1
|
Guo W, Liu W, Liang P, Ni L, Lv X, Fan J, Shi F. High molecular weight polysaccharides from Ganoderma lucidum attenuates inflammatory responses, gut microbiota, and liver metabolomic in lipopolysaccharide-induced liver injury mice. Int J Biol Macromol 2025; 287:138400. [PMID: 39657883 DOI: 10.1016/j.ijbiomac.2024.138400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/16/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
High molecular weight polysaccharides (GLPH, ≥300 kDa) are the major compounds of Ganoderma lucidum with improving liver function. However, the effect of GLPH on improving acute liver injury (ALI) wasn't revealed. Herein, the ameliorating effects and mechanisms of GLPH were revealed in lipopolysaccharide (LPS)-ALI mice. The results indicated that GLPH intervention (100 mg/kg day) reduced the serum ALT (22.67 ± 6.48 U/L), AST (21.19 ± 7.08 U/L), ALP (56.98 ± 12.71 U/L), GGT (1.48 ± 0.22 U/L) levels in ALI mice (p < 0.01). GLPH activated the hepatic antioxidant enzymes activity [SOD (3.75 ± 1.17 U/mg prot.) and CAT (3.01 ± 0.85 U/mg prot.)] and suppressed the hepatic inflammatory cytokines production [TNF-α (40.14 ± 8.15 pg/mg prot.), IL-1β (35.47 ± 10.90 pg/mg prot.), and IL-6 (8.44 ± 1.71 pg/mg prot.)] by regulating the Nrf2/OH-1 and Tlr4/NF-κB pathway (p < 0.05). Furthermore, GLPH regulated the abundance of Bifidobacterium, Akkermansia, Anaerovorax, and Tyzzerella, which associated with cecal SCFAs, hepatic inflammatory cytokines and antioxidant enzymes. GLPH significantly changed 85 liver metabolites (p < 0.01), which is beneficial for prevent the development of ALI. These results suggested GLPH displayed promising prebiotic properties in relieving ALI, regulating gut microbiota and liver metabolism.
Collapse
Affiliation(s)
- Weiling Guo
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Wenkun Liu
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Peng Liang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jinlin Fan
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing 350300, China.
| | - Feifei Shi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Zhang H, Ma L, Li S, Ding Q, Zhang Y, Zhou M. Therapeutic potential of Shaoyao Gancao Decoction in mitigating anti-tuberculosis drug-induced liver injury through Nrf-2/HO-1/NF-κB signaling. Biomed Chromatogr 2024; 38:e6016. [PMID: 39344438 DOI: 10.1002/bmc.6016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/11/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
Tuberculosis (TB) is a persistent global health issue, evidenced by an increasing number of cases. Although anti-TB drugs have proven efficacy, they are often associated with severe liver injury (ATB-DILI). The objective of this research was to uncover the mechanisms through which Shaoyao Gancao Decoction (SGD) mitigates ATB-DILI, emphasizing the role of the Nrf-2/HO-1/NF-κB signaling pathway. We prepared SGD granules and subjected them to HPLC-MS/MS for analysis. An ATB-DILI rat model was then developed and administered SGD. We evaluated liver injury markers, the extent of oxidative stress, inflammation, and the principal proteins involved in the Nrf-2/HO-1/NF-κB pathway. Additionally, network pharmacology techniques were utilized to discern potential SGD targets and their associated pathways. Administering SGD had a notable effect in counteracting the elevation of liver injury markers and pathological alterations induced by ATB-DILI. Moreover, there was a marked reduction in oxidative stress and inflammation in the treated rats. We identified 12 active compounds in SGD, with 88 shared targets between SGD and ATB-DILI. Subsequent KEGG analysis brought attention to pathways like MAPK, NF-κB, and IL-17 signaling. Our findings pave the way for more in-depth studies into the application of SGD in treating drug-induced liver injuries.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Pharmacy, Wuhan Pulmonary Hospital, Wuhan, Hubei, People's Republic of China
| | - Lihua Ma
- Department of Pharmacy, Wuhan Pulmonary Hospital, Wuhan, Hubei, People's Republic of China
| | - Sisi Li
- Department of Pharmacy, Wuhan Pulmonary Hospital, Wuhan, Hubei, People's Republic of China
| | - Qiaoyan Ding
- Department of Pharmacy, Wuhan Pulmonary Hospital, Wuhan, Hubei, People's Republic of China
| | - Yu Zhang
- Department of Pharmacy, Wuhan Pulmonary Hospital, Wuhan, Hubei, People's Republic of China
| | - Ming Zhou
- Department of Pharmacy, Wuhan Pulmonary Hospital, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
3
|
