Xuzhou, China
| | - Haogang Cai
- School of Physical Education, Shangqiu Normal University, Shangqiu, China
| | - Xiaorong Bai
- School of Physical Education, Huzhou University, Huzhou, China
| | - Wensheng Xiao
- School of Physical Education, Huzhou University, Huzhou, China
- College of Physical Education, Hunan Normal University, Changsha, China
| | - Zhen-Bo Cao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yang Zhang
- Independent person, Windermere, FL, United States
- Independent Researcher, Dakar, Senegal
| |
Collapse
|
9
|
Neves SCD, Auharek SA, Gomes RDS, Vilela MLB, Nascimento VAD, Coelho HRS, Arunachalam K, Antoniolli-Silva ACMB, Oliveira RJ. Supplementation of high doses of vitamin D during the gestational period do not cause reproductive, teratogenic and genotoxic damage in mice. Food Chem Toxicol 2024; 193:115007. [PMID: 39332591 DOI: 10.1016/j.fct.2024.115007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024]
Abstract
Vitamin D deficiency during pregnancy may have adverse effects on embryo-fetal and postnatal development. Indeed, vitamin D supplementation has been indicated for pregnant women. However, there are no studies that indicate the safe dose of this supplementation during the gestational period. Therefore, the present study assessed the effects of high doses of vitamin D and vitamin D combined with calcium on reproductive performance, embryo-fetal development, and DNA integrity in Swiss mice. A total of 140 pregnant female mice treated with vitamin D and vitamin D combined with calcium were analyzed in two experiments. In one experiment, mice received intramuscular supplementation at doses of 600,000, 6,000,000, or 60,000,000 IU of vitamin D. These same doses were also associated with the dose of 8.56 mg/kg of calcium. In the other experiment, mice received a single oral dose of 6,000, 60,000, or 600,000 IU of vitamin D. These same doses were also associated with the dose of 8.56 mg/kg of calcium. The treatments were always carried out in the 10th gestational day. The results show that neither intramuscularly nor orally administered vitamin D and vitamin D combined with calcium affected reproductive performance, embryo-fetal development, or DNA integrity at the different doses tested. These pioneering results confirm the safety of using this type of high doses of supplementation, including during pregnancy.
Collapse
Affiliation(s)
- Silvia Cordeiro das Neves
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), Medical School, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil; Postgraduate Program in Health and Development in the Midwestern Region, Medical School, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Sarah Alves Auharek
- Medical School, Federal University of Jequitinhonha and Mucuri Valley (UFVJM), Teófilo Otoni, Minas Gerais, Brazil
| | - Roberto da Silva Gomes
- Departament of Pharmaceutical Sciences, North Dakota State University, Fargo, ND58102, USA
| | | | - Valter Aragão do Nascimento
- Postgraduate Program in Health and Development in the Midwestern Region, Medical School, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Henrique Rodrigues Scherer Coelho
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), Medical School, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil; Postgraduate Program in Health and Development in the Midwestern Region, Medical School, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Karuppusamy Arunachalam
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), Medical School, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil; Postgraduate Program in Health and Development in the Midwestern Region, Medical School, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Rodrigo Juliano Oliveira
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), Medical School, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil; Postgraduate Program in Health and Development in the Midwestern Region, Medical School, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil; Medical School, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil.
| |
Collapse
|
10
|
Gupta VK, Sahu L, Sonwal S, Suneetha A, Kim DH, Kim J, Verma HK, Pavitra E, Raju GSR, Bhaskar L, Lee HU, Huh YS. Advances in biomedical applications of vitamin D for VDR targeted management of obesity and cancer. Biomed Pharmacother 2024; 177:117001. [PMID: 38936194 DOI: 10.1016/j.biopha.2024.117001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND 1,25(OH)2D3 is a fat-soluble vitamin, involved in regulating Ca2+ homeostasis in the body. Its storage in adipose tissue depends on the fat content of the body. Obesity is the result of abnormal lipid deposition due to the prolonged positive energy balance and increases the risk of several cancer types. Furthermore, it has been associated with vitamin D deficiency and defined as a low 25(OH)2D3 blood level. In addition, 1,25(OH)2D3 plays vital roles in Ca2+-Pi and glucose metabolism in the adipocytes of obese individuals and regulates the expressions of adipogenesis-associated genes in mature adipocytes. SCOPE AND APPROACH The present contribution focused on the VDR mediated mechanisms interconnecting the obese condition and cancer proliferation due to 1,25(OH)2D3-deficiency in humans. This contribution also summarizes the identification and development of molecular targets for VDR-targeted drug discovery. KEY FINDINGS AND CONCLUSIONS Several studies have revealed that cancer development in a background of 1,25(OH)2D3 deficient obesity involves the VDR gene. Moreover, 1,25(OH)2D3 is also known to influence several cellular processes, including differentiation, proliferation, and adhesion. The multifaceted physiology of obesity has improved our understanding of the cancer therapeutic targets. However, currently available anti-cancer drugs are notorious for their side effects, which have raised safety issues. Thus, there is interest in developing 1,25(OH)2D3-based therapies without any side effects.
Collapse
Affiliation(s)
- Vivek Kumar Gupta
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Lipina Sahu
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009, India
| | - Sonam Sonwal
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Achanti Suneetha
- Department of Pharmaceutical Analysis, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh 520010, India
| | - Dong Hyeon Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Jigyeong Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lungs Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, Munich 85764, Germany
| | - Eluri Pavitra
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009, India.
| | - Hyun Uk Lee
- Division of Material Analysis and Research, Korea Basic Science Institute, Daejeon 34133, Republic of Korea.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
11
|
Ozcagli E, Kubickova B, Jacobs MN. Addressing chemically-induced obesogenic metabolic disruption: selection of chemicals for in vitro human PPARα, PPARγ transactivation, and adipogenesis test methods. Front Endocrinol (Lausanne) 2024; 15:1401120. [PMID: 39040675 PMCID: PMC11260640 DOI: 10.3389/fendo.2024.1401120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024] Open
Abstract
Whilst western diet and sedentary lifestyles heavily contribute to the global obesity epidemic, it is likely that chemical exposure may also contribute. A substantial body of literature implicates a variety of suspected environmental chemicals in metabolic disruption and obesogenic mechanisms. Chemically induced obesogenic metabolic disruption is not yet considered in regulatory testing paradigms or regulations, but this is an internationally recognised human health regulatory development need. An early step in the development of relevant regulatory test methods is to derive appropriate minimum chemical selection lists for the target endpoint and its key mechanisms, such that the test method can be suitably optimised and validated. Independently collated and reviewed reference and proficiency chemicals relevant for the regulatory chemical universe that they are intended to serve, assist regulatory test method development and validation, particularly in relation to the OECD Test Guidelines Programme. To address obesogenic mechanisms and modes of action for chemical hazard assessment, key initiating mechanisms include molecular-level Peroxisome Proliferator-Activated Receptor (PPAR) α and γ agonism and the tissue/organ-level key event of perturbation of the adipogenesis process that may lead to excess white adipose tissue. Here we present a critical literature review, analysis and evaluation of chemicals suitable for the development, optimisation and validation of human PPARα and PPARγ agonism and human white adipose tissue adipogenesis test methods. The chemical lists have been derived with consideration of essential criteria needed for understanding the strengths and limitations of the test methods. With a weight of evidence approach, this has been combined with practical and applied aspects required for the integration and combination of relevant candidate test methods into test batteries, as part of an Integrated Approach to Testing and Assessment for metabolic disruption. The proposed proficiency and reference chemical list includes a long list of negatives and positives (20 chemicals for PPARα, 21 for PPARγ, and 11 for adipogenesis) from which a (pre-)validation proficiency chemicals list has been derived.
Collapse
|
12
|
Gbadamosi I, Yawson EO, Akesinro J, Adeleke O, Tokunbo O, Bamisi O, Ibrahim-Abdulkareem R, Awoniran P, Gbadamosi R, Lambe E, Atoyebi A, Bayo-Olugbami AA, Abayomi TA, Arogundade TT. Vitamin D attenuates monosodium glutamate-induced behavioural anomalies, metabolic dysregulation, cholinergic impairment, oxidative stress, and astrogliosis in rats. Neurotoxicology 2024; 103:297-309. [PMID: 38964510 DOI: 10.1016/j.neuro.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/16/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Monosodium glutamate (MSG) is a commonly used flavor enhancer that has raised concerns due to its potential adverse effects on various organs. This study explored the neuroprotective potential of Vitamin D, a beneficial micronutrient, in mitigating MSG-induced neurotoxicity. MATERIALS AND METHODS Adult male Wistar rats were categorized into five groups: control (2 ml/kg PBS orally for 30 days), MSG (40 mg/kg orally for 30 days), VIT-D (oral cholecalciferol; 500 IU/kg for 30 days), MSG+VIT-D (MSG for 30 days followed by VIT-D for another 30 days), and VIT-D/MSG (concurrent VIT-D and MSG for 30 days). The rats underwent neurobehavioral, histochemical, and biochemical analyses following the treatments. RESULTS MSG treatment caused a decline in both long and short-term memory, along with reduced exploratory and anxiogenic behavior, mitigated by vitamin D treatment. MSG exposure also induced impaired behavior, dyslipidemia, oxidative stress, lipid peroxidation, altered cholinergic transmission, and increased chromatolysis and neuroinflammation in the frontal cortex, hippocampus, and cerebellum. CONCLUSIONS VIT-D demonstrated a mitigating effect on MSG-induced adverse outcomes, highlighting its potential to attenuate neurodegenerative cascades. This investigation contributes to understanding MSG-associated neurotoxicity and suggests vitamin D as a valuable and potential intervention for neuroprotection.
Collapse
Affiliation(s)
- Ismail Gbadamosi
- Laboratory for Translational Research in Neuropsychiatric Disorders (TREND), BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Institute of Experimental Biology Marceli Nencki, Polish Academy of Sciences, Warsaw, Poland.
| | - Emmanuel Olusola Yawson
- Department of Human Anatomy, Neurobiology Division, Faculty of Basic Medical Sciences, Redeemers University, Ede, Nigeria
| | - Justice Akesinro
- Department of Human Anatomy, Neurobiology Division, Faculty of Basic Medical Sciences, Redeemers University, Ede, Nigeria
| | - Opeyemi Adeleke
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Olorunfemi Tokunbo
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Olawande Bamisi
- Department of Anatomy, Faculty of Basic Medical Sciences, Ekiti State University, Ado Ekiti, Nigeria
| | - Rukayat Ibrahim-Abdulkareem
- Department of Anatomy, Neurobiology Division, Faculty of Basic Medical Sciences, University of Ilorin, Nigeria
| | - Paul Awoniran
- Department of Human Anatomy, Neurobiology Division, Faculty of Basic Medical Sciences, Redeemers University, Ede, Nigeria
| | | | - Ezra Lambe
- Department of Anatomy, Faculty of Basic Medical Sciences, Adeleke University, Ede, Nigeria
| | - Aminat Atoyebi
- Department of Anatomy, Faculty of Basic Medical Sciences, Al-Hikmah University, Ilorin, Nigeria
| | | | - Taiwo Adekemi Abayomi
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Tolulope Timothy Arogundade
- Department of Human Anatomy, Neurobiology Division, Faculty of Basic Medical Sciences, Redeemers University, Ede, Nigeria.
