1
|
Higuchi Y, Teo JL, Yi D, Kahn M. Safely Targeting Cancer, the Wound That Never Heals, Utilizing CBP/Beta-Catenin Antagonists. Cancers (Basel) 2025; 17:1503. [PMID: 40361430 PMCID: PMC12071182 DOI: 10.3390/cancers17091503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Stem cells, both normal somatic (SSC) and cancer stem cells (CSC) exist in minimally two states, i.e., quiescent and activated. Regulation of these two states, including their reliance on different metabolic processes, i.e., FAO and glycolysis in quiescent versus activated stem cells respectively, involves the analysis of a complex array of factors (nutrient and oxygen levels, adhesion molecules, cytokines, etc.) to initiate the epigenetic changes to either depart or enter quiescence. Quiescence is a critical feature of SSC that is required to maintain the genomic integrity of the stem cell pool, particularly in long lived complex organisms. Quiescence in CSC, whether they are derived from mutations arising in SSC, aberrant microenvironmental regulation, or via dedifferentiation of more committed progenitors, is a critical component of therapy resistance and disease latency and relapse. At the beginning of vertebrate evolution, approximately 450 million years ago, a gene duplication generated the two members of the Kat3 family, CREBBP (CBP) and EP300 (p300). Despite their very high degree of homology, these two Kat3 coactivators play critical and non-redundant roles at enhancers and super-enhancers via acetylation of H3K27, thereby controlling stem cell quiescence versus activation and the cells metabolic requirements. In this review/perspective, we discuss the unique regulatory roles of CBP and p300 and how specifically targeting the CBP/β-catenin interaction utilizing small molecule antagonists, can correct lineage infidelity and safely eliminate quiescent CSC.
Collapse
Affiliation(s)
- Yusuke Higuchi
- Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Jia-Ling Teo
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.-L.T.); (D.Y.)
| | - Daniel Yi
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.-L.T.); (D.Y.)
| | - Michael Kahn
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.-L.T.); (D.Y.)
| |
Collapse
|
2
|
Mousavi SM, Jalali-Zefrei F, Shourmij M, Tabaghi S, Davari A, Khalili SB, Farzipour S, Salari A. Targeting Wnt Pathways with Small Molecules as New Approach in Cardiovascular Disease. Curr Cardiol Rev 2025; 21:108-122. [PMID: 39482911 PMCID: PMC12060913 DOI: 10.2174/011573403x333038241023153349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
The increasing incidences of morbidity and mortality associated with cardiovascular diseases represent significant difficulties for clinical treatment and have a major impact on patient health. Wnt signaling pathways are highly conserved and are well known for their regulatory roles in embryonic development, tissue regeneration, and adult tissue homeostasis. Wnt signaling is classified into two distinct pathways: canonical Wnt/β-catenin signaling and noncanonical pathways, including planar cell polarity and Wnt/Ca2+ pathways. A growing body of experimental evidence suggests the involvement of both canonical and non-canonical Wnt signaling pathways in the development of cardiovascular diseases, including myocardial hypertrophy, arrhythmias, diabetic cardiomyopathy, arrhythmogenic cardiomyopathy, and myocardial infarction. Thus, to enhance patient quality of life, diagnosing and treating cardiac illnesses may require a thorough understanding of the molecular functions played by the Wnt pathway in these disorders. Many small-molecule inhibitors specifically target various components within the Wnt signaling pathways, such as Frizzled, Disheveled, Porcupine, and Tankyrase. This study aims to present an overview of the latest findings regarding the functions of Wnt signaling in human cardiac disorders and possible inhibitors of Wnt, which could lead to novel approaches for treating cardiac ailments.
