1
|
Jie H, Zhang J, Wu S, Yu L, Li S, Dong B, Yan F. Interplay between energy metabolism and NADPH oxidase-mediated pathophysiology in cardiovascular diseases. Front Pharmacol 2025; 15:1503824. [PMID: 39867658 PMCID: PMC11757639 DOI: 10.3389/fphar.2024.1503824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Sustained production of reactive oxygen species (ROS) and an imbalance in the antioxidant system have been implicated in the development of cardiovascular diseases (CVD), especially when combined with diabetes, hypercholesterolemia, and other metabolic disorders. Among them, NADPH oxidases (NOX), including NOX1-5, are major sources of ROS that mediate redox signaling in both physiological and pathological processes, including fibrosis, hypertrophy, and remodeling. Recent studies have demonstrated that mitochondria produce more proteins and energy in response to adverse stress, corresponding with an increase in superoxide radical anions. Novel NOX4-mediated modulatory mechanisms are considered crucial for maintaining energy metabolism homeostasis during pathological states. In this review, we integrate the latest data to elaborate on the interactions between oxidative stress and energy metabolism in various CVD, aiming to elucidate the higher incidence of CVD in individuals with metabolic disorders. Furthermore, the correlations between NOX and ferroptosis, based on energy metabolism, are preliminarily discussed. Further discoveries of these mechanisms might promote the development of novel therapeutic drugs targeting NOX and their crosstalk with energy metabolism, potentially offering efficient management strategies for CVD.
Collapse
Affiliation(s)
- Haipeng Jie
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingjing Zhang
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuzhen Wu
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Luyao Yu
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shengnan Li
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feng Yan
- Department of Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
2
|
Todosenko N, Khaziakhmatova O, Malashchenko V, Yurova K, Bograya M, Beletskaya M, Vulf M, Gazatova N, Litvinova L. Mitochondrial Dysfunction Associated with mtDNA in Metabolic Syndrome and Obesity. Int J Mol Sci 2023; 24:12012. [PMID: 37569389 PMCID: PMC10418437 DOI: 10.3390/ijms241512012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Metabolic syndrome (MetS) is a precursor to the major health diseases associated with high mortality in industrialized countries: cardiovascular disease and diabetes. An important component of the pathogenesis of the metabolic syndrome is mitochondrial dysfunction, which is associated with tissue hypoxia, disruption of mitochondrial integrity, increased production of reactive oxygen species, and a decrease in ATP, leading to a chronic inflammatory state that affects tissues and organ systems. The mitochondrial AAA + protease Lon (Lonp1) has a broad spectrum of activities. In addition to its classical function (degradation of misfolded or damaged proteins), enzymatic activity (proteolysis, chaperone activity, mitochondrial DNA (mtDNA)binding) has been demonstrated. At the same time, the spectrum of Lonp1 activity extends to the regulation of cellular processes inside mitochondria, as well as outside mitochondria (nuclear localization). This mitochondrial protease with enzymatic activity may be a promising molecular target for the development of targeted therapy for MetS and its components. The aim of this review is to elucidate the role of mtDNA in the pathogenesis of metabolic syndrome and its components as a key component of mitochondrial dysfunction and to describe the promising and little-studied AAA + LonP1 protease as a potential target in metabolic disorders.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Maria Bograya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Maria Beletskaya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Natalia Gazatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia; (N.T.); (O.K.); (V.M.); (K.Y.); (M.B.); (M.B.); (M.V.); (N.G.)
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 634050 Tomsk, Russia
| |
Collapse
|
3
|
Makievskaya CI, Popkov VA, Andrianova NV, Liao X, Zorov DB, Plotnikov EY. Ketogenic Diet and Ketone Bodies against Ischemic Injury: Targets, Mechanisms, and Therapeutic Potential. Int J Mol Sci 2023; 24:2576. [PMID: 36768899 PMCID: PMC9916612 DOI: 10.3390/ijms24032576] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The ketogenic diet (KD) has been used as a treatment for epilepsy since the 1920s, and its role in the prevention of many other diseases is now being considered. In recent years, there has been an intensive investigation on using the KD as a therapeutic approach to treat acute pathologies, including ischemic ones. However, contradictory data are observed for the effects of the KD on various organs after ischemic injury. In this review, we provide the first systematic analysis of studies conducted from 1980 to 2022 investigating the effects and main mechanisms of the KD and its mimetics on ischemia-reperfusion injury of the brain, heart, kidneys, liver, gut, and eyes. Our analysis demonstrated a high diversity of both the composition of the used KD and the protocols for the treatment of animals, which could be the reason for contradictory effects in different studies. It can be concluded that a true KD or its mimetics, such as β-hydroxybutyrate, can be considered as positive exposure, protecting the organ from ischemia and its negative consequences, whereas the shift to a rather similar high-calorie or high-fat diet leads to the opposite effect.
Collapse
Affiliation(s)
- Ciara I. Makievskaya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Xinyu Liao
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
4
|
Yakupova EI, Bocharnikov AD, Plotnikov EY. Effects of Ketogenic Diet on Muscle Metabolism in Health and Disease. Nutrients 2022; 14:nu14183842. [PMID: 36145218 PMCID: PMC9505561 DOI: 10.3390/nu14183842] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Dietary intervention is widely used as a therapeutic approach ranging from the treatment of neurological disorders to attempts to extend lifespan. The most important effect of various diets is a change in energy metabolism. Since muscles constitute 40% of total body mass and are one of the major sites of glucose and energy uptake, various diets primarily affect their metabolism, causing both positive and negative changes in physiology and signaling pathways. In this review, we discuss changes in the energy metabolism of muscles under conditions of the low-carbohydrate, high-fat diet/ketogenic diet (KD), fasting, or administration of exogenous ketone bodies, which are all promising approaches to the treatment of various diseases. KD's main influence on the muscle is expressed through energy metabolism changes, particularly decreased carbohydrate and increased fat oxidation. This affects mitochondrial quantity, oxidative metabolism, antioxidant capacity, and activity of enzymes. The benefits of KD for muscles stay controversial, which could be explained by its different effects on various fiber types, including on muscle fiber-type ratio. The impacts of KD or of its mimetics are largely beneficial but could sometimes induce adverse effects such as cardiac fibrosis.
Collapse
Affiliation(s)
- Elmira I. Yakupova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Correspondence: (E.I.Y.); (E.Y.P.)
| | - Alexey D. Bocharnikov
- International School of Medicine of the Future, Sechenov First Moscow State Medical University, 119992 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, 117997 Moscow, Russia
- Correspondence: (E.I.Y.); (E.Y.P.)
| |
Collapse
|
5
|
Wingard MC, Dalal S, Shook PL, Ramirez P, Raza MU, Johnson P, Connelly BA, Thewke D, Singh M, Singh K. Deficiency of ataxia-telangiectasia mutated kinase attenuates Western-type diet-induced cardiac dysfunction in female mice. Physiol Rep 2022; 10:e15434. [PMID: 36117462 PMCID: PMC9483716 DOI: 10.14814/phy2.15434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic consumption of Western-type diet (WD) induces cardiac structural and functional abnormalities. Previously, we have shown that WD consumption in male ATM (ataxia-telangiectasia mutated kinase) deficient mice associates with accelerated body weight (BW) gain, cardiac systolic dysfunction with increased preload, and exacerbation of hypertrophy, apoptosis, and inflammation. This study investigated the role of ATM deficiency in WD-induced changes in functional and biochemical parameters of the heart in female mice. Six-week-old wild-type (WT) and ATM heterozygous knockout (hKO) female mice were placed on WD or NC (normal chow) for 14 weeks. BW gain, fat accumulation, and cardiac functional and biochemical parameters were measured 14 weeks post-WD. WD-induced subcutaneous and total fat contents normalized to body weight were higher in WT-WD versus hKO-WD. Heart function measured using echocardiography revealed decreased percent fractional shortening and ejection fraction, and increased LV end systolic diameter and volume in WT-WD versus WT-NC. These functional parameters remained unchanged in hKO-WD versus hKO-NC. Myocardial fibrosis, myocyte hypertrophy, and apoptosis were higher in WT-WD versus WT-NC. However, apoptosis was significantly lower and hypertrophy was significantly higher in hKO-WD versus WT-WD. MMP-9 and Bax expression, and Akt activation were higher in WT-WD versus WT-NC. PARP-1 (full-length) expression and mTOR activation were lower in WT-WD versus hKO-WD. Thus, ATM deficiency in female mice attenuates fat weight gain, preserves heart function, and associates with decreased cardiac cell apoptosis in response to WD.
Collapse
Affiliation(s)
- Mary C. Wingard
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
| | - Suman Dalal
- Department of Health SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
- Center of Excellence in Inflammation, Infectious Disease and ImmunityJohnson CityTennesseeUSA
| | - Paige L. Shook
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
| | - Paulina Ramirez
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
| | - Muhammad U. Raza
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
| | - Patrick Johnson
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
| | - Barbara A. Connelly
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
- Research and Development ServiceJames H Quillen Veterans Affairs Medical CenterMountain HomeTennesseeUSA
| | - Douglas P. Thewke
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
| | - Mahipal Singh
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
| | - Krishna Singh
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
- Center of Excellence in Inflammation, Infectious Disease and ImmunityJohnson CityTennesseeUSA
- Research and Development ServiceJames H Quillen Veterans Affairs Medical CenterMountain HomeTennesseeUSA
| |
Collapse
|
6
|
Copur S, Demiray A, Kanbay M. Uric acid in metabolic syndrome: Does uric acid have a definitive role? Eur J Intern Med 2022; 103:4-12. [PMID: 35508444 DOI: 10.1016/j.ejim.2022.04.022] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 12/25/2022]
Abstract
Increased serum uric acid (SUA) levels are commonly seen in patients with metabolic syndrome and are widely accepted as risk factors for hypertension, gout, non-alcoholic fatty liver disease, chronic kidney disease (CKD), and cardiovascular diseases. Although some ambiguity for the exact role of uric acid (UA) in these diseases is still present, several pathophysiological mechanisms have been identified such as increased oxidative stress, inflammation, and apoptosis. Accumulating evidence in genomics enlightens genetic variabilities and some epigenetic changes that can contribute to hyperuricemia. Here we discuss the role of UA within metabolism and the consequences of asymptomatic hyperuricemia while providing newfound evidence for the associations between UA and gut microbiota and vitamin D. Increased SUA levels and beneficial effects of lowering SUA levels need to be elucidated more to understand its complicated function within different metabolic pathways and set optimal target levels for SUA for reducing risks for metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Atalay Demiray
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
7
|
An Overview of the Molecular Mechanisms Associated with Myocardial Ischemic Injury: State of the Art and Translational Perspectives. Cells 2022; 11:cells11071165. [PMID: 35406729 PMCID: PMC8998015 DOI: 10.3390/cells11071165] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in western countries. Among cardiovascular diseases, myocardial infarction represents a life-threatening condition predisposing to the development of heart failure. In recent decades, much effort has been invested in studying the molecular mechanisms underlying the development and progression of ischemia/reperfusion (I/R) injury and post-ischemic cardiac remodeling. These mechanisms include metabolic alterations, ROS overproduction, inflammation, autophagy deregulation and mitochondrial dysfunction. This review article discusses the most recent evidence regarding the molecular basis of myocardial ischemic injury and the new potential therapeutic interventions for boosting cardioprotection and attenuating cardiac remodeling.