| |
Collapse
|
13
|
Han Q, Xiang M, An N, Tan Q, Shao J, Wang Q. Effects of vitamin D3 supplementation on strength of lower and upper extremities in athletes: an updated systematic review and meta-analysis of randomized controlled trials. Front Nutr 2024; 11:1381301. [PMID: 38860160 PMCID: PMC11163122 DOI: 10.3389/fnut.2024.1381301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/29/2024] [Indexed: 06/12/2024] Open
Abstract
Background Coaches and athletes are increasingly interested in understanding athletes' serum vitamin D levels, their impact on strength, physical performance, and athletic outcomes. Previous meta-analyses were reported with limited sample size and no significant overall effect was found. Hence, it is crucial to conduct a thorough and up-to-date systematic examination and meta-analysis to elucidate the potential advantages of supplementing with vitamin D3 in enhancing muscle strength for athletes. Methods We performed a thorough investigation, spanning three databases (PubMed, EBSCO, and Cochrane Library), seeking randomized controlled trials (RCTs) in all languages. These trials delved into the influence of vitamin D3 supplementation on the changes of pre- and post-intervention muscle strength in healthy athletes. Our systematic examination and meta-analysis took into account serum 25(OH)D levels exceeding 30 ng/mL as a marker of adequacy. Results Ten RCTs, comprising 354 athletes (185 in the vitamin D3 group and 169 in the placebo group), fulfilled the inclusion criteria. During the study, 36 athletes were lost to follow-up, leaving 318 athletes (166 in the vitamin D3 group and 152 in the placebo group) with documented complete results. In comparison with the placebo group, there is a significant increase between the changes of pre- and post-intervention serum 25(OH)D levels among athletes following a period of vitamin D3 supplementation (MD 14.76, 95% CI: 8.74 to 20.77, p < 0.0001). Overall effect of four strength measurements including handgrip, one repetition maximum Bench Press (1-RM BP), vertical jump, and quadriceps contraction was not significantly improved (SMD 0.18, 95% CI: -0.02 to 0.37, p = 0.08), but there was a significant increase in quadriceps contraction (SMD 0.57, 95% CI: 0.04 to 1.11, p = 0.04). Conclusion This updated meta-analysis indicates the potential benefits of vitamin D supplementation for enhancing muscle strength in athletes when analyzing its quantitatively synthesized effects. With limited available studies for the quantitative synthesis, it cannot warrant significant overall enhancements in muscle strength when athletes attain adequate serum 25(OH)D levels through supplementation.
Collapse
Affiliation(s)
- Qi Han
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing, China
- Sport Science College, Beijing Sport University, Beijing, China
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People’s Republic of China, Beijing, China
| | - Mai Xiang
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing, China
- Sport Science College, Beijing Sport University, Beijing, China
| | - Nan An
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing, China
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People’s Republic of China, Beijing, China
| | - Qiushi Tan
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing, China
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People’s Republic of China, Beijing, China
| | - Jing Shao
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing, China
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People’s Republic of China, Beijing, China
| | - Qirong Wang
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, China
- Key Lab of Sports Nutrition, State General Administration of Sport of China, Beijing, China
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People’s Republic of China, Beijing, China
| |
Collapse
|
14
|
Liu S, Yu Q, Liu J, Wang H, Wang X, Qin C, Li E, Qin J, Chen L. The interaction between lipid and vitamin D 3 impacts lipid metabolism and innate immunity in Chinese mitten crabs Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109455. [PMID: 38369072 DOI: 10.1016/j.fsi.2024.109455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
As a fat-soluble vitamin, vitamin D3 relies on fat to perform its biological function, affecting lipid metabolism and innate immunity. This study used different percentages of lipid and vitamin D3 diets to evaluate the synergistic effects on the growth, lipid metabolism and immunity of juvenile Eriocheir sinensis (5.83 ± 0.01 g) for 56 days, including low lipid (LL, 1.5%) and normal lipid (NL, 7.5%) and three levels of vitamin D3: low (LVD, 0 IU/kg), medium (MVD, 9000 IU/kg) and high (HVD, 27,000, IU/kg). The synergistic effect of lipid and vitamin D3 was not significant on growth but significant on ash content, total protein, hepatopancreas lipid content, hemolymph 1α,25-hydroxy vitamin D3 [1α,25(OH)2D3] content, hepatopancreas lipolysis and synthesis genes. Crabs fed normal lipid (7.5%) and medium vitamin D3 (9000 IU/kg) had the highest hepatopancreas index, hemolymph 1α,25(OH)2D3 content, antibacterial ability, immune-related genes and hepatopancreatic lipid synthesis genes expression, but down-regulated the lipolysis genes expression. In contrast, crabs fed diets with low lipid percentage (1.5%) had low growth performance, hemolymph 1α,25(OH)2D3, mRNA levels of lipid synthesis genes, antibacterial ability and immune-related gene expression. At the 1.5% lipid level, excessive or insufficient vitamin D3 supplementation led to the obstruction of ash and protein deposition, reduced growth and molting, aggravated the reduction in antioxidant capacity, hindered antimicrobial peptide gene expression and reduced innate immunity, and resulted in abnormal lipid accumulation and the risk of oxidative stress. This study suggests that diets' lipid and vitamin D3 percentage can enhance antioxidant capacity, lipid metabolism and innate immunity in E. sinensis. A low lipid diet can cause growth retardation, reduce antioxidant capacity and innate immunity, and enhance lipid metabolism disorder.
Collapse
Affiliation(s)
- Shubin Liu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qiuran Yu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiadai Liu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Han Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Sichuan, 641100, China
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
15
|
Park CY, Han SN. Vitamin D and obesity. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 109:221-247. [PMID: 38777414 DOI: 10.1016/bs.afnr.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
An inverse association between vitamin D status and obesity has been reported across diverse populations and age groups in humans. In animal model of diet-induced obesity, dysregulation of vitamin D metabolism has been observed. However, the causal relationship between vitamin D status and obesity is not conclusive. Several explanations, such as volumetric dilution, sequestration of vitamin D into adipose tissue, and limited sunlight exposure, have been suggested as the underlying mechanisms linking poor vitamin D status and obesity. Vitamin D can modulate adipose tissue biology, spanning from adipocyte differentiation to adipocyte apoptosis and energy metabolism, indicating its potential impact on adiposity. In this chapter, we will review the prevalence of vitamin D deficiency and determinants of vitamin D deficiency among different populations, as well as changes in vitamin D metabolism associated with obesity. Additionally, we will review vitamin D's regulation of adipogenesis and lipogenesis at the cellular level in order to gain a deeper understanding of the underlying mechanisms linking vitamin D levels and obesity.
Collapse
Affiliation(s)
- Chan Yoon Park
- Department of Food & Nutrition, College of Health Science, The University of Suwon, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea; Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Wi D, Park CY. 1,25-dihydroxyvitamin D 3 affects thapsigargin-induced endoplasmic reticulum stress in 3T3-L1 adipocytes. Nutr Res Pract 2024; 18:1-18. [PMID: 38352211 PMCID: PMC10861344 DOI: 10.4162/nrp.2024.18.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/01/2023] [Accepted: 12/06/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Endoplasmic reticulum (ER) stress in adipose tissue causes an inflammatory response and leads to metabolic diseases. However, the association between vitamin D and adipose ER stress remains poorly understood. In this study, we investigated whether 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) alleviates ER stress in adipocytes. MATERIALS/METHODS 3T3-L1 cells were treated with different concentrations (i.e., 10-100 nM) of 1,25(OH)2D3 after or during differentiation (i.e., on day 0-7, 3-7, or 7). They were then incubated with thapsigargin (TG, 500 nM) for an additional 24 h to induce ER stress. Next, we measured the mRNA and protein levels of genes involved in unfold protein response (UPR) and adipogenesis using real-time polymerase chain reaction and western blotting and quantified the secreted protein levels of pro-inflammatory cytokines. Finally, the mRNA levels of UPR pathway genes were measured in adipocytes transfected with siRNA-targeting Vdr. RESULTS Treatment with 1,25(OH)2D3 during various stages of adipocyte differentiation significantly inhibited ER stress induced by TG. In fully differentiated 3T3-L1 adipocytes, 1,25(OH)2D3 treatment suppressed mRNA levels of Ddit3, sXbp1, and Atf4 and decreased the secretion of monocyte chemoattractant protein-1, interleukin-6, and tumor necrosis factor-α. However, downregulation of the mRNA levels of Ddit3, sXbp1, and Atf4 following 1,25(OH)2D3 administration was not observed in Vdr-knockdown adipocytes. In addition, exposure of 3T3-L1 preadipocytes to 1,25(OH)2D3 inhibited transcription of Ddit3, sXbp1, Atf4, Bip, and Atf6 and reduced the p-alpha subunit of translation initiation factor 2 (eIF2α)/eIF2α and p-protein kinase RNA-like ER kinase (PERK)/PERK protein ratios. Furthermore, 1,25(OH)2D3 treatment before adipocyte differentiation reduced adipogenesis and the mRNA levels of adipogenic genes. CONCLUSIONS Our data suggest that 1,25(OH)2D3 prevents TG-induced ER stress and inflammatory responses in mature adipocytes by downregulating UPR signaling via binding with Vdr. In addition, the inhibition of adipogenesis by vitamin D may contribute to the reduction of ER stress in adipocytes.
Collapse
Affiliation(s)
- Dain Wi
- Department of Food & Nutrition, College of Health Science, The University of Suwon, Hwaseong 18323, Korea
| | - Chan Yoon Park
- Department of Food & Nutrition, College of Health Science, The University of Suwon, Hwaseong 18323, Korea
| |
Collapse
|
17
|
Tyagi S, Mani S. Combined Administration of Metformin and Vitamin D: A Futuristic Approach for Management of Hyperglycemia. Cardiovasc Hematol Agents Med Chem 2024; 22:258-275. [PMID: 37929731 DOI: 10.2174/0118715257261643231018102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/28/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
Diabetes is a series of metabolic disorders that can be categorized into three types depending on different aspects associated with age at onset, intensity of insulin resistance, and beta- cell dysfunction: Type 1 and 2 Diabetes, and Gestational Diabetes Mellitus. Type 2 Diabetes Mellitus (T2DM) has recently been found to account for more than 85% of diabetic cases. The current review intends to raise awareness among clinicians/researchers that combining vitamin D3 with metformin may pave the way for better T2DM treatment and management. An extensive literature survey was performed to analyze vitamin D's role in regulating insulin secretion, their action on the target cells and thus maintaining the normal glucose level. On the other side, the anti-hyperglycemic effect of metformin as well as its detailed mechanism of action was also studied. Interestingly both compounds are known to exhibit the antioxidant effect too. Literature supporting the correlation between diabetic phenotypes and deficiency of vitamin D was also explored further. To thoroughly understand the common/overlapping pathways responsible for the antidiabetic as well as antioxidant nature of metformin and vitamin D3, we compared their antihyperglycemic and antioxidant activities. With this background, we are proposing the hypothesis that it would be of great interest if these two compounds could work in synergy to better manage the condition of T2DM and associated disorders.
Collapse
Affiliation(s)
- Sakshi Tyagi
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
18
|
Lu S, Cao ZB. Interplay between Vitamin D and Adipose Tissue: Implications for Adipogenesis and Adipose Tissue Function. Nutrients 2023; 15:4832. [PMID: 38004226 PMCID: PMC10675652 DOI: 10.3390/nu15224832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Adipose tissue encompasses various types, including White Adipose Tissue (WAT), Brown Adipose Tissue (BAT), and beige adipose tissue, each having distinct roles in energy storage and thermogenesis. Vitamin D (VD), a fat-soluble vitamin, maintains a complex interplay with adipose tissue, exerting significant effects through its receptor (VDR) on the normal development and functioning of adipocytes. The VDR and associated metabolic enzymes are widely expressed in the adipocytes of both rodents and humans, and they partake in the regulation of fat metabolism and functionality through various pathways. These encompass adipocyte differentiation, adipogenesis, inflammatory responses, and adipokine synthesis and secretion. This review primarily appraises the role and mechanisms of VD in different adipocyte differentiation, lipid formation, and inflammatory responses, concentrating on the pivotal role of the VD/VDR pathway in adipogenesis. This insight furnishes new perspectives for the development of micronutrient-related intervention strategies in the prevention and treatment of obesity.