Huang J, Xu T, Quan G, Li Y, Yang X, Xie W. Current progress on the microbial therapies for acute liver failure. Front Microbiol 2024; 15:1452663. [PMID: 39479215 PMCID: PMC11521890 DOI: 10.3389/fmicb.2024.1452663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Acute liver failure (ALF), associated with a clinical fatality rate exceeding 80%, is characterized by severe liver damage resulting from various factors in the absence of pre-existing liver disease. The role of microbiota in the progression of diverse liver diseases, including ALF, has been increasingly recognized, with the interactions between the microbiota and the host significantly influencing both disease onset and progression. Despite growing interest in the microbiological aspects of ALF, comprehensive reviews remain limited. This review critically examines the mechanisms and efficacy of microbiota-based treatments for ALF, focusing on their role in prevention, treatment, and prognosis over the past decade.
Collapse
Affiliation(s)
- Jiayuan Huang
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Tianyu Xu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Guoqiao Quan
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuange Li
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoya Yang
- Department of Physiology, Guangzhou Health Science College, Guangzhou, China
| | - Wenrui Xie
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
4
|
Sun S, Zhang G, Lv S, Sun J. Potential mechanisms of traditional Chinese medicine in the treatment of liver cirrhosis: a focus on gut microbiota. Front Microbiol 2024; 15:1407991. [PMID: 39234554 PMCID: PMC11371771 DOI: 10.3389/fmicb.2024.1407991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Cirrhosis, a pathological stage that develops from various chronic liver diseases, is characterized by liver fibrosis, pseudolobular formation, and chronic inflammation. When it progresses to the decompensated phase, the mortality rate of cirrhosis can reach 80%. The role of gut microbiota in the progression of liver diseases has received significant attention. Numerous studies have shown that regulating gut microbiota has significant therapeutic effects on preventing and reversing liver cirrhosis. This article reviewed the mechanisms by which gut microbiota influence liver cirrhosis, explaining the effective therapeutic effects of traditional Chinese medicine. Through multi-directional regulation involving signaling pathways, gut microbiota diversity, and restoration of intestinal barrier function, traditional Chinese medicine has been promising in ameliorating liver cirrhosis, providing treatment options and pharmacological guidance for the occurrence and development of liver cirrhosis.
Collapse
Affiliation(s)
- Siyuan Sun
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Guangheng Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shimeng Lv
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinhui Sun
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Dmytriv TR, Storey KB, Lushchak VI. Intestinal barrier permeability: the influence of gut microbiota, nutrition, and exercise. Front Physiol 2024; 15:1380713. [PMID: 39040079 PMCID: PMC11260943 DOI: 10.3389/fphys.2024.1380713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/29/2024] [Indexed: 07/24/2024] Open
Abstract
The intestinal wall is a selectively permeable barrier between the content of the intestinal lumen and the internal environment of the body. Disturbances of intestinal wall permeability can potentially lead to unwanted activation of the enteric immune system due to excessive contact with gut microbiota and its components, and the development of endotoxemia, when the level of bacterial lipopolysaccharides increases in the blood, causing chronic low-intensity inflammation. In this review, the following aspects are covered: the structure of the intestinal wall barrier; the influence of the gut microbiota on the permeability of the intestinal wall via the regulation of functioning of tight junction proteins, synthesis/degradation of mucus and antioxidant effects; the molecular mechanisms of activation of the pro-inflammatory response caused by bacterial invasion through the TLR4-induced TIRAP/MyD88 and TRAM/TRIF signaling cascades; the influence of nutrition on intestinal permeability, and the influence of exercise with an emphasis on exercise-induced heat stress and hypoxia. Overall, this review provides some insight into how to prevent excessive intestinal barrier permeability and the associated inflammatory processes involved in many if not most pathologies. Some diets and physical exercise are supposed to be non-pharmacological approaches to maintain the integrity of intestinal barrier function and provide its efficient operation. However, at an early age, the increased intestinal permeability has a hormetic effect and contributes to the development of the immune system.