Collapse
|
8
|
Hatton‐Jones K, Cox AJ, Peart JN, Headrick JP, du Toit E. Stress-induced body weight loss and improvements in cardiometabolic risk factors do not translate to improved myocardial ischemic tolerance in western diet-fed mice. Physiol Rep 2022; 10:e15170. [PMID: 35076176 PMCID: PMC8787728 DOI: 10.14814/phy2.15170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 05/16/2023] Open
Abstract
Although both diet-induced obesity and psychological stress are recognized as significant independent contributors to cardiometabolic and behavioral disorders, our understanding of how these two disorders interact and influence cardiometabolic risk and myocardial ischemic tolerance is limited. The aim of this study was to assess the combined effects of an obesogenic diet and psychological stress on cardiometabolic risk factors (body weight, dyslipidemia, insulin sensitivity) and postischemic cardiovascular outcomes. C57Bl/6J mice (n = 48) were subject to a combination of 22 weeks of western diet (WD) feeding and chronic restraint stress (CRS) for the last 4 weeks. Metabolic and behavioral changes were assessed using glucose tolerance tests and open field tests (OFTs), respectively. After 22 weeks, cardiac function and ischemic tolerance were assessed in Langendorff perfused hearts. WD feeding increased body weight and worsened blood lipids and insulin sensitivity. WD-fed mice also exhibited reduced exploratory behavior within the OFT. CRS reduced body weight and increased locomotion in both dietary groups and had differential effects on fasting glucose metabolism in the two dietary groups while not impacting non-fasting insulin. Although the WD only marginally reduced reperfusion left ventricular developed pressure recovery, CRS worsened reperfusion diastolic dysfunction in both dietary groups. Interestingly, despite WD+CRS animals exhibiting improved cardiometabolic parameters compared to the WD group, these changes did not translate to marked improvements to postischemic cardiac outcomes. In conclusion, in this study, combined WD feeding and CRS did not act synergistically to worsen cardiometabolic risk factors but instead improved them. Despite these cardiometabolic improvements, WD+CRS increased reperfusion end diastolic pressure which may be indicative of worsened ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Kyle Hatton‐Jones
- School of Pharmacy and Medical ScienceGriffith UniversitySouthportQueenslandAustralia
| | - Amanda J. Cox
- School of Pharmacy and Medical ScienceGriffith UniversitySouthportQueenslandAustralia
| | - Jason N. Peart
- School of Pharmacy and Medical ScienceGriffith UniversitySouthportQueenslandAustralia
| | - John P. Headrick
- School of Pharmacy and Medical ScienceGriffith UniversitySouthportQueenslandAustralia
| | - Eugene F. du Toit
- School of Pharmacy and Medical ScienceGriffith UniversitySouthportQueenslandAustralia
| |
Collapse
|
9
|
Kolwicz SC. Ketone Body Metabolism in the Ischemic Heart. Front Cardiovasc Med 2021; 8:789458. [PMID: 34950719 PMCID: PMC8688810 DOI: 10.3389/fcvm.2021.789458] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/16/2021] [Indexed: 01/12/2023] Open
Abstract
Ketone bodies have been identified as an important, alternative fuel source in heart failure. In addition, the use of ketone bodies as a fuel source has been suggested to be a potential ergogenic aid for endurance exercise performance. These findings have certainly renewed interest in the use of ketogenic diets and exogenous supplementation in an effort to improve overall health and disease. However, given the prevalence of ischemic heart disease and myocardial infarctions, these strategies may not be ideal for individuals with coronary artery disease. Although research studies have clearly defined changes in fatty acid and glucose metabolism during ischemia and reperfusion, the role of ketone body metabolism in the ischemic and reperfused myocardium is less clear. This review will provide an overview of ketone body metabolism, including the induction of ketosis via physiological or nutritional strategies. In addition, the contribution of ketone body metabolism in healthy and diseased states, with a particular emphasis on ischemia-reperfusion (I-R) injury will be discussed.
Collapse
|
10
|
Chung E, Gonzalez K, Ullevig SL, Zhang J, Umeda M. Obesity, not a high fat, high sucrose diet alone, induced glucose intolerance and cardiac dysfunction during pregnancy and postpartum. Sci Rep 2021; 11:18057. [PMID: 34508150 PMCID: PMC8433413 DOI: 10.1038/s41598-021-97336-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular disease is the leading cause of death in women during pregnancy and the postpartum period. Obesity is an independent risk factor for cardiovascular diseases. Nearly 60% of women of reproductive age are considered overweight or obese, cardiovascular disease morbidity and mortality continue to be pervasive. The objective of this study was to determine the effects of an obesogenic diet on the cardiometabolic health of dams during pregnancy and postpartum. Female mice were fed either a high-fat, high-sucrose diet (HFHS) or a refined control diet (CON) for 8 weeks before initiation of pregnancy and throughout the study period. Mice in the HFHS showed two distinct phenotypes, obesity-prone (HFHS/OP) and obesity resistance (HFHS/OR). Pre-pregnancy obesity (HFHS/OP) induced glucose intolerance before pregnancy and during postpartum. Systolic function indicated by the percent fractional shortening (%FS) was significantly decreased in the HFHS/OP at late pregnancy (vs. HFHS/OR) and weaning (vs. CON), but no differences were found at 6 weeks of postpartum among groups. No induction of pathological cardiac hypertrophy markers was found during postpartum. Plasma adiponectin was decreased while total cholesterol was increased in the HFHS/OP. Our results suggested that obesity, not the diet alone, negatively affected cardiac adaptation during pregnancy and postpartum.
Collapse
Affiliation(s)
- Eunhee Chung
- Department of Kinesiology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| | - Kassandra Gonzalez
- Department of Kinesiology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Sarah L Ullevig
- College for Health, Community and Policy, University of Texas at San Antonio, San Antonio, TX, USA
| | - John Zhang
- Department of Kinesiology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Masataka Umeda
- Department of Kinesiology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| |
Collapse
|
11
|
Fazzini F, Lamina C, Raftopoulou A, Koller A, Fuchsberger C, Pattaro C, Del Greco FM, Döttelmayer P, Fendt L, Fritz J, Meiselbach H, Schönherr S, Forer L, Weissensteiner H, Pramstaller PP, Eckardt K, Hicks AA, Kronenberg F, the GCKD Investigators. Association of mitochondrial DNA copy number with metabolic syndrome and type 2 diabetes in 14 176 individuals. J Intern Med 2021; 290:190-202. [PMID: 33453124 PMCID: PMC8359248 DOI: 10.1111/joim.13242] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mitochondria play an important role in cellular metabolism, and their dysfunction is postulated to be involved in metabolic disturbances. Mitochondrial DNA is present in multiple copies per cell. The quantification of mitochondrial DNA copy number (mtDNA-CN) might be used to assess mitochondrial dysfunction. OBJECTIVES We aimed to investigate the cross-sectional association of mtDNA-CN with type 2 diabetes and the potential mediating role of metabolic syndrome. METHODS We examined 4812 patients from the German Chronic Kidney Disease (GCKD) study and 9364 individuals from the Cooperative Health Research in South Tyrol (CHRIS) study. MtDNA-CN was measured in whole blood using a plasmid-normalized qPCR-based assay. RESULTS In both studies, mtDNA-CN showed a significant correlation with most metabolic syndrome parameters: mtDNA-CN decreased with increasing number of metabolic syndrome components. Furthermore, individuals with low mtDNA-CN had significantly higher odds of metabolic syndrome (OR = 1.025; 95% CI = 1.011-1.039, P = 3.19 × 10-4 , for each decrease of 10 mtDNA copies) and type 2 diabetes (OR = 1.027; 95% CI = 1.012-1.041; P = 2.84 × 10-4 ) in a model adjusted for age, sex, smoking and kidney function in the meta-analysis of both studies. Mediation analysis revealed that the association of mtDNA-CN with type 2 diabetes was mainly mediated by waist circumference in the GCKD study (66%) and by several metabolic syndrome parameters, especially body mass index and triglycerides, in the CHRIS study (41%). CONCLUSIONS Our data show an inverse association of mtDNA-CN with higher risk of metabolic syndrome and type 2 diabetes. A major part of the total effect of mtDNA-CN on type 2 diabetes is mediated by obesity parameters.