Collapse
Affiliation(s)
| | - Zhen-Bo Cao
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China;
| |
Collapse
|
19
|
Payet T, Valmori M, Astier J, Svilar L, Sicard F, Tardivel C, Ghossoub R, Martin JC, Landrier JF, Mounien L. Vitamin D Modulates Lipid Composition of Adipocyte-Derived Extracellular Vesicles Under Inflammatory Conditions. Mol Nutr Food Res 2023; 67:e2300374. [PMID: 37712099 DOI: 10.1002/mnfr.202300374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Indexed: 09/16/2023]
Abstract
SCOPE Adipocyte-derived extracellular vesicles (AdEVs) convey lipids that can play a role in the energy homeostasis. Vitamin D (VD) has been shown to limit the metabolic inflammation as it decreases inflammatory markers expression in adipose tissue (AT). However, VD effect on adipocytes-derived EVs has never been investigated. METHODS AND RESULTS Thus, the aim of this study is to evaluate the AdEVs lipid composition by LC-MS/MS approach in 3T3-L1 cells treated with VD or/and pro-inflammatory factor (tumor necrosis factor α [TNFα]). Among all lipid species, four are highlighted (glycerolipids, phospholipids, lysophospholipids, and sphingolipids) with a differential content between small (sEVs) and large EVs (lEVs). This study also observes that VD alone modulates EV lipid species involved in membrane fluidity and in the budding of membrane. EVs treated with VD under inflammatory conditions have different lipid profiles than the control group, which is more pronounced in lEVs. Indeed, 25 lipid species are significantly modulated in lEVs, compared with only seven lipid species in sEVs. CONCLUSIONS This study concludes that VD, alone or under inflammatory conditions, is associated with specific lipidomic signature of sEVs and lEVs. These observations reinforce current knowledge on the anti-inflammatory effect of VD.
Collapse
Affiliation(s)
- Thomas Payet
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
| | - Marie Valmori
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- BIOMET, Marseille, France
| | - Julien Astier
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
| | - Ljubica Svilar
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- BIOMET, Marseille, France
| | - Flavie Sicard
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- BIOMET, Marseille, France
- PhenoMARS Aix-Marseille Technology Platform, Marseille, France
| | | | - Rania Ghossoub
- Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue 2018, CNRS, Inserm, Institut Paoli Calmettes, Aix-Marseille Université, Marseille, France
| | - Jean-Charles Martin
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- BIOMET, Marseille, France
| | - Jean-François Landrier
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- PhenoMARS Aix-Marseille Technology Platform, Marseille, France
| | - Lourdes Mounien
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- PhenoMARS Aix-Marseille Technology Platform, Marseille, France
| |
Collapse
|
20
|
Zhang J, Zhang Y, Zhou Y, Zhao W, Li J, Yang D, Xiang L, Du T, Ma L. Effect of vitamin D3 on lipid droplet growth in adipocytes of mice with HFD-induced obesity. Food Sci Nutr 2023; 11:6686-6697. [PMID: 37823117 PMCID: PMC10563741 DOI: 10.1002/fsn3.3618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/16/2023] [Accepted: 07/29/2023] [Indexed: 10/13/2023] Open
Abstract
Vitamin D-regulating action of PPARγ on obesity has been confirmed on adipocyte differentiation. However, it is not clear whether vitamin D affects the morphological size of mature adipocytes by influencing the expression of PPARγ in vivo. Our hypothesis was that Vitamin D3 (VitD3) inhibits the growth of adipocyte size by suppressing PPARγ expression in white adipocytes of obese mice. Five-week-old male C57BL/6J mice were randomly divided into normal diet and high-fat diet groups. After 10 weeks, the body weight between the two groups differed by 26.91%. The obese mice were randomly divided into a high-fat diet, solvent control, low-dose VitD3 (5000 IU/kg·food), medium-dose VitD3 (7500 IU/kg·food), high-dose VitD3 (10,000 IU/kg·food), and PPAR γ antagonist group, and the intervention lasted for 8 weeks. Diet-induced obesity (DIO) mice fed high-dose VitD3 exacerbated markers of adiposity (body weight, fat mass, fat mass rate, size of white and brown adipocytes, mRNA, and protein levels of ATGL and Fsp27), and the protein level of ATGL and Fsp27 decreased in the low-dose group. In conclusion, high-dose VitD3 possibly via inhibiting the ATGL expression, thereby inhibiting lipolysis, increasing the volume of adipocytes, and decreasing their fat-storing ability resulted in decreased Fsp27 expression. Therefore, long-term high-dose oral VitD3 may not necessarily improve obesity, and we need more clinical trials to explore the intervention dose and duration of VitD3 in the treatment of VitD3 deficiency in obese patients.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Clinical NutritionAffiliated Hospital of Southwest Medical UniversityLuzhouSichuanChina
| | - Yuanfan Zhang
- Department of Nutrition and Food Hygiene, School of Public HealthSouthwest Medical UniversityLuzhouSichuanChina
| | - Yong Zhou
- Department of Medical Cell Biology and Genetics, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouSichuanChina
| | - Wenxin Zhao
- Department of Nutrition and Food Hygiene, School of Public HealthSouthwest Medical UniversityLuzhouSichuanChina
| | - Jialu Li
- Department of Nutrition and Food Hygiene, School of Public HealthSouthwest Medical UniversityLuzhouSichuanChina
| | - Dan Yang
- Department of Nutrition and Food Hygiene, School of Public HealthSouthwest Medical UniversityLuzhouSichuanChina
| | - Lian Xiang
- Department of Nutrition and Food Hygiene, School of Public HealthSouthwest Medical UniversityLuzhouSichuanChina
| | - Tingwan Du
- Department of Nutrition and Food Hygiene, School of Public HealthSouthwest Medical UniversityLuzhouSichuanChina
| | - Ling Ma
- Department of Nutrition and Food Hygiene, School of Public HealthSouthwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
21
|
Alam F, Shahid M, Riffat S, Zulkipli IN, Syed F, Ashraf M, Rehman R. SIRT1 and antioxidants in infertile females: Exploration of the role of vitamin D. PLoS One 2023; 18:e0287727. [PMID: 37428803 DOI: 10.1371/journal.pone.0287727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/09/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Deficiency of silent information regulator 1 (SIRT1) can trigger inflammation, mitochondrial malfunctioning, and apoptosis through the hypothalamic-pituitary-ovarian axis, producing poor quality oocytes, leading to infertility. Normal vitamin D (VD) levels promote SIRT1 activity required for optimal fertility, and low levels of either may result in fertility problems owing to cell-membrane de-stabilization, increased autophagy, DNA damage leading to increased reactive oxygen species and mitochondrial dysfunction. Therefore, in this study, we want to estimate the levels of VD, SIRT1 and antioxidants (MnSOD; manganese superoxide dismutase, GR; glutathione reductase, visfatin) and oxidants (adrenaline & cortisol) in individuals living with infertility and explore the association of VD with SIRT1 expression (levels), antioxidants, and oxidants contributing to infertility in women. The significance of this study is that it highlights the importance of maintaining optimal levels of VD for reproductive health in females. METHODS This cross-sectional study included 342 (135 infertile and 207 fertile) female subjects. Serum levels of MnSOD, SIRT1, visfatin, GR, VD, adrenaline, and cortisol were analyzed by ELISA and were compared in fertile and infertile samples using the Mann Whitney U test. RESULTS There were significantly high levels of VD, SIRT1, GR, MnSOD and visfatin in fertile female participants. However, mean adrenaline and cortisol levels were higher in infertile samples with a significant negative correlation with VD. A significant negative correlation of VD with MnSOD, SIRT1, visfatin and GR was observed (p <0.01). In VD subset groups, MnSOD levels were significantly high in VD sufficient groups however, adrenaline and cortisol levels were significantly high in groups suffering from VD deficiency. CONCLUSIONS Deficiency of VD is associated with a decrease in SIRT1 and other antioxidants, which may deter natural reproductive functions leading to infertility. Further studies are required to determine the cause-effect relationship of VD deficiency on conception and interpretation of the involved mechanism.
Collapse
Affiliation(s)
- Faiza Alam
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
| | - Maheen Shahid
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | | | - Ihsan Nazurah Zulkipli
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
| | - Fatima Syed
- Fatima Syed, Fazaia Ruth Pfau Medical College-FRPMC, Karachi, Pakistan
| | - Mussarat Ashraf
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Rehana Rehman
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
22
|
Khaledi K, Hoseini R, Gharzi A. Effects of aerobic training and vitamin D supplementation on glycemic indices and adipose tissue gene expression in type 2 diabetic rats. Sci Rep 2023; 13:10218. [PMID: 37353689 PMCID: PMC10290097 DOI: 10.1038/s41598-023-37489-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/22/2023] [Indexed: 06/25/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a progressive metabolic disorder mainly caused by overweight and obesity that accumulates pro-inflammatory factors in adipose tissue. Studies have confirmed the efficacy of exercise and vitamin D supplementation in preventing, controlling, and treating diabetes. While, reduced physical activity and vitamin D deficiency are related to increased adiposity, blood glucose level, insulin concentration, and insulin resistance. This study purposed to investigate the effect of 8-week aerobic training with vitamin D supplementation on the expression of AMPK, PGC-1α, and UCP-1 genes expression in the visceral adipose tissue of obese rats with T2DM. In this experimental study, fifty male Wistar rats were divided into 5 groups (n = 10): aerobic training and vitamin D supplementation (AT + Vit D), aerobic training (5 days/week for 8 weeks; AT), vitamin D supplementation (Vit D), diabetic control (C) and NC (Non-Diabetic Control). AT + Vit D and AT groups practiced an 8-week aerobic training, 5 days a week. Vit D and AT + Vit D groups receive 5000 IU of vitamin D by injection once a week while AT and C received sesame oil. After blood sampling, visceral fat was taken to measure AMPK, PGC-1α, and UCP1 gene expression. Data were statistically analyzed by One-way ANOVA and paired sample t-test at a significance level of p < 0.05. Based on our results BW, BMI, WC, visceral fat, insulin, glucose, and HOMA-IR were significantly lower in the AT + Vit D, AT, and Vit D groups compared with the C group (p < 0.01). Furthermore, AT + Vit D, AT, and Vit D upregulated AMPK, PGC-1α, and UCP1 gene expression compared to the C. Based on the results compared to AT and Vit D, AT + Vit D significantly upregulated AMPK (p = 0.004; p = 0.001), PGC-1α (p = 0.010; p = 0.001), and UCP1 (p = 0.032; p = 0.001) gene expression, respectively. Also, AT induced more significant upregulations in the AMPK (p = 0.001), PGC-1α (p = 0.001), and UCP1 gene expression (p = 0.001) than Vit D. Vitamin D supplementation enhanced the beneficial effects of aerobic training on BW, BMI, WC, visceral fat, insulin, glucose, and HOMA-IR in diabetic rats. We also observed that separate AT or Vit D upregulated the gene expression of AMPK, PGC-1α, and UCP1 however, combined AT + Vit D upregulated AMPK, PGC-1α, and UCP1 more significantly. These results suggested that combining aerobic training and vitamin D supplementation exerted incremental effects on the gene expressions related to adipose tissue in animal models of diabetes.