Collapse
Affiliation(s)
- Tetiana R. Dmytriv
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| | | | - Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
6
|
Jiang Y, Wei W, Zhou J, Qiu S, Yang Q, Huo JH, Wang W. Decoction derived from Allium ascalonicum L. bulbs and Sojae Semen Praeparatum alleviates wind-cold-type common cold via Nrf2/HO-1 pathway and modulation of Lactobacillus murinus level. Front Pharmacol 2024; 15:1364328. [PMID: 38803435 PMCID: PMC11129017 DOI: 10.3389/fphar.2024.1364328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/27/2024] [Indexed: 05/29/2024] Open
Abstract
Background Cong-Chi decoction (CCD) is made using Allium ascalonicum L. (shallot) bulbs and Sojae Semen Praeparatum (SSP). Shallot bulbs and SSP are both used regularly in traditional Chinese medicine; however, there are no recent pharmacological studies on their synergistic effects. Despite their roles in the treatment of the common cold for thousands of years, their pharmacological mechanisms of action against wind-cold-type common cold are yet to be explored comprehensively. Methods A mouse model was standardized using wind-cold modeling equipment to study the anti-inflammatory, antioxidant, and antiapoptotic effects of CCD. Then, 16S rRNA sequencing was employed to analyze the association between Lactobacillus murinus and changes in body temperature. Additionally, the antipyretic effects of L. murinus were validated via animal experiments. Results The results indicate that CCD improves the symptoms of wind-cold by reducing fever, levels of pro-inflammatory factors, and cellular apoptosis, as well as increasing the blood leukocyte and lymphocyte counts, thereby alleviating lung tissue damage. The effects of CCD are mediated by upregulation of pulmonary Nrf2 and HO-1 expressions, thereby reducing oxidative damage in the lungs, in addition to other anti-inflammatory mechanisms. Furthermore, CCD increases the abundance of L. murinus in the intestinal tract. The animal experiments confirm that L. murinus ameliorates fever in mice. Conclusion CCD exhibits remarkable antioxidant and anti-inflammatory properties for effectively treating wind-cold-type common cold. Furthermore, its regulatory effects on L. murinus represent a novel mechanism for product development.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine, Pharmaceutics, Guangzhou, China
- Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology Institute of Chinese, Guangzhou, China
| | - Wenfeng Wei
- Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jiaxin Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine, Pharmaceutics, Guangzhou, China
- Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology Institute of Chinese, Guangzhou, China
| | - Shixian Qiu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine, Pharmaceutics, Guangzhou, China
- Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology Institute of Chinese, Guangzhou, China
| | - Qixin Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine, Pharmaceutics, Guangzhou, China
- Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology Institute of Chinese, Guangzhou, China
| | - Jin hai Huo
- Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Weiming Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine, Pharmaceutics, Guangzhou, China
- Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology Institute of Chinese, Guangzhou, China
- Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| |
Collapse
|
7
|