Collapse
Affiliation(s)
- F. Fazzini
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - C. Lamina
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - A. Raftopoulou
- Eurac ResearchInstitute for BiomedicineAffiliated Institute of the University of LübeckBolzanoItaly
| | - A. Koller
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - C. Fuchsberger
- Eurac ResearchInstitute for BiomedicineAffiliated Institute of the University of LübeckBolzanoItaly
| | - C. Pattaro
- Eurac ResearchInstitute for BiomedicineAffiliated Institute of the University of LübeckBolzanoItaly
| | - F. M. Del Greco
- Eurac ResearchInstitute for BiomedicineAffiliated Institute of the University of LübeckBolzanoItaly
| | - P. Döttelmayer
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - L. Fendt
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - J. Fritz
- Department of Medical StatisticsInformatics and Health EconomicsMedical University of InnsbruckInnsbruckAustria
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderCOUSA
| | - H. Meiselbach
- Department of Nephrology and HypertensionFriedrich‐Alexander Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - S. Schönherr
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - L. Forer
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - H. Weissensteiner
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | - P. P. Pramstaller
- Eurac ResearchInstitute for BiomedicineAffiliated Institute of the University of LübeckBolzanoItaly
| | - K.‐U. Eckardt
- Department of Nephrology and HypertensionFriedrich‐Alexander Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
- Department of Nephrology and Medical Intensive CareCharité – Universitätsmedizin BerlinBerlinGermany
| | - A. A. Hicks
- Eurac ResearchInstitute for BiomedicineAffiliated Institute of the University of LübeckBolzanoItaly
| | - F. Kronenberg
- From theDepartment of Genetics and PharmacologyInstitute of Genetic EpidemiologyMedical University of InnsbruckInnsbruckAustria
| | | |
Collapse
|
12
|
Wingard MC, Dalal S, Shook PL, Myers R, Connelly BA, Thewke DP, Singh M, Singh K. Deficiency of ataxia-telangiectasia mutated kinase modulates functional and biochemical parameters of the heart in response to Western-type diet. Am J Physiol Heart Circ Physiol 2021; 320:H2324-H2338. [PMID: 33929897 PMCID: PMC8289354 DOI: 10.1152/ajpheart.00990.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 02/08/2023]
Abstract
Ataxia-telangiectasia mutated (ATM) kinase deficiency exacerbates heart dysfunction late after myocardial infarction. Here, we hypothesized that ATM deficiency modulates Western-type diet (WD)-induced cardiac remodeling with an emphasis on functional and biochemical parameters of the heart. Weight gain was assessed in male wild-type (WT) and ATM heterozygous knockout (hKO) mice on weekly basis, whereas cardiac functional and biochemical parameters were measured 14 wk post-WD. hKO-WD mice exhibited rapid body weight gain at weeks 5, 6, 7, 8, and 10 versus WT-WD. WD decreased percent fractional shortening and ejection fraction, and increased end-systolic volumes and diameters to a similar extent in both genotypes. However, WD decreased stroke volume, cardiac output, peak velocity of early ventricular filling, and aortic ejection time and increased isovolumetric relaxation time (IVRT) and Tei index versus WT-NC (normal chow). Conversely, IVRT, isovolumetric contraction time, and Tei index were lower in hKO-WD versus hKO-NC and WT-WD. Myocyte apoptosis and hypertrophy were higher in hKO-WD versus WT-WD. WD increased fibrosis and expression of collagen-1α1, matrix metalloproteinase (MMP)-2, and MMP-9 in WT. WD enhanced AMPK activation, while decreasing mTOR activation in hKO. Akt and IKK-α/β activation, and Bax, PARP-1, and Glut-4 expression were higher in WT-WD versus WT-NC, whereas NF-κB activation and Glut-4 expression were lower in hKO-WD versus hKO-NC. Circulating concentrations of IL-12(p70), eotaxin, IFN-γ, macrophage inflammatory protein (MIP)-1α, and MIP-1β were higher in hKO-WD versus WT-WD. Thus, ATM deficiency accelerates weight gain, induces systolic dysfunction with increased preload, and associates with increased apoptosis, hypertrophy, and inflammation in response to WD.NEW & NOTEWORTHY Ataxia-telangiectasia mutated (ATM) kinase deficiency in humans associates with enhanced susceptibility to ischemic heart disease. Here, we provide evidence that ATM deficiency accelerates body weight gain and associates with increased cardiac preload, hypertrophy, and apoptosis in mice fed with Western-type diet (WD). Further investigations of the role of ATM deficiency in WD-induced alterations in function and biochemical parameters of the heart may provide clinically applicable information on treatment and/or nutritional counseling for patients with ATM deficiency.
Collapse
Affiliation(s)
- Mary C Wingard
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Suman Dalal
- Department of Health Sciences, East Tennessee State University, Johnson City, Tennessee
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee
| | - Paige L Shook
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Rachel Myers
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Barbara A Connelly
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
- James H Quillen Veterans Affairs Medical Center, East Tennessee State University, Johnson City, Tennessee
| | - Douglas P Thewke
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Mahipal Singh
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Krishna Singh
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee
- James H Quillen Veterans Affairs Medical Center, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
13
|
Effects of Three-Month Feeding High Fat Diets with Different Fatty Acid Composition on Myocardial Proteome in Mice. Nutrients 2021; 13:nu13020330. [PMID: 33498641 PMCID: PMC7911225 DOI: 10.3390/nu13020330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 01/04/2023] Open
Abstract
Westernized diet is characterized by a high content of saturated fatty acids (SFA) and a low level of omega-3 polyunsaturated fatty acids (PUFA), often accompanied by an imbalance in the omega-6/omega-3 PUFA ratio. Since increased intake of SFA and n-6 PUFA is considered as a cardiovascular disease risk factor, this study was conducted to determine whether a three-month dietary supplementation of high-fat diets (HFDs) with saturated fatty acids and a significant proportion of various n-6 and n-3 PUFA ratios would affect the architecture and protein expression patterns of the murine heart. Therefore, three HFD (n = 6) feeding groups: rich in SFA, dominated by PUFA with the n-6/n-3–14:1, and n-6/n-3–5:1, ratios were compared to animals fed standard mouse chow. For this purpose, we performed two-dimensional electrophoresis with MALDI-ToF mass spectrometry-based identification of differentially expressed cardiac proteins, and a histological examination of cardiac morphology. The results indicated that mice fed with all HFDs developed signs of hypertrophy and cardiac fibrosis. Animals fed SFA-rich HFD manifested the most severe cardiac hypertrophy and fibrosis lesions, whereas less pronounced changes were observed in the group of animals that ingested the highest amount of omega-3 FA. In general, all HFDs, regardless of FA composition, evoked a comparable pattern of cardiac protein changes and affected the following biological processes: lipid metabolism and FA β-oxidation, glycolysis, TCA cycle, respiratory chain, myocardium contractility, oxidative stress and PUFA eicosanoid metabolism. However, it should be noted that three proteins, namely IDH3A, LDHB, and AK1, were affected differently by various FA contents. High expression of these myocardial proteins found in the group of animals fed a HFD with the highest n-3 PUFA content could be closely related to the observed development of hypertrophy.
Collapse
|
14
|
Sarrafan A, Ghobeh M, Yaghmaei P. The effect of 6-gingerol on biochemical and histological parameters in cholesterol-induced nonalcoholic fatty liver disease in NMRI mice. BRAZ J PHARM SCI 2021. [DOI: 10.1590/s2175-979020200003181020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
15
|
Sun H, Zhou Z, Xuan H, Yan Z. Anti-inflammatory and protective effects of combined treatment with sitagliptin and melatonin in cardiac ischemia reperfusion injury in obese rats: Involvement of TLR-4/NF-κB pathway. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211066201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Obesity is associated with an augmented risk of myocardial ischemia/reperfusion (I/R) injury. Reduction of I/R injury by effective cardioprotective strategies needs to be investigated in obese subjects. This study aimed to evaluate the combined effects of sitagliptin and melatonin on inflammatory response and TLR4/IκBα/NF-κB signaling following cardiac I/R damage in obese rats. Methods: Sixty-six male Wistar rats (180–200 g) were fed a low fat diet (10% Kcal from lipids) or high fat (45% Kcal from lipids) diets for 12 weeks. High fat-fed (obese) rats experienced 30 min left anterior descending occlusion followed by 24 h reperfusion. Obese rats received sitagliptin (20 mg/kg/day) for 1 month before I/R surgery. Melatonin (10 mg/kg) was injected at early reperfusion. Myocardial infarct size (IS), cTn-I release, pro-inflammatory cytokines, myeloperoxidase (MPO), COX-2 and iNOS, and the protein expressions of TLR4, p-NF-κB/p65, and p-IκBα were evaluated. Results: Monotherapies with sitagliptin-preconditioning or melatonin-postconditioning had no cardioprotective effects in obese rats. However, combined therapy with sitagliptin and melatonin significantly reduced IS, and the release of cTn-I, in comparison to untreated obese rats ( p < .01) Moreover, this combination decreased the production of pro-inflammatory cytokines, MPO, COX-2 and iNOS, and the expression of TLR4 and p-NF-κB/p65, while reduced the expression of p-IκBα, in comparison with untreated or monotherapies-received obese rats ( p < .01 for all). Conclusion: Combination therapy with sitagliptin and melatonin was a good cardioprotective strategy to modulate the inflammatory responses and TLR4/NF-κB signaling pathway in obese patients with cardiac I/R injury.
Collapse
Affiliation(s)
- Hailei Sun
- Department of Cardiology,Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong,China
| | - Zhengchun Zhou
- Department of Cardiology,Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong,China
| | - Haiyang Xuan
- Department of Cardiology,Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong,China
| | - Zhongya Yan
- Department of Cardiology,Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong,China
- Department of Cardiology, Anhui Provincial Hospital, Hefei City, Anhui Province, China
| |
Collapse
|
16
|
Watanabe M, Tuccinardi D, Ernesti I, Basciani S, Mariani S, Genco A, Manfrini S, Lubrano C, Gnessi L. Scientific evidence underlying contraindications to the ketogenic diet: An update. Obes Rev 2020; 21:e13053. [PMID: 32648647 PMCID: PMC7539910 DOI: 10.1111/obr.13053] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/31/2022]
Abstract
First identified as a feasible treatment for intractable epilepsy, the ketogenic diet (KD) has recently gained popularity thanks to growing evidence on applications such as weight loss, most importantly, but also NAFLD, cancer, neurologic conditions and chronic pain. As with any treatment, whether pharmacologic or not, the KD might not be an appropriate intervention for every individual, and a number of contraindications have been proposed, now deeply rooted into clinical practice, excluding de facto many patients that could benefit from its use. However, many of these concerns were expressed due to the absence of clinical studies conducted on fragile populations, and an assessment of lately emerged evidence relative to KD safety is currently lacking and much needed. We herein provide a critical revision of the literature behind each safety alert, in order to guide through the treatment options in the case of subjects with an indication to the KD and a borderline safe situation. Based on available evidence, the possible use of this diet as a therapeutic intervention should be assessed on a patient-to-patient basis by adequately skilled medical doctors, keeping in mind current recommendations, but reading them through the knowledge of the current state of the art.
Collapse
Affiliation(s)
- Mikiko Watanabe
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Dario Tuccinardi
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| | - Ilaria Ernesti
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy.,Department of Surgical Sciences, Surgical Endoscopy Unit, Sapienza University of Rome, Rome, Italy
| | - Sabrina Basciani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Stefania Mariani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Alfredo Genco
- Department of Surgical Sciences, Surgical Endoscopy Unit, Sapienza University of Rome, Rome, Italy
| | - Silvia Manfrini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| | - Carla Lubrano
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
17
|
Lin F, Tan YQ, He XH, Guo LL, Wei BJ, Li JP, Chen Z, Chen HW, Wang J. Huoxue Huatan Decoction Ameliorates Myocardial Ischemia/Reperfusion Injury in Hyperlipidemic Rats via PGC-1α-PPARα and PGC-1α-NRF1-mtTFA Pathways. Front Pharmacol 2020; 11:546825. [PMID: 33041792 PMCID: PMC7522555 DOI: 10.3389/fphar.2020.546825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022] Open
Abstract
Objective The aim of this study was to eluc\idate the preventive and therapeutic effects and the underlying mechanisms of Huoxue Huatan Decoction (HXHT) on myocardial ischemia/reperfusion (I/R) injury in hyperlipidemic rats. Methods An I/R model was established in hyperlipidemic Wistar rats. After 4–8 weeks of HXHT treatment, the physical signs of rats were observed. Lipid metabolism, myocardial enzyme spectrum, cardiac function, myocardial histomorphology, and mitochondrial biosynthesis were investigated by a biochemical method, ultrasonography, electron microscopy, pathological examination, real-time PCR, and Western blot. Results HXHT can affect lipid metabolism at different time points and significantly reduce the levels of cholesterol (CHO), triglyceride (TG), high-density lipid-cholesterol (HDL-C), and low-density lipid-cholesterol (LDL-C) in hyperlipidemic rats (P < 0.05 or P < 0.01); it can significantly reduce the levels of creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH), reduce the myocardial infarct size and myocardial ischemic area, and improve cardiac function. The results of myocardial histomorphology showed that HXHT could protect myocardial cells, relieve swelling, reduce the number of cardiac lipid droplets, and improve myocardial mitochondrial function. HXHT could significantly increase the levels of total superoxide dismutase (T-SOD) and succinate dehydrogenase (SDH) (P < 0.05 or P < 0.01), increase CuZn-superoxide dismutase (CuZn-SOD) and glutathione-peroxidase (GSH-Px) levels, and decrease the levels of malondialdehyde (MDA) (P < 0.05); it could increase the mRNA and protein expression levels of peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α), peroxisome proliferator-activated receptor alpha (PPARα), nuclear respiratory factor 1 (NRF1), and mitochondrial transcription factor A (mtTFA) (P < 0.05 or P < 0.01), and increase the synthesis of mitochondrial DNA (mtDNA) (P < 0.01). Conclusion HXHT can reduce myocardial I/R injury in hyperlipidemic rats. The protective mechanisms may involve a reduction in blood lipids, enhancement of PGC-1α–PPARα pathway activity, and, subsequently, an increase in fatty acid β-oxidation, which may provide the required input for mitochondrial energy metabolism. HXHT can additionally enhance PGC-1α–NRF1–mtTFA pathway activity and, subsequently, increase the antioxidant capacity, promote mtDNA synthesis, and reduce mitochondrial damage. The two pathways use PGC-1α as the intersection point to protect mitochondrial structure and function, reduce I/R-induced injury, and improve cardiac function.