Collapse
Affiliation(s)
- Kimya Khaledi
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, P.O. Box. 6714414971, Kermanshah, Iran
| | - Rastegar Hoseini
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, P.O. Box. 6714414971, Kermanshah, Iran.
| | - Ahmad Gharzi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
23
|
Klöppel E, Sinzato YK, Rodrigues T, Gallego FQ, Karki B, Volpato GT, Corrente JE, Roy S, Damasceno DC. Benefits of Vitamin D Supplementation on Pregnancy of Rats with Pregestational Diabetes and Their Offspring. Reprod Sci 2023; 30:1241-1256. [PMID: 35999443 DOI: 10.1007/s43032-022-01056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/30/2022] [Indexed: 11/30/2022]
Abstract
Studies on vitamin D supplementation have been performed in experimental and clinical investigations considering gestational diabetes and/or vitamin D deficiency in pregnancy. However, the results are controversial and few present the effects and mechanisms of this micronutrient on pregestational diabetes. The objective of this study was to evaluate the effect of vitamin D on the pregnancy of rats with pre-existing diabetes and their fetuses. Pregestational diabetes was induced in Sprague-Dawley rats at birth. The adult diabetic and nondiabetic rats were orally administered with vitamin D (cholecalciferol) throughout the pregnancy. The diabetes status was monitored during pregnancy by an oral glucose tolerance test (OGTT). At the end of the pregnancy, pancreas and blood samples were collected for morphological analyses and lipid peroxidation measurements, respectively. The influence of vitamin D treatment on reproductive outcomes, fetal growth, and development were compared to those of untreated diabetic and nondiabetic pregnant rats. P < 0.05 was considered a significant statistical limit. The diabetic rats given vitamin D had a greater number of insulin-positive cells, contributing to reduced blood glucose levels and thiobarbituric acid reactive substance concentrations (TBARS-an indicator of membrane lipid peroxidation), and increased reduced thiol group levels, contributing to suitable intrauterine conditions for better fetal development, which was confirmed by higher fetal viability rates. Thus, this study shows the effects and mechanisms of vitamin D supplementation on pre-existing diabetes in pregnant rats, confirming its beneficial effects on maternal redox status and glycemic control, and the decline of adverse maternal-fetal repercussions.
Collapse
Affiliation(s)
- Eduardo Klöppel
- Laboratory of Experimental Research On Gynecology and Obstetrics, Postgraduate Course On Tocogynecology, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo State, Brazil
| | - Yuri K Sinzato
- Laboratory of Experimental Research On Gynecology and Obstetrics, Postgraduate Course On Tocogynecology, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo State, Brazil
| | - Tiago Rodrigues
- Federal University of ABC (UFABC), Santo André, São Paulo State, Brazil
| | - Franciane Q Gallego
- Laboratory of Experimental Research On Gynecology and Obstetrics, Postgraduate Course On Tocogynecology, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo State, Brazil
| | - Barshana Karki
- Laboratory of Experimental Research On Gynecology and Obstetrics, Postgraduate Course On Tocogynecology, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo State, Brazil
- , Boston, MA, USA
| | - Gustavo T Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - José E Corrente
- Research Support Office, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| | - Sayon Roy
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Débora C Damasceno
- Laboratory of Experimental Research On Gynecology and Obstetrics, Postgraduate Course On Tocogynecology, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, Sao Paulo State, Brazil.
| |
Collapse
|
24
|
Gonçalves LED, Andrade-Silva M, Basso PJ, Câmara NOS. Vitamin D and chronic kidney disease: Insights on lipid metabolism of tubular epithelial cell and macrophages in tubulointerstitial fibrosis. Front Physiol 2023; 14:1145233. [PMID: 37064892 PMCID: PMC10090472 DOI: 10.3389/fphys.2023.1145233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Chronic kidney disease (CKD) has been recognized as a significant global health problem due to being an important contributor to morbidity and mortality. Inflammation is the critical event that leads to CKD development orchestrated by a complex interaction between renal parenchyma and immune cells. Particularly, the crosstalk between tubular epithelial cells (TECs) and macrophages is an example of the critical cell communication in the kidney that drives kidney fibrosis, a pathological feature in CKD. Metabolism dysregulation of TECs and macrophages can be a bridge that connects inflammation and fibrogenesis. Currently, some evidence has reported how cellular lipid disturbances can affect kidney disease and cause tubulointerstitial fibrosis highlighting the importance of investigating potential molecules that can restore metabolic parameters. Vitamin D (VitD) is a hormone naturally produced by mammalian cells in a coordinated manner by the skin, liver, and kidneys. VitD deficiency or insufficiency is prevalent in patients with CKD, and serum levels of VitD are inversely correlated with the degree of kidney inflammation and renal function. Proximal TECs and macrophages produce the active form of VitD, and both express the VitD receptor (VDR) that evidence the importance of this nutrient in regulating their functions. However, whether VitD signaling drives physiological and metabolism improvement of TECs and macrophages during kidney injury is an open issue to be debated. In this review, we brought to light VitD as an important metabolic modulator of lipid metabolism in TECs and macrophages. New scientific approaches targeting VitD e VDR signaling at the cellular metabolic level can provide a better comprehension of its role in renal physiology and CKD progression.
Collapse
Affiliation(s)
- Luís Eduardo D. Gonçalves
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Magaiver Andrade-Silva
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Experimental e Clinical Immunology, Department of Clinical Medicine, Faculty of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Paulo José Basso
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Paulo José Basso, ; Niels O. S. Câmara,
| | - Niels O. S. Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Experimental e Clinical Immunology, Department of Clinical Medicine, Faculty of Medicine, Federal University of São Paulo, São Paulo, Brazil
- *Correspondence: Paulo José Basso, ; Niels O. S. Câmara,
| |
Collapse
|
25
|
Mukai T, Kusudo T. Bidirectional effect of vitamin D on brown adipogenesis of C3H10T1/2 fibroblast-like cells. PeerJ 2023; 11:e14785. [PMID: 36815991 PMCID: PMC9934812 DOI: 10.7717/peerj.14785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/03/2023] [Indexed: 02/01/2023] Open
Abstract
Background Brown adipose tissue (BAT) dissipates caloric energy as heat and plays a role in glucose and lipid metabolism. Therefore, augmentation and activation of BAT are the focus of new treatment strategies against obesity, a primary risk factor of metabolic syndrome. The vitamin D system plays a crucial role in mineral homeostasis, bone metabolism, and cell proliferation and differentiation. In this study, we investigated the effects of vitamin D3 [1,25(OH)2D3] on brown adipocyte differentiation. Methods The mouse fibroblast-like cell line C3H10T1/2 was differentiated into brown adipocytes in the presence of 1,25(OH)2D3. The effect of 1,25(OH)2D3 on brown adipocyte differentiation was assessed by measuring lipid accumulation, the expression of related genes, and cytotoxicity. The viability of C3H10T1/2 cells was measured using the Cell Counting Kit-8 assay. Gene expression was investigated using quantitative reverse transcription-polymerase chain reaction. Protein expression was estimated using western blotting. Results 1,25(OH)2D3 inhibited adipocyte differentiation and exerted a cytotoxic effect at 1 nM. However, in the physiological concentration range (50-250 pM), 1,25(OH)2D3 promoted uncoupling protein 1 (UCP1) expression in C3H10T1/2 cells. This effect was not observed when 1,25(OH)2D3 was added 48 h after the initiation of differentiation, suggesting that the vitamin D system acts in the early phase of the differentiation program. We showed that 1,25(OH)2D3 increased the expression of two key regulators of brown adipogenesis, PR domain containing 16 (Prdm16) and peroxisome proliferator-activated receptor γ coactivator-1α (Pgc1α ). Furthermore, 1,25(OH)2D3 increased Ucp1 expression in 3T3-L1 beige adipogenesis in a dose-dependent manner. Conclusion These data indicate the potential of vitamin D and its analogs as therapeutics for the treatment of obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Takako Mukai
- Department of Nutrition and Food Sciences, Faculty of Human Sciences, Tezukayama Gakuin University, Sakai, Osaka, Japan
| | - Tatsuya Kusudo
- Department of Nutrition and Food Sciences, Faculty of Human Sciences, Tezukayama Gakuin University, Sakai, Osaka, Japan
| |
Collapse
|
26
|
Nieri P, Carpi S, Esposito R, Costantini M, Zupo V. Bioactive Molecules from Marine Diatoms and Their Value for the Nutraceutical Industry. Nutrients 2023; 15:464. [PMID: 36678334 PMCID: PMC9861441 DOI: 10.3390/nu15020464] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
The search for novel sources of nutrients is among the basic goals for achievement of sustainable progress. In this context, microalgae are relevant organisms, being rich in high-value compounds and able to grow in open ponds or photobioreactors, thus enabling profitable exploitation of aquatic resources. Microalgae, a huge taxon containing photosynthetic microorganisms living in freshwater, as well as in brackish and marine waters, typically unicellular and eukaryotic, include green algae (Chlorophyceae), red algae (Rhodophyceae), brown algae (Phaeophyceae) and diatoms (Bacillariophyceae). In recent decades, diatoms have been considered the most sustainable sources of nutrients for humans with respect to other microalgae. This review focuses on studies exploring their bio-pharmacological activities when relevant for human disease prevention and/or treatment. In addition, we considered diatoms and their extracts (or purified compounds) when relevant for specific nutraceutical applications.
Collapse
Affiliation(s)
- Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Interdepartmental Center of Marine Pharmacology, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sara Carpi
- National Enterprise for NanoScience and Nanotechnology (NEST), Piazza San Silvestro, 56127 Pisa, Italy
| | - Roberta Esposito
- Stazione Zoologica Antorn Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton, 80133 Naples, Italy
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Maria Costantini
- Stazione Zoologica Antorn Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton, 80133 Naples, Italy
| | - Valerio Zupo
- Stazione Zoologica Antorn Dohrn, Department of Ecosustainable Marine Biotechnology, Ischia Marine Centre, 80077 Ischia, Italy
| |
Collapse
|
27
|
Sosa-Díaz E, Hernández-Cruz EY, Pedraza-Chaverri J. The role of vitamin D on redox regulation and cellular senescence. Free Radic Biol Med 2022; 193:253-273. [PMID: 36270517 DOI: 10.1016/j.freeradbiomed.2022.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022]
Abstract
Vitamin D is considered an essential micronutrient for human health that is metabolized into a multifunctional secosteroid hormone. We can synthesize it in the skin through ultraviolet B (UVB) rays or acquire it from the diet. Its deficiency is a major global health problem that affects all ages and ethnic groups. Furthermore, dysregulation of vitamin D homeostasis has been associated with premature aging, driven by various cellular processes, including oxidative stress and cellular senescence. Various studies have shown that vitamin D can attenuate oxidative stress and delay cellular senescence, mainly by inducing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and Klotho and improving mitochondrial homeostasis, proposing this vitamin as an excellent candidate for delaying aging. However, the mechanisms around these processes are not yet fully explored. Therefore, in this review, the effects of vitamin D on redox regulation and cellular senescence are discussed to propose new lines of research and clinical applications of vitamin D in the context of age-related diseases.
