1
|
Asghari Alashti F, Goliaei B. Rethinking fat Browning: Uncovering new molecular insights into the synergistic roles of fasting, exercise, and cold exposure. Eur J Pharmacol 2025; 998:177651. [PMID: 40274179 DOI: 10.1016/j.ejphar.2025.177651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/13/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025]
Abstract
The global obesity epidemic highlights the need to understand the molecular mechanisms that regulate energy metabolism. Among emerging research areas, fat browning-the transformation of white adipose tissue into beige fat-has gained significant attention. This review explores the molecular pathways involved in fat browning triggered by fasting, physical exercise, and cold exposure, emphasizing both shared and distinct regulatory mechanisms. These stimuli consistently induce physiological responses such as lipolysis, mitochondrial biogenesis, and improved insulin sensitivity. Notably, PGC-1α and SIRT3 are upregulated across all three conditions, underscoring their central roles in mitochondrial function and energy metabolism and identifying them as promising therapeutic targets. In contrast, UCP1 and PRDM16 exhibit condition-specific regulation, suggesting they may not be universally essential for fat browning. In addition, the review discusses species-specific differences in brown adipose tissue (BAT) activation, particularly between rodents and humans, highlighting the challenges of translating animal model findings to human therapies. Future research should aim to develop selective pharmacological activators of PGC-1α and SIRT3 to enhance therapeutic outcomes while minimizing adverse effects. This review also proposes that integrating fasting, exercise, and cold exposure could provide innovative strategies to promote metabolic health.
Collapse
Affiliation(s)
- Fariborz Asghari Alashti
- Institute of Biochemistry and Biophysics (IBB), Laboratory of Biophysics and Molecular Biology, University of Tehran, Tehran, Iran; Sunnybrook Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, M4N 3M5, Canada.
| | - Bahram Goliaei
- Institute of Biochemistry and Biophysics (IBB), Laboratory of Biophysics and Molecular Biology, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Sun Q, Cui X, Yin D, Li J, Li J, Du L. Molecular mechanisms of UCP1-independent thermogenesis: the role of futile cycles in energy dissipation. J Physiol Biochem 2025:10.1007/s13105-025-01090-x. [PMID: 40380026 DOI: 10.1007/s13105-025-01090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 05/01/2025] [Indexed: 05/19/2025]
Abstract
Adipose tissue thermogenesis has emerged as a prominent research focus for the treatment of metabolic diseases, particularly through mitochondrial uncoupling, which oxidizes nutrients to produce heat rather than synthesizing ATP. Uncoupling protein 1 (UCP1) has garnered significant attention as a core protein mediating non-shivering thermogenesis(NST). However, recent studies indicate that energy dissipation can also occur via UCP1-independent thermogenesis, partially driven by futile metabolic cycles. These cycles involve ATP depletion coupled with reversible energy reactions, resulting in futile energy expenditure. Unlike classical UCP1-mediated thermogenesis, futile cycling is not confined to brown and beige adipose tissue, suggesting a broader range of therapeutic targets. These findings open new avenues for targeting these pathways to enhance metabolic health. This review explores the characteristics and distinctions of the primary metabolic organs (adipose tissue, liver, and skeletal muscle) involved in the futile cycles of thermogenesis. It further elaborates on the cellular and molecular mechanisms underlying calcium, creatine, and lipid cycling, emphasizing their strengths, limitations, and roles beyond thermogenesis.
Collapse
Affiliation(s)
- Quanhao Sun
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Xinyue Cui
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Dong Yin
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Juan Li
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Jiarui Li
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Likun Du
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
3
|
Santana-Oliveira DA, Souza-Tavares H, Fernandes-da-Silva A, Marinho TS, Silva-Veiga FM, Daleprane JB, Souza-Mello V. Obesity prevention by different exercise protocols (HIIT or MICT) involves beige adipocyte recruitment and improved mitochondrial dynamics in high-fat-fed mice. Mol Cell Endocrinol 2025; 602:112533. [PMID: 40157711 DOI: 10.1016/j.mce.2025.112533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
AIM This study evaluated the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on UCP1-dependent and UCP1-independent thermogenic and mitochondrial dynamics markers in the inguinal sWAT of high-fat-fed mice. METHODS Sixty male C57BL/6 mice (3 months old) were divided into six experimental groups: control diet (C), C + HIIT (C-HIIT), C + MICT (C-MICT), high-fat diet (HF), HF + HIIT (HF-HIIT) and HF + MICT (HF-MICT). The diet and exercise protocols started simultaneously and lasted ten weeks. RESULTS HIIT and MICT prevented body mass gain and fat pad expansion, improved insulin sensitivity, and induced browning in C-fed and HF-fed animals. Chronic intake of a HF diet caused adipocyte hypertrophy with a proinflammatory adipokine profile and impaired the expression of thermogenic and mitochondrial dynamics markers. However, both exercise intensities increased anti-inflammatory adipokine concentrations and improved gene markers of mitochondrial dynamics, resulting in sustained UCP1-dependent and UCP1-independent thermogenic markers and maintenance of the beige phenotype in inguinal sWAT. The principal component analysis placed all trained groups opposite the HF group and near the C group, ensuring the effectiveness of HIIT and MICT to prevent metabolic alterations. CONCLUSIONS This study provides reliable evidence that, regardless of intensity, exercise is a strategy to prevent obesity by reducing body fat accumulation and inducing browning. The anti-inflammatory adipokine profile and the increased expression of UCP1-dependent and UCP1-independent thermogenic markers sustained active beige adipocytes and mitochondrial enhancement to halt metabolic disturbances due to HF-feeding in exercised mice.
Collapse
Affiliation(s)
- Daiana Araujo Santana-Oliveira
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Henrique Souza-Tavares
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Aline Fernandes-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Thatiany Souza Marinho
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Flavia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics (LEING), Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Liu L, Jia R, Chen W, Chen W, Wang X, Guo Z. The lotus seed starch-EGCG complex modulates obesity in C57BL/6J mice through the regulation of the gut microbiota. Int J Biol Macromol 2025; 310:143256. [PMID: 40250649 DOI: 10.1016/j.ijbiomac.2025.143256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/23/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
The starch-polyphenol complex, identified as RS5-resistant starch, has been shown to regulate the gut environment and inhibit metabolic diseases, including obesity. In a study with C57BL/6 obese mice fed LSE, potential anti-obesity effects were demonstrated through physiological and biochemical assessments, gut microbiota analysis, and mechanistic insights. The study showed that LSE reduced mice body weight, serum total cholesterol, and triglycerides (P < 0.05). Serum inflammatory markers (TNF-α, IL-6, IL-1β) and LPS levels were significantly decreased, while glucose tolerance (AUC reduced by 29.29 %) and insulin sensitivity (AUC reduced by 31.79 %) were improved. Histological analysis indicated reduction in adipocyte size and attenuation of hepatic steatosis. Gut microbiota profiling demonstrated LSE increased beneficial bacteria genera Faecalibacterium, Bifidobacterium, and Akkermansia. This correlated with enhanced SCFA production (acetate 41.53 %, propionate 45.52 %, butyrate 57.49 % increase). These findings demonstrate that LSE exerts anti-obesity effects through modulation of the gut microbiota-SCFA-metabolic axis, supporting starch-polyphenol complexes as functional food candidates.
Collapse
Affiliation(s)
- Lu Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ru Jia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjing Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenyu Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoying Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
5
|
Liu Z, Peng H, Liu P, Duan F, Yang Y, Li P, Li Z, Wu J, Chang J, Shang D, Tian Q, Zhang J, Xie Y, Liu Z, An Y. Deciphering significances of autophagy in the development and metabolism of adipose tissue. Exp Cell Res 2025; 446:114478. [PMID: 39978716 DOI: 10.1016/j.yexcr.2025.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
The mechanisms of adipose tissue activation and inactivation have been a hot topic of research in the last decade, from which countermeasures have been attempted to be found against obesity as well as other lipid metabolism-related diseases, such as type 2 diabetes mellitus and non-alcoholic fatty liver disease. Autophagy has been shown to be closely related to the regulation of adipocyte activity, which is involved in the whole process including white adipocyte differentiation/maturation and brown or beige adipocyte generation/activation. Dysregulation of autophagy in adipose tissue has been demonstrated to be associated with obesity. On this basis, we summarize the pathways and mechanisms of autophagy involved in the regulation of lipid metabolism and present a review of its pathophysiological roles in lipid metabolism-related diseases, in the hope of providing ideas for the treatment of these diseases.
Collapse
Affiliation(s)
- Zitao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Haoyuan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengfei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Feiyi Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yutian Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiaoyan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiayi Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Dandan Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Qiwen Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Jiawei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yucheng Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Zhenzhen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China; Henan Provincial Research Center of Engineering Technology for Nuclear Protein Medical Detection, Zhengzhou Health College, Zhengzhou, 450064, China.
| |
Collapse
|
6
|
Batrow PL, Roux CH, Gautier N, Martin L, Sibille B, Guillou H, Postic C, Langin D, Mothe-Satney I, Amri EZ. Regulation of UCP1 expression by PPARα and pemafibrate in human beige adipocytes. Life Sci 2025; 363:123406. [PMID: 39828228 DOI: 10.1016/j.lfs.2025.123406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
AIMS Thermogenic adipocytes are able to dissipate energy as heat from lipids and carbohydrates through enhanced uncoupled respiration, due to UCP1 activity. PPAR family of transcription factors plays an important role in adipocyte biology. The purpose of this work was to characterize the role of PPARα and pemafibrate in the control of thermogenic adipocyte formation and function. MATERIALS AND METHODS We used human multipotent adipose-derived stem cells and primary cultures of stroma-vascular fraction cells, transfected with siRNA against PPARα, differentiated into white or beige adipocytes, by the treatment of rosiglitazone or pemafibrate. The expression of key marker genes of adipogenesis and thermogenesis was determined using RT-qPCR and Western blotting. An RNAseq analysis was also performed. KEY FINDINGS We show that inhibition of PPARα mRNA increases UCP1 mRNA and protein expression in beige adipocytes induced by rosiglitazone. Knock-down of PPARα also increases stimulated glycerol release. Pemafibrate, described as a selective PPARα modulator, induces adipogenesis and the expression of UCP1 in the absence of PPARα expression. These effects are inhibited by a specific PPARγ antagonist highly suggesting that the pemafibrate effects in adipogenesis and beiging were mediated by PPARγ. SIGNIFICANCE Conversion of white into thermogenic adipocytes is mainly due to the activation of PPARγ. Moreover, we show that PPARα seems to act as a hindrance for PPARγ-dependent beiging. Our data question the role of PPARα in human adipocyte browning and the specificity of pemafibrate in adipocytes.
Collapse
Affiliation(s)
- Pierre-Louis Batrow
- Université Côte d'Azur, CNRS, Inserm, Adipo-Cible Research Study Group, iBV, Nice, France
| | - Christian H Roux
- Université Côte d'Azur, CNRS, Inserm, Adipo-Cible Research Study Group, iBV, Nice, France; Rheumatology Department, Hospital Pasteur 2 CHU, Adipo-Cible Research Study Group, Nice, France
| | - Nadine Gautier
- Université Côte d'Azur, CNRS, Inserm, Adipo-Cible Research Study Group, iBV, Nice, France
| | - Luc Martin
- Université Côte d'Azur, CNRS, Inserm, Adipo-Cible Research Study Group, iBV, Nice, France
| | - Brigitte Sibille
- Université Côte d'Azur, CNRS, Inserm, Adipo-Cible Research Study Group, iBV, Nice, France
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Catherine Postic
- Université Paris Cité, Institut Cochin, CNRS, Inserm, Paris, France
| | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases, I2MC, University of Toulouse, Inserm, Toulouse III University - Paul Sabatier (UPS), Toulouse, France; Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Institut Universitaire de France (IUF), Paris, France
| | - Isabelle Mothe-Satney
- Université Côte d'Azur, CNRS, Inserm, Adipo-Cible Research Study Group, iBV, Nice, France
| | - Ez-Zoubir Amri
- Université Côte d'Azur, CNRS, Inserm, Adipo-Cible Research Study Group, iBV, Nice, France.
| |
Collapse
|
7
|
Wang M, Min M, Duan H, Mai J, Liu X. The role of macrophage and adipocyte mitochondrial dysfunction in the pathogenesis of obesity. Front Immunol 2024; 15:1481312. [PMID: 39582861 PMCID: PMC11581950 DOI: 10.3389/fimmu.2024.1481312] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Obesity has emerged as a prominent global public health concern, leading to the development of numerous metabolic disorders such as cardiovascular diseases, type-2 diabetes mellitus (T2DM), sleep apnea and several system diseases. It is widely recognized that obesity is characterized by a state of inflammation, with immune cells-particularly macrophages-playing a significant role in its pathogenesis through the production of inflammatory cytokines and activation of corresponding pathways. In addition to their immune functions, macrophages have also been implicated in lipogenesis. Additionally, the mitochondrial disorders existed in macrophages commonly, leading to decreased heat production. Meantime, adipocytes have mitochondrial dysfunction and damage which affect thermogenesis and insulin resistance. Therefore, enhancing our comprehension of the role of macrophages and mitochondrial dysfunction in both macrophages and adipose tissue will facilitate the identification of potential therapeutic targets for addressing this condition.
Collapse
Affiliation(s)
- Min Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Min Min
- Outpatient Department, The Air Force Hospital of Western Theater, PLA, Chengdu, Sichuan, China
| | - Haojie Duan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Jia Mai
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Xiaojuan Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Proença AB, Medeiros GR, Reis GDS, Losito LDF, Ferraz LM, Bargut TCL, Soares NP, Alexandre-Santos B, Campagnole-Santos MJ, Magliano DC, Nobrega ACLD, Santos RAS, Frantz EDC. Adipose tissue plasticity mediated by the counterregulatory axis of the renin-angiotensin system: Role of Mas and MrgD receptors. J Cell Physiol 2024; 239:e31265. [PMID: 38577921 DOI: 10.1002/jcp.31265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
The renin-angiotensin system (RAS) is an endocrine system composed of two main axes: the classical and the counterregulatory, very often displaying opposing effects. The classical axis, primarily mediated by angiotensin receptors type 1 (AT1R), is linked to obesity-associated metabolic effects. On the other hand, the counterregulatory axis appears to exert antiobesity effects through the activation of two receptors, the G protein-coupled receptor (MasR) and Mas-related receptor type D (MrgD). The local RAS in adipose organ has prompted extensive research into white adipose tissue and brown adipose tissue (BAT), with a key role in regulating the cellular and metabolic plasticity of these tissues. The MasR activation favors the brown plasticity signature in the adipose organ by improve the thermogenesis, adipogenesis, and lipolysis, decrease the inflammatory state, and overall energy homeostasis. The MrgD metabolic effects are related to the maintenance of BAT functionality, but the signaling remains unexplored. This review provides a summary of RAS counterregulatory actions triggered by Mas and MrgD receptors on adipose tissue plasticity. Focus on the effects related to the morphology and function of adipose tissue, especially from animal studies, will be given targeting new avenues for treatment of obesity-associated metabolic effects.
Collapse
Affiliation(s)
- Ana Beatriz Proença
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Gabriela Rodrigues Medeiros
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Guilherme Dos Santos Reis
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Luiza da França Losito
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Luiza Mazzali Ferraz
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Thereza Cristina Lonzetti Bargut
- Department of Basic Sciences, Nova Friburgo Health Institute, Fluminense Federal University, Nova Friburgo, Rio de Janeiro, Brazil
| | - Nícia Pedreira Soares
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Beatriz Alexandre-Santos
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Maria Jose Campagnole-Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - D'Angelo Carlo Magliano
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Antonio Claudio Lucas da Nobrega
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eliete Dalla Corte Frantz
- Department of Physiology, Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
- Department of Morphology, Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Vasques-Monteiro IML, Fernandes-da-Silva A, Miranda CS, Silva-Veiga FM, Daleprane JB, Souza-Mello V. Anti-steatotic effects of PPAR-alpha and gamma involve gut-liver axis modulation in high-fat diet-fed mice. Mol Cell Endocrinol 2024; 585:112177. [PMID: 38373652 DOI: 10.1016/j.mce.2024.112177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/21/2024]
Abstract
AIM To evaluate the effects of PPARα and PPARγ activation (alone or in combination) on the gut-liver axis, emphasizing the integrity of the intestinal barrier and hepatic steatosis in mice fed a high saturated fat diet. METHODS Male C57BL/6J were fed a control diet (C) or a high-fat diet (HF) for ten weeks. Then, a four-week treatment started: HF-α (WY14643), HF-γ (low-dose pioglitazone), and HF-αγ (combination). RESULTS The HF caused overweight, insulin resistance, impaired gut-liver axis, and marked hepatic steatosis. Treatments reduced body mass, improved glucose homeostasis, and restored the gut microbiota diversity and intestinal barrier gene expression. Treatments also lowered the plasma lipopolysaccharide concentrations and favored beta-oxidation genes, reducing macrophage infiltration and steatosis in the liver. CONCLUSION Treatment with PPAR agonists modulated the gut microbiota and rescued the integrity of the intestinal barrier, alleviating hepatic steatosis. These results show that these agonists can contribute to metabolic-associated fatty liver disease treatment.
Collapse
Affiliation(s)
- Isabela Macedo Lopes Vasques-Monteiro
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Aline Fernandes-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Carolline Santos Miranda
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Flavia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics (LEING), Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|