Collapse
Affiliation(s)
- Fei Lin
- Heart Center of Xinxiang Medical University, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yu-Qing Tan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xuan-Hui He
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Li Guo
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ben-Jun Wei
- Key Laboratory of Ministry of Education Department of Lanzhou Province and Dunhuang Medical Transformation, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jun-Ping Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhong Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Heng-Wen Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Carballo MCS, Pinto LCS, Brito MVH. The role of adiponectin in ischemia-reperfusion syndrome: a literature review. EINSTEIN-SAO PAULO 2020; 18:eRW5160. [PMID: 32876087 PMCID: PMC7444600 DOI: 10.31744/einstein_journal/2020rw5160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 12/03/2019] [Indexed: 02/05/2023] Open
Abstract
Adiponectin, among other diverse adipokines, is produced in greater quantity and has an effect on the adipose tissue and other tissues in the body. Adiponectin plays three main roles: regulatory metabolic and sensitizing function of insulin in the liver and muscles; it acts as an anti-inflammatory cytokine and in vascular protection, besides important cardiac protection in the presence of ischemia-reperfusion syndrome. Since many situations resulting from traumatic accidents or pathologies are due to cell damage caused by ischemia-reperfusion syndrome, it is relevant to study new therapeutic alternatives that will contribute to reducing these lesions. The objective of this study is to carry out a literature review on the role of adiponectin in ischemia-reperfusion syndrome.
Collapse
|
19
|
Martins Matias A, Murucci Coelho P, Bermond Marques V, dos Santos L, Monteiro de Assis ALE, Valentim Nogueira B, Lima-Leopoldo AP, Soares Leopoldo A. Hypercaloric diet models do not develop heart failure, but the excess sucrose promotes contractility dysfunction. PLoS One 2020; 15:e0228860. [PMID: 32032383 PMCID: PMC7006916 DOI: 10.1371/journal.pone.0228860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/25/2020] [Indexed: 12/04/2022] Open
Abstract
Several diseases are associated with excess of adipose tissue, and obesity is considered an independent risk factor for the development of cardiac remodeling and heart failure. Dietary aspects have been studied to elucidate the mechanisms involved in these processes. Thus, the purpose was the development and characterization of an obesity experimental model from hypercaloric diets, which resulted in cardiac remodeling and predisposition to heart failure. Thirty- day-old male Wistar rats (n = 52) were randomized into four groups: control (C), high sucrose (HS), high-fat (HF) and high-fat and sucrose (HFHS) for 20 weeks. General characteristics, comorbidities, weights of the heart, left (LV) and right ventricles, atrium, and relationships with the tibia length were evaluated. The LV myocyte cross sectional area and fraction of interstitial collagen were assayed. Cardiac function was determined by hemodynamic analysis and the contractility by cardiomyocyte contractile function. Heart failure was analyzed by pulmonary congestion, right ventricular hypertrophy, and hemodynamic parameters. HF and HFHS models led to obesity by increase in adiposity index (C = 8.3 ± 0.2% vs. HF = 10.9 ± 0.5%, HFHS = 10.2 ± 0.3%). There was no change in the morphological parameters and heart failure signals. HF and HFHS caused a reduction in times to 50% relaxation without cardiomyocyte contractile damage. The HS model presented cardiomyocyte contractile dysfunction visualized by lower shortening (C: 8.34 ± 0.32% vs. HS: 6.91 ± 0.28), as well as the Ca2+ transient amplitude was also increased when compared to HFHS. In conclusion, the experimental diets based on high amounts of sugar, lard or a combination of both did not promote cardiac remodeling with predisposition to heart failure under conditions of obesity or excess sucrose. Nevertheless, excess sucrose causes cardiomyocyte contractility dysfunction associated with alterations in the myocyte sensitivity to intracellular Ca2+.
Collapse
Affiliation(s)
- Amanda Martins Matias
- Postgraduate Program in Nutrition and Health, Center of Health Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Priscila Murucci Coelho
- Postgraduate Program in Nutrition and Health, Center of Health Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Vinícius Bermond Marques
- Center of Health Sciences, Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Leonardo dos Santos
- Center of Health Sciences, Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | - Breno Valentim Nogueira
- Center of Health Sciences, Department of Morphology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Ana Paula Lima-Leopoldo
- Postgraduate Program in Nutrition and Health, Center of Health Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Department of Sports, Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - André Soares Leopoldo
- Postgraduate Program in Nutrition and Health, Center of Health Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
- Department of Sports, Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
20
|
Kim BY. Effects of Low-Carbohydrate, High-Fat Diets on Weight Loss, Cardiovascular Health and Mortality. ACTA ACUST UNITED AC 2020. [DOI: 10.36011/cpp.2020.2.e7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Bo-Yeon Kim
- Division of Endocrinology & Metabolism, Department of Internal Medicine, College of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| |
Collapse
|
21
|
Simoes IC, Janikiewicz J, Bauer J, Karkucinska-Wieckowska A, Kalinowski P, Dobrzyń A, Wolski A, Pronicki M, Zieniewicz K, Dobrzyń P, Krawczyk M, Zischka H, Wieckowski MR, Potes Y. Fat and Sugar-A Dangerous Duet. A Comparative Review on Metabolic Remodeling in Rodent Models of Nonalcoholic Fatty Liver Disease. Nutrients 2019; 11:2871. [PMID: 31771244 PMCID: PMC6950566 DOI: 10.3390/nu11122871] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common disease in Western society and ranges from steatosis to steatohepatitis to end-stage liver disease such as cirrhosis and hepatocellular carcinoma. The molecular mechanisms that are involved in the progression of steatosis to more severe liver damage in patients are not fully understood. A deeper investigation of NAFLD pathogenesis is possible due to the many different animal models developed recently. In this review, we present a comparative overview of the most common dietary NAFLD rodent models with respect to their metabolic phenotype and morphological manifestation. Moreover, we describe similarities and controversies concerning the effect of NAFLD-inducing diets on mitochondria as well as mitochondria-derived oxidative stress in the progression of NAFLD.
Collapse
Affiliation(s)
- Ines C.M. Simoes
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Justyna Janikiewicz
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Judith Bauer
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Biedersteiner Strasse 29, D-80802 Munich, Germany; (J.B.); (H.Z.)
| | | | - Piotr Kalinowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.K.); (K.Z.)
| | - Agnieszka Dobrzyń
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Andrzej Wolski
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Maciej Pronicki
- Department of Pathology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (A.K.-W.); (M.P.)
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.K.); (K.Z.)
| | - Paweł Dobrzyń
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Marcin Krawczyk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Department of Medicine II, Saarland University Medical Center, 66421 Homburg, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Biedersteiner Strasse 29, D-80802 Munich, Germany; (J.B.); (H.Z.)
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Mariusz R. Wieckowski
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| | - Yaiza Potes
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland (J.J.); (A.D.); (P.D.); (Y.P.)
| |
Collapse
|
22
|
Inserte J, Aluja D, Barba I, Ruiz-Meana M, Miró E, Poncelas M, Vilardosa Ú, Castellano J, Garcia-Dorado D. High-fat diet improves tolerance to myocardial ischemia by delaying normalization of intracellular PH at reperfusion. J Mol Cell Cardiol 2019; 133:164-173. [DOI: 10.1016/j.yjmcc.2019.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/15/2019] [Accepted: 06/01/2019] [Indexed: 01/22/2023]
|
23
|
Babalhavaeji S, Saidijam M, Khodadadi I, Oshaghi EA, Tavilani H. The effect of kiwifruit on liver NADPH oxidase gene expression and activity in high-fat diet fed hamsters. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2019. [DOI: 10.3233/mnm-180281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Soude Babalhavaeji
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ebrahim Abbasi Oshaghi
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidar Tavilani
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
24
|
Ruan XH, Ma T, Fan Y. Ablation of TMEM126B protects against heart injury via improving mitochondrial function in high fat diet (HFD)-induced mice. Biochem Biophys Res Commun 2019; 515:636-643. [PMID: 31178133 DOI: 10.1016/j.bbrc.2019.05.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/11/2019] [Indexed: 01/13/2023]
Abstract
The mitochondrial dysfunction in the pathogenesis of myocardial damage associated with high fat diet (HFD)-induced obesity remains largely unknown. Transmembrane protein 126B (TMEM126B), as a complex I assembly factor, plays a key role in regulating mitochondrial function. In the present study, the effects of TMEM126B on mitochondrial function were investigated using genetic knockout approach in HFD-induced mouse models with obesity. We found that TMEM126B was significantly increased in HFD-treated cardiac samples. Genetic ablation of TMEM126B alleviated HFD-mediated metabolic disorder and heart injury. TEM results suggested that cardiac mitochondrial integrity was improved in TMEM126B knockout mice compared with the wild type (WT) mice after HFD challenge. Additionally, the mitochondrial dysfunction induced by HFD was alleviated in mice with TMEM126B knockout, as evidenced by the decreased protein expression levels of dynamic-related protein-1 (DRP1) and fission-1 (FIS1) and increased expression of mitofusin-1 (MFN1). The mitochondrial impairments were further confirmed in palmitic acid (PA)-incubated cardiomyocytes, as evidenced by the down-regulated membrane potential and ATP levels, and by the up-regulated mitochondrial reactive oxygen species (ROS) production and DNA damage, which were significantly reversed by TMEM126B knockdown in vitro. Finally, TMEM126B ablation suppressed mitochondrial-dependent apoptotic death in the hearts of HFD mice. Therefore, TMEM126B led to mitochondrial impairments, contributing to the pathogenesis of HFD-induced cardiac injury, and blockage of TMEM126B could inhibit mitochondrial dysfunction, paving the road to new therapeutic modalities for the prevention of obesity-associated heart injury.