Collapse
Affiliation(s)
- Emilio Sosa-Díaz
- Faculty of Medicine, National Autonomous University of Mexico, 04360, Mexico City, Mexico; Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico
| | - Estefani Yaquelin Hernández-Cruz
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico; Postgraduate in Biological Sciences, National Autonomous University of Mexico, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - José Pedraza-Chaverri
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| |
Collapse
|
28
|
Li Z, Li S, Xiao Y, Zhong T, Yu X, Wang L. Nutritional intervention for diabetes mellitus with Alzheimer's disease. Front Nutr 2022; 9:1046726. [PMID: 36458172 PMCID: PMC9707640 DOI: 10.3389/fnut.2022.1046726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/31/2022] [Indexed: 01/04/2025] Open
Abstract
The combined disease burden of diabetes mellitus (DM) and Alzheimer's disease (AD) is increasing, and the two diseases share some common pathological changes. However, the pharmacotherapeutic approach to this clinical complexity is limited to symptomatic rather than disease-arresting, with the possible exception of metformin. Whether nutritional intervention might extend or synergize with these effects of metformin is of interest. In particular, dietary patterns with an emphasis on dietary diversity shown to affect cognitive function are of growing interest in a range of food cultural settings. This paper presents the association between diabetes and AD. In addition, the cross-cultural nutritional intervention programs with the potential to mitigate both insulin resistance (IR) and hyperglycemia, together with cognitive impairment are also reviewed. Both dietary patterns and nutritional supplementation showed the effects of improving glycemic control and reducing cognitive decline in diabetes associated with AD, but the intervention specificity remained controversial. Multi-nutrient supplements combined with diverse diets may have preventive and therapeutic potential for DM combined with AD, at least as related to the B vitamin group and folate-dependent homocysteine (Hcy). The nutritional intervention has promise in the prevention and management of DM and AD comorbidities, and more clinical studies would be of nutritional scientific merit.
Collapse
Affiliation(s)
| | | | | | | | | | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
29
|
Bennour I, Haroun N, Sicard F, Mounien L, Landrier JF. Recent insights into vitamin D, adipocyte, and adipose tissue biology. Obes Rev 2022; 23:e13453. [PMID: 35365943 DOI: 10.1111/obr.13453] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023]
Abstract
Several studies bring strong evidence for an active role of vitamin D and its metabolites in physiological adipocyte and adipose tissue processes in adulthood. This role includes effects of vitamin D on key adipose tissue and adipocyte biology parameters, including adipogenesis, energy metabolism, and inflammation. Interestingly, recent data also point to a role of maternal vitamin D deficiency in adipocyte and adipose tissue metabolic programming in offspring. This review summarizes the current state of knowledge on the biological effect of vitamin D on adipocyte/adipose tissue physiology.
Collapse
Affiliation(s)
- Imene Bennour
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France
| | - Nicole Haroun
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France
| | - Flavie Sicard
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France.,PhenoMARS Aix-Marseille Technology Platform, CriBiom, Marseille, France
| | - Lourdes Mounien
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France.,PhenoMARS Aix-Marseille Technology Platform, CriBiom, Marseille, France
| | - Jean-François Landrier
- Aix-Marseille Université, C2VN, INRAE, INSERM, Marseille, France.,PhenoMARS Aix-Marseille Technology Platform, CriBiom, Marseille, France
| |
Collapse
|
30
|
Ip TST, Fu SC, Ong MTY, Yung PSH. Vitamin D deficiency in athletes: Laboratory, clinical and field integration. Asia Pac J Sports Med Arthrosc Rehabil Technol 2022; 29:22-29. [PMID: 35847194 PMCID: PMC9256943 DOI: 10.1016/j.asmart.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/12/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022] Open
Abstract
Vitamin D deficiency is highly prevalent in athletes. Increased utilisation and storage depletion may be key contributing factor. We found a higher prevalence of vitamin D inadequacy (deficiency/ insufficiency) in power than endurance sport athletes, which may be related to vitamin D utilisation and reserve in skeletal muscles.
Collapse
Affiliation(s)
- Tina Shuk-Tin Ip
- Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region
| | - Sai-Chuen Fu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Michael Tim-Yun Ong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Patrick Shu-Hang Yung
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
31
|
Vitamin D Counteracts Lipid Accumulation, Augments Free Fatty Acid-Induced ABCA1 and CPT-1A Expression While Reducing CD36 and C/EBPβ Protein Levels in Monocyte-Derived Macrophages. Biomedicines 2022; 10:biomedicines10040775. [PMID: 35453525 PMCID: PMC9028184 DOI: 10.3390/biomedicines10040775] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 12/15/2022] Open
Abstract
The biologically active form of vitamin D, calcitriol (VD3), has received great attention for its extraskeletal effects, such as a protective role on the cardiovascular system. The aim of the present work is to test the capacity of VD3 to affect lipid metabolism and fatty acid accumulation in an in vitro model of monocyte (THP-1)-derived macrophages. Cells were treated for 24 h with oleic/palmitic acid (500 μM, 2:1 ratio) and different VD3 concentrations (0.1, 1, 10, 50 and 100 nM). Lipid accumulation was quantified spectrophotometrically (excitation: 544 nm, emission: 590 nm). C/EBPβ, PPAR-γ1, CD36, CPT-1A, and ABCA1 protein levels were assessed by ELISA kits at different time-points (1, 2, 4, 8, and 24 h). VD3 at 50 and 100 nM significantly reduced fatty acids accumulation in macrophages by 27% and 32%, respectively. In addition, tested at 50 nM, VD3 decreased CD36, PPAR-γ1, and C/EBPβ, while it increased ABCA1 and CPT-1A protein levels in free fatty acid-exposed cells. In conclusion, VD3 reduced fatty acid accumulation in THP-1-derived macrophages exposed to lipid excess. The anti-atherogenic effect of VD3 could be ascribable to the regulation of proteins involved in lipid transport and clearance.
Collapse
|
32
|
Cordeiro MM, Ribeiro RA, Bubna PB, Almeida AC, Laginski TRF, Franco GCN, Scomparin DX. Physical exercise attenuates obesity development in Western‐diet fed obese rats, independently of vitamin D supplementation. Clin Exp Pharmacol Physiol 2022; 49:633-642. [DOI: 10.1111/1440-1681.13637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Maiara Mikuska Cordeiro
- General Biology Department, Biologic Science and Health Sector State University of Ponta Grossa Ponta Grossa Puerto Rico Brazil
| | - Rosane Aparecida Ribeiro
- General Biology Department, Biologic Science and Health Sector State University of Ponta Grossa Ponta Grossa Puerto Rico Brazil
| | - Patrícia Biscaia Bubna
- General Biology Department, Biologic Science and Health Sector State University of Ponta Grossa Ponta Grossa Puerto Rico Brazil
| | - Any Caroline Almeida
- General Biology Department, Biologic Science and Health Sector State University of Ponta Grossa Ponta Grossa Puerto Rico Brazil
| | | | - Gilson César Nobre Franco
- General Biology Department, Biologic Science and Health Sector State University of Ponta Grossa Ponta Grossa Puerto Rico Brazil
| | - Dionízia Xavier Scomparin
- General Biology Department, Biologic Science and Health Sector State University of Ponta Grossa Ponta Grossa Puerto Rico Brazil
| |
Collapse
|
33
|
Anouti FA, Ahmed LA, Riaz A, Grant WB, Shah N, Ali R, Alkaabi J, Shah SM. Vitamin D Deficiency and Its Associated Factors among Female Migrants in the United Arab Emirates. Nutrients 2022; 14:nu14051074. [PMID: 35268048 PMCID: PMC8912400 DOI: 10.3390/nu14051074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 01/14/2023] Open
Abstract
Vitamin D is important for bone health, and vitamin D deficiency could be linked to noncommunicable diseases, including cardiovascular disease. The purpose of this study was to determine the prevalence of vitamin D deficiency and its associated risk factors among female migrants from Philippines, Arab, and South Asian countries residing in the United Arab Emirates (UAE). We used a cross-sectional study to recruit a random sample (N = 550) of female migrants aged 18 years and over in the city of Al Ain, UAE. Vitamin D deficiency was defined as serum 25-hydroxyvitamin D concentrations ≤20 ng/mL (50 nmol/L). We used multivariable logistic regression analysis to identify risk factors associated with vitamin D deficiency. The mean age of participants was 35 years (SD ± 10). The overall prevalence rate of vitamin D deficiency was 67% (95% CI 60-73%), with the highest rate seen in Arabs (87%), followed by South Asians (83%) and the lowest in Filipinas (15%). Multivariate analyses showed that low physical activity (adjusted odds ratio (aOR) = 4.59; 95% CI 1.98, 10.63), having more than 5 years duration of residence in the UAE (aOR = 4.65; 95% CI: 1.31, 16.53) and being obese (aOR = 3.56; 95% CI 1.04, 12.20) were independently associated with vitamin D deficiency, after controlling for age and nationality. In summary, vitamin D deficiency was highly prevalent among female migrants, especially Arabs and South Asians. It is crucial that health professionals in the UAE become aware of this situation among this vulnerable subpopulation and provide intervention strategies aiming to rectify vitamin D deficiency by focusing more on sun exposure, physical activity, and supplementation.
Collapse
Affiliation(s)
- Fatme Al Anouti
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| | - Luai A. Ahmed
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Azmat Riaz
- Department of Obstetrics and Gynecology, Ajman University, Ajman 20550, United Arab Emirates;
| | - William B. Grant
- Sunlight, Nutrition and Health Research Center, P.O. Box 641603, San Francisco, CA 94164-1603, USA;
| | - Nadir Shah
- Planning and Development Division, Government of Gilgit Baltistan, Gilgit 15100, Pakistan;
| | - Raghib Ali
- Public Health Research Center, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates;
| | - Juma Alkaabi
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Syed M. Shah
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
- Department of Family Medicine, Aga Khan University, Karachi 3500, Pakistan
- Correspondence: ; Tel.: +92-971-3-713-7458
| |
Collapse
|
34
|
Szymczak-Pajor I, Miazek K, Selmi A, Balcerczyk A, Śliwińska A. The Action of Vitamin D in Adipose Tissue: Is There the Link between Vitamin D Deficiency and Adipose Tissue-Related Metabolic Disorders? Int J Mol Sci 2022; 23:956. [PMID: 35055140 PMCID: PMC8779075 DOI: 10.3390/ijms23020956] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Adipose tissue plays an important role in systemic metabolism via the secretion of adipocytokines and storing and releasing energy. In obesity, adipose tissue becomes dysfunctional and characterized by hypertrophied adipocytes, increased inflammation, hypoxia, and decreased angiogenesis. Although adipose tissue is one of the major stores of vitamin D, its deficiency is detective in obese subjects. In the presented review, we show how vitamin D regulates numerous processes in adipose tissue and how their dysregulation leads to metabolic disorders. The molecular response to vitamin D in adipose tissue affects not only energy metabolism and adipokine and anti-inflammatory cytokine production via the regulation of gene expression but also genes participating in antioxidant defense, adipocytes differentiation, and apoptosis. Thus, its deficiency disturbs adipocytokines secretion, metabolism, lipid storage, adipogenesis, thermogenesis, the regulation of inflammation, and oxidative stress balance. Restoring the proper functionality of adipose tissue in overweight or obese subjects is of particular importance in order to reduce the risk of developing obesity-related complications, such as cardiovascular diseases and diabetes. Taking into account the results of experimental studies, it seemed that vitamin D may be a remedy for adipose tissue dysfunction, but the results of the clinical trials are not consistent, as some of them show improvement and others no effect of this vitamin on metabolic and insulin resistance parameters. Therefore, further studies are required to evaluate the beneficial effects of vitamin D, especially in overweight and obese subjects, due to the presence of a volumetric dilution of this vitamin among them.
Collapse
Affiliation(s)
- Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| | - Krystian Miazek
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, 15 Wroblewskiego, 93-590 Lodz, Poland;
| | - Anna Selmi
- Department of Molecular Biophysics, University of Lodz, 141/143 Pomorska, 90-236 Lodz, Poland; (A.S.); (A.B.)
| | - Aneta Balcerczyk
- Department of Molecular Biophysics, University of Lodz, 141/143 Pomorska, 90-236 Lodz, Poland; (A.S.); (A.B.)