Li X, Xu X, Tao S, Su Y, Wen L, Wang D, Liu J, Feng Q. Gut microbes combined with metabolomics reveal the protective effects of Qijia Rougan decoction against CCl 4-induced hepatic fibrosis. Front Pharmacol 2024; 15:1347120. [PMID: 38606180 PMCID: PMC11007057 DOI: 10.3389/fphar.2024.1347120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Background: The occurrence and development of Hepatic fibrosis (HF) are closely related to the gut microbial composition and alterations in host metabolism. Qijia Rougan decoction (QJ) is a traditional Chinese medicine compound utilized clinically for the treatment of HF with remarkable clinical efficacy. However, its effect on the gut microbiota and metabolite alterations is unknown. Therefore, our objective was to examine the impact of QJ on the gut microbiota and metabolism in Carbon tetrachloride (CCl4)-induced HF. Methods: 40% CCl4 was used to induce HF, followed by QJ administration for 6 weeks. Serum biochemical analyses, histopathology, immunohistochemistry, RT-PCR, 16S rRNA gene sequencing, and non-targeted metabolomics techniques were employed in this study to investigate the interventional effects of QJ on a CCl4-induced HF model in rats. Results: This study demonstrated that QJ could effectively ameliorate CCl4-induced hepatic inflammation and fibrosis. Moreover, QJ upregulated the expression of intestinal tight junction proteins (TJPs) and notably altered the abundance of some gut microbes, for example, 10 genera closely associated with HF-related indicators and TJPs. In addition, metabolomics found 37 key metabolites responded to QJ treatment and strongly associated with HF-related indices and TJPs. Furthermore, a tight relation between 10 genera and 37 metabolites was found post correlation analysis. Among them, Turicibacter, Faecalibaculum, Prevotellaceae UCG 001, and unclassified Peptococcaceae may serve as the core gut microbes of QJ that inhibit HF. Conclusion: These results suggest that QJ ameliorates hepatic inflammation and fibrosis, which may be achieved by improving intestinal tight junctions and modulating gut microbiota composition as well as modulating host metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Dong Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jibin Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quansheng Feng
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Zhang L, Gong X, Tan J, Zhang R, Li M, Liu C, Wu C, Li X. Lactobacillus reuteri mitigates hepatic ischemia/reperfusion injury by modulating gut microbiota and metabolism through the Nrf2/HO-1 signaling. Biol Direct 2024; 19:23. [PMID: 38500127 PMCID: PMC10946149 DOI: 10.1186/s13062-024-00462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND This study seeks to investigate the impacts of Lactobacillus reuteri (L. reuteri) on hepatic ischemia-reperfusion (I/R) injury and uncover the mechanisms involved. METHODS Mice in the I/R groups were orally administered low and high doses of L.reuteri (L.reuteri-low and L. reuteri-hi; 1 × 1010 CFU/d and 1 × 1011 CFU/d), for 4 weeks prior to surgery. Following this, mice in the model group were treated with an Nrf2 inhibitor (ML-385), palmitoylcarnitine, or a combination of both. RESULTS After treatment with L. reuteri, mice exhibited reduced levels of serum aminotransferase (ALT), aspartate aminotransferase (AST), and myeloperoxidase (MPO) activity, as well as a lower Suzuki score and apoptosis rate. L. reuteri effectively reversed the I/R-induced decrease in Bcl2 expression, and the significant increases in the levels of Bax, cleaved-Caspase3, p-p65/p65, p-IκB/IκB, p-p38/p38, p-JNK/JNK, and p-ERK/ERK. Furthermore, the administration of L. reuteri markedly reduced the inflammatory response and oxidative stress triggered by I/R. This treatment also facilitated the activation of the Nrf2/HO-1 pathway. L. reuteri effectively counteracted the decrease in levels of beneficial gut microbiota species (such as Blautia, Lachnospiraceae NK4A136, and Muribaculum) and metabolites (including palmitoylcarnitine) induced by I/R. Likewise, the introduction of exogenous palmitoylcarnitine demonstrated a beneficial impact in mitigating hepatic injury induced by I/R. However, when ML-385 was administered prior to palmitoylcarnitine treatment, the previously observed effects were reversed. CONCLUSION L. reuteri exerts protective effects against I/R-induced hepatic injury, and its mechanism may be related to the promotion of probiotic enrichment, differential metabolite homeostasis, and the Nrf2/HO-1 pathway, laying the foundation for future clinical applications.
Collapse
Affiliation(s)
- Leiyi Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Furong District, 410011, Changsha, China
| | - Xiaoxiang Gong
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Juan Tan
- Research Associate Department of Pathology, The Xiangya Third Hospital, Central South University, 410013, Changsha, China
| | - Rongsen Zhang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Mingxia Li
- Department of Anesthesiology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, 430061, Wuhan, China
| | - Cong Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Furong District, 410011, Changsha, China
| | - Chenhao Wu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Furong District, 410011, Changsha, China
| | - Xiaojing Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Furong District, 410011, Changsha, China.
| |
Collapse
|
9
|
Roy R, Singh SK. The Microbiome Modulates the Immune System to Influence Cancer Therapy. Cancers (Basel) 2024; 16:779. [PMID: 38398170 PMCID: PMC10886470 DOI: 10.3390/cancers16040779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The gut microbiota composition can affect the tumor microenvironment and its interaction with the immune system, thereby having implications for treatment predictions. This article reviews the studies available to better understand how the gut microbiome helps the immune system fight cancer. To describe this fact, different mechanisms and approaches utilizing probiotics to improve advancements in cancer treatment will be discussed. Moreover, not only calorie intake but also the variety and quality of diet can influence cancer patients' immunotherapy treatment because dietary patterns can impair immunological activities either by stimulating or suppressing innate and adaptive immunity. Therefore, it is interesting and critical to understand gut microbiome composition as a biomarker to predict cancer immunotherapy outcomes and responses. Here, more emphasis will be given to the recent development in immunotherapies utilizing microbiota to improve cancer therapies, which is beneficial for cancer patients.
Collapse
Affiliation(s)
- Ruchi Roy
- UICentre for Drug Discovery, The University of Illinois, Chicago, IL 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Li Y, Li X, Nie C, Wu Y, Luo R, Chen C, Niu J, Zhang W. Effects of two strains of Lactobacillus isolated from the feces of calves after fecal microbiota transplantation on growth performance, immune capacity, and intestinal barrier function of weaned calves. Front Microbiol 2023; 14:1249628. [PMID: 37727287 PMCID: PMC10505964 DOI: 10.3389/fmicb.2023.1249628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Introduction Weaning stress seriously affects the welfare of calves and causes huge economic losses to the cattle breeding industry. Probiotics play an important role in improving animal growth performance, enhancing immune function, and improving gut microbiota. The newly isolated strains of Lactobacillus reuteri L81 and Lactobacillus johnsonii L29 have shown potential as probiotics. Here, we studied the probiotic properties of these two strains on weaned calves. Methods Forty calves were randomly assigned to four groups before weaning, with 10 calves in each group, control group (Ctrl group), L. reuteri L81 supplementation group (2 g per day per calf), L. johnsonii L29 supplementation group (2 g per day per calf), L. reuteri L81 and L. johnsonii L29 composite group (2 g per day per calf), and the effects of Lactobacillus reuteri L81 and Lactobacillus johnsonii L29 supplementation on growth performance, immune status, antioxidant capacity, and intestinal barrier function of weaned calves were evaluated. Results The results showed that probiotics supplementation increased the average daily weight gain of calves after weaning, reduced weaning diarrhea index (p < 0.05), and increased serum IgA, IgM, and IgG levels (p < 0.05). L. reuteri L81 supplementation significantly decreased IL-6, increased IL-10 and superoxide dismutase (SOD) levels at 21 d after weaning (p < 0.05). Moreover, probiotics supplementation significantly decreased serum endotoxin (ET), diamine oxidase (DAO), and D-lactic acid (D-LA) levels at different time points (p < 0.05). In addition, supplementation with L. reuteri L81 significantly reduced the crypt depth and increased the ratio of villus height to crypt depth (p < 0.05) in the ileum, increased gene expression of tight junction protein ZO-1, Claudin-1 and Occludin in jejunum and ileum mucosa, reduced the gene expression of INF- γ in ileum mucosa and IL-8 in jejunum mucosa, and increased the abundance of beneficial bacteria, including Bifidobacterium, Lactobacillus, Oscillospira, etc. Discussion verall, these results showed that the two strains isolated from cattle feces after low concentration fecal microbiota transplantation improved the growth performance, immune performance, antioxidant capacity, and intestinal barrier function of weaned calves, indicating their potential as supplements to alleviate weaning diarrhea in calves.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xin Li
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yanyan Wu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Ruiqing Luo
- Xinjiang Tianshan Junken Animal Husbandry Co., Ltd.,Shihezi, China
| | - Cheng Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Junli Niu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
11
|
Peng Y, Ma Y, Luo Z, Jiang Y, Xu Z, Yu R. Lactobacillus reuteri in digestive system diseases: focus on clinical trials and mechanisms. Front Cell Infect Microbiol 2023; 13:1254198. [PMID: 37662007 PMCID: PMC10471993 DOI: 10.3389/fcimb.2023.1254198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Objectives Digestive system diseases have evolved into a growing global burden without sufficient therapeutic measures. Lactobacillus reuteri (L. reuteri) is considered as a new potential economical therapy for its probiotic effects in the gastrointestinal system. We have provided an overview of the researches supporting various L. reuteri strains' application in treating common digestive system diseases, including infantile colic, diarrhea, constipation, functional abdominal pain, Helicobacter pylori infection, inflammatory bowel disease, diverticulitis, colorectal cancer and liver diseases. Methods The summarized literature in this review was derived from databases including PubMed, Web of Science, and Google Scholar. Results The therapeutic effects of L. reuteri in digestive system diseases may depend on various direct and indirect mechanisms, including metabolite production as well as modulation of the intestinal microbiome, preservation of the gut barrier function, and regulation of the host immune system. These actions are largely strain-specific and depend on the activation or inhibition of various certain signal pathways. It is well evidenced that L. reuteri can be effective both as a prophylactic measure and as a preferred therapy for infantile colic, and it can also be recommended as an adjuvant strategy to diarrhea, constipation, Helicobacter pylori infection in therapeutic settings. While preclinical studies have shown the probiotic potential of L. reuteri in the management of functional abdominal pain, inflammatory bowel disease, diverticulitis, colorectal cancer and liver diseases, its application in these disease settings still needs further study. Conclusion This review focuses on the probiotic effects of L. reuteri on gut homeostasis via certain signaling pathways, and emphasizes the importance of these probiotics as a prospective treatment against several digestive system diseases.
Collapse
Affiliation(s)
- Yijing Peng
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Wuxi Children’s Hospital, Children’s Hospital of Jiangnan University, Wuxi, China
| | - Yizhe Ma
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Department of Pediatric, Jiangyin People’s Hospital of Nantong University, Wuxi, China
| | - Zichen Luo
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Yifan Jiang
- School of Medicine, Nantong University, Nantong, China
| | - Zhimin Xu
- College of Resources and Environment, Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Renqiang Yu
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
12
|
Qi-Xiang M, Yang F, Ze-Hua H, Nuo-Ming Y, Rui-Long W, Bin-Qiang X, Jun-Jie F, Chun-Lan H, Yue Z. Intestinal TLR4 deletion exacerbates acute pancreatitis through gut microbiota dysbiosis and Paneth cells deficiency. Gut Microbes 2022; 14:2112882. [PMID: 35982604 PMCID: PMC9397436 DOI: 10.1080/19490976.2022.2112882] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Toll-like receptor 4 (TLR4) has been identified as a potentially promising therapeutic target in acute pancreatitis (AP). However, the role of intestinal TLR4 in AP and AP-associated gut injury remains unclear. This study aimed to explore the relationship between intestinal TLR4 and gut microbiota during AP. A mouse AP model was establish by intraperitoneal injection of L-arginine. Pancreatic injury and intestinal barrier function were evaluated in wild-type and intestinal epithelial TLR4 knockout (TLR4ΔIEC) mice. Gut microbiota was analyzed by 16S rRNA sequencing. Quadruple antibiotics