Collapse
Affiliation(s)
- Xin-Hua Ruan
- Department of Cardiac Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Teng Ma
- Department of Cardiology, Tengzhou Central People's Hospital, Tengzhou, Shandong, 277500, China
| | - Yue Fan
- Department of Cardiothoracic Surgery, Ruikang Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China.
| |
Collapse
|
25
|
Everson F, Genis A, Ogundipe T, De Boever P, Goswami N, Lochner A, Blackhurst D, Strijdom H. Treatment with a fixed dose combination antiretroviral therapy drug containing tenofovir, emtricitabine and efavirenz is associated with cardioprotection in high calorie diet-induced obese rats. PLoS One 2018; 13:e0208537. [PMID: 30517206 PMCID: PMC6281242 DOI: 10.1371/journal.pone.0208537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/18/2018] [Indexed: 12/31/2022] Open
Abstract
HIV-infection, certain antiretroviral drug classes, especially protease inhibitors (PI), and obesity are associated with increased ischaemic heart disease (IHD) risk. However, the effect of PI-free fixed dose combination (FDC) antiretroviral therapy (ART) on hearts exposed to ischaemia-reperfusion injury (I/R) is unknown, particularly in obesity. This is becoming relevant as World Health Organisation guidelines recommend a FDC ART containing (non-) nucleoside reverse transcriptase inhibitors (tenofovir (TDF), emtricitabine (FTC) and efavirenz (EFV)) as first-line HIV treatment. Additionally, obesity rates are rising in HIV-infected populations, not only in ART-experienced individuals, but also at the time of ART initiation, which may further increase the risk of IHD. Therefore, we investigated the effects of PI-free FDC ART in myocardial I/R-exposed hearts from obese rats. Obesity was induced in male wistar rats via a 16-week high calorie diet. At week 10, treatment with a FDC ART drug containing TDF/FTC/EFV was initiated. Biometric and metabolic parameters, as well as myocardial functional recovery and infract size (IS), and myocardial signalling proteins following I/R were assessed after 16 weeks. Obese rats presented with increased body and intraperitoneal fat mass, elevated triglyceride and TBARS levels, whilst the hearts responded to I/R with impaired functional performance and increased IS. The FDC ART treatment did not alter biometric and metabolic parameters in obese rats. In a novel finding, ART protected obese hearts against I/R as shown by improved functional performance and smaller IS vs. untreated obese hearts. Cardioprotection was underscored by increased myocardial phosphorylated endothelial nitric oxide synthase (eNOS) and reduced AMP-kinase levels. In conclusion, these results demonstrate for the first time, that 6-weeks treatment of obese rats with a FDC ART drug specifically containing TDF/FTC/EFV conferred cardioprotection against I/R. The FDC ART-induced cardioprotection was seemingly unrelated to metabolic changes, but rather due to direct cardiac mechanisms including the up-regulation of myocardial eNOS.
Collapse
Affiliation(s)
- Frans Everson
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Republic of South Africa
| | - Amanda Genis
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Republic of South Africa
| | - Temitope Ogundipe
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Republic of South Africa
| | - Patrick De Boever
- Environmental Risk and Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nandu Goswami
- Department of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Amanda Lochner
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Republic of South Africa
| | - Dee Blackhurst
- Division of Chemical Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Hans Strijdom
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Republic of South Africa
| |
Collapse
|
26
|
Matias AM, Estevam WM, Coelho PM, Haese D, Kobi JBBS, Lima-Leopoldo AP, Leopoldo AS. Differential Effects of High Sugar, High Lard or a Combination of Both on Nutritional, Hormonal and Cardiovascular Metabolic Profiles of Rodents. Nutrients 2018; 10:E1071. [PMID: 30103515 PMCID: PMC6116051 DOI: 10.3390/nu10081071] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Dietary interventions in rodents can induce an excess of adipose tissue and metabolic disorders that resemble human obesity. Nevertheless, these approaches are not standardized, and the phenotypes may vary distinctly among studies. The aim of this study was to investigate the effects of different dietary interventions on nutritional, metabolic, biochemical, hormonal, and cardiovascular profiles, as well as to add to development and characterization of an experimental model of obesity. METHODS Male Wistar rats were randomized into four groups: control diet (C), high-sugar (HS), high-fat (HF), or high-sugar and high-fat (HFHS). Weekly measurements of body weight, adiposity, area under the curve (AUC) for glucose, blood pressure (BP) and serum triglycerides, total cholesterol level, and leptin were performed. RESULTS HF and HFHS models were led to obesity by increases in adipose tissue deposition and the adiposity index. All hypercaloric diets presented systolic BP increases. In addition, the AUC for glucose was greater in HF and HFHS than in C, and only the HF group presented hyperleptinemia. CONCLUSIONS HF and HFHS diet approaches promote obesity and comorbidities, and thus represent a useful tool for studying human obesity-related disorders. By contrast, the HS model did not prove to be a good model of obesity.
Collapse
Affiliation(s)
- Amanda Martins Matias
- Postgraduate Program in Nutrition and Health, Center of Health Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil.
| | - Wagner Müller Estevam
- Postgraduate Program in Physical Education, Center of Physical Education and Sports, Federal University of Espírito Santo (UFES), Vitória 29075-910, Espírito Santo, Brazil.
| | - Priscila Murucci Coelho
- Postgraduate Program in Nutrition and Health, Center of Health Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil.
| | - Douglas Haese
- University of Vila Velha, Vila Velha 29102-920, Espírito Santo, Brazil.
| | - Jéssika Butcovsky Botto Sarter Kobi
- Postgraduate Program in Nutrition and Health, Center of Health Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil.
| | - Ana Paula Lima-Leopoldo
- Postgraduate Program in Nutrition and Health, Center of Health Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil.
- Postgraduate Program in Physical Education, Center of Physical Education and Sports, Federal University of Espírito Santo (UFES), Vitória 29075-910, Espírito Santo, Brazil.
- Department of Sports, Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil.
| | - André Soares Leopoldo
- Postgraduate Program in Nutrition and Health, Center of Health Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil.
- Postgraduate Program in Physical Education, Center of Physical Education and Sports, Federal University of Espírito Santo (UFES), Vitória 29075-910, Espírito Santo, Brazil.
- Department of Sports, Center of Physical Education and Sports, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil.
| |
Collapse
|
27
|
Rapkin J, Jensen K, House CM, Wilson AJ, Hunt J. Genotype-by-sex-by-diet interactions for nutritional preference, dietary consumption, and lipid deposition in a field cricket. Heredity (Edinb) 2018; 121:361-373. [PMID: 30089778 DOI: 10.1038/s41437-018-0130-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/05/2018] [Accepted: 07/14/2018] [Indexed: 12/13/2022] Open
Abstract
Changes in feeding behaviour, especially the overconsumption of calories, has led to a rise in the rates of obesity, diabetes, and other associated disorders in humans and a range of animals inhabiting human-influenced environments. However, understanding the relative contribution of genes, the nutritional environment, and their interaction to dietary intake and lipid deposition in the sexes still remains a major challenge. By combining nutritional geometry with quantitative genetics, we determined the effect of genes, the nutritional environment, and their interaction on the total nutritional preference (TP), total diet eaten (TE), and lipid mass (LM) of male and female black field crickets (Teleogryllus commodus) fed one of four diet pairs (DPs) differing in the ratio of protein to carbohydrate and total nutritional content. We found abundant additive genetic variance for TP, TE, and LM in both sexes and across all four DPs, with significant genetic correlations between TE and TP and between TP and LM in males. We also found significant genotype-by-DP and genotype-by-sex-by-DP interactions for each trait and significant genotype-by-sex interactions for TE and LM. Complex interactions between genes, sex, and the nutritional environment, therefore, play an important role in nutrient regulation and lipid deposition in T. commodus. This finding may also help explain the increasing rate of obesity and the maintenance of sex differences in obesity observed across many animal species, including humans.
Collapse
Affiliation(s)
- James Rapkin
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Kim Jensen
- Department of Bioscience, Terrestrial Ecology, Aarhus University, Vejlsøvej 25, 8600, Silkeborg, Denmark
| | - Clarissa M House
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, Cornwall, TR10 9FE, UK.,School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.,Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bay 1797, Penrith, NSW, 2751, Australia
| | - Alastair J Wilson
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, Cornwall, TR10 9FE, UK
| | - John Hunt
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, Cornwall, TR10 9FE, UK. .,School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia. .,Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bay 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
28
|
Hong MY, Beidler J, Hooshmand S, Figueroa A, Kern M. Watermelon and l-arginine consumption improve serum lipid profile and reduce inflammation and oxidative stress by altering gene expression in rats fed an atherogenic diet. Nutr Res 2018; 58:46-54. [PMID: 30340814 DOI: 10.1016/j.nutres.2018.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/31/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022]
Abstract
Watermelon (Citrullus lanatus) is rich in l-citrulline, an l-arginine precursor that may reduce cardiovascular disease risk. The purpose of this study was to compare the effects of watermelon powder and l-arginine on lipid profiles, antioxidant capacity, and inflammation in rats fed an atherogenic diet. We hypothesized that watermelon and l-arginine would increase antioxidant capacity and reduce blood lipids and inflammation by modulating hepatic gene expression. Male Sprague-Dawley rats aged 21 days (N = 32) were assigned to 3 groups and fed diets containing watermelon powder (0.5% wt/wt), l-arginine (0.3% as 0.36% l-arginine HCl wt/wt), or a control diet for 9 weeks. Watermelon and l-arginine supplementation improved lipid profiles by lowering serum concentrations of triglycerides, total cholesterol, and low-density lipoprotein cholesterol (P < .050). Serum concentrations of C-reactive protein were significantly lower (P < .050) in the watermelon and l-arginine groups. Rats in the watermelon and l-arginine groups showed reduced oxidative stress, increased total antioxidant capacity, and higher concentrations of superoxide dismutase and glutathione S-transferase (P < .050). Concentrations of aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase were lower (P < .050) in the watermelon and l-arginine groups. Watermelon and l-arginine consumption upregulated hepatic gene expression of endothelial nitric oxide synthase and downregulated expression of fatty acid synthase, 3-hydroxy-3-methylglutaryl-CoA reductase, sterol regulatory element-binding protein 1, sterol regulatory element-binding protein 2, cyclooxygenase-2, and nuclear factor-κB p65 (P < .050). The results support the hypothesis that watermelon and arginine improve cardiovascular disease risk factors including lipid profile, antioxidant capacity, and inflammation by altering relevant gene expression.
Collapse
Affiliation(s)
- Mee Young Hong
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182.
| | - Joshua Beidler
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182
| | - Shirin Hooshmand
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182
| | - Arturo Figueroa
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79403
| | - Mark Kern
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182
| |
Collapse
|
29
|
Deletion of TXNIP Mitigates High-Fat Diet-Impaired Angiogenesis and Prevents Inflammation in a Mouse Model of Critical Limb Ischemia. Antioxidants (Basel) 2017; 6:antiox6030047. [PMID: 28661427 PMCID: PMC5618075 DOI: 10.3390/antiox6030047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/25/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022] Open
Abstract
Background: Previous work demonstrated that high-fat diet (HFD) triggered thioredoxin-interacting protein (TXNIP) and that silencing TXNIP prevents diabetes-impaired vascular recovery. Here, we examine the impact of genetic deletion of TXNIP on HFD-impaired vascular recovery using hind limb ischemia model. Methods: Wild type mice (WT, C57Bl/6) and TXNIP knockout mice (TKO) were fed either normal chow diet (WT-ND and TKO-ND) or 60% high-fat diet (WT-HFD and TKO-HFD). After four weeks of HFD, unilateral hind limb ischemia was performed and blood flow was measured using Laser doppler scanner at baseline and then weekly for an additional three weeks. Vascular density, nitrative stress, infiltration of CD68+ macrophages, and expression of inflammasome, vascular endothelial growth factor (VEGF), VEGF receptor-2 were examined by slot blot, Western blot and immunohistochemistry. Results: By week 8, HFD caused similar increases in weight, cholesterol and triglycerides in both WT and TKO. At week 4 and week 8, HFD significantly impaired glucose tolerance in WT and to a lesser extent in TKO. HFD significantly impaired blood flow and vascular density (CD31 labeled) in skeletal muscle of WT mice compared to ND but not in TKO. HFD and ischemia significantly induced tyrosine nitration, and systemic IL-1β and infiltration of CD68+ cells in skeletal muscle from WT but not from TKO. HFD significantly increased cleaved-caspase-1 and IL-1 β compared to ND. Under both ND, ischemia tended to increase VEGF expression and increased VEGFR2 activation in WT only but not TKO. Conclusion: Similar to prior observation in diabetes, HFD-induced obesity can compromise vascular recovery in response to ischemic insult. The mechanism involves increased TXNIP-NLRP3 (nucleotide-binding oligomerization domain-like receptor protein 3) inflammasome activation, nitrative stress and impaired VEGFR2 activation. Deletion of TXNIP restored blood flow, reduced nitrative stress and blunted inflammasome-mediated inflammation; however, it did not impact VEGF/VEGFR2 in HFD. Targeting TXNIP-NLRP3 inflammasome can provide potential therapeutic target in obesity-induced vascular complication.
Collapse
|
30
|
Mayyas F, Alzoubi KH, Al-Taleb Z. Impact of high fat/high salt diet on myocardial oxidative stress. Clin Exp Hypertens 2017; 39:126-132. [DOI: 10.1080/10641963.2016.1226894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Fadia Mayyas
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H. Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Zahraa Al-Taleb
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
31
|
Nilsson J, Ericsson M, Joibari MM, Anderson F, Carlsson L, Nilsson SK, Sjödin A, Burén J. A low-carbohydrate high-fat diet decreases lean mass and impairs cardiac function in pair-fed female C57BL/6J mice. Nutr Metab (Lond) 2016; 13:79. [PMID: 27891164 PMCID: PMC5111238 DOI: 10.1186/s12986-016-0132-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/13/2016] [Indexed: 11/29/2022] Open
Abstract
Background Excess body fat is a major health issue and a risk factor for the development of numerous chronic diseases. Low-carbohydrate diets like the Atkins Diet are popular for rapid weight loss, but the long-term consequences remain the subject of debate. The Scandinavian low-carbohydrate high-fat (LCHF) diet, which has been popular in Scandinavian countries for about a decade, has very low carbohydrate content (~5 E %) but is rich in fat and includes a high proportion of saturated fatty acids. Here we investigated the metabolic and physiological consequences of a diet with a macronutrient composition similar to the Scandinavian LCHF diet and its effects on the organs, tissues, and metabolism of weight stable mice. Methods Female C57BL/6J mice were iso-energetically pair-fed for 4 weeks with standard chow or a LCHF diet. We measured body composition using echo MRI and the aerobic capacity before and after 2 and 4 weeks on diet. Cardiac function was assessed by echocardiography before and after 4 weeks on diet. The metabolic rate was measured by indirect calorimetry the fourth week of the diet. Mice were sacrificed after 4 weeks and the organ weight, triglyceride levels, and blood chemistry were analyzed, and the expression of key ketogenic, metabolic, hormonal, and inflammation genes were measured in the heart, liver, and adipose tissue depots of the mice using real-time PCR. Results The increase in body weight of mice fed a LCHF diet was similar to that in controls. However, while control mice maintained their body composition throughout the study, LCHF mice gained fat mass at the expense of lean mass after 2 weeks. The LCHF diet increased cardiac triglyceride content, impaired cardiac function, and reduced aerobic capacity. It also induced pronounced alterations in gene expression and substrate metabolism, indicating a unique metabolic state. Conclusions Pair-fed mice eating LCHF increased their percentage of body fat at the expense of lean mass already after 2 weeks, and after 4 weeks the function of the heart deteriorated. These findings highlight the urgent need to investigate the effects of a LCHF diet on health parameters in humans.
Collapse
Affiliation(s)
- Jessica Nilsson
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, SE-901 87 Umeå, Sweden.,Department of Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden
| | - Madelene Ericsson
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | | | - Fredrick Anderson
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Leif Carlsson
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Stefan K Nilsson
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Anna Sjödin
- Department of Food and Nutrition, Umeå University, Umeå, Sweden
| | - Jonas Burén
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden.,Department of Food and Nutrition, Umeå University, Umeå, Sweden
| |
Collapse
|
32
|
Gilkerson R. Commentary: Mitochondrial DNA damage and loss in diabetes. Diabetes Metab Res Rev 2016; 32:672-674. [PMID: 27253402 PMCID: PMC5248653 DOI: 10.1002/dmrr.2833] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 12/18/2022]
Abstract
This commentary discusses damage and loss of mitochondrial DNA (mtDNA) in type 2 diabetes mellitus from both the clinical and experimental perspectives. Increasingly, an array of studies in experimental models and patients suggests that the cellular stresses of insulin resistance in type 2 diabetes damage mtDNA, leading to loss of mitochondrial genetic content. As such, mtDNA is emerging as both a valuable monitoring tool and translational preventive target for metabolic disease. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Robert Gilkerson
- Departments of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, USA.
- Clinical Laboratory Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, USA.
| |
Collapse
|
33
|
Liu J, Wang P, Douglas SL, Tate JM, Sham S, Lloyd SG. Impact of high-fat, low-carbohydrate diet on myocardial substrate oxidation, insulin sensitivity, and cardiac function after ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2016; 311:H1-H10. [PMID: 27199129 PMCID: PMC4967196 DOI: 10.1152/ajpheart.00809.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 05/02/2016] [Indexed: 01/10/2023]
Abstract
High-fat, low-carbohydrate Diet (HFLCD) impairs the myocardial response to ischemia-reperfusion, but the underlying mechanisms remain elusive. We sought to determine the magnitude of diet-induced alterations in intrinsic properties of the myocardium (including insulin sensitivity and substrate oxidation) and circulating substrate and insulin differences resulting from diet, leading to this impaired response. Rats were fed HFLCD (60% kcal from fat/30% protein/10% carbohydrate) or control diet (CONT) (16%/19%/65%) for 2 wk. Isolated hearts underwent global low-flow ischemia followed by reperfusion (I/R). Carbon-13 NMR spectroscopy was used to determine myocardial substrate TCA cycle entry. Myocardial insulin sensitivity was assessed as dose-response of Akt phosphorylation. There was a significant effect of HFLCD and I/R with both these factors leading to an increase in free fatty acid (FFA) oxidation and a decrease in carbohydrate or ketone oxidation. Following I/R, HFLCD led to decreased ketone and increased FFA oxidation; the recovery of left ventricular (LV) function was decreased in HFLCD and was negatively correlated with FFA oxidation and positively associated with ketone oxidation. HFLCD also resulted in reduced insulin sensitivity. Under physiologic ranges, there were no direct effects of buffer insulin and ketone levels on oxidation of any substrate and recovery of cardiac function after I/R. An insulin-ketone interaction exists for myocardial substrate oxidation characteristics. We conclude that the impaired recovery of function after ischemia-reperfusion with HFLCD is largely due to intrinsic diet effects on myocardial properties, rather than to diet effect on circulating insulin or substrate levels.
Collapse
Affiliation(s)
- Jian Liu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Peipei Wang
- Cardiovascular Research Institute, National University Health System, National University of Singapore, Singapore; and
| | - Samuel L Douglas
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joshua M Tate
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Simon Sham
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Steven G Lloyd
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Birmingham VA Medical Center, Birmingham, Alabama
| |
Collapse
|
34
|
Chen K, Li J, Chen K, Hou X, Mai H, Xue X. The Mechanism of <i>Cornus officinalis</i> Total Glycosides and Cornus Polysaccharide on Myocardial Protection in Rats with Acute Myocardial Infarction. Chin Med 2016. [DOI: 10.4236/cm.2016.72007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Bogdański P, Suliburska J, Szulińska M, Sikora M, Walkowiak J, Jakubowski H. L-Arginine and vitamin C attenuate pro-atherogenic effects of high-fat diet on biomarkers of endothelial dysfunction in rats. Biomed Pharmacother 2015; 76:100-6. [PMID: 26653556 DOI: 10.1016/j.biopha.2015.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 12/26/2022] Open
Abstract
High-fat diet (HFD) is known to cause endothelial dysfunction and contribute to atherosclerosis progression. The objective of this study was to evaluate the efficacy of L-arginine (L-Arg) and vitamin C supplementation as a potentially useful strategy for modulation of serum homocysteine (Hcy) levels, tumor necrosis factor alpha (TNF-α), oxidative stress, and insulin resistance induced by HFD in rats. Six weeks-old female and male Wistar rats were divided into five groups of twelve rats each and treated for six weeks with: group 1, standard diet; group 2, HFD; group 3, HFD supplemented with L-Arg (20g/kg diet); group 4, HFD supplemented with L-Arg (20g/kg diet) plus vitamin C (100mg/kg diet); group 5, HFD supplemented with vitamin C (100mg/kg diet). HFD significantly elevated TNF-α, reduced total antioxidant status (TAS), and increased insulin resistance (HOMA-IR). Significant increases of total cholesterol (TCH), LDL cholesterol (LDL), triglyceride (TG) and a decrease of HDL cholesterol (HDL) were observed in HFD rats. Supplementation with l-Arg prevented the decrease of TAS and the increases in HOMA-IR, LDL, and TG levels. Moreover, Hcy and TNF-α levels were reduced in L-Arg supplemented group. Supplementation with vitamin C significantly atenuated TAS decrease and lowered LDL levels. L-Arg plus vitamin C enhanced L-Arg effect on TAS and protected against TNF-α increase. Western blot analysis showed that l-Arg supplementation of HFD rats reduced the level of protein carbonyls. Taken together, these findings indicate that supplemental l-arginine and/or vitamin C, by their abilities to modulate biomarkers of HFD-induced endothelial dysfunction, are anti-atherogenic.
Collapse
Affiliation(s)
- Paweł Bogdański
- Department of Education and Obesity Treatment and Metabolic Disorders, Poznan University of Medical Sciences, Szamarzewskiego 84 Str., 60-569 Poznan, Poland
| | - Joanna Suliburska
- Department of Human Nutrition and Hygiene, Poznan University of Life Sciences, Wojska Polskiego 31 Str., 60-624 Poznan, Poland
| | - Monika Szulińska
- Department of Education and Obesity Treatment and Metabolic Disorders, Poznan University of Medical Sciences, Szamarzewskiego 84 Str., 60-569 Poznan, Poland
| | - Marta Sikora
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Piotrowo 1 Str., 61-138 Poznan, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, University of Medical Sciences, Szpitalna 27/33 Str., 60-572 Poznan, Poland
| | - Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, University of Life Sciences, Dojazd 11 Str., 60-632 Poznan, Poland; Institute of Bioorganic Chemistry, Noskowskiego 12/14 Str., 61-704 Poznan, Poland; Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers University, New Jersey Medical School, International Center for Public Health, Newark, NJ 07103-3535, USA.
| |
Collapse
|
36
|
Sá FGDSD, Lima-Leopoldo AP, Jacobsen BB, Ferron AJT, Estevam WM, Campos DHS, Castardeli E, Cunha MRHD, Cicogna AC, Leopoldo AS. Obesity Resistance Promotes Mild Contractile Dysfunction Associated with Intracellular Ca2+ Handling. Arq Bras Cardiol 2015; 105:588-96. [PMID: 26761369 PMCID: PMC4693663 DOI: 10.5935/abc.20150134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/28/2015] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Diet-induced obesity is frequently used to demonstrate cardiac dysfunction. However, some rats, like humans, are susceptible to developing an obesity phenotype, whereas others are resistant to that. OBJECTIVE To evaluate the association between obesity resistance and cardiac function, and the impact of obesity resistance on calcium handling. METHODS Thirty-day-old male Wistar rats were distributed into two groups, each with 54 animals: control (C; standard diet) and obese (four palatable high-fat diets) for 15 weeks. After the experimental protocol, rats consuming the high-fat diets were classified according to the adiposity index and subdivided into obesity-prone (OP) and obesity-resistant (OR). Nutritional profile, comorbidities, and cardiac remodeling were evaluated. Cardiac function was assessed by papillary muscle evaluation at baseline and after inotropic maneuvers. RESULTS The high-fat diets promoted increase in body fat and adiposity index in OP rats compared with C and OR rats. Glucose, lipid, and blood pressure profiles remained unchanged in OR rats. In addition, the total heart weight and the weight of the left and right ventricles in OR rats were lower than those in OP rats, but similar to those in C rats. Baseline cardiac muscle data were similar in all rats, but myocardial responsiveness to a post-rest contraction stimulus was compromised in OP and OR rats compared with C rats. CONCLUSION Obesity resistance promoted specific changes in the contraction phase without changes in the relaxation phase. This mild abnormality may be related to intracellular Ca2+ handling.
Collapse
Affiliation(s)
| | - Ana Paula Lima-Leopoldo
- Departamento de Desportos, Centro de Educação Física e Desportos, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Bruno Barcellos Jacobsen
- Departamento de Desportos, Centro de Educação Física e Desportos, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Artur Junio Togneri Ferron
- Departamento de Desportos, Centro de Educação Física e Desportos, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Wagner Muller Estevam
- Departamento de Desportos, Centro de Educação Física e Desportos, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Dijon Henrique Salomé Campos
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Edson Castardeli
- Departamento de Desportos, Centro de Educação Física e Desportos, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Márcia Regina Holanda da Cunha
- Departamento de Desportos, Centro de Educação Física e Desportos, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Antonio Carlos Cicogna
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - André Soares Leopoldo
- Departamento de Desportos, Centro de Educação Física e Desportos, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| |
Collapse
|
37
|
Impact of Diet-Induced Obesity and Testosterone Deficiency on the Cardiovascular System: A Novel Rodent Model Representative of Males with Testosterone-Deficient Metabolic Syndrome (TDMetS). PLoS One 2015; 10:e0138019. [PMID: 26366723 PMCID: PMC4569473 DOI: 10.1371/journal.pone.0138019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/24/2015] [Indexed: 01/23/2023] Open
Abstract
INTRODUCTION Current models of obesity utilise normogonadic animals and neglect the strong relationships between obesity-associated metabolic syndrome (MetS) and male testosterone deficiency (TD). The joint presentation of these conditions has complex implications for the cardiovascular system that are not well understood. We have characterised and investigated three models in male rats: one of diet-induced obesity with the MetS; a second using orchiectomised rats mimicking TD; and a third combining MetS with TD which we propose is representative of males with testosterone deficiency and the metabolic syndrome (TDMetS). METHODS Male Wistar rats (n = 24) were randomly assigned to two groups and provided ad libitum access to normal rat chow (CTRL) or a high fat/high sugar/low protein "obesogenic" diet (OGD) for 28 weeks (n = 12/group). These groups were further sub-divided into sham-operated or orchiectomised (ORX) animals to mimic hypogonadism, with and without diet-induced obesity (n = 6/group). Serum lipids, glucose, insulin and sex hormone concentrations were determined. Body composition, cardiovascular structure and function; and myocardial tolerance to ischemia-reperfusion were assessed. RESULTS OGD-fed animals had 72% greater fat mass; 2.4-fold greater serum cholesterol; 2.3-fold greater serum triglycerides and 3-fold greater fasting glucose (indicative of diabetes mellitus) compared to CTRLs (all p<0.05). The ORX animals had reduced serum testosterone and left ventricle mass (p<0.05). In addition to the combined differences observed in each of the isolated models, the OGD, ORX and OGD+ORX models each had greater CK-MB levels following in vivo cardiac ischemia-reperfusion insult compared to CTRLs (p<0.05). CONCLUSION Our findings provide evidence to support that the MetS and TD independently impair myocardial tolerance to ischemia-reperfusion. The combined OGD+ORX phenotype described in this study is a novel animal model with associated cardiovascular risk factors and complex myocardial pathology which may be representative of male patients presenting with TDMetS.
Collapse
|
38
|
Roles of obese-insulin resistance and anti-diabetic drugs on the heart with ischemia-reperfusion injury. Cardiovasc Drugs Ther 2015; 28:549-62. [PMID: 25283086 DOI: 10.1007/s10557-014-6553-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The incidence of obesity with insulin resistance is increasing worldwide. This condition is also known as a risk factor of coronary artery disease and associated with increased arrhythmias, impaired left ventricular function, and increased infarct size during cardiac ischemia-reperfusion (I/R) injury. The proposed mechanisms are due to impaired glucose utilization and pro-survival signaling molecules, and increased inflammatory cytokines, which have been demonstrated in the I/R hearts in various models of obese-insulin resistance. However, the cardiac effects of diets in the I/R heart are still unsettled since several studies reported that high-caloric diet consumption might protect the heart from I/R injury. Although several therapeutic strategies such as anti-diabetic drugs, natural compounds as well as treadmill exercise have been proposed to exert cardioprotection in the I/R heart in obese-insulin resistant animals, some interventions including ischemic post-conditioning failed to protect the heart from I/R injury. In this comprehensive review, reports from both genetic deletion and dietary-induced obese-insulin resistant animal models regarding the effects of obese-insulin resistance on metabolic parameters, cardiac function, infarct size, and molecular mechanisms under I/R injury are summarized. Moreover, the effects of anti-diabetic drugs and other pharmacological interventions on these parameters in an obese-insulin resistant model under I/R injury are also comprehensively summarized and discussed.
Collapse
|
39
|
Obesity induced by high fat diet attenuates postinfarct myocardial remodeling and dysfunction in adult B6D2F1 mice. J Mol Cell Cardiol 2015; 84:154-61. [PMID: 25953257 DOI: 10.1016/j.yjmcc.2015.04.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 01/09/2023]
Abstract
Obesity is a major risk factor for cardiovascular morbidity and mortality. However, some studies suggest that among patients with established cardiovascular disease, obesity is associated with better prognosis, a phenomenon described as the obesity paradox. In this study we tested the hypothesis that obesity with hyperinsulinemia and without hyperglycemia attenuates the impact of transient coronary occlusion on left ventricular remodeling and function. B6D2F1 mice from both genders fed with a high fat diet (HFD) or control diet for 6 months were subjected to 45 min of coronary occlusion and 28 days of reperfusion. Left ventricular dimensions and function were assessed by serial echocardiography, and infarct size was determined by Picrosirius red staining. HFD mice developed obesity with hypercholesterolemia and hyperinsulinemia in the absence of hyperglycemia or hypertension. During the period of feeding, no changes were observed in ventricular mass, volume or function, or in vascular reactivity. HFD attenuated the consequences of transient coronary occlusion as shown by a marked reduction in infarct size (51%, P = 0.021) and cardiac dilation, as well as improved left ventricular function as compared to control diet animals. These effects were associated with enhanced reperfusion injury salvage kinases (RISK) pathway function in HFD hearts shown as increased Akt and GSK3β phosphorylation. These results demonstrate that dietary obesity without hyperglycemia or hypertension attenuates the impact of ischemia/reperfusion injury in association with increased insulin signaling and RISK activation. This study provides experimental support to the controversial concept of the obesity paradox in humans.
Collapse
|
40
|
Littlejohns B, Lin H, Angelini GD, Halestrap AP, Suleiman MS. Switching back to normal diet following high-fat diet feeding reduces cardiac vulnerability to ischaemia and reperfusion injury. Cell Physiol Biochem 2014; 34:1090-100. [PMID: 25228294 PMCID: PMC4464011 DOI: 10.1159/000366323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2014] [Indexed: 02/01/2023] Open
Abstract
Background We have recently shown that hearts of mice fed high-fat diet exhibit increased vulnerability to ischaemia and reperfusion (I/R) in parallel to changes in catalase protein expression, mitochondrial morphology and intracellular diastolic Ca2+. Aims To determine whether switching from high-fat back to normal diet alters vulnerability to I/R and to investigate cardiac cellular remodelling in relation to the mechanism(s) underlying I/R injury. Methods and Results Male C57BL/6J mice were fed a high-fat diet for 19-22 weeks; after which a subset of mice was switched back to normal diet for 4-6 weeks. Hearts from mice switched back to normal diet were more resistant to reperfusion injury compared to hearts from mice fed only high-fat diet. This was associated with a significant reversal in catalase expression (western blotting) and recovery of size and density of mitochondria (electron microscopy). In contrast, switching back to normal diet did not alter cardiomyocyte contractility or Ca2+ transients compared to high-fat diet. Conclusion This study shows for the first time that switching the diet from high-fat back to normal reduces vulnerability to I/R. This effect is associated with changes in catalase levels and mitochondrial morphology without altering cardiomyocyte contractility or Ca2+ transients.
Collapse
Affiliation(s)
- Ben Littlejohns
- Bristol Heart Institute, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | | | | | | | | |
Collapse
|
41
|
Cheon SH, Yan BC, Chen BH, Park JH, Ahn JH, Kim IH, Lee JC, Park YS, Kim MJ, Lee YL, Cho JH, Won MH. Accelerated and exacerbated effects of high dietary fat on neuronal damage induced by transient cerebral ischemia in the gerbil septum. Endocrinol Metab (Seoul) 2014; 29:328-35. [PMID: 25309792 PMCID: PMC4192808 DOI: 10.3803/enm.2014.29.3.328] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 12/14/2013] [Accepted: 01/07/2014] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Obesity induced by high-fat diet (HFD) is one of the most widespread metabolic disorders in current society. However, there has been little research regarding the effects of HFD-induced obesity in the septa of animal models of cerebral ischemia. Therefore, in the present study, we investigated septal effects of HFD on neuronal damage and gliosis induced by transient cerebral ischemia. METHODS Body weight, blood glucose levels and serum lipid profiles levels were measured both in the normal diet (ND) and HFD-group. We also investigated the effects of ND and HFD on neuronal damage and gliosis in the septum after transient cerebral ischemia using immunohistochemistry. RESULTS The levels of blood glucose, serum triglyceride, and total cholesterol were significantly increased in the HFD-fed gerbils compared with the ND-fed gerbils, although body weight was not significantly changed after HFD feeding. In the ND-fed gerbils, ischemia-induced neuronal damage was found in the septohippocampal nucleus (SHN) of the septum 7 days after ischemia. In the HFD-fed gerbils, ischemia-induced neuronal damage in the SHN was much more severe compared with that of the ND-fed gerbils 4 and 7 days after ischemia. In addition, we found that ischemia-induced glial activation including astrocytes and microglia was accelerated and exacerbated in the HFD-fed gerbils compared with that in the ND-fed gerbils. CONCLUSION These results indicate that HFD can lead to much more severe effects in ischemia-induced neuronal damage/death in the septum after ischemia-reperfusion, and that it may be associated with accelerated change in glial activation.
Collapse
Affiliation(s)
- Seung Hwan Cheon
- Department of Emergency Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Bing Chun Yan
- Department of Integrative Traditional & Western Medicine, Yangzhou University Medical College, Yangzhou, China
| | - Bai Hui Chen
- Department of Physiology and Institute of Neurodegeneration and Neuroregeneration, Hallym University College of Medicine, Chuncheon, Korea
| | - Joon Ha Park
- Department of Neurobiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - In Hye Kim
- Department of Neurobiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Jae-Chul Lee
- Department of Neurobiology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Yoo Seok Park
- Department of Emergency Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Min Joung Kim
- Department of Emergency Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yun Lyul Lee
- Department of Physiology and Institute of Neurodegeneration and Neuroregeneration, Hallym University College of Medicine, Chuncheon, Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Moo-Ho Won
- Department of Neurobiology, Kangwon National University School of Medicine, Chuncheon, Korea
| |
Collapse
|
42
|
Littlejohns B, Pasdois P, Duggan S, Bond AR, Heesom K, Jackson CL, Angelini GD, Halestrap AP, Suleiman MS. Hearts from mice fed a non-obesogenic high-fat diet exhibit changes in their oxidative state, calcium and mitochondria in parallel with increased susceptibility to reperfusion injury. PLoS One 2014; 9:e100579. [PMID: 24950187 PMCID: PMC4065057 DOI: 10.1371/journal.pone.0100579] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/26/2014] [Indexed: 11/20/2022] Open
Abstract
Rationale High-fat diet with obesity-associated co-morbidities triggers cardiac remodeling and renders the heart more vulnerable to ischemia/reperfusion injury. However, the effect of high-fat diet without obesity and associated co-morbidities is presently unknown. Objectives To characterize a non-obese mouse model of high-fat diet, assess the vulnerability of hearts to reperfusion injury and to investigate cardiac cellular remodeling in relation to the mechanism(s) underlying reperfusion injury. Methods and Results Feeding C57BL/6J male mice high-fat diet for 20 weeks did not induce obesity, diabetes, cardiac hypertrophy, cardiac dysfunction, atherosclerosis or cardiac apoptosis. However, isolated perfused hearts from mice fed high-fat diet were more vulnerable to reperfusion injury than those from mice fed normal diet. In isolated cardiomyocytes, high-fat diet was associated with higher diastolic intracellular Ca2+ concentration and greater damage to isolated cardiomyocytes following simulated ischemia/reperfusion. High-fat diet was also associated with changes in mitochondrial morphology and expression of some related proteins but not mitochondrial respiration or reactive oxygen species turnover rates. Proteomics, western blot and high-performance liquid chromatography techniques revealed that high-fat diet led to less cardiac oxidative stress, higher catalase expression and significant changes in expression of putative components of the mitochondrial permeability transition pore (mPTP). Inhibition of the mPTP conferred relatively more cardio-protection in the high-fat fed mice compared to normal diet. Conclusions This study shows for the first time that high-fat diet, independent of obesity-induced co-morbidities, triggers changes in cardiac oxidative state, calcium handling and mitochondria which are likely to be responsible for increased vulnerability to cardiac insults.
Collapse
Affiliation(s)
- Ben Littlejohns
- Bristol Heart Institute, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, United Kingdom
| | - Philippe Pasdois
- Bioénergétique et Métabolisme, Institut de Rythmologie et Modélisation Cardiaque, Université de Bordeaux, Pessac, France
| | - Simon Duggan
- Oxford Heart Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Andrew R. Bond
- Bristol Heart Institute, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, United Kingdom
| | - Kate Heesom
- Proteomics Facility, Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - Christopher L. Jackson
- Bristol Heart Institute, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, United Kingdom
| | - Gianni D. Angelini
- Bristol Heart Institute, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, United Kingdom
| | - Andrew P. Halestrap
- School of Biochemistry, Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - M.-Saadeh Suleiman
- Bristol Heart Institute, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Liu J, Wang P, Zou L, Qu J, Litovsky S, Umeda P, Zhou L, Chatham J, Marsh SA, Dell'Italia LJ, Lloyd SG. High-fat, low-carbohydrate diet promotes arrhythmic death and increases myocardial ischemia-reperfusion injury in rats. Am J Physiol Heart Circ Physiol 2014; 307:H598-608. [PMID: 24929857 DOI: 10.1152/ajpheart.00058.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
High-fat, low-carbohydrate diets (HFLCD) are often eaten by humans for a variety of reasons, but the effects of such diets on the heart are incompletely understood. We evaluated the impact of HFLCD on myocardial ischemia/reperfusion (I/R) using an in vivo model of left anterior descending coronary artery ligation. Sprague-Dawley rats (300 g) were fed HFLCD (60% calories fat, 30% protein, 10% carbohydrate) or control (CONT; 16% fat, 19% protein, 65% carbohydrate) diet for 2 wk and then underwent open chest I/R. At baseline (preischemia), diet did not affect left ventricular (LV) systolic and diastolic function. Oil red O staining revealed presence of lipid in the heart with HFLCD but not in CONT. Following I/R, recovery of LV function was decreased in HFLCD. HFLCD hearts exhibited decreased ATP synthase and increased uncoupling protein-3 gene and protein expression. HFLCD downregulated mitochondrial fusion proteins and upregulated fission proteins and store-operated Ca(2+) channel proteins. HFLCD led to increased death during I/R; 6 of 22 CONT rats and 16 of 26 HFLCD rats died due to ventricular arrhythmias and hemodynamic shock. In surviving rats, HFLCD led to larger infarct size. We concluded that in vivo HFLCD does not affect nonischemic LV function but leads to greater myocardial injury during I/R, with increased risk of death by pump failure and ventricular arrhythmias, which might be associated with altered cardiac energetics, mitochondrial fission/fusion dynamics, and store-operated Ca(2+) channel expression.
Collapse
Affiliation(s)
| | - Peipei Wang
- Cardiovascular Research Institute, National University Health System, National University of Singapore, Singapore, Singapore
| | - Luyun Zou
- Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Silvio Litovsky
- Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - John Chatham
- Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Susan A Marsh
- Department of Clinical Pharmacology, Washington State University, Pullman, Washington
| | - Louis J Dell'Italia
- Departments of Medicine and Birmingham VA Medical Center, Birmingham, Alabama
| | - Steven G Lloyd
- Departments of Medicine and Birmingham VA Medical Center, Birmingham, Alabama
| |
Collapse
|
44
|
Li YG, Zhu W, Tao JP, Xin P, Liu MY, Li JB, Wei M. Resveratrol protects cardiomyocytes from oxidative stress through SIRT1 and mitochondrial biogenesis signaling pathways. Biochem Biophys Res Commun 2013; 438:270-6. [PMID: 23891692 DOI: 10.1016/j.bbrc.2013.07.042] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/12/2013] [Indexed: 11/26/2022]
Abstract
Reactive oxygen species (ROS) is generated by oxidative stress and plays an important role in various cardiac pathologies. The SIRT1 signaling pathway and mitochondrial biogenesis play essential roles in mediating the production of ROS. SIRT1 activated by resveratrol protects cardiomyocytes from oxidative stress, but the exact mechanisms by which SIRT1 prevents oxidative stress, and its relationship with mitochondrial biogenesis, remain unclear. In this study, it was observed that after stimulation with 50μMH2O2 for 6h, H9C2 cells produced excessive ROS and downregulated SIRT1. The mitochondrial protein NDUFA13 was also downregulated by ROS mediated by SIRT1. Resveratrol induced the expression of SIRT1 and mitochondrial genes NDUFA1, NDUFA2, NDUFA13 and Mn-SOD. However, the production of these genes was reversed by SIRT1 inhibitor nicotinamide. These results suggest that resveratrol inhibits ROS generation in cardiomyocytes via SIRT1 and mitochondrial biogenesis signaling pathways.
Collapse
Affiliation(s)
- Yong-guang Li
- Division of Cardiology, Shanghai Sixth Hospital, Shanghai Jiao Tong University, School of Medicine, State Key Discipline Division, 600 Yishan Rd., Shanghai 200233, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|