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| |
Collapse
|
35
|
WANG G, ZHANG J, ZHANG K, ZHAO Q, ZHOU F, XU J, XUE W, ZHANG C, FU C. Possible action mechanisms of vitamin D supplementation in combating obesity and obesity-related issues of bone health: a mini review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.114621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Guiqing WANG
- the Sixth Hospital affiliated to Guangzhou Medical University, China
| | - Jie ZHANG
- Beijing Zhongwei Research Center of Biological and Translational Medicine, China
| | - Kailong ZHANG
- Beijing Zhongwei Research Center of Biological and Translational Medicine, China
| | - Qingqing ZHAO
- Beijing Zhongwei Research Center of Biological and Translational Medicine, China
| | - Fang ZHOU
- National University of Singapore (Suzhou) Research Institude, China
| | - Jie XU
- National University of Singapore (Suzhou) Research Institude, China
| | - Wenshuang XUE
- National University of Singapore (Suzhou) Research Institude, China
| | - Chunye ZHANG
- Beijing Zhongwei Research Center of Biological and Translational Medicine, China
| | - Caili FU
- National University of Singapore (Suzhou) Research Institude, China
| |
Collapse
|
36
|
Raj V, Natarajan S, C M, Chatterjee S, Ramasamy M, Ramanujam GM, Arasu MV, Al-Dhabi NA, Choi KC, Arockiaraj J, Karuppiah K. Cholecalciferol and metformin protect against lipopolysaccharide-induced endothelial dysfunction and senescence by modulating sirtuin-1 and protein arginine methyltransferase-1. Eur J Pharmacol 2021; 912:174531. [PMID: 34710370 DOI: 10.1016/j.ejphar.2021.174531] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 01/07/2023]
Abstract
Endothelial cell activation through nuclear factor-kappa-B (NFkB) and mitogen-activated protein kinases leads to increased biosynthesis of pro-inflammatory mediators, cellular injury and vascular inflammation under lipopolysaccharide (LPS) exposure. Recent studies report that LPS up-regulated global methyltransferase activity. In this study, we observed that a combination treatment with metformin (MET) and cholecalciferol (VD) blocked the LPS-induced S-adenosylmethionine (SAM)-dependent methyltransferase (SDM) activity in Eahy926 cells. We found that LPS challenge (i) increased arginine methylation through up-regulated protein arginine methyltransferase-1 (PRMT1) mRNA, intracellular concentrations of asymmetric dimethylarginine (ADMA) and homocysteine (HCY); (ii) up-regulated cell senescence through mitigated sirtuin-1 (SIRT1) mRNA, nicotinamide adenine dinucleotide (NAD+) concentration, telomerase activity and total antioxidant capacity; and (iii) lead to endothelial dysfunction through compromised nitric oxide (NOx) production. However, these LPS-mediated cellular events in Eahy926 cells were restored by the synergistic effect of MET and VD. Taken together, this study identified that the dual compound effect inhibits LPS-induced protein arginine methylation, endothelial senescence and dysfunction through the components of epigenetic machinery, SIRT1 and PRMT1, which is a previously unidentified function of the test compounds. In silico results identified the presence of vitamin D response element (VDRE) sequence on PRMT1 suggesting that VDR could regulate PRMT1 gene expression. Further characterization of the cellular events associated with the dual compound challenge, using gene silencing approach or adenoviral constructs for SIRT1 and/or PRMT1 under inflammatory stress, could identify therapeutic strategies to address the endothelial consequences in vascular inflammation-mediated atherosclerosis.
Collapse
Affiliation(s)
- Vijay Raj
- Department of Medical Research, Medical College Hospital & Research Center, SRM Institute of Science and Technology, Kattankulathur, 603202, India
| | - Suganya Natarajan
- AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chennai, 600025, India
| | - Marimuthu C
- Gleneagles Global Health City, Chennai, 600100, India
| | - Suvro Chatterjee
- AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chennai, 600025, India
| | - Mohankumar Ramasamy
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur, 603202, India
| | - Ganesh Munuswamy Ramanujam
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur, 603202, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si, Chungnam, 330-801, Republic of Korea
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603202, India; Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Humanities, Kattankulathur 603203, Chennai, Tamil Nadu, India
| | - Kanchana Karuppiah
- Department of Medical Research, Medical College Hospital & Research Center, SRM Institute of Science and Technology, Kattankulathur, 603202, India.
| |
Collapse
|
37
|
Sakurai R, Singh H, Wang Y, Harb A, Gornes C, Liu J, Rehan VK. Effect of Perinatal Vitamin D Deficiency on Lung Mesenchymal Stem Cell Differentiation and Injury Repair Potential. Am J Respir Cell Mol Biol 2021; 65:521-531. [PMID: 34126864 PMCID: PMC8641851 DOI: 10.1165/rcmb.2020-0183oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 04/22/2021] [Indexed: 11/24/2022] Open
Abstract
Stem cells, including the resident lung mesenchymal stem cells (LMSCs), are critically important for injury repair. Compelling evidence links perinatal vitamin D (VD) deficiency to reactive airway disease; however, the effects of perinatal VD deficiency on LMSC function is unknown. We tested the hypothesis that perinatal VD deficiency alters LMSC proliferation, differentiation, and function, leading to an enhanced myogenic phenotype. We also determined whether LMSCs' effects on alveolar type II (ATII) cell function are paracrine. Using an established rat model of perinatal VD deficiency, we studied the effects of four dietary regimens (0, 250, 500, or 1,000 IU/kg cholecalciferol-supplemented groups). At Postnatal Day 21, LMSCs were isolated, and cell proliferation and differentiation (under basal and adipogenic induction conditions) were determined. LMSC paracrine effects on ATII cell proliferation and differentiation were determined by culturing ATII cells in LMSC-conditioned media from different experimental groups. Using flow cytometry, >95% of cells were CD45-ve, >90% were CD90 + ve, >58% were CD105 + ve, and >64% were Stro-1 + ve, indicating their stem cell phenotype. Compared with the VD-supplemented groups, LMSCs from the VD-deficient group demonstrated suppressed PPARγ, but enhanced Wnt signaling, under basal and adipogenic induction conditions. LMSCs from 250 VD- and 500 VD-supplemented groups effectively blocked the effects of perinatal VD deficiency. LMSC-conditioned media from the VD-deficient group inhibited ATII cell proliferation and differentiation compared with those from the 250 VD- and 500 VD-supplemented groups. These data support the concept that perinatal VD deficiency alters LMSC proliferation and differentiation, potentially contributing to increased respiratory morbidity seen in children born to mothers with VD deficiency.
Collapse
Affiliation(s)
- Reiko Sakurai
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine at University of California Los Angeles, Torrance, California
| | - Himanshu Singh
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine at University of California Los Angeles, Torrance, California
| | - Ying Wang
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine at University of California Los Angeles, Torrance, California
| | - Amir Harb
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine at University of California Los Angeles, Torrance, California
| | - Christine Gornes
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine at University of California Los Angeles, Torrance, California
| | - Jie Liu
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine at University of California Los Angeles, Torrance, California
| | - Virender K Rehan
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine at University of California Los Angeles, Torrance, California
| |
Collapse
|
38
|
Mechanisms Involved in the Relationship between Vitamin D and Insulin Resistance: Impact on Clinical Practice. Nutrients 2021; 13:nu13103491. [PMID: 34684492 PMCID: PMC8539968 DOI: 10.3390/nu13103491] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 12/29/2022] Open
Abstract
Recent evidence has revealed anti-inflammatory properties of vitamin D as well as extra-skeletal activity. In this context, vitamin D seems to be involved in infections, autoimmune diseases, cardiometabolic diseases, and cancer development. In recent years, the relationship between vitamin D and insulin resistance has been a topic of growing interest. Low 25-hydroxyvitamin D (25(OH)D) levels appear to be associated with most of the insulin resistance disorders described to date. In fact, vitamin D deficiency may be one of the factors accelerating the development of insulin resistance. Vitamin D deficiency is a common problem in the population and may be associated with the pathogenesis of diseases related to insulin resistance, such as obesity, diabetes, metabolic syndrome (MS) and polycystic ovary syndrome (PCOS). An important question is the identification of 25(OH)D levels capable of generating an effect on insulin resistance, glucose metabolism and to decrease the risk of developing insulin resistance related disorders. The benefits of 25(OH)D supplementation/repletion on bone health are well known, and although there is a biological plausibility linking the status of vitamin D and insulin resistance supported by basic and clinical research findings, well-designed randomized clinical trials as well as basic research are necessary to know the molecular pathways involved in this association.
Collapse
|
39
|
Cordeiro MM, Biscaia PB, Brunoski J, Ribeiro RA, Franco GCN, Scomparin DX. Vitamin D supplementation decreases visceral adiposity and normalizes leptinemia and circulating TNF-α levels in western diet-fed obese rats. Life Sci 2021; 278:119550. [PMID: 33932442 DOI: 10.1016/j.lfs.2021.119550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 11/25/2022]
Abstract
AIMS Vitamin (Vit) D regulates various organic processes, including adipose tissue morphofunction and lipid metabolism. Studies indicate that Vit D bioavailability is reduced in obesity, which could contribute to obesity development; however, the effects of Vit D supplementation on increased adiposity in western diet (WD)-obese rats (an experimental model that better resembles the obesogenic human obesity condition) have not been studied, to date. Thus, we hypothesized that Vit D supplementation following the induction of obesity in WD rats might reduce their body weight (BW) and adiposity. MAIN METHODS Male Wistar rats were fed on a standard chow [control (CTL) group] or a WD to induce obesity (WD group), from 21 to 59 days of age. Subsequently, from 60 to 90-days, half of the CTL and of the WD rats were randomly submitted, or not, to oral Vit D supplementation (CTL-VD and WD-VD groups, respectively). KEY FINDINGS At 91 days of age, WD rats were obese, displaying higher abdominal circumference and white fat stores, dyslipidemia, hyperleptinemia and greater plasma levels of tumor necrosis factor (TNF)-α. Vit D supplementation decreased BW gain, abdominal fat deposition and ameliorated the plasma lipid profile in WD-VD rats. These effects were accompanied by reductions in leptinemia and in circulating TNF-α levels in these rodents. SIGNIFICANCE Vit D supplementation, following the induction of obesity, may represent a good strategy to attenuate BW gain and abdominal adiposity, and ameliorate the plasma lipid profile in WD rats. These effects may be mediated, at least in part, by reductions in circulating levels of leptin and TNF-α.
Collapse
Affiliation(s)
- Maiara Mikuska Cordeiro
- Departamento de Biologia Geral, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Patrícia Bubna Biscaia
- Departamento de Farmácia, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Janaini Brunoski
- Departamento de Enfermagem e Saúde Pública, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Rosane Aparecida Ribeiro
- Departamento de Biologia Geral, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Gilson César Nobre Franco
- Departamento de Biologia Geral, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Dionizia Xavier Scomparin
- Departamento de Biologia Geral, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil.
| |
Collapse
|
40
|
Nikooyeh B, Hollis BW, Neyestani TR. The effect of daily intake of vitamin D-fortified yogurt drink, with and without added calcium, on serum adiponectin and sirtuins 1 and 6 in adult subjects with type 2 diabetes. Nutr Diabetes 2021; 11:26. [PMID: 34389701 PMCID: PMC8363611 DOI: 10.1038/s41387-021-00168-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 05/28/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Some evidence suggests indirect ameliorating effects of vitamin D in diabetes via adiponectin and sirtuins. This study aimed to evaluate the effects of daily intake of vitamin D-fortified yogurt drink, either with or without added calcium, on serum adiponectin, sirtuins (SIRT)1 and 6. METHODS Briefly, 75 adults aged 30-60 years from both sexes with type 2 diabetes were randomly allocated to one of the three groups: (i) D-fortified-yogurt drink (DY; containing 1000 IU vitamin D and 300 mg calcium), (ii) Ca+D-fortified-yogurt drink (CDY; containing 1000 IU vitamin D and 500 mg calcium) and (iii) plain yogurt drink (PY; containing no detectable vitamin D and 300 mg calcium). All assessments were performed initially and after 12 weeks. RESULTS A significant within-group increment in serum adiponectin concentrations was observed in both DY and CDY groups (+60.4 ± 8.6, +57.5 ± 6.4 µg/L, respectively; p < 0.001 for both). The concentrations of SIRT1 and SIRT6 had a significant within-group increment only in the CDY group (p = 0.003, p = 0.001 respectively). Being in CDY group was more favorable predictor of improvement in SIRT6 concentrations. Changes of 25(OH)D were a significant predictor of changes of adiponectin. However, this association disappeared following adjustment for changes of SIRT1. In contrast, the association between changes of 25(OH)D and HbA1c remained significant even after adjustment for SIRT1. CONCLUSIONS Daily consumption of vitamin D-fortified yogurt drink for 12 weeks resulted in an increase in circulating concentrations of SIRT1 and SIRT6 in T2D subjects and D+Ca-fortified yogurt drink was more in favor of SIRT6 increment.