Collapse
Affiliation(s)
- Seyed Mehdi Mousavi
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Jalali-Zefrei
- Department of radiology, Faculty of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Mohammad Shourmij
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Shiva Tabaghi
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Davari
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeed Bahador Khalili
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Soghra Farzipour
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Arsalan Salari
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
3
|
Todosenko N, Yurova K, Vulf M, Khaziakhmatova O, Litvinova L. Prohibitions in the meta-inflammatory response: a review. Front Mol Biosci 2024; 11:1322687. [PMID: 38813101 PMCID: PMC11133639 DOI: 10.3389/fmolb.2024.1322687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Prohibitins are the central regulatory element of cellular homeostasis, especially by modulating the response at different levels: Nucleus, mitochondria and membranes. Their localization and interaction with various proteins, homons, transcription and nuclear factors, and mtDNA indicate the globality and complexity of their pleiotropic properties, which remain to be investigated. A more detailed deciphering of cellular metabolism in relation to prohibitins under normal conditions and in various metabolic diseases will allow us to understand the precise role of prohibitins in the signaling cascades of PI3K/Akt, Raf/MAP/ERK, STAT3, p53, and others and to fathom their mutual influence. A valuable research perspective is to investigate the role of prohibitins in the molecular and cellular interactions between the two major players in the pathogenesis of obesity-adipocytes and macrophages - that form the basis of the meta-inflammatory response. Investigating the subtle intercellular communication and molecular cascades triggered in these cells will allow us to propose new therapeutic strategies to eliminate persistent inflammation, taking into account novel molecular genetic approaches to activate/inactivate prohibitins.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
4
|
Mokhtari Ardekani A, Kharazinejad E, Ghasemi E, Ghasemi H, Soltani R. Circulating afamin positively correlated with the miR-122 expression and type 2 diabetes mellitus-related phenotype according to the duration of diabetes. Heliyon 2024; 10:e28053. [PMID: 38560140 PMCID: PMC10979149 DOI: 10.1016/j.heliyon.2024.e28053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Background Afamin is a hepatokine that involves in glucose and lipids metabolism. miR-122 is mainly expressed in liver and involves in lipid and carbohydrate metabolism. This study aimed at investigating the circulating afamin, its correlation with type 2 diabetes mellitus (T2DM) and miR-122 gene expression in T2DM patients and healthy control subjects according to the duration of diabetes. Methods This case-control study included 220 participants, with 100 individuals serving as controls and 120 individuals diagnosed with type 2 diabetes mellitus (T2DM). The miR-122 gene expression was assessed using real-time PCR. The serum concentration of biochemical parameters such as glucose levels, lipid profile, and small-dense low-density lipoprotein (sdLDL) were measured using colorimetric kits. Circulating afamin and insulin levels were assayed using an ELISA kit. Glycated hemoglobin (HbA1c) was measured using capillary electrophoresis. Results Circulating afamin level was significantly higher in T2DM patients compared to the control group, (73.8 ± 10.8 vs. 65.9 ± 8.7, respectively; P < 0.001). Similarly, miR122 expression was significantly increased in T2DM patients compared to healthy control subjects (4.24 ± 2.01 vs. 1.00 ± 0.85, respectively; P < 0.001). Among patients diagnosed with T2DM, those with longstanding diabetes (>5 years) exhibited significantly higher levels of circulating afamin and miR-122 expression compared to individuals with a shorter duration of diabetes (≤5 years) (P < 0.05). Circulating afamin levels were significantly correlated with waist circumference, small-dense low-density lipoprotein (sdLDL), fasting blood sugar (FBS), insulin, resistance to insulin, and miR-122 expression, depending on the duration of the disease (P < 0.05). Furthermore, the performance of afamin as a diagnostic marker for T2DM was confirmed through receiver operating characteristic (ROC) analysis, yielding an area under the curve (AUC) of 0.7 (P < 0.001). Conclusions Circulating afamin involved in the T2DM-related complications and its concentration is positively correlated to the miR-122 expression, especially in patient with longstanding diabetes.
Collapse
Affiliation(s)
- Abnoos Mokhtari Ardekani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Science & Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | | | - Rahmatollah Soltani
- Clinical Education Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Bakhtiarizadeh MR. Deciphering the role of alternative splicing as a potential regulator in fat-tail development of sheep: a comprehensive RNA-seq based study. Sci Rep 2024; 14:2361. [PMID: 38287039 PMCID: PMC10825154 DOI: 10.1038/s41598-024-52855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
Although research on alternative splicing (AS) has been widely conducted in mammals, no study has investigated the splicing profiles of genes involved in fat-tail formation in sheep. Here, for the first time, a comprehensive study was designed to investigate the profile of AS events and their involvement in fat-tail development of sheep. In total, 45 RNA-Seq samples related to seven different studies, which have compared the fat-tailed vs thin-tailed sheep breeds, were analyzed. Two independent tools, rMATS and Whippet, along with a set of stringent filters were applied to identify differential AS (DAS) events between the breeds per each study. Only DAS events that were detected by both tools as well as in at least three datasets with the same ΔPSI trend (percent spliced in), were considered as the final high-confidence set of DAS genes. Final results revealed 130 DAS skipped exon events (69 negative and 61 positive ΔPSI) belonged to 124 genes. Functional enrichment analysis highlighted the importance of the genes in the underlying molecular mechanisms of fat metabolism. Moreover, protein-protein interaction network analysis revealed that DAS genes are significantly connected. Of DAS genes, five transcription factors were found that were enriched in the biological process associated with lipid metabolism like "Fat Cell Differentiation". Further investigations of the findings along with a comprehensive literature review provided a reliable list of candidate genes that may potentially contribute to fat-tail formation including HSD11B1, SIRT2, STRN3 and TCF7L2. Based on the results, it can be stated that the AS patterns may have evolved, during the evolution of sheep breeds, as another layer of regulation to contribute to biological complexity by reprogramming the gene regulatory networks. This study provided the theoretical basis of the molecular mechanisms behind the sheep fat-tail development in terms of AS.