were applied to induce microbiota-depleted mice. Differentially expressed genes in gut were detected by RNA sequencing. L. reuteri treatment was carried out in vivo and vitro study. Compared with wild-type mice, AP and AP-associated gut injury were exacerbated in TLR4ΔIEC mice in a gut microbiota-dependent manner. The relative abundance of Lactobacillus and number of Paneth cells remarkably decreased in TLR4ΔIEC mice. The KEGG pathway analysis derived from RNA sequencing suggested that genes affected by intestinal TLR4 deletion were related to the activation of nod-like receptor pathway. Furthermore, L. reuteri treatment could significantly improve the pancreatic and intestinal injury in TLR4ΔIEC mice through promoting Paneth cells in a NOD2-dependent manner. Loss of intestinal epithelial TLR4 exacerbated pancreatic and intestinal damage during AP, which might be attributed to the gut microbiota dysbiosis especially the exhausted Lactobacillus. L. reuteri might maintain intestinal homeostasis and alleviate AP via Paneth cells modulation.Abbreviations: AP Acute pancreatitis, TLR4 Toll-like receptor 4, IL-1β Interleukin-1β, IL-6 Interleukin-6, TNF-α Tumor necrosis factor-α, SIRS Systematic inflammatory response syndrome, LPS Lipopolysaccharides, SPF Specific pathogen-free, ZO-1 Zonula occludens-1, CON Control, H&E Hematoxylin and eosin, FISH Fluorescence in situ hybridization, DAPI 4',6-diamidino-2-phenylindole, PCoA Principal co-ordinates analysis, SCFA Short chain fatty acid, LEfSe Linear discriminant analysis Effect Size, ANOVA Analysis of variance, F/B Firmicutes/Bacteroidetes, PCA Principal component analysis, NOD2 Nod-like receptor 2, ABX antibiotics, PCNA proliferating cell nuclear antigen.
Collapse
Affiliation(s)
- Mei Qi-Xiang
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China,Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Fu Yang
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China,Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huang Ze-Hua
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China,Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yin Nuo-Ming
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Wang Rui-Long
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xu Bin-Qiang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Fan Jun-Jie
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huang Chun-Lan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China,CONTACT Huang Chun-Lan Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zeng Yue
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China,Zeng Yue
| |
Collapse
|
13
|
Lactobacillus paracasei CCFM1223 Protects against Lipopolysaccharide-Induced Acute Liver Injury in Mice by Regulating the “Gut–Liver” Axis. Microorganisms 2022; 10:microorganisms10071321. [PMID: 35889040 PMCID: PMC9319883 DOI: 10.3390/microorganisms10071321] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Lactobacillus paracasei CCFM1223, a probiotic previously isolated from the healthy people’s intestine, exerts the beneficial influence of preventing the development of inflammation. Methods: The aim of this research was to explore the beneficial effects of L. paracasei CCFM1223 to prevent lipopolysaccharide (LPS)-induced acute liver injury (ALI) and elaborate on its hepatoprotective mechanisms. Results: L. paracasei CCFM1223 pretreatment remarkably decreased the activities of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in mice with LPS treatment and remarkably recovered LPS-induced the changes in inflammatory cytokines (tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), interleukin (IL)-1β, IL-6, IL-17, IL-10, and LPS) and antioxidative enzymes activities (total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT)). Metagenomic analysis showed that L. paracasei CCFM1223 pretreatment remarkably increased the relative abundance of Catabacter compared with the LPS group but remarkably reduced the relative abundance of [Eubacterium] xylanophilumgroup, ASF356, LachnospiraceaeNK4A136group, and Lachnoclostridium, which is closely associated with the inflammation cytokines and antioxidative enzymes. Furthermore, L. paracasei CCFM1223 pretreatment remarkably increased the colonic, serum, and hepatic IL-22 levels in ALI mice. In addition, L. paracasei CCFM1223 pretreatment remarkably down-regulated the hepatic Tlr4 and Nf-kβ transcriptions and significantly up-regulated the hepatic Tlr9, Tak1, Iκ-Bα, and Nrf2 transcriptions in ALI mice. Conclusions: L. paracasei CCFM1223 has a hepatoprotective function in ameliorating LPS-induced ALI by regulating the “gut–liver” axis.
Collapse
|