Collapse
Affiliation(s)
- Bahareh Nikooyeh
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bruce W Hollis
- Division of Neonatology, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Tirang R Neyestani
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Izzo M, Carrizzo A, Izzo C, Cappello E, Cecere D, Ciccarelli M, Iannece P, Damato A, Vecchione C, Pompeo F. Vitamin D: Not Just Bone Metabolism but a Key Player in Cardiovascular Diseases. Life (Basel) 2021; 11:life11050452. [PMID: 34070202 PMCID: PMC8158519 DOI: 10.3390/life11050452] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Vitamin D is the first item of drug expenditure for the treatment of osteoporosis. Its deficiency is a condition that affects not only older individuals but also young people. Recently, the scientific community has focused its attention on the possible role of vitamin D in the development of several chronic diseases such as cardiovascular and metabolic diseases. This review aims to highlight the possible role of vitamin D in cardiovascular and metabolic diseases. In particular, here we examine (1) the role of vitamin D in diabetes mellitus, metabolic syndrome, and obesity, and its influence on insulin secretion; (2) its role in atherosclerosis, in which chronic vitamin D deficiency, lower than 20 ng/mL (50 nmol/L), has emerged among the new risk factors; (3) the role of vitamin D in essential hypertension, in which low plasma levels of vitamin D have been associated with both an increase in the prevalence of hypertension and diastolic hypertension; (4) the role of vitamin D in peripheral arteriopathies and aneurysmal pathology, reporting that patients with peripheral artery diseases had lower vitamin D values than non-suffering PAD controls; (5) the genetic and epigenetic role of vitamin D, highlighting its transcriptional regulation capacity; and (6) the role of vitamin D in cardiac remodeling and disease. Despite the many observational studies and meta-analyses supporting the critical role of vitamin D in cardiovascular physiopathology, clinical trials designed to evaluate the specific role of vitamin D in cardiovascular disease are scarce. The characterization of the importance of vitamin D as a marker of pathology should represent a future research challenge.
Collapse
Affiliation(s)
- Marcello Izzo
- Department of Mathematics for Technology, Medicine and Biosciences Research Center, University of Ferrara, 44121 Ferrara, Italy
- Specialist Medical Center-Via Cimitile, 80035 Nola, Italy
- Correspondence:
| | - Albino Carrizzo
- IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (E.C.); (D.C.); (A.D.); (C.V.); (F.P.)
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (C.I.); (M.C.); (P.I.)
| | - Carmine Izzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (C.I.); (M.C.); (P.I.)
| | - Enrico Cappello
- IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (E.C.); (D.C.); (A.D.); (C.V.); (F.P.)
| | - Domenico Cecere
- IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (E.C.); (D.C.); (A.D.); (C.V.); (F.P.)
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (C.I.); (M.C.); (P.I.)
| | - Patrizia Iannece
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (C.I.); (M.C.); (P.I.)
| | - Antonio Damato
- IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (E.C.); (D.C.); (A.D.); (C.V.); (F.P.)
| | - Carmine Vecchione
- IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (E.C.); (D.C.); (A.D.); (C.V.); (F.P.)
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (C.I.); (M.C.); (P.I.)
| | - Francesco Pompeo
- IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (E.C.); (D.C.); (A.D.); (C.V.); (F.P.)
| |
Collapse
|
42
|
Han YY, Hsu SHJ, Su TC. Association between Vitamin D Deficiency and High Serum Levels of Small Dense LDL in Middle-Aged Adults. Biomedicines 2021; 9:464. [PMID: 33923190 PMCID: PMC8145029 DOI: 10.3390/biomedicines9050464] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/29/2022] Open
Abstract
Recent studies suggested a potential link between vitamin D deficiency and cardiovascular risk factors, including dyslipidemia. This study aimed to investigate the association between serum 25(OH)D levels and atherogenic lipid profiles, specifically, that of small dense low-density lipoprotein-cholesterol (sdLDL-C). From 2009 to 2011, a total of 715 individuals aged 35-65 without evident cardiovascular disease (CVD) were enrolled. Their levels of serum 25(OH)D and lipid profiles were measured. Vitamin D deficiency was found to be more common in females, smokers, alcohol drinkers, individuals at a younger age, and those who do not exercise regularly. The analysis of lipid profiles revealed that high sdLDL-C levels were associated with low serum vitamin D levels and were more common among cigarette smokers; alcohol drinkers; individuals with hypertension; individuals with high BMI; and those with high levels of fasting blood glucose, triglycerides, LDL-C, and VLDL-C. The use of multivariate logistic regression verified a strong negative correlation between low vitamin D status (serum 25(OH)D < 15 ng/mL) and the three identified biomarkers of atherogenic dyslipidemia: high serum levels of sdLDL-C, triglycerides, and VLDL-C. This study provides strong evidence that vitamin D deficiency is associated with atherogenic dyslipidemia, and in particular, high sdLDL-C levels in middle-aged adults without CVD.
Collapse
Affiliation(s)
- Yin-Yi Han
- Department of Anesthesiology, National Taiwan University Hospital, Taipei 100225, Taiwan;
- Department of Traumatology, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Sandy Huey-Jen Hsu
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100225, Taiwan;
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
- Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei 100225, Taiwan
| |
Collapse
|
43
|
The association between vitamin D receptor polymorphisms and tissue-specific insulin resistance in human obesity. Int J Obes (Lond) 2021; 45:818-827. [PMID: 33473175 DOI: 10.1038/s41366-021-00744-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/27/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023]
Abstract
BACKGROUND/OBJECTIVES To investigate (1) the association of four VDR polymorphisms (TaqI/rs731236, ApaI/rs7975232, FokI/rs10735810, and Bsml/rs1544410) with markers of adiposity and tissue-specific insulin resistance at baseline, after weight loss and weight maintenance; (2) the effect of the VDR polymorphisms in the SAT transcriptome in overweight/obese Caucasians of the DiOGenes cohort. METHODS We included 553 adult obese individuals (mean BMI 34.8 kg/m2), men (n = 197) and women (n = 356) at baseline, following an 8-week weight loss intervention and 26 weeks weight maintenance. Genotyping was performed using an Illumina 660W-Quad SNP chip on the Illumina iScan Genotyping System. Tissue-specific IR was determined using Hepatic Insulin Resistance Index (HIRI), Muscle Insulin Sensitivity Index (MISI), and Adipose Tissue Insulin Resistance Index (Adipo-IR). Expression quantitative trait loci (eQTL) analysis was performed to determine the effect of SNPs on SAT gene expression. RESULTS None of the VDR polymorphisms were associated with HIRI or MISI. Interestingly, carriers of the G allele of VDR FokI showed higher Adipo-IR (GG + GA 7.8 ± 0.4 vs. AA 5.6 ± 0.5, P = 0.010) and higher systemic FFA (GG + GA: 637.8 ± 13.4 vs. AA: 547.9 ± 24.7 µmol/L, P = 0.011), even after adjustment with age, sex, center, and FM. However, eQTL analysis showed minor to no effect of these genotypes on the transcriptional level in SAT. Also, VDR polymorphisms were not related to changes in body weight and IR as result of dietary intervention (P > 0.05 for all parameters). CONCLUSIONS The VDR Fokl variant is associated with elevated circulating FFA and Adipo-IR at baseline. Nevertheless, minor to no effect of VDR SNPs on the transcriptional level in SAT, indicating that putative mechanisms of action remain to be determined. Finally, VDR SNPs did not affect dietary intervention outcome in the present cohort.
Collapse
|
44
|
Nimitphong H, Guo W, Holick MF, Fried SK, Lee MJ. Vitamin D Inhibits Adipokine Production and Inflammatory Signaling Through the Vitamin D Receptor in Human Adipocytes. Obesity (Silver Spring) 2021; 29:562-568. [PMID: 33624437 DOI: 10.1002/oby.23109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the effects of vitamin D on adipokine expression and inflammation in human adipose tissues and adipocytes and evaluate the molecular mechanisms involved. METHODS Omental and abdominal subcutaneous human adipose tissues were treated with 1,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ), and adipokine levels were measured. Vitamin D effects were measured with or without dexamethasone because glucocorticoids are known to affect vitamin D actions. Using RNA interference, we examined whether the vitamin D receptor (VDR) mediated vitamin D actions on adipokine expression and inflammatory signaling pathways in human adipocytes. RESULTS mRNA levels and secretion of leptin and IL-6 were suppressed by 1,25(OH)2 D3 in omental adipose tissues. Cotreatment with dexamethasone did not affect these inhibitory actions but partially blocked CYP24A1 induction. Similar results were observed in the subcutaneous depot. In addition, 1,25(OH)2 D3 suppressed leptin and IL-6 expression as well as nuclear factor-κB and extracellular signal-regulated kinase-1/2 phosphorylation in human adipocytes. Adipokine expression also was decreased by 25-hydroxyvitamin D3 (25(OH)D3 ), but not vitamin D3 . Knockdown of VDR increased the inflammatory signaling activity in the control condition and blocked the inhibitory effects of 1,25(OH)2 D3 on adipokine and inflammatory signaling pathways. CONCLUSION Vitamin D acts through VDR to inhibit inflammatory pathways and adipokine expression in human adipocytes. Increasing vitamin D status may ameliorate obesity-associated metabolic complications by decreasing adipose tissue inflammation.
Collapse
Affiliation(s)
- Hataikarn Nimitphong
- Department of Medicine, Section of Endocrinology and Metabolism, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Weimin Guo
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Michael F Holick
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Susan K Fried
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston, Massachusetts, USA
- Diabetes Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mi-Jeong Lee
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| |
Collapse
|
45
|
Britti E, Delaspre F, Sanz-Alcázar A, Medina-Carbonero M, Llovera M, Purroy R, Mincheva-Tasheva S, Tamarit J, Ros J. Calcitriol increases frataxin levels and restores mitochondrial function in cell models of Friedreich Ataxia. Biochem J 2021; 478:1-20. [PMID: 33305808 DOI: 10.1042/bcj20200331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2023]
Abstract
Friedreich ataxia (FA) is a neurodegenerative disease caused by the deficiency of frataxin, a mitochondrial protein. In primary cultures of dorsal root ganglia neurons, we showed that frataxin depletion resulted in decreased levels of the mitochondrial calcium exchanger NCLX, neurite degeneration and apoptotic cell death. Here, we describe that frataxin-deficient dorsal root ganglia neurons display low levels of ferredoxin 1 (FDX1), a mitochondrial Fe/S cluster-containing protein that interacts with frataxin and, interestingly, is essential for the synthesis of calcitriol, the active form of vitamin D. We provide data that calcitriol supplementation, used at nanomolar concentrations, is able to reverse the molecular and cellular markers altered in DRG neurons. Calcitriol is able to recover both FDX1 and NCLX levels and restores mitochondrial membrane potential indicating an overall mitochondrial function improvement. Accordingly, reduction in apoptotic markers and neurite degeneration was observed and, as a result, cell survival was also recovered. All these beneficial effects would be explained by the finding that calcitriol is able to increase the mature frataxin levels in both, frataxin-deficient DRG neurons and cardiomyocytes; remarkably, this increase also occurs in lymphoblastoid cell lines derived from FA patients. In conclusion, these results provide molecular bases to consider calcitriol for an easy and affordable therapeutic approach for FA patients.