Collapse
|
6
|
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, Tian Y, Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm (Beijing) 2023; 4:e283. [PMID: 37303813 PMCID: PMC10248034 DOI: 10.1002/mco2.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic metabolic disorders worldwide and is a strong contributor for a broad range of comorbidities, including vascular, visual, neurological, kidney, and liver diseases. Moreover, recent data suggest a mutual interplay between T2DM and Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resistance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout the past few decades have established notable links between signaling pathways and T2DM pathogenesis and therapy. Importantly, a number of signaling pathways substantially control the advancement of core pathological changes in T2DM, including IR and β cell dysfunction, as well as additional pathogenic disturbances. Accordingly, an improved understanding of these signaling pathways sheds light on tractable targets and strategies for developing and repurposing critical therapies to treat T2DM and its complications. In this review, we provide a brief overview of the history of T2DM and signaling pathways, and offer a systematic update on the role and mechanism of key signaling pathways underlying the onset, development, and progression of T2DM. In this content, we also summarize current therapeutic drugs/agents associated with signaling pathways for the treatment of T2DM and its complications, and discuss some implications and directions to the future of this field.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Huimin Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Zhang
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Geng Liu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Haixia Xu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Guocheng Rao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Xianghui Fu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
7
|
Xie XM, Cao QL, Sun YJ, Zhang J, Liu KL, Qin YF, Long WJ, Luo ZJ, Li XW, Liang XH, Yuan GD, Luo XP, Xuan XP. LRP6 Bidirectionally Regulates Insulin Sensitivity through Insulin Receptor and S6K Signaling in Rats with CG-IUGR. Curr Med Sci 2023; 43:274-283. [PMID: 36913109 DOI: 10.1007/s11596-022-2683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 10/27/2022] [Indexed: 03/14/2023]
Abstract
OBJECTIVE Intrauterine growth restriction followed by postnatal catch-up growth (CG-IUGR) increases the risk of insulin resistance-related diseases. Low-density lipoprotein receptor-related protein 6 (LRP6) plays a substantial role in glucose metabolism. However, whether LRP6 is involved in the insulin resistance of CG-IUGR is unclear. This study aimed to explore the role of LRP6 in insulin signaling in response to CG-IUGR. METHODS The CG-IUGR rat model was established via a maternal gestational nutritional restriction followed by postnatal litter size reduction. The mRNA and protein expression of the components in the insulin pathway, LRP6/β-catenin and mammalian target of rapamycin (mTOR)/S6 kinase (S6K) signaling, was determined. Liver tissues were immunostained for the expression of LRP6 and β-catenin. LRP6 was overexpressed or silenced in primary hepatocytes to explore its role in insulin signaling. RESULTS Compared with the control rats, CG-IUGR rats showed higher homeostasis model assessment for insulin resistance (HOMA-IR) index and fasting insulin level, decreased insulin signaling, reduced mTOR/S6K/ insulin receptor substrate-1 (IRS-1) serine307 activity, and decreased LRP6/β-catenin in the liver tissue. The knockdown of LRP6 in hepatocytes from appropriate-for-gestational-age (AGA) rats led to reductions in insulin receptor (IR) signaling and mTOR/S6K/IRS-1 serine307 activity. In contrast, LRP6 overexpression in hepatocytes of CG-IUGR rats resulted in elevated IR signaling and mTOR/S6K/IRS-1 serine307 activity. CONCLUSION LRP6 regulated the insulin signaling in the CG-IUGR rats via two distinct pathways, IR and mTOR-S6K signaling. LRP6 may be a potential therapeutic target for insulin resistance in CG-IUGR individuals.
Collapse
Affiliation(s)
- Xue-Mei Xie
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Qiu-Li Cao
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yu-Jie Sun
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jie Zhang
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Kai-Li Liu
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Ying-Fen Qin
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Wen-Jun Long
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zuo-Jie Luo
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiao-Wei Li
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xing-Huan Liang
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Guan-Dou Yuan
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiao-Ping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiu-Ping Xuan
- Department of Endocrinology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
8
|
Ren C, Wang Q, Wang S, Zhou H, Xu M, Li H, Li Y, Chen X, Liu X. Metabolic syndrome-related prognostic index: Predicting biochemical recurrence and differentiating between cold and hot tumors in prostate cancer. Front Endocrinol (Lausanne) 2023; 14:1148117. [PMID: 37033267 PMCID: PMC10080042 DOI: 10.3389/fendo.2023.1148117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND The prostate, as an endocrine and reproductive organ, undergoes complex hormonal and metabolic changes. Recent studies have shown a potential relationship between metabolic syndrome and the progression and recurrence of prostate cancer (PCa). This study aimed to construct a metabolic syndrome-related prognostic index (MSRPI) to predict biochemical recurrence-free survival (BFS) in patients with PCa and to identify cold and hot tumors to improve individualized treatment for patients with PCa. METHODS The Cancer Genome Atlas database provided training and test data, and the Gene Expression Omnibus database provided validation data. We extracted prognostic differentially expressed metabolic syndrome-related genes (DEMSRGs) related to BFS using univariate Cox analysis and identified potential tumor subtypes by consensus clustering. The least absolute shrinkage and selection operator (LASSO) algorithm and multivariate Cox regression were used to construct the MSRPI. We further validated the predictive power of the MSRPI using KaplanMeier survival analysis and receiver operating characteristic (ROC) curves, both internally and externally. Drug sensitivity was predicted using the half-maximal inhibitory concentration (IC50). Finally, we explored the landscape of somatic mutations in the risk groups. RESULTS Forty-six prognostic DEMSRGs and two metabolic syndrome-associated molecular clusters were identified. Cluster 2 was more immunogenic. Seven metabolic syndrome-related genes (CSF3R, TMEM132A, STAB1, VIM, DUOXA1, PILRB, and SLC2A4) were used to construct risk equations. The high-risk index was significantly associated with a poor BFS, which was also validated in the validation cohort. The area under the ROC curve (AUC) for BFS at 1-, 3-, and 5- year in the entire cohort was 0.819, 0.785, and 0.772, respectively, demonstrating the excellent predictive power of the MSRPI. Additionally, the MSRPI was found to be an independent prognostic factor for BFS in PCa. More importantly, MSRPI helped differentiate between cold and hot tumors. Hot tumors were associated with the high-risk group. Multiple drugs demonstrated significantly lower IC50 values in the high-risk group, offering the prospect of precision therapy for patients with PCa. CONCLUSION The MSRPI developed in this study was able to predict biochemical recurrence in patients with PCa and identify cold and hot tumors. MSRPI has the potential to improve personalized precision treatment.
Collapse
Affiliation(s)
- Congzhe Ren
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qihua Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shangren Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hang Zhou
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mingming Xu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hu Li
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Urology, Shanxian Central Hospital (Affiliated Huxi Hospital of Jining Medical University), Heze, China
| | - Yuezheng Li
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiangyu Chen
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Xiaoqiang Liu,
| |
Collapse
|
9
|
Yang Z, Huang X, Zhang J, You K, Xiong Y, Fang J, Getachew A, Cheng Z, Yu X, Wang Y, Wu F, Wang N, Feng S, Lin X, Yang F, Chen Y, Wei H, Li YX. Hepatic DKK1-driven steatosis is CD36 dependent. Life Sci Alliance 2023; 6:e202201665. [PMID: 36410795 PMCID: PMC9679335 DOI: 10.26508/lsa.202201665] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is prevalent worldwide; about 25% of NAFLD silently progress into steatohepatitis, in which some of them may develop into fibrosis, cirrhosis and liver failure. However, few drugs are available for NAFLD, partly because of an incomplete understanding of its pathogenic mechanisms. Here, using in vivo and in vitro gain- and loss-of-function approaches, we identified up-regulated DKK1 plays a pivotal role in high-fat diet-induced NAFLD and its progression. Mechanistic analysis reveals that DKK1 enhances the capacity of hepatocytes to uptake fatty acids through the ERK-PPARγ-CD36 axis. Moreover, DKK1 increased insulin resistance by activating the JNK signaling, which in turn exacerbates disorders of hepatic lipid metabolism. Our finding suggests that DKK1 may be a potential therapeutic and diagnosis candidate for NAFLD and metabolic disorder progression.
Collapse
Affiliation(s)
- Zhen Yang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinping Huang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaye Zhang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Kai You
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yue Xiong
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ji Fang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Anteneh Getachew
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ziqi Cheng
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaorui Yu
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yan Wang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Feima Wu
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ning Wang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shufen Feng
- Department of Gastroenterology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xianhua Lin
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Fan Yang
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yan Chen
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hongcheng Wei
- Department of Gastroenterology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yin-Xiong Li
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| |
Collapse
|
10
|
Akoumianakis I, Polkinghorne M, Antoniades C. Non-canonical WNT signalling in cardiovascular disease: mechanisms and therapeutic implications. Nat Rev Cardiol 2022; 19:783-797. [PMID: 35697779 PMCID: PMC9191761 DOI: 10.1038/s41569-022-00718-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 12/15/2022]
Abstract
WNT signalling comprises a diverse spectrum of receptor-mediated pathways activated by a large family of WNT ligands and influencing fundamental biological processes. WNT signalling includes the β-catenin canonical pathway and the non-canonical pathways, namely the planar cell polarity and the calcium-dependent pathways. Advances over the past decade have linked non-canonical WNT signalling with key mechanisms of atherosclerosis, including oxidative stress, endothelial dysfunction, macrophage activation and vascular smooth muscle cell phenotype regulation. In addition, non-canonical WNT signalling is involved in crucial aspects of myocardial biology, from fibrosis to hypertrophy and oxidative stress. Importantly, non-canonical WNT signalling activation has complex effects in adipose tissue in the context of obesity, thereby potentially linking metabolic and vascular diseases. Tissue-specific targeting of non-canonical WNT signalling might be associated with substantial risks of off-target tumorigenesis, challenging its therapeutic potential. However, novel technologies, such as monoclonal antibodies, recombinant decoy receptors, tissue-specific gene silencing with small interfering RNAs and gene editing with CRISPR-Cas9, might enable more efficient therapeutic targeting of WNT signalling in the cardiovascular system. In this Review, we summarize the components of non-canonical WNT signalling, their links with the main mechanisms of atherosclerosis, heart failure and arrhythmias, and the rationale for targeting individual components of non-canonical WNT signalling for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Ioannis Akoumianakis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Murray Polkinghorne
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Ballesteros M, Gil-Lluís P, Ejarque M, Diaz-Perdigones C, Martinez-Guasch L, Fernández-Veledo S, Vendrell J, Megía A. DNA Methylation in Gestational Diabetes and its Predictive Value for Postpartum Glucose Disturbances. J Clin Endocrinol Metab 2022; 107:2748-2757. [PMID: 35914803 PMCID: PMC9516049 DOI: 10.1210/clinem/dgac462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 11/21/2022]
Abstract
CONTEXT DNA methylation in the diagnosis of gestational diabetes. OBJECTIVE To assess the value of DNA methylation in the diagnosis of gestational diabetes (GDM) and in the prediction of maternal postpartum glucose disturbances. METHODS Two-stage observational study performed between July 2006 and December 2010, at University Hospital. Forty-eight randomly selected pregnant women formed the discovery cohort (24 with GDM and 24 controls) and 252 pregnant women (94 with GDM and 158 controls) formed the replication cohort. GDM women were re-evaluated 4 years postpartum. The main outcome measures were GDM, type 2 diabetes or prediabetes at 4 years postpartum. RESULTS We identified 3 CpG sites related to LINC00917, TRAPPC9, and LEF1 that were differentially methylated in women with GDM and abnormal glucose tolerance; and sites associated with LINC00917 and TRAPPC9 were independently associated with an abnormal glucose tolerance status 4 years postpartum after controlling for clinical variables. Moreover, the site associated with LINC00917 and the combination of the 3 sites had the highest predictive values. CONCLUSION Our results suggest that some of these sites may be implicated in the development of GDM and postpartum abnormal glucose tolerance.
Collapse
Affiliation(s)
- Mónica Ballesteros
- Mónica Ballesteros, Rovira i Virgili University, 43005, Tarragona, Spain.
| | - Pilar Gil-Lluís
- Department of Endocrinology and Nutrition, University Hospital of Tortosa Verge de la Cinta, Tarragona, Spain
| | - Miriam Ejarque
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition. Research Unit. University Hospital of Tarragona Joan XXIII-Institut d´Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Cristina Diaz-Perdigones
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition. Research Unit. University Hospital of Tarragona Joan XXIII-Institut d´Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Laia Martinez-Guasch
- Department of Medicine and Surgery, Rovira i Virgili University, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition. Research Unit. University Hospital of Tarragona Joan XXIII-Institut d´Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Sonia Fernández-Veledo
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition. Research Unit. University Hospital of Tarragona Joan XXIII-Institut d´Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Joan Vendrell
- Correspondence: Joan Vendrell, PhD, MD, Hospital Universitari de Tarragona Joan XXIII, Dr. Mallafre Guasch, 4, 43005 Tarragona, Spain.
| | - Ana Megía
- Ana Megia, PhD, MD, Hospital Universitari de Tarragona Joan XXIII, Dr. Mallafre Guasch, 4, 43005 Tarragona, Spain.
| |
Collapse
|
12
|
Chen S, Liu Z, Cen L, Wang J, Zhang J, Zhang X, Xu C. Association Between Serum Afamin Levels with Nonalcoholic Associated Fatty Liver Disease. Can J Gastroenterol Hepatol 2022; 2022:7175108. [PMID: 35800214 PMCID: PMC9256457 DOI: 10.1155/2022/7175108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Afamin is a member of the hepatokine that are strongly associated with various metabolic diseases. The relationship between afamin and nonalcoholic fatty liver disease (NAFLD) remains unclear. This study aimed to explore the correlation between serum afamin levels and NAFLD. We analyzed 88 NAFLD patients and 88 age- and sex-matched healthy controls who took their health examinations at the First Affiliated Hospital, Zhejiang University School of Medicine. The association was further confirmed in 22 biopsy-confirmed NAFLD patients and 36 healthy controls. Serum afamin levels were evaluated using an enzyme-linked immunosorbent assay (ELISA). NAFLD patients had significantly higher serum afamin levels than the healthy controls (14.79 ± 5.04 mg/L versus 10.83 ± 3.24 mg/L; P < 0.001). Serum afamin levels were positively correlated with metabolic parameters including the body mass index, waist circumference, systolic blood pressure, liver enzymes, and lipid profiles. A multiple regression analysis showed that serum afamin levels were independently related to the risk of NAFLD (OR: 1.289, 95% CI, 1.141-1.456; P < 0.001). The receiver operating characteristic (ROC) analysis showed that the area under curve (AUC) of serum afamin plus the BMI for detecting NAFLD was 0.878. In participants with liver biopsies, the serum afamin plus the BMI detected NAFLD with an AUC of 0.758. In conclusion, serum afamin levels were positively associated with prevalence and risk of NAFLD, and serum afamin plus the BMI had a high diagnostic performance for NAFLD. This study provides epidemiological evidence of afamin in NAFLD.
Collapse
Affiliation(s)
- Shenghui Chen
- Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
- Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou 310006, Zhejiang, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310006, Zhejiang, China
| | - Zhening Liu
- Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Li Cen
- Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Jinghua Wang
- Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Juanwen Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Xiaofeng Zhang
- Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou 310006, Zhejiang, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310006, Zhejiang, China
| | - Chengfu Xu
- Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| |
Collapse
|
13
|
Transcriptome reveals key microRNAs involved in fat deposition between different tail sheep breeds. PLoS One 2022; 17:e0264804. [PMID: 35231067 PMCID: PMC8887763 DOI: 10.1371/journal.pone.0264804] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
MicroRNA (miRNA) is a kind of noncoding RNA whose function involved in various biological processes in neuronal maturation and adipocyte cells, such as differentiation, proliferation, development, apoptosis, and metabolism. Herein, miRNA-Seq was used to identify miRNAs in the tail fat tissue of Hu sheep (short-fat-tailed) and Tibetan sheep (short-thin-tailed). In this study, 155 differentially expression miRNAs (DE miRNAs) were identified, including 78 up-regulated and 77 down-regulated. Among these DE miRNAs, 17 miRNAs were reported and related with lipid metabolism. MiRanda and RNAhybrid software were used to predict the target genes of DE miRNAs, obtaining the number of targeting relationships is 38553. Target genes were enriched by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). 742 terms and 302 single pathways are enriched, including lipid metabolic process, response to lipid, cellular lipid catabolic process, lipid catabolic process, cellular lipid metabolic process, inositol lipid-mediated signaling, calcium channel activity, PI3K-Akt signaling pathway, MAPK signaling pathway, ECM-receptor interaction, AMPK signaling pathway, Wnt signaling pathway and TGF-beta signaling pathway. Notably, miR-379-5p was associated with tail fat deposition of sheep. Dual-Luciferase reporter assays showed miR-379-5p and HOXC9 had targeted relationship. The result of RT-qPCR showed that the expression trend of miR-379-5p and HOXC9 was opposite. miR-379-5p was down-regulated and highly expressed in tail adipose tissue of Tibetan sheep. HOXC9 was highly expressed in adipose tissue of Hu sheep. These results could provide a meaningful theoretical basis for studying the molecular mechanisms of sheep tail adipogenesis.
Collapse
|
14
|
Babaei P, Hoseini R. Exercise training modulates adipokine dysregulations in metabolic syndrome. SPORTS MEDICINE AND HEALTH SCIENCE 2022; 4:18-28. [PMID: 35782776 PMCID: PMC9219261 DOI: 10.1016/j.smhs.2022.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome (MetS) is a cluster of risk factors for various metabolic diseases, and it is characterized by central obesity, dyslipidemia, hypertension, and insulin resistance. The core component for MetS is adipose tissue, which releases adipokines and influences physical health. Adipokines consist of pro and anti-inflammatory cytokines and contribute to various physiological functions. Generally, a sedentary lifestyle promotes fat accumulation and secretion of pro-inflammatory adipokines. However, regular exercise has been known to exert various beneficial effects on metabolic and cognitive disorders. Although the mechanisms underlying exercise beneficial effects in MetS are not fully understood, changes in energy expenditure, fat accumulation, circulatory level of myokines, and adipokines might be involved. This review article focuses on some of the selected adipokines in MetS, and their responses to exercise training considering possible mechanisms.
Collapse
Affiliation(s)
- Parvin Babaei
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Rastegar Hoseini
- Department of Sports Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
15
|
Cheng P, Liao HY, Zhang HH. The role of Wnt/mTOR signaling in spinal cord injury. J Clin Orthop Trauma 2022; 25:101760. [PMID: 35070684 PMCID: PMC8762069 DOI: 10.1016/j.jcot.2022.101760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 01/07/2023] Open
Abstract
Spinal cord injury (SCI) is the most common disabling spinal injury, a complex pathologic process that can eventually lead to severe neurological dysfunction. The Wnt/mTOR signaling pathway is a pervasive signaling cascade that regulates a wide range of physiological processes during embryonic development, from stem cell pluripotency to cell fate. Numerous studies have reported that Wnt/mTOR signaling pathway plays an important role in neural development, synaptogenesis, neuron growth, differentiation and survival after the central nervous system (CNS) is damaged. Wnt/mTOR also plays an important role in regulating various pathophysiological processes after spinal cord injury (SCI). After SCI, Wnt/mTOR signal regulates the physiological and pathological processes of neural stem cell proliferation and differentiation, neuronal axon regeneration, neuroinflammation and pain through multiple pathways. Due to the characteristics of the Wnt signal in SCI make it a potential therapeutic target of SCI. In this paper, the characteristics of Wnt/mTOR signal, the role of Wnt/mTOR pathway on SCI and related mechanisms are reviewed, and some unsolved problems are discussed. It is hoped to provide reference value for the research field of the role of Wnt/mTOR pathway in SCI, and provide a theoretical basis for biological therapy of SCI.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Spine Surgery, LanZhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, PR China
| | - Hai-Yang Liao
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, 342800, PR China
| | - Hai-Hong Zhang
- Department of Spine Surgery, LanZhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, PR China
| |
Collapse
|
16
|
Cao Q, Li X, Xuan X, Huang S, Xie X. Changes of LRP6/β-catenin pathway in adipose tissue of rats with intrauterine growth restriction with catch-up growth. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:755-761. [PMID: 35347917 PMCID: PMC8931619 DOI: 10.3724/zdxbyxb-2021-0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/30/2021] [Indexed: 06/14/2023]
Abstract
To investigate the expression of low-density lipoprotein receptor-related protein 6 (LRP6)/β-catenin pathway related proteins in adipose tissue of rats with intrauterine growth restriction with catch-up growth SD rats were randomly divided into nutrition-restriction rats and normal feed rats during pregnancy. CG-IUGR model was established by reducing the number of offspring in the nutrition-restriction rats (CG-IUGR group); while the rats in the control group were offspring of the normal feed pregnant rats. In order to exclude the interference of gender, male offspring mice were selected in both the CG-IUGR group and the control group in the following studies. The CG-IUGR group and the control group were subjected to glucose tolerance test at 12 weeks of age, and the perirenal adipose tissue samples were taken to observe the adipose structure by HE staining. Expression of LRP6, β-catenin and insulin receptor substrate 1 (IRS-1) in adipocytes were examined by confocal microscopy. Protein expression of LRP6, β-catenin and IRS-1 were measured by Western blotting. Blood glucose level and the area under the cure of CG-IUGR group were significantly higher than that of control group (both <0.05). Adipocyte size in the CG-IUGR group was significantly larger than that of control group, and the expression of LRP6, β-catenin and IRS-1 protein in adipose tissue of the CG-IUGR group was significantly lower than that of control group (all <0.05). : The expression of LRP6/β-catenin pathway related proteins is reduced in the adipose tissue in CG-IUGR rats, probably contributing to the insulin resistance in these rats.
Collapse
|
17
|
Hu X, Ono M, Chimge NO, Chosa K, Nguyen C, Melendez E, Lou CH, Lim P, Termini J, Lai KKY, Fueger PT, Teo JL, Higuchi Y, Kahn M. Differential Kat3 Usage Orchestrates the Integration of Cellular Metabolism with Differentiation. Cancers (Basel) 2021; 13:cancers13235884. [PMID: 34884992 PMCID: PMC8656857 DOI: 10.3390/cancers13235884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary The coupling of metabolism with cellular status is critically important and highly evolutionarily conserved. However, how cells coordinate metabolism with transcription as they change their status is not clear. Utilizing multiomic and functional studies, we now demonstrate the dichotomous roles of the Kat3 coactivators CBP and p300 and, in particular, their extreme N-termini, in coordinating cellular metabolism with cell differentiation. Using multiple in vitro and in vivo systems, our study sheds new light on metabolic regulation in homeostasis and disease, including cancer. Abstract The integration of cellular status with metabolism is critically important and the coupling of energy production and cellular function is highly evolutionarily conserved. This has been demonstrated in stem cell biology, organismal, cellular and tissue differentiation and in immune cell biology. However, a molecular mechanism delineating how cells coordinate and couple metabolism with transcription as they navigate quiescence, growth, proliferation, differentiation and migration remains in its infancy. The extreme N-termini of the Kat3 coactivator family members, CBP and p300, by far the least homologous regions with only 66% identity, interact with members of the nuclear receptor family, interferon activated Stat1 and transcriptionally competent β-catenin, a critical component of the Wnt signaling pathway. We now wish to report based on multiomic and functional investigations, utilizing p300 knockdown, N-terminal p300 edited and p300 S89A edited cell lines and p300 S89A knockin mice, that the N-termini of the Kat3 coactivators provide a highly evolutionarily conserved hub to integrate multiple signaling cascades to coordinate cellular metabolism with the regulation of cellular status and function.
Collapse
Affiliation(s)
- Xiaohui Hu
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China;
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Masaya Ono
- Department of Clinical Proteomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Nyam-Osor Chimge
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Keisuke Chosa
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Cu Nguyen
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Elizabeth Melendez
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Chih-Hong Lou
- Gene Editing and Viral Vector Core, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Punnajit Lim
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - John Termini
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Keane K. Y. Lai
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Patrick T. Fueger
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Jia-Ling Teo
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Yusuke Higuchi
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
| | - Michael Kahn
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (N.-O.C.); (K.C.); (C.N.); (E.M.); (P.L.); (J.T.); (K.K.Y.L.); (J.-L.T.); (Y.H.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
- Correspondence:
| |
Collapse
|
18
|
Lojk J, Marc J. Roles of Non-Canonical Wnt Signalling Pathways in Bone Biology. Int J Mol Sci 2021; 22:10840. [PMID: 34639180 PMCID: PMC8509327 DOI: 10.3390/ijms221910840] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/15/2023] Open
Abstract
The Wnt signalling pathway is one of the central signalling pathways in bone development, homeostasis and regulation of bone mineral density. It consists of numerous Wnt ligands, receptors and co-receptors, which ensure tight spatiotemporal regulation of Wnt signalling pathway activity and thus tight regulation of bone tissue homeostasis. This enables maintenance of optimal mineral density, tissue healing and adaptation to changes in bone loading. While the role of the canonical/β-catenin Wnt signalling pathway in bone homeostasis is relatively well researched, Wnt ligands can also activate several non-canonical, β-catenin independent signalling pathways with important effects on bone tissue. In this review, we will provide a thorough overview of the current knowledge on different non-canonical Wnt signalling pathways involved in bone biology, focusing especially on the pathways that affect bone cell differentiation, maturation and function, processes involved in bone tissue structure regulation. We will describe the role of the two most known non-canonical pathways (Wnt/planar cell polarity pathways and Wnt/Ca2+ pathway), as well as other signalling pathways with a strong role in bone biology that communicate with the Wnt signalling pathway through non-canonical Wnt signalling. Our goal is to bring additional attention to these still not well researched but important pathways in the regulation of bone biