1
|
Khalil MI, Monfared AL, Mahmood HB. Biochemical, histological, and immunohistochemical study on the therapeutic effects and mechanism of coenzyme Q 10 in type 2 diabetes mellitus. Res Pharm Sci 2025; 20:292-303. [PMID: 40444167 PMCID: PMC12118775 DOI: 10.4103/rps.rps_74_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/25/2024] [Accepted: 07/06/2024] [Indexed: 06/02/2025] Open
Abstract
Background and purpose Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by β-cell dysfunction, insulin resistance, and elevated blood sugar levels. Several studies have explored the therapeutic potential of coenzyme Q10 (CoQ10) in managing diabetes, but no reports have examined the possible mechanism of CoQ10 in T2DM. Here, we reported that CoQ10 protects pancreatic β-cell structure and function by modulating the expression of mir-33a/mir-21/SREBP1 and described more detailed tissue alterations. Experimental approach The study randomly divided rats into three groups (n = 10): control, diabetic, and diabetic + CoQ10. The diabetic + CoQ10 group consisted of diabetic rats that were concurrently administered CoQ10 (20 mg/kg/i.p.) three days/week for eight weeks. In addition to microscopic examination, the study involved evaluating glucose, insulin, and oxidative profiles in the serum and analyzing the levels of cholesterol, mir-33a, mir-2i, and SREBP1 in pancreatic tissue. Findings/Results Our results revealed that CoQ10 restores glucose/insulin homeostasis, oxidative parameters, cholesterol levels, and the expressions of mir-33a, mir-21, and SREBP1. In addition, the CoQ10-treated diabetic rats showed increased active β-cells compared to the diabetic group. The immunohistochemical examination of insulin revealed a higher quantity and larger size of pancreatic islets in the experimental group. Conclusion and implications The restoration of β-cell integrity following treatment with CoQ10 may elucidate the therapeutic benefits of this compound in diabetes management, potentially through its influence on the pancreatic expression of mir-33a/mir-21/SREBP1, subsequently maintaining healthy tissue.
Collapse
Affiliation(s)
- Manal Ismaeil Khalil
- Department of Histology, Faculty of Veterinary Sciences, Ilam University, Ilam, Iran
| | - Ali Louei Monfared
- Department of Histology, Faculty of Veterinary Sciences, Ilam University, Ilam, Iran
| | - Hussein Bashar Mahmood
- Anatomy and Histology Department, College of Veterinary Medicine Sciences, University of Kerbala, Kerbala, Iraq
| |
Collapse
|
2
|
Khan I, Kumar R, Prasad M, Srivastav RK, Vishwakarma VK, Akhtar J. Co-Adjuvancy of Solasodine & CoQ10 Against High Fat Diet-Induced Insulin Resistance Rats Via Modulating IRS-I and PPAR-γ Proteins Expression. Drug Res (Stuttg) 2022; 72:327-335. [PMID: 35724671 DOI: 10.1055/a-1806-1366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Insulin resistance (IR) is a condition in which target cells become insensitive to normal insulin concentrations in order to deliver glucose. The goal of this study was to see if solasodine combined with coenzyme Q10 could help rats with insulin resistance caused by a high-fat diet (HFD) by regulating the expression of IRS-I and PPAR-γ proteins.One of the six groups (n=6) got a conventional diet for 16 weeks as a control (normal), the HFD was given to the other five groups for 16 weeks, which further classified as-one group as HFD control while others treated with pioglitazone (10 mg/kg), coenzyme Q10 (50 mg/kg), solasodine (50 mg/kg) and combination of solasodine and coenzyme Q10i.e. SDQ10 (total 50 mg/kg) for the last 4 weeks orally once daily. Blood and tissue samples were collected by the end of study period for the biochemical and histological studies. As a result, HFD fed rats exhibited a significant increase in food and energy intake, body mass index, kidney and pancreas weight, fasting glucose, glycosylated haemoglobin, insulin level, liver enzyme ALT and AST and decrease antioxidant activity of superoxide dismutase and catalase. HFD received animals also produced a lower level of p-IRS1 and PPAR-y protein expression in western blot analysis. SDQ10 in combination successfully restored the above-mentioned complexity of insulin resistance caused by aHFD. Besides, increasesthe antioxidant activity of superoxide dismutase and catalase and normalized the architecture of kidney, pancreas and adipose tissue as well astreatment with SDQ10 raised the level of p-IRS1 and PPAR-y protein in liver tissue. As a result, supplementing with solasodine and coenzyme Q10 reversed the effect of the HFD on p-IRS1 and PPAR-y protein in liver tissue while also alleviating insulin resistance symptoms.
Collapse
Affiliation(s)
- Irfan Khan
- Faculty of Pharmacy, Integral University, Lucknow, U.P, India
| | - Rajesh Kumar
- Faculty of Pharmacy, Kamla Nehru Institute of Management & Technology, Sultanpur, U.P., India
| | - Mahesh Prasad
- Faculty of Pharmacy, Kamla Nehru Institute of Management & Technology, Sultanpur, U.P., India.,Faculty of Pharmacy, Integral University, Lucknow, U.P, India
| | - Ritesh Kumar Srivastav
- Faculty of Pharmacy, Kamla Nehru Institute of Management & Technology, Sultanpur, U.P., India
| | | | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Lucknow, U.P, India
| |
Collapse
|
3
|
Preclinical and Clinical Role of Coenzyme Q10 Supplementation in Various Pathological States. Drug Res (Stuttg) 2022; 72:367-371. [PMID: 35724675 DOI: 10.1055/a-1835-1738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Coenzyme Q10 (CoQ10) is an efficient antioxidant produced endogenously in a living organism. It acts as an important cofactor in the electron transport system of mitochondria and reported as a safe supplement in humans and animals with minimal adverse effect. CoQ10 is found naturally, as a trans configuration, chemical nomenclature of which is 2,3- dimethoxy-5- methyl-6-decaprenyle -1,4-benzoquinone. It is found in the body in two forms. In quinone form (oxidized form), it serves as an electron transporter that transfers the electrons in the electron transport chain between various complexes, and in ubiquinol form (reduced form), it serves as potent antioxidants by scavenging free radicals or by tocopherol regeneration in the living organism. Its primary roles include synthesis of adenosine triphosphate (ATP), stabilizes lipid membrane, antioxidant activity, cell growth stimulation, and cell death inhibition. CoQ10 has shown a variety of pharmacological and clinical effects including neuroprotective, hepatoprotective, anti-atherosclerotic, anticonvulsant, antidepressant, anti-inflammatory, antinociceptive, cardiovascular, antimicrobial, immunomodulatory, and various effects on the central nervous system. Present review has set about to bring updated information regarding to clinical and preclinical activities of CoQ10, which may be helpful to researchers to explore a new bioactive molecules for various therapeutic application.
Collapse
|
4
|
Pyo YH, Lee DB, Lee YW, Yoon SM, Lee AR. Hypoglycemic and Hypolipogenic Action of Acetic Acid and Monascus-Fermented Grain Vinegar: A Comparative Study. J Med Food 2022; 25:418-425. [PMID: 35333623 DOI: 10.1089/jmf.2021.k.0156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Acetic acid has been proposed to improve lifestyle-related diseases, including hyperlipidemia and hyperglycemia. This study compared the hypoglycemic and hypolipogenic effects of acetic acid vinegar (AV, contains only 4% acetic acid) and Monascus-fermented grain vinegar (MV) containing various bioactive compounds in 3T3L1 cells and C57BL/KsJ-db/db mice (DB). The DB were divided randomly into three treatment groups containing nine mice each; DB-, AV-, and MV-groups were orally administered 1 mL/kg/day of distilled water, acetic acid vinegar, and Monascus vinegar, respectively, for 8 weeks. Exposure to AV and MV inhibited the adipogenic differentiation of 3T3L1 preadipocytes and lipid accumulation during differentiation. Oral administration of AV or MV to the mice resulted in a marked reduction in the body weight, liver weight, and hepatic triglyceride content compared to the control DB-group. Moreover, treatment with AV and MV clearly increased the expression of cyclic adenosine monophosphate (cAMP) and AMP-activated protein kinase (AMPK) and suppressed the expression of fatty acid synthetase in liver tissues of DB. Significantly, lower levels of fasting blood glucose, insulin, leptin, and the glycosylated hemoglobin (HbA1c) as well as higher levels of the skeletal muscle GLUT4 expression were obtained in the AV- or MV-groups than levels determined in the control DB-group (P < .05). Although MV has the potential to be a natural alternative treatment for obesity-associated type 2 diabetes, this study suggests that acetic acid is the central ingredient in MV responsible for the hypoglycemic and hypolipogenic effects in the DB mice.
Collapse
Affiliation(s)
- Young-Hee Pyo
- Department of Food and Nutrition, Sungshin Women's University, Seoul, Korea
| | - Da-Bin Lee
- Department of Food and Nutrition, Sungshin Women's University, Seoul, Korea
| | - Ye-Won Lee
- Department of Food and Nutrition, Sungshin Women's University, Seoul, Korea
| | - Su-Min Yoon
- Department of Food and Nutrition, Sungshin Women's University, Seoul, Korea
| | - A-Rang Lee
- Department of Food and Nutrition, Sungshin Women's University, Seoul, Korea
| |
Collapse
|
5
|
Lyu X, Yan K, Chen W, Wang Y, Zhu H, Pan H, Lin G, Wang L, Yang H, Gong F. The characterization of metabolites alterations in white adipose tissue of diabetic GK Rats after ileal transposition surgery by an untargeted metabolomics approach. Adipocyte 2021; 10:275-284. [PMID: 33975515 PMCID: PMC8118414 DOI: 10.1080/21623945.2021.1926139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Dysfunction of adipose tissue could lead to insulin resistance, obesity and type 2 diabetes. Thus, our present study aimed to investigate metabolites alterations in white adipose tissue (WAT) of diabetic GK rats after IT surgery. Ten-week-old male diabetic GK rats were randomly subjected to IT and Sham-IT surgery. Six weeks later, the untargeted metabolomics in WAT of diabetic GK rats was performed. Differential metabolites were selected according to the coefficient of variation (CV) of quality control (QC) sample <30%, variable importance in the projection (VIP) >1 and P < 0.05. Then, the hierarchical clustering of differential metabolites was conducted and the KEGG database was used for metabolic pathway analysis. A total of 50 (in positive ion mode) and 68 (in negative ion mode) metabolites were identified as differential metabolites in WAT of diabetic GK rats between IT group and Sham-IT group, respectively. These differential metabolites were well clustered, which in descending order of the number of involved differential metabolites is ubiquinone and other terpenoid-quinone biosynthesis, AMPK signalling pathway, pantothenate and CoA biosynthesis, ferroptosis, vitamin digestion and absorption, glycerophospholipid metabolism, phenylalanine metabolism, steroid hormone biosynthesis, neuroactive ligand–receptor interaction, porphyrin and chlorophyll metabolism and bile secretion, and correlated with the parameters of body weight, food intake, WAT mass and glucose metabolism, which were significantly improved after IT surgery. The differential metabolites in WAT of diabetic GK rats were mainly related to the pathway of energy metabolism, and correlated with the improved phenotypes of diabetic GK rats after IT surgery.
Collapse
Affiliation(s)
- Xiaorui Lyu
- Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China,
| | - Kemin Yan
- Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China,
| | - Weijie Chen
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yujie Wang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China,
| | - Hui Pan
- Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China,
| | - Guole Lin
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linjie Wang
- Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China,
| | - Hongbo Yang
- Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China,
| | - Fengying Gong
- Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China,
| |
Collapse
|
6
|
Youssef AM, Mohamed DA, Hussein S, Abdullah DM, Abdelrahman SA. Effects of Quercetin and Coenzyme Q10 on Biochemical, Molecular, and Morphological Parameters of Skeletal Muscle in Trained Diabetic Rats. Curr Mol Pharmacol 2021; 15:239-251. [PMID: 34061009 DOI: 10.2174/1874467214666210521170339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) affects the musculoskeletal system through its metabolic perturbations. Exercise modulates blood sugar levels and increases the body's sensitivity to insulin in patients with DM. OBJECTIVE This study aimed to investigate the potential effects of combined quercetin and coenzyme Q10 (CoQ10) supplements with or without exercise on the histological, biochemical and molecular structures of diabetic rat's skeletal muscle. METHOD A total of 64 adult male albino rats were divided into six groups: control, trained nondiabetic, non-trained diabetic, diabetic rats treated with combined CoQ10 and quercetin, diabetic rats with treadmill training, and diabetic rats treated with treadmill training and CoQ10 and quercetin. Blood and skeletal muscle samples were obtained from all groups for routine histological examination and biochemical determination of cytokine levels and protein activities. Quantitative real-time polymerase chain reaction (qRT-PCR) and morphometric analysis of PAS and Bax expressions were also performed. RESULTS Biochemical analysis revealed improvement in all studied parameters with combined CoQ10 and quercetin than exercise training alone. Combined treatment and exercise showed significant improvement in all parameters especially interleukin 6 and malondialdehyde. Fibronectin type III domain-containing protein 5 (FNDC5) expression and irisin levels increased in all trained groups but combined treatment with exercise significantly increased their levels than exercise alone. Histological analysis revealed improvement after exercise or combined treatment; however, when exercise was combined with CoQ10 and quercetin, marked improvement was observed. CONCLUSION the combination of CoQ10 and quercetin could be promising in preserving musculoskeletal function in patients with DM concomitantly with physical exercise.
Collapse
Affiliation(s)
- Amal M Youssef
- Department of Physiology, Faculty of Medicine, Taibah University, Medinah, Saudi Arabia
| | - Dalia A Mohamed
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samia Hussein
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa M Abdullah
- Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Shaimaa A Abdelrahman
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
7
|
Blanchet E, Pessemesse L, Feillet-Coudray C, Coudray C, Cabello C, Bertrand-Gaday C, Casas F. p43, a Truncated Form of Thyroid Hormone Receptor α, Regulates Maturation of Pancreatic β Cells. Int J Mol Sci 2021; 22:ijms22052489. [PMID: 33801253 PMCID: PMC7958131 DOI: 10.3390/ijms22052489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 01/18/2023] Open
Abstract
P43 is a truncated form of thyroid hormone receptor α localized in mitochondria, which stimulates mitochondrial respiratory chain activity. Previously, we showed that deletion of p43 led to reduction of pancreatic islet density and a loss of glucose-stimulated insulin secretion in adult mice. The present study was designed to determine whether p43 was involved in the processes of β cell development and maturation. We used neonatal, juvenile, and adult p43-/- mice, and we analyzed the development of β cells in the pancreas. Here, we show that p43 deletion affected only slightly β cell proliferation during the postnatal period. However, we found a dramatic fall in p43-/- mice of MafA expression (V-Maf Avian Musculoaponeurotic Fibrosarcoma Oncogene Homolog A), a key transcription factor of beta-cell maturation. Analysis of the expression of antioxidant enzymes in pancreatic islet and 4-hydroxynonenal (4-HNE) (a specific marker of lipid peroxidation) staining revealed that oxidative stress occurred in mice lacking p43. Lastly, administration of antioxidants cocktail to p43-/- pregnant mice restored a normal islet density but failed to ensure an insulin secretion in response to glucose. Our findings demonstrated that p43 drives the maturation of β cells via its induction of transcription factor MafA during the critical postnatal window.
Collapse
|
8
|
Kim HN, Jeon DG, Lim Y, Jang IS. The effects of coenzyme Q 10 supplement on blood lipid indices and hepatic antioxidant defense system in SD rats fed a high cholesterol diet. Lab Anim Res 2020; 35:13. [PMID: 32257901 PMCID: PMC7081576 DOI: 10.1186/s42826-019-0013-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022] Open
Abstract
A total of 24 SD rats were allotted to four treatment groups such as the control (CON), 1% of cholesterol diet (CHO), 0.5% of coenzyme Q10 (COQ) and 1% of cholesterol plus 0.5% of coenzyme Q10 (CHCQ) groups to determine the effects of coenzyme Q10 (CoQ10) on the antioxidant defense system in rats. The body weight, weight gain, liver weight and abdominal fat pads were unaffected by 0.5% of CoQ10 supplement in the rats. The level of triglyceride and HDL-cholesterol levels in the blood was significantly increased (p < 0.05) by the 1% of cholesterol supplement (CHO), whereas 0.5% of CoQ10 supplement (COQ) did not alter these blood lipid indices. In the mRNA expression, there was a significant effect (P < 0.05) of the CoQ10 supplement on the mRNA expression of superoxide dismutase (SOD), although the mRNA expression of glutathione peroxidase (GPX) and glutathione S-transferase (GST) was unaffected by cholesterol or the CoQ10 supplement. Similar to mRNA expression of SOD, its activity was also significantly increased (P < 0.05) by CoQ10, but not by the cholesterol supplement effect. The activities hepatic GPX and GST were unaffected by CoQ10 and cholesterol supplements in rats. Lipid peroxidation in the CHO group resulted in a significant (p < 0.05) increase compared with that in the other groups, indicating that the CoQ10 supplement to 1% of cholesterol-fed rats alleviated the production of lipid peroxidation in the liver. In conclusion, 0.5% of the CoQ10 supplement resulted in positive effects on the hepatic antioxidant defense system without affecting blood lipid indices in 1% of cholesterol fed rats.
Collapse
Affiliation(s)
- Ha-Na Kim
- 1Department of Animal Science and Biotechnology, and the Regional Animal Research Center, Gyeongnam National University of Science and Technology, Chilam-Dong 150, Jinju, Gyeongnam 52725 Korea
| | - Dong-Gyung Jeon
- 1Department of Animal Science and Biotechnology, and the Regional Animal Research Center, Gyeongnam National University of Science and Technology, Chilam-Dong 150, Jinju, Gyeongnam 52725 Korea
| | - Yong Lim
- 2Department of Clinical Laboratory Science, Dong-Eui Univerisity, Busan, 47340 Korea
| | - In-Surk Jang
- 1Department of Animal Science and Biotechnology, and the Regional Animal Research Center, Gyeongnam National University of Science and Technology, Chilam-Dong 150, Jinju, Gyeongnam 52725 Korea
| |
Collapse
|
9
|
Silva JC, Jones JG. Improving Metabolic Control Through Functional Foods. Curr Med Chem 2019; 26:3424-3438. [DOI: 10.2174/0929867324666170523130123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/23/2022]
Abstract
Background:
Functional foods are designed to have physiological benefits and reduce the
risk of chronic disease beyond basic nutritional functions. Conditions related to overnutrition such as
Metabolic Syndrome and Type 2 diabetes are increasingly serious concerns in Western societies. Several
nutrient classes are considered to protect against these conditions and this review focuses on the latest
clinical and preclinical evidence supporting their efficacy and the molecular mechanisms by which they
act.
Methods:
The review searched the literature for information and data on the following functional food
components and their protective effects against Metabolic Syndrome and Type 2 Diabetes: Dietary fiber;
Medium-chain triglycerides and Ketone esters; ω3 Polyunsaturated fatty acids and Antioxidants.
Results:
Data from a hundred and four studies were reviewed and summarized. They indicate that dietary
fiber results in the production of beneficial short chain fatty acids via intestinal microbiota, as well
as increasing intestinal secretion of incretins and satiety peptides. Medium chain triglycerides and ketone
esters promote thermogenesis, inhibit lipolysis and reduce inflammation. They also decrease endogenous
synthesis of triglycerides and fatty acids. ω3-PUFA’s act to soften inflammation through an
increase in adiponectin secretion. Antioxidants are involved in the protection of insulin sensitivity by
PTP1B suppression and SIRT1 activation.
Conclusion:
Functional foods have actions that complement and/or potentiate other lifestyle interventions
for reversing Metabolic Syndrome and Type 2 Diabetes. Functional foods contribute to reduced
food intake by promoting satiety, less weight gain via metabolic uncoupling and improved insulin sensitivity
via several distinct mechanisms.
Collapse
Affiliation(s)
- João C.P. Silva
- Center for Neurosciences and Cell Biology, UC Biotech, Cantanhede, Portugal
| | - John G. Jones
- Center for Neurosciences and Cell Biology, UC Biotech, Cantanhede, Portugal
| |
Collapse
|
10
|
Clinical trial of the effects of coenzyme Q10 supplementation on
glycemic control and markers of lipid profiles in diabetic hemodialysis
patients. Int Urol Nephrol 2018; 50:2073-2079. [DOI: 10.1007/s11255-018-1973-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/23/2018] [Indexed: 12/19/2022]
|
11
|
Gene-Diet Interactions in Type 2 Diabetes: The Chicken and Egg Debate. Int J Mol Sci 2017; 18:ijms18061188. [PMID: 28574454 PMCID: PMC5486011 DOI: 10.3390/ijms18061188] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/23/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Consistent evidence from both experimental and human studies indicates that Type 2 diabetes mellitus (T2DM) is a complex disease resulting from the interaction of genetic, epigenetic, environmental, and lifestyle factors. Nutrients and dietary patterns are important environmental factors to consider in the prevention, development and treatment of this disease. Nutritional genomics focuses on the interaction between bioactive food components and the genome and includes studies of nutrigenetics, nutrigenomics and epigenetic modifications caused by nutrients. There is evidence supporting the existence of nutrient-gene and T2DM interactions coming from animal studies and family-based intervention studies. Moreover, many case-control, cohort, cross-sectional cohort studies and clinical trials have identified relationships between individual genetic load, diet and T2DM. Some of these studies were on a large scale. In addition, studies with animal models and human observational studies, in different countries over periods of time, support a causative relationship between adverse nutritional conditions during in utero development, persistent epigenetic changes and T2DM. This review provides comprehensive information on the current state of nutrient-gene interactions and their role in T2DM pathogenesis, the relationship between individual genetic load and diet, and the importance of epigenetic factors in influencing gene expression and defining the individual risk of T2DM.
Collapse
|
12
|
Effects of coenzyme Q 10 on the antioxidant system in SD rats exposed to lipopolysaccharide-induced toxicity. Lab Anim Res 2017; 33:24-31. [PMID: 28400836 PMCID: PMC5385279 DOI: 10.5625/lar.2017.33.1.24] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/22/2017] [Accepted: 03/16/2017] [Indexed: 11/21/2022] Open
Abstract
The study was performed to see the effects of coenzyme Q10 (CoQ10) on blood biochemical components and hepatic antioxidant system in rats exposed to lipopolysaccharide (LPS)-induced toxicity. A total of 24 rats were allocated to four groups: control (CON), 100 mg/kg BW of LPS (LPS), 100 mg of CoQ10/kg BW with LPS (LCQI) and 300 mg of CoQ10/kg BW with LPS (LCQII). The LPS and LCQI groups showed a significant (P<0.05) increase in the relative spleen weight compared with the CON group without affecting body and liver weights. The blood alanine aminotransferase (ALT) level in the LPS group was significantly (P<0.05) greater than that in the CON group, while supplementation with 100 or 300 mg CoQ10 to rats injected with LPS normalized the ALT level in the CON group. In antioxidant systems, the LPS group showed a significantly (P<0.05) higher mRNA and activity of superoxide dismutase (SOD) than the CON group. The supplementation with CoQ10 to the LPS-treated group normalized the level of SOD, which was comparable to the level of the CON group. Both the mRNA expression and activity of glutathione peroxidase in the LCQI and LCQII groups were higher (P<0.05) than that of the LPS group. However, administration of LPS or CoQ10 unaffected the level of catalase and total antioxidant power. The level of lipid peroxidation in the LCQII group was lower (P<0.05) than that in the LPS group. In conclusion, CoQ10 exerted its favorable effect against liver damage by modulation of antioxidant enzymes in LPS treated rats.
Collapse
|
13
|
Varela-López A, Giampieri F, Battino M, Quiles JL. Coenzyme Q and Its Role in the Dietary Therapy against Aging. Molecules 2016; 21:373. [PMID: 26999099 PMCID: PMC6273282 DOI: 10.3390/molecules21030373] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/12/2022] Open
Abstract
Coenzyme Q (CoQ) is a naturally occurring molecule located in the hydrophobic domain of the phospholipid bilayer of all biological membranes. Shortly after being discovered, it was recognized as an essential electron transport chain component in mitochondria where it is particularly abundant. Since then, more additional roles in cell physiology have been reported, including antioxidant, signaling, death prevention, and others. It is known that all cells are able to synthesize functionally sufficient amounts of CoQ under normal physiological conditions. However, CoQ is a molecule found in different dietary sources, which can be taken up and incorporated into biological membranes. It is known that mitochondria have a close relationship with the aging process. Additionally, delaying the aging process through diet has aroused the interest of scientists for many years. These observations have stimulated investigation of the anti-aging potential of CoQ and its possible use in dietary therapies to alleviate the effects of aging. In this context, the present review focus on the current knowledge and evidence the roles of CoQ cells, its relationship with aging, and possible implications of dietary CoQ in relation to aging, lifespan or age-related diseases.
Collapse
Affiliation(s)
- Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center (CIBM), University of Granada, Avda. del Conocimiento s.n., Armilla, Granada 18100, Spain.
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO), Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO), Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
- Centre for Nutrition & Health, Universidad Europea del Atlantico (UEA), Santander 39011, Spain.
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center (CIBM), University of Granada, Avda. del Conocimiento s.n., Armilla, Granada 18100, Spain.
| |
Collapse
|
14
|
Shen Q, Pierce JD. Supplementation of Coenzyme Q10 among Patients with Type 2 Diabetes Mellitus. Healthcare (Basel) 2015; 3:296-309. [PMID: 27417763 PMCID: PMC4939545 DOI: 10.3390/healthcare3020296] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/20/2015] [Accepted: 05/14/2015] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major cause of morbidity and mortality with ever increasing prevalence in the United States and worldwide. There is growing body of evidence suggesting that mitochondrial dysfunction secondary to oxidative stress plays a critical role in the pathogenesis of T2DM. Coenzyme Q10 is an important micronutrient acting on the electron transport chain of the mitochondria with two major functions: (1) synthesis of adenosine triphosphate (ATP); and (2) a potent antioxidant. Deficiency in coenzyme Q10 is often seen in patients with T2DM. Whether restoration of coenzyme Q10 will help alleviate oxidative stress, preserve mitochondrial function, and thus improve glycemic control in T2DM is unclear. This article reviews the relationships among oxidative stress, mitochondrial dysfunction, and T2DM and examines the evidence for potential use of coenzyme Q10 as a supplement for the treatment of T2DM.
Collapse
Affiliation(s)
- Qiuhua Shen
- School of Nursing, University of Kansas, 3901 Rainbow Blvd., Mailstop 4043, Kansas City, KS 66160, USA.
| | - Janet D Pierce
- School of Nursing, University of Kansas, 3901 Rainbow Blvd., Mailstop 4043, Kansas City, KS 66160, USA.
| |
Collapse
|
15
|
Zahedi H, Eghtesadi S, Seifirad S, Rezaee N, Shidfar F, Heydari I, Golestan B, Jazayeri S. Effects of CoQ10 Supplementation on Lipid Profiles and Glycemic Control in Patients with Type 2 Diabetes: a randomized, double blind, placebo-controlled trial. J Diabetes Metab Disord 2014; 13:81. [PMID: 26413493 PMCID: PMC4583053 DOI: 10.1186/s40200-014-0081-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 07/13/2014] [Indexed: 01/06/2023]
Abstract
Background Low grade inflammation and oxidative stress are the key factors in the pathogenesis and development of diabetes and its complications. Coenzyme Q10 (CoQ10) is known as an antioxidant and has a vital role in generation of cellular energy providing. This study was undertaken to evaluate the effects of CoQ10 supplementation on lipid profiles and glycemic controls in patients with diabetes. Methods Fifty patients with diabetes were randomly allocated into two groups to receive either 150 mg CoQ10 or placebo daily for 12 weeks. Before and after supplementation, fasting venous blood samples were collected and lipid profiles containing triglyceride, total cholesterol, low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) and glycemic indices comprising of fasting plasma glucose (FPG), insulin and hemoglobin A1C (HbA1C) were measured. Insulin resistance was calculated using HOMA-IR index. Results Forty patients completed the study. After intervention FPG and HbA1C were significantly lower in the CoQ10 group compared to the placebo group, but there were no significant differences in serum insulin and HOMA-IR between the two groups. Although total cholesterol did not change in the Q10 group after supplementation, triglyceride and HDL-C significantly decreased and LDL-C significantly increased in the CoQ10 group. Conclusion The present study showed that treatment with Q10 may improve glycemic control with no favorable effects on lipid profiles in type 2 patients with diabetes. Trial registration IRCT registry number: IRCT138806102394N1
Collapse
Affiliation(s)
- Hoda Zahedi
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahryar Eghtesadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Soroush Seifirad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Neshat Rezaee
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Iraj Heydari
- Institute of Endocrinology and Metabolism, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Banafsheh Golestan
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Jazayeri
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Alam MA, Rahman MM. Mitochondrial dysfunction in obesity: potential benefit and mechanism of Co-enzyme Q10 supplementation in metabolic syndrome. J Diabetes Metab Disord 2014; 13:60. [PMID: 24932457 PMCID: PMC4057567 DOI: 10.1186/2251-6581-13-60] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 05/03/2014] [Indexed: 02/06/2023]
Abstract
Co-enzyme Q10 (Co-Q10) is an essential component of the mitochondrial electron transport chain. Most cells are sensitive to co-enzyme Q10 (Co-Q10) deficiency. This deficiency has been implicated in several clinical disorders such as heart failure, hypertension, Parkinson's disease and obesity. The lipid lowering drug statin inhibits conversion of HMG-CoA to mevalonate and lowers plasma Co-Q10 concentrations. However, supplementation with Co-Q10 improves the pathophysiological condition of statin therapy. Recent evidence suggests that Co-Q10 supplementation may be useful for the treatment of obesity, oxidative stress and the inflammatory process in metabolic syndrome. The anti-inflammatory response and lipid metabolizing effect of Co-Q10 is probably mediated by transcriptional regulation of inflammation and lipid metabolism. This paper reviews the evidence showing beneficial role of Co-Q10 supplementation and its potential mechanism of action on contributing factors of metabolic and cardiovascular complications.
Collapse
Affiliation(s)
- Md Ashraful Alam
- School of Biomedical Science, The University of Queensland, Brisbane, Australia
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Md Mahbubur Rahman
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
17
|
Amin MM, Asaad GF, Abdel Salam RM, El-Abhar HS, Arbid MS. Novel CoQ10 antidiabetic mechanisms underlie its positive effect: modulation of insulin and adiponectine receptors, Tyrosine kinase, PI3K, glucose transporters, sRAGE and visfatin in insulin resistant/diabetic rats. PLoS One 2014; 9:e89169. [PMID: 24586567 PMCID: PMC3930675 DOI: 10.1371/journal.pone.0089169] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 01/16/2014] [Indexed: 11/19/2022] Open
Abstract
As a nutritional supplement, coenzyme Q10 (CoQ10) was tested previously in several models of diabetes and/or insulin resistance (IR); however, its exact mechanisms have not been profoundly explicated. Hence, the objective of this work is to verify some of the possible mechanisms that underlie its therapeutic efficacy. Moreover, the study aimed to assess the potential modulatory effect of CoQ10 on the antidiabetic action of glimebiride. An insulin resistance/type 2 diabetic model was adopted, in which rats were fed high fat/high fructose diet (HFFD) for 6 weeks followed by a single sub-diabetogenic dose of streptozotocin (35 mg/kg, i.p.). At the end of the 7th week animals were treated with CoQ10 (20 mg/kg, p.o) and/or glimebiride (0.5 mg/kg, p.o) for 2 weeks. CoQ10 alone opposed the HFFD effect and increased the hepatic/muscular content/activity of tyrosine kinase (TK), phosphatidylinositol kinase (PI3K), and adiponectin receptors. Conversely, it decreased the content/activity of insulin receptor isoforms, myeloperoxidase and glucose transporters (GLUT4; 2). Besides, it lowered significantly the serum levels of glucose, insulin, fructosamine and HOMA index, improved the serum lipid panel and elevated the levels of glutathione, sRAGE and adiponectin. On the other hand, CoQ10 lowered the serum levels of malondialdehyde, visfatin, ALT and AST. Surprisingly, CoQ10 effect surpassed that of glimepiride in almost all the assessed parameters, except for glucose, fructosamine, TK, PI3K, and GLUT4. Combining CoQ10 with glimepiride enhanced the effect of the latter on the aforementioned parameters. Conclusion: These results provided a new insight into the possible mechanisms by which CoQ10 improves insulin sensitivity and adjusts type 2 diabetic disorder. These mechanisms involve modulation of insulin and adiponectin receptors, as well as TK, PI3K, glucose transporters, besides improving lipid profile, redox system, sRAGE, and adipocytokines. The study also points to the potential positive effect of CoQ10 as an adds- on to conventional antidiabetic therapies.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/metabolism
- Drug Interactions
- Glucose Transport Proteins, Facilitative/metabolism
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Insulin Resistance
- Liver/drug effects
- Liver/metabolism
- Male
- Membrane Proteins/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Nicotinamide Phosphoribosyltransferase/metabolism
- Peroxidase/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Protein-Tyrosine Kinases/metabolism
- Rats
- Receptor for Advanced Glycation End Products
- Receptor, Insulin/metabolism
- Receptors, Adiponectin/metabolism
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/metabolism
- Transferases/metabolism
- Ubiquinone/analogs & derivatives
- Ubiquinone/pharmacology
- Ubiquinone/therapeutic use
Collapse
Affiliation(s)
- Mohamed M. Amin
- Department of Pharmacology, Medical Division, National Research Center, Cairo, Egypt
| | - Gihan F. Asaad
- Department of Pharmacology, Medical Division, National Research Center, Cairo, Egypt
| | - Rania M. Abdel Salam
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanan S. El-Abhar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- * E-mail:
| | - Mahmoud S. Arbid
- Department of Pharmacology, Medical Division, National Research Center, Cairo, Egypt
| |
Collapse
|
18
|
Vitamin C intake reduces the cytotoxicity associated with hyperglycemia in prediabetes and type 2 diabetes. BIOMED RESEARCH INTERNATIONAL 2013; 2013:896536. [PMID: 23984417 PMCID: PMC3741954 DOI: 10.1155/2013/896536] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/18/2013] [Accepted: 06/23/2013] [Indexed: 12/04/2022]
Abstract
Hyperglycemia leads to the formation of free radicals and advanced glycation end-products (AGEs). Antioxidants can reduce the level of protein glycation and DNA damage. In this study, we compared the levels of vitamin C intake, which is among the most abundant antioxidants obtained from diet, with the levels of fasting plasma glucose (FPG), glycated hemoglobin (A1C), DNA damage, and cytotoxicity in prediabetic subjects and type 2 diabetic subjects. Our results indicated that there was no significant correlation between FPG or A1C and DNA damage parameters (micronuclei, nucleoplasmic bridges, and nuclear buds). FPG and A1C correlated with necrosis (r = 0.294; P = 0.013 and r = 0.401; P = 0.001, resp.). Vitamin C intake correlated negatively with necrosis and apoptosis (r = −0.246; P = 0.040, and r = −0.276; P = 0.021, resp.). The lack of a correlation between the FPG and A1C and DNA damage could be explained, at least in part, by the elimination of cells with DNA damage by either necrosis or apoptosis (cytotoxicity). Vitamin C appeared to improve cell survival by reducing cytotoxicity. Therefore, the present results indicate the need for clinical studies to evaluate the effect of low-dose vitamin C supplementation in type 2 diabetes.
Collapse
|
19
|
Beneficial effects of co-enzyme Q10 and rosiglitazone in fructose-induced metabolic syndrome in rats. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.bfopcu.2012.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Ahmadvand H, Tavafi M, Khosrowbeygi A. Amelioration of altered antioxidant enzymes activity and glomerulosclerosis by coenzyme Q10 in alloxan-induced diabetic rats. J Diabetes Complications 2012; 26:476-82. [PMID: 22795334 DOI: 10.1016/j.jdiacomp.2012.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/03/2012] [Accepted: 06/04/2012] [Indexed: 10/28/2022]
Abstract
Coenzyme Q10 is a natural antioxidant and scavenging free radicals. In the present study, we examined antioxidative activities of coenzyme Q10 and possible protective effect of coenzyme Q10 on in vivo and in vitro lipid peroxidation, antioxidant enzymes activity and glomerulosclerosis in alloxan-induced type 1 diabetic rats. Thirty Sprague-Dawley male rats were divided into three groups randomly: group 1 as control, group 2 as diabetic untreatment, and group 3 as treatments with coenzyme Q10 by 15 mg/kg i.p. daily, respectively. Diabetes was induced in the second and third groups by alloxan injection subcutaneously. After 8 weeks, animals were anaesthetized, liver and kidney were then removed immediately and used fresh or kept frozen until their lipid peroxidation analysis. Blood samples were also collected before killing to measure the lipid peroxidation and antioxidant enzymes activity. Kidney paraffin sections were prepared and stained by periodic acid-Schiff method. Glomerular volume and leukocyte infiltration were estimated by stereological rules and glomerular sclerosis was studied semi-quantitatively. Coenzyme Q10 significantly inhibited leukocyte infiltration, glomerulosclerosis and the levels of malondialdehyde (MDA) serum and kidney content in treated group compared with the diabetic untreated group. Coenzyme Q10 significantly inhibited LDL oxidation in vitro. Coenzyme Q10 significantly increased the serum levels of glutathione (GSH) and serum activity of catalase (CAT) and superoxide dismutase (SOD) in treated group compared with the diabetic untreated group. Coenzyme Q10 alleviates leukocyte infiltration and glomerulosclerosis and exerts beneficial effects on the lipid peroxidation and antioxidant enzymes activity in alloxan-induced type 1 diabetic rats.
Collapse
Affiliation(s)
- Hassan Ahmadvand
- Razi Herbal Researches Center, Lorestan University of Medical Sciences, Khoram Abad, Iran.
| | | | | |
Collapse
|
21
|
Anderson EJ, Katunga LA, Willis MS. Mitochondria as a source and target of lipid peroxidation products in healthy and diseased heart. Clin Exp Pharmacol Physiol 2012; 39:179-93. [PMID: 22066679 DOI: 10.1111/j.1440-1681.2011.05641.x] [Citation(s) in RCA: 295] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The heart is a highly oxidative organ in which cardiomyocyte turnover is virtually absent, making it particularly vulnerable to accumulation of lipid peroxidation products (LPP) formed as a result of oxidative damage. Reactive oxygen and nitrogen species are the most common electrophiles formed during lipid peroxidation and lead to the formation of both stable and unstable LPP. Of the LPP formed, highly reactive aldehydes are a well-recognized causative factor in ageing and age-associated diseases, including cardiovascular disease and diabetes. Recent studies have identified that the mitochondria are both a primary source and target of LPP, with specific emphasis on aldehydes in cardiomyocytes and how these affect the electron transport system and Ca(2+) balance. Numerous studies have found that there are functional consequences in the heart following exposure to specific aldehydes (acrolein, trans-2-hexanal, 4-hydroxynonenal and acetaldehyde). Because these LPP are known to form in heart failure, cardiac ischaemia-reperfusion injury and diabetes, they may have an underappreciated role in the pathophysiology of these disease processes. Lipid peroxidation products are involved in the transcriptional regulation of endogenous anti-oxidant systems. Recent evidence demonstrates that transient increases in LPP may be beneficial in cardioprotection by contributing to mitohormesis (i.e. induction of anti-oxidant systems) in cardiomyocytes. Thus, exploitation of the cardioprotective actions of the LPP may represent a novel therapeutic strategy for future treatment of heart disease.
Collapse
Affiliation(s)
- Ethan J Anderson
- Department of Medicine, Pathology & Laboratory Medicine, 111 Mason Farm Road, 2340BMBRB,Chapel Hill, NC 27599–7525, USA
| | | | | |
Collapse
|
22
|
Sohet FM, Delzenne NM. Is there a place for coenzyme Q in the management of metabolic disorders associated with obesity? Nutr Rev 2012; 70:631-41. [PMID: 23110642 DOI: 10.1111/j.1753-4887.2012.00526.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Coenzyme Q (CoQ), a lipophilic cofactor of the electron transport chain in the mitochondria, can be synthesized endogenously or provided by food. The aim of this review is to summarize the in vitro cell culture studies, the in vivo animal studies, and the human studies investigating the impact of CoQ supplementation on the occurrence of obesity and related disorders (diabetes, hypertension, lipemia, and atherosclerosis). The antioxidative properties of CoQ have been observed in different experimental models of atherosclerosis, obesity, and diabetes. The recent discovery of the anti-inflammatory effect of CoQ, mostly described in vitro, has generated increased interest in CoQ supplementation, but it needs to be confirmed in vivo in pathological situations. CoQ intervention studies in humans failed to show reproducible effects on body weight, fat mass, or glycemia, but CoQ supplementation does seem to have an antihypertensive effect. The molecular mechanism to explain this effect has only recently been discovered.
Collapse
Affiliation(s)
- Florence M Sohet
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
23
|
Bruin JE, Woynillowicz AK, Hettinga BP, Tarnopolsky MA, Morrison KM, Gerstein HC, Holloway AC. Maternal antioxidants prevent β-cell apoptosis and promote formation of dual hormone-expressing endocrine cells in male offspring following fetal and neonatal nicotine exposure. J Diabetes 2012; 4:297-306. [PMID: 22385833 PMCID: PMC3620564 DOI: 10.1111/j.1753-0407.2012.00195.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Fetal and neonatal nicotine exposure causes β-cell oxidative stress and apoptosis in neonates, leading to adult-onset dysglycemia. The aim of the present study was to determine whether an antioxidant intervention could prevent nicotine-induced β-cell loss. METHODS Nulliparous female Wistar rats received daily subcutaneous injections of either saline or nicotine bitartrate (1.0 mg/kg per day) for 2 weeks prior to mating until weaning. Nicotine-exposed dams received either normal chow or diet containing antioxidants (1000 IU/kg vitamin E, 0.25% w/w coenzyme Q10, and 0.1% w/w α-lipoic acid) during mating, pregnancy, and lactation; saline-exposed dams received normal chow. Pancreatic tissue was collected from male offspring at 3 weeks of age to measure β-cell fraction, apoptosis, proliferation, and the presence of cells coexpressing insulin and glucagon. RESULTS The birth weight of offspring born to nicotine-exposed dams was significantly reduced in those receiving dietary antioxidants compared with those fed normal chow. Most interestingly, the antioxidant intervention to nicotine-exposed dams prevented the β-cell loss and apoptosis observed in nicotine-exposed male offspring whose mothers did not receive antioxidants. Male pups born to nicotine-treated mothers receiving antioxidants also had a tendency for increased β-cell proliferation and a significant increase in islets containing insulin/glucagon bihormonal cells compared with the other two treatment groups. CONCLUSION The present study demonstrates that exposure to maternal antioxidants protects developing β-cells from the damaging effects of nicotine, thus preserving β-cell mass.
Collapse
Affiliation(s)
- Jennifer E Bruin
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Type 2 diabetes is a growing health concern. The use of nutritional supplements by patients with type 2 diabetes is estimated at somewhere between 8% to 49%. The objective of this review was to search the scientific literature for advances in the treatment and prevention of type 2 diabetes with nutritional supplements. Twelve databases were searched with a focus on extracting studies published in the past 3 years. The following nutritional supplements were identified as potentially beneficial for type 2 diabetes treatment or prevention: vitamins C and E, α-lipoic acid, melatonin, red mold, emodin from Aloe vera and Rheum officinale, astragalus, and cassia cinnamon. Beta-carotene was shown to be ineffective in the prevention of type 2 diabetes. Ranging from preclinical to clinical, there is evidence that nutritional supplements may be beneficial in the treatment or prevention of type 2 diabetes. Health providers should investigate drug-nutritional supplement interactions prior to treatment.
Collapse
Affiliation(s)
- Tanya Lee
- The Canadian College of Naturopathic Medicine, 400 Main Street East #210, Milton, ON, L9T 1P7, Canada.
| | | |
Collapse
|
25
|
Iyer A, Brown L. Fermented wheat germ extract (avemar) in the treatment of cardiac remodeling and metabolic symptoms in rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:508957. [PMID: 19622599 PMCID: PMC3135775 DOI: 10.1093/ecam/nep090] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 06/25/2009] [Indexed: 01/25/2023]
Abstract
Avemar, a product of industrial fermentation of wheat germ with a standardized content of benzoquinone and plant flavonoids, has been tested as an anti-cancer and immunomodulatory dietary supplement. Proposed mechanisms include anti-oxidant and anti-inflammatory actions. This study has determined whether these actions of Avemar may also be useful in the treatment of cardiovascular diseases. Two experimental rat models of cardiovascular remodeling were used in this project: the deoxycorticosterone acetate (DOCA)-salt-induced model of chronic hypertension (study I) and a high-carbohydrate/high-fat diet-induced model producing chronic symptoms of the metabolic syndrome and its associated cardiovascular complications (study II). Our results in these rat models of hypertension and diet-induced obesity show that treatment with Avemar improved cardiac function, decreased macrophage infiltration resulting in decreased collagen deposition in the ventricular myocardium, reversed an increased stiffness of the left ventricle in the diseased hearts and attenuated increased plasma malondialdehyde concentrations. In addition to the changes in the heart, Avemar reversed glucose intolerance, normalized systolic blood pressure and decreased visceral fat deposition in rats fed a high-fat/high-carbohydrate diet. In conclusion, the fermented wheat germ extract Avemar has a potential role in attenuating chronic hypertension, diabetes or metabolic syndrome-induced cardiovascular symptoms along with metabolic abnormalities such as glucose tolerance and obesity.
Collapse
Affiliation(s)
- Abishek Iyer
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| | | |
Collapse
|
26
|
Abstract
A growing body of evidence suggests that mitochondrial abnormalities are involved in diabetes and associated complications. This chapter gives an overview about the effects of diabetes in mitochondrial function of several tissues including the pancreas, skeletal and cardiac muscle, liver, and brain. The realization that mitochondria are at the intersection of cells' life and death has made them a promising target for drug discovery and therapeutic interventions. Here, we also discuss literature that examined the potential protective effect of insulin, insulin-sensitizing drugs, and mitochondrial-targeted antioxidants.
Collapse
Affiliation(s)
- Paula I Moreira
- Faculty of Medicine and Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal.
| | | |
Collapse
|
27
|
Kędziora-Kornatowska K, Czuczejko J, Motyl J, Szewczyk-Golec K, Kozakiewicz M, Pawluk H, Kędziora J, Błaszczak R, Banach M, Rysz J. Effects of coenzyme Q10 supplementation on activities of selected antioxidative enzymes and lipid peroxidation in hypertensive patients treated with indapamide. A pilot study. Arch Med Sci 2010; 6:513-8. [PMID: 22371793 PMCID: PMC3284064 DOI: 10.5114/aoms.2010.14461] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/28/2010] [Accepted: 07/19/2010] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION An increase in oxidative stress is strongly documented in hypertensive patients. In blood vessels, oxidative stress increases the production of superoxide anion (O(2) (•-)) that reacts with nitric oxide (NO) and impairs the ability of endothelium to relax. Many reports indicate a beneficial effect of coenzyme Q10 (CoQ) in hypertension. Coenzyme Q10 therapy may lower O(2) (•-) and thus decrease the complications associated with hypertension. The aim of our study was to evaluate the effects of CoQ supplementation on antioxidative enzyme activities and lipid peroxidation in elderly hypertensive patients. MATERIAL AND METHODS We determined the activities of superoxide dismutase (SOD-1) and glutathione peroxidase (GSH-Px) and the concentration of malondialdehyde (MDA) in erythrocytes of 27 elderly (mean age 72.5 ±6.1 year) hypertensive patients treated with indapamide at baseline and after 12 weeks of CoQ supplementation (60 mg twice a day) in comparison with 30 healthy elderly volunteers (mean age 76.8 ±8.5 year). RESULTS Decrease of SOD-1 (p < 0.001) and insignificant reduction of GSH-Px activities and increase of MDA (p < 0.001) level were observed in hypertensive patients in comparison to healthy volunteers before supplementation. Coenzyme Q10 administration resulted in a significant increase only in SOD-1 activity (p < 0.001). CONCLUSIONS The present study indicates that CoQ improves the most important component of the antioxidant defence system - SOD-1, which is responsible for O(2) (•-) scavenging. Coenzyme Q10 may be used as an additional therapeutic agent for prophylaxis and treatment of hypertension in elderly patients.
Collapse
Affiliation(s)
| | - Jolanta Czuczejko
- Department of Biochemistry, Nicolaus Copernicus University Collegium Medicum, Bydgoszcz, Poland
| | - Jadwiga Motyl
- Department and Clinic of Geriatrics, Nicolaus Copernicus University Collegium Medicum, Bydgoszcz, Poland
| | - Karolina Szewczyk-Golec
- Department of Biochemistry, Nicolaus Copernicus University Collegium Medicum, Bydgoszcz, Poland
| | - Mariusz Kozakiewicz
- Department of Biochemistry, Nicolaus Copernicus University Collegium Medicum, Bydgoszcz, Poland
| | - Hanna Pawluk
- Department of Biochemistry, Nicolaus Copernicus University Collegium Medicum, Bydgoszcz, Poland
| | - Józef Kędziora
- Department of Biochemistry, Nicolaus Copernicus University Collegium Medicum, Bydgoszcz, Poland
| | - Robert Błaszczak
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Poland
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Poland
| |
Collapse
|
28
|
Martini LA, Catania AS, Ferreira SRG. Role of vitamins and minerals in prevention and management of type 2 diabetes mellitus. Nutr Rev 2010; 68:341-54. [DOI: 10.1111/j.1753-4887.2010.00296.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
29
|
Pazdro R, Burgess JR. The role of vitamin E and oxidative stress in diabetes complications. Mech Ageing Dev 2010; 131:276-86. [PMID: 20307566 DOI: 10.1016/j.mad.2010.03.005] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 03/04/2010] [Accepted: 03/10/2010] [Indexed: 02/07/2023]
Abstract
Diabetes is a disease characterized by poor glycemic control for which risk of the type 2 form increases with age. A rise in blood glucose concentration causes increased oxidative stress which contributes to the development and progression of diabetes-associated complications. Studies have shown that primary antioxidants or genetic manipulation of antioxidant defenses can at least partially ameliorate this oxidative stress and consequentially, reduce severity of diabetic complications in animal models. Data from humans is less clear and will be summarized in this review. We highlight results from studies performed to investigate the role of vitamin E in preventing diabetes-induced oxidative damage in cell culture, animal models, and human participants, and summarize evidence testing whether this nutrient has an effect on outcomes related to the diabetic complications of nephropathy, retinopathy, and neuropathy. The most compelling evidence for an effect of vitamin E in diabetes is on protection against lipid peroxidation, whereas effects on protein and DNA oxidation are less pronounced. More studies are required to make definitive conclusions about the effect of vitamin E treatment on diabetes complications in human subjects.
Collapse
Affiliation(s)
- Robert Pazdro
- Department of Foods and Nutrition, Purdue University, 700 West State Street, West Lafayette, IN 47907, USA
| | | |
Collapse
|
30
|
López-Lluch G, Rodríguez-Aguilera JC, Santos-Ocaña C, Navas P. Is coenzyme Q a key factor in aging? Mech Ageing Dev 2010; 131:225-35. [PMID: 20193705 DOI: 10.1016/j.mad.2010.02.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 01/19/2010] [Accepted: 02/20/2010] [Indexed: 01/28/2023]
Abstract
Coenzyme Q (Q) is a key component for bioenergetics and antioxidant protection in the cell. During the last years, research on diseases linked to Q-deficiency has highlighted the essential role of this lipid in cell physiology. Q levels are also affected during aging and neurodegenerative diseases. Therefore, therapies based on dietary supplementation with Q must be considered in cases of Q deficiency such as in aging. However, the low bioavailability of dietary Q for muscle and brain obligates to design new mechanisms to increase the uptake of this compound in these tissues. In the present review we show a complete picture of the different functions of Q in cell physiology and their relationship to age and age-related diseases. Furthermore, we describe the problems associated with dietary Q uptake and the mechanisms currently used to increase its uptake or even its biosynthesis in cells. Strategies to increase Q levels in tissues are indicated.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide, CIBERER-Instituto de Salud Carlos III, Carretera de Utrera, Km 1, 41013 Sevilla, Spain
| | | | | | | |
Collapse
|
31
|
Abstract
AbstractIn this mini-review a number of novel outcomes, originating from studies in the field of PAMAM dendrimers, are presented and discussed. Owing to the multi-disciplinary nature of dendrimer chemistry it seems important to focus on the relevant topical research of PAMAM dendrimers, including their function, toxicity, surface modifications, and also possible new applications of these spherical polymers. We also consider the possibilities of specific functionalisation of PAMAM dendrimers — both novel ideas and those that have already been reported; as well as their cell-mediated effects (toxic and non-toxic). Then the reactivity of dendrimers’ terminal groups, and their anticipated protective role against modifications of biomacromolecules, are discussed with regard to future developments in biomedical research.
Collapse
|
32
|
Mattson MP. Roles of the lipid peroxidation product 4-hydroxynonenal in obesity, the metabolic syndrome, and associated vascular and neurodegenerative disorders. Exp Gerontol 2009; 44:625-33. [PMID: 19622391 PMCID: PMC2753676 DOI: 10.1016/j.exger.2009.07.003] [Citation(s) in RCA: 396] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/07/2009] [Accepted: 07/14/2009] [Indexed: 11/29/2022]
Abstract
A rising tide of obesity and type 2 diabetes has resulted from the development of technologies that have made inexpensive high calorie foods readily available and exercise unnecessary for many people. Obesity and the metabolic syndrome (insulin resistance, visceral adiposity and dyslipidemia) wreak havoc on cells throughout the body thereby promoting cardiovascular and kidney disease, and degenerative diseases of the brain and body. Obesity and insulin resistance promote disease by increasing oxidative damage to proteins, lipids and DNA as the result of a combination of increased free radical production and an impaired ability of cells to detoxify the radicals and repair damaged molecules. By covalently modifying membrane-associated proteins, the membrane lipid peroxidation product 4-hydroxynonenal (HNE) may play particularly sinister roles in the metabolic syndrome and associated disease processes. HNE can damage pancreatic beta cells and can impair the ability of muscle and liver cells to respond to insulin. HNE may promote atherosclerosis by modifying lipoproteins and can cause cardiac cell damage by impairing metabolic enzymes. An adverse role for HNE in the brain in obesity and the metabolic syndrome is suggested by studies showing that HNE levels are increased in brain cells with aging and Alzheimer's disease. HNE can cause the dysfunction and degeneration of neurons by modifying membrane-associated glucose and glutamate transporters, ion-motive ATPases, enzymes involved in amyloid metabolism, and cytoskeletal proteins. Exercise and dietary energy restriction reduce HNE production and may also increase cellular systems for HNE detoxification including glutathione and oxidoreductases. The recent development of low molecular weight molecules that scavenge HNE suggests that HNE can be targeted in the design of drugs for the treatment of obesity, the metabolic syndrome, and associated disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA.
| |
Collapse
|
33
|
Lacraz G, Giroix MH, Kassis N, Coulaud J, Galinier A, Noll C, Cornut M, Schmidlin F, Paul JL, Janel N, Irminger JC, Kergoat M, Portha B, Donath MY, Ehses JA, Homo-Delarche F. Islet endothelial activation and oxidative stress gene expression is reduced by IL-1Ra treatment in the type 2 diabetic GK rat. PLoS One 2009; 4:e6963. [PMID: 19742300 PMCID: PMC2737103 DOI: 10.1371/journal.pone.0006963] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 08/03/2009] [Indexed: 02/07/2023] Open
Abstract
Background Inflammation followed by fibrosis is a component of islet dysfunction in both rodent and human type 2 diabetes. Because islet inflammation may originate from endothelial cells, we assessed the expression of selected genes involved in endothelial cell activation in islets from a spontaneous model of type 2 diabetes, the Goto-Kakizaki (GK) rat. We also examined islet endotheliuml/oxidative stress (OS)/inflammation-related gene expression, islet vascularization and fibrosis after treatment with the interleukin-1 (IL-1) receptor antagonist (IL-1Ra). Methodology/Principal Findings Gene expression was analyzed by quantitative RT-PCR on islets isolated from 10-week-old diabetic GK and control Wistar rats. Furthermore, GK rats were treated s.c twice daily with IL-1Ra (Kineret, Amgen, 100 mg/kg/day) or saline, from 4 weeks of age onwards (onset of diabetes). Four weeks later, islet gene analysis and pancreas immunochemistry were performed. Thirty-two genes were selected encoding molecules involved in endothelial cell activation, particularly fibrinolysis, vascular tone, OS, angiogenesis and also inflammation. All genes except those encoding angiotensinogen and epoxide hydrolase (that were decreased), and 12-lipoxygenase and vascular endothelial growth factor (that showed no change), were significantly up-regulated in GK islets. After IL-1Ra treatment of GK rats in vivo, most selected genes implied in endothelium/OS/immune cells/fibrosis were significantly down-regulated. IL-1Ra also improved islet vascularization, reduced fibrosis and ameliorated glycemia. Conclusions/Significance GK rat islets have increased mRNA expression of markers of early islet endothelial cell activation, possibly triggered by several metabolic factors, and also some defense mechanisms. The beneficial effect of IL-1Ra on most islet endothelial/OS/immune cells/fibrosis parameters analyzed highlights a major endothelial-related role for IL-1 in GK islet alterations. Thus, metabolically-altered islet endothelium might affect the β-cell microenvironment and contribute to progressive type 2 diabetic β-cell dysfunction in GK rats. Counteracting islet endothelial cell inflammation might be one way to ameliorate/prevent β-cell dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- Grégory Lacraz
- Laboratory of Biology & Pathology of Endocrine Pancreas, Functional and Adaptive Biology Unit-CNRS EA 7059, University Paris-Diderot, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Song HS, Kim HR, Park TW, Cho BJ, Choi MY, Kim CJ, Sohn UD, Sim SS. Antioxidant Effect of CoQ(10) on N-nitrosodiethylamine-induced Oxidative Stress in Mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2009; 13:321-6. [PMID: 19885017 PMCID: PMC2766706 DOI: 10.4196/kjpp.2009.13.4.321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/15/2009] [Accepted: 07/31/2009] [Indexed: 11/15/2022]
Abstract
The antioxidant effect of CoQ(10) on N-nitrosodiethylamine (NDEA)-induced oxidative stress was investigated in mice. Food intake and body weight were similar in both CoQ(10) and control groups during the 3-week experimental period. NDEA significantly increased the activities of typical marker enzymes of liver function (AST, ALT and ALP) both in control and CoQ(10) groups. However, the increase of plasma aminotransferase activity was significantly reduced in the CoQ(10) group. Lipid peroxidation in various tissues, such as heart, lung, liver, kidney, spleen and plasma, was significantly increased by NDEA, but this increase was significantly reduced by 100 mg/kg of CoQ(10). Superoxide dismutase activity increased significantly upon NDEA-induced oxidative stress in both the control and CoQ(10) groups with the effect being less in the CoQ(10) group. Catalase activity decreased significantly in both the control and CoQ(10) groups treated with NDEA, again with the effect being less in the CoQ(10) group. The lesser effect on superoxide dismutase and catalase in the NDEA-treated CoQ(10) group is indicative of the protective effect CoQ(10). Thus, CoQ(10) can offer useful protection against NDEA-induced oxidative stress.
Collapse
Affiliation(s)
- Ho Sun Song
- Department of Pathophysiology, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Hee Rae Kim
- Department of Pathophysiology, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Tae Wook Park
- Department of Pathophysiology, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Bong Jae Cho
- Department of Pathophysiology, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Mi Young Choi
- Department of Pathophysiology, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Chang Jong Kim
- Department of Pathophysiology, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Uy Dong Sohn
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Sang Soo Sim
- Department of Pathophysiology, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| |
Collapse
|
35
|
Current Opinion in Endocrinology, Diabetes & Obesity. Current world literature. Curr Opin Endocrinol Diabetes Obes 2009; 16:189-202. [PMID: 19300094 DOI: 10.1097/med.0b013e328329fcc2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|