Collapse
Affiliation(s)
- Elena Britti
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| | - Fabien Delaspre
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| | - A Sanz-Alcázar
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| | - Marta Medina-Carbonero
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| | - Marta Llovera
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| | - Rosa Purroy
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| | - Stefka Mincheva-Tasheva
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| | - Jordi Tamarit
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| | - Joaquim Ros
- Dept. Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, AV. Rovira Roure 80, 25198 Lleida, Spain
| |
Collapse
|
46
|
Lee K, Kim J. Serum vitamin D status and metabolic syndrome: a systematic review and dose-response meta-analysis. Nutr Res Pract 2020; 15:329-345. [PMID: 34093974 PMCID: PMC8155226 DOI: 10.4162/nrp.2021.15.3.329] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/19/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUD/OBJECTIVES Evidence has suggested an association between serum vitamin D and metabolic syndrome (MetS), but prospective studies are very limited. The objective was to assess the dose-response association between serum vitamin D concentration and MetS risk using a systematic review and meta-analysis of updated observational studies. MATERIALS/METHODS Using MEDLINE, PubMed, and Embase, a systematic literature search was conducted through February 2020 and the references of relevant articles were reviewed. A random-effects model was used to estimate the summary odds ratio/relative risk and 95% confidence interval (CI). Heterogeneity among studies was evaluated with I2 statistic. In total, 23 observational studies (19 cross-sectional studies, and four cohort studies) were included in the meta-analysis. RESULTS The pooled estimates (95% CI) for MetS per 25-nmol/L increment in serum vitamin D concentration were 0.80 (95% CI, 0.76–0.84; I2 = 53.5) in cross-sectional studies, and 0.85 (95% CI, 0.72–0.98; I2 = 85.8) in cohort studies. Similar results were observed, irrespectively of age of study population, study location, MetS criteria, and adjustment factors. There was no publication bias for the dose-response meta-analysis of serum vitamin D concentrations and MetS. CONCLUSIONS Dose-response meta-analysis demonstrated that a 25-nmol/L increment in the serum vitamin D concentration was associated with 20% and 15% lower risks of MetS in cross-sectional studies and cohort studies, respectively.
Collapse
Affiliation(s)
- Kyueun Lee
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Jihye Kim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
47
|
Xiang W, Cheng S, Zhou Y, Ma L. Effects of 1,25(OH) 2 D 3 on lipid droplet growth in adipocytes. Biofactors 2020; 46:943-954. [PMID: 31904171 DOI: 10.1002/biof.1610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Abstract
This study aimed to explore the effects of 1,25(OH)2 D3 on lipid droplet (LD) growth in 3T3-L1 adipocytes of hypertrophy model. Cocktail method was used to induce differentiation in 3T3-L1 cells. After 8 days, the cells were modeled by 100, 300, 600, and 900 μM palmitic acid (PA) for 24 hr. The best concentration of modeling was screened by MTT results and triglycerides (TG) content. The model cells were intervened by 1, 10, and 100 nM 1,25(OH)2 D3 for 24 hr. Then, the TG content of cells were detected and stained by oil red O. The diameter and quantity of LDs were analyzed. mRNA relative expression levels of genes related to LD (CIDE-a, Fsp27, PLIN-1), upstream response factor (PPAR-α, PPAR-γ, and VDR), and TG metabolism (long chain acyl-CoA synthetase 3, 1-acylglycerol-3-phosphate O-acyltransferase 1, adipose triglyceride lipase, diacylglycerol acyltransferase 1, diacylglycerol acyltransferase 2, glycerol-3-phosphate O-acyltransferase 3, glycerol-3-phosphate O-acyltransferase 4, hormone-sensitive lipase, mannosyl (alpha-1,3-)-glycoprotein beta-1,2-N-acetyl glucosaminyl transferase, phosphatidic acid phosphatase, and uncoupling protein-1) were detected by RT-qPCR. A total of 300 μM PA was selected as the optimum concentration. Compared with model group, 10 and 100 nM 1,25(OH)2 D3 decreased the average diameter, increased the quantity of LDs, upregulated PPAR-α and PLIN-1 mRNA expression levels, and downregulated CIDE-a and Fsp27 mRNA expression levels significantly (p < .05). However, 1 nM 1,25(OH)2 D3 did not alter LD morphology and TG content. mRNA expression levels of long chain acyl-CoA synthetase 3, 1-acylglycerol-3-phosphate O-acyltransferase 1, diacylglycerol acyltransferase 2, glycerol-3-phosphate O-acyltransferase 3, and glycerol-3-phosphate O-acyltransferase 4 in 10 and 100 nM groups were significantly lower than those in the model group (p < .05); mRNA expression levels of adipose triglyceride lipase, diacylglycerol acyltransferase 1, hormone-sensitive lipase, mannosyl (alpha-1,3-)-glycoprotein beta-1,2-N-acetyl glucosaminyl transferase, phosphatidic acid phosphatase, and uncoupling protein-1 were significantly increased in the 100 nM group (p < .05). The 10 and 100 nM 1,25(OH)2 D3 can inhibit LD fusion, promote LD decomposition, reduce LD volume, and inhibit lipogenesis through the PPAR-α signaling pathway.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Nutrition and Diet, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Shi Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Yong Zhou
- Department of Medical Cell Biology and Genetics, College of Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Ling Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| |
Collapse
|
48
|
The Molecular Mechanisms by Which Vitamin D Prevents Insulin Resistance and Associated Disorders. Int J Mol Sci 2020; 21:ijms21186644. [PMID: 32932777 PMCID: PMC7554927 DOI: 10.3390/ijms21186644] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Numerous studies have shown that vitamin D deficiency is very common in modern societies and is perceived as an important risk factor in the development of insulin resistance and related diseases such as obesity and type 2 diabetes (T2DM). While it is generally accepted that vitamin D is a regulator of bone homeostasis, its ability to counteract insulin resistance is subject to debate. The goal of this communication is to review the molecular mechanism by which vitamin D reduces insulin resistance and related complications. The university library, PUBMED, and Google Scholar were searched to find relevant studies to be summarized in this review article. Insulin resistance is accompanied by chronic hyperglycaemia and inflammation. Recent studies have shown that vitamin D exhibits indirect antioxidative properties and participates in the maintenance of normal resting ROS level. Appealingly, vitamin D reduces inflammation and regulates Ca2+ level in many cell types. Therefore, the beneficial actions of vitamin D include diminished insulin resistance which is observed as an improvement of glucose and lipid metabolism in insulin-sensitive tissues.
Collapse
|
49
|
Al‐Mohaissen MA, Lee T, Alamri AF. Vitamin D levels, prediabetes risk and hemoglobin A1c levels in young non-diabetic Saudi women. J Diabetes Investig 2020; 11:1344-1351. [PMID: 32017439 PMCID: PMC7477525 DOI: 10.1111/jdi.13226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/24/2020] [Accepted: 02/02/2020] [Indexed: 11/30/2022] Open
Abstract
AIMS/INTRODUCTION Vitamin D levels are negatively correlated with prediabetes risk and hemoglobin A1c levels in individuals with prediabetes. The data are, however, scarce and inconsistent among different populations. We aimed to assess the association of vitamin D with prediabetes risk and hemoglobin A1c levels in young Saudi women with normoglycemia and prediabetes. MATERIALS AND METHODS We analyzed the data of individuals without diabetes (without diabetes history and hemoglobin A1c <6.4%) from the Princess Nourah bint Abdulrahman University's non-communicable diseases student registry. Demographic data, anthropometric and blood pressure measurements, and hemoglobin A1c and vitamin D results were retrieved and analyzed. RESULTS In total, 345 participants were included in the analysis. The prediabetes status showed no association with vitamin D levels, but it was significantly associated with the participants' weight and body mass index. Additionally, there was no correlation between the levels of vitamin D and hemoglobin A1c across the whole population, even after correction for body mass index. However, in the body mass index subgroups, when individuals with potentially harmful levels of vitamin D (>125 nmol/L) were excluded, a positive association was detected between vitamin D and hemoglobin A1c levels in the underweight individuals. Hemoglobin A1c values showed a positive correlation only with bodyweight and body mass index. CONCLUSIONS Vitamin D levels did not predict prediabetes status and showed no correlation with hemoglobin A1c levels in this population. Vitamin D levels' effect on the risk of prediabetes might be small compared with other well-established risk factors, such as obesity.
Collapse
Affiliation(s)
- Maha A Al‐Mohaissen
- Department of Clinical Sciences, CardiologyPrincess Nourah Bint Abdulrahman UniversityRiyadhSaudi Arabia
- Princess Nourah Bint Abdulrahman University Cardiovascular Disease in Women Research ChairRiyadhSaudi Arabia
| | - Terry Lee
- Center for Health Evaluation and Outcome SciencesVancouverBritish ColumbiaCanada
| | - Ali Faris Alamri
- Department of Family MedicineKing Abdullah bin Abdulaziz University HospitalPrincess Nourah bint Abdulrahman UniversityRiyadhSaudi Arabia
| |
Collapse
|
50
|
Totonchi H, Rezaei R, Noori S, Azarpira N, Mokarram P, Imani D. Vitamin D Receptor Gene Polymorphisms and the Risk of Metabolic Syndrome (MetS): A Meta-Analysis. Endocr Metab Immune Disord Drug Targets 2020; 21:943-955. [PMID: 32767922 DOI: 10.2174/1871530320666200805101302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/09/2020] [Accepted: 06/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Several studies have assessed the association between the vitamin D receptor (VDR) polymorphism and the risk of metabolic syndrome (MetS). However, the results were inconsistent and inconclusive. Therefore, we conducted a meta-analysis to clarify the exact association between the vitamin D receptor (VDR) polymorphisms and the risk of MetS. METHODS All accessible studies reporting the association between the FokI (rs2228570) or/and TaqI (rs731236) or/and BsmI (rs1544410) or/and ApaI (rs7975232 polymorphisms of the Vitamin D Receptor and susceptibility to MetS published prior to February 2019 were systematically searched in Web of Science, Scopus, and PubMed. After that, Odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) were estimated to evaluate the strength of the association in five genetic models. RESULTS A total of 9 articles based on four gene variations, and comprising 3348 participants with 1779 metabolic syndrome patients were included. The overall results suggested a significant association between BsmI (rs1544410) polymorphism and MetS susceptibility in recessive model (OR, 0.72, 95% CI, 0.55-0.95, fixed effect model), allelic model (OR, 0.83, 95% CI, 0.72-0.95, fixed effect model), and bb vs BB (OR, 0.65, 95% CI, 0.46-0.93, fixed effect). However, no significant association was identified between TaqI (rs731236) polymorphism, ApaI (rs7975232) polymorphism, and FokI (rs2228570) polymorphism and MetS. CONCLUSION This meta-analysis suggested an association between the BsmI (rs1544410) polymorphism and MetS. Indeed, BsmI (rs1544410) acts as a protective factor in the MetS. As a result, the VDR gene could be regarded as a promising pharmacological and physiological target in the prevention or treatment of the MetS.
Collapse
Affiliation(s)
- Hamidreza Totonchi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Ramazan Rezaei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shokoofe Noori
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Negar Azarpira
- Shiraz Transplant Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Danyal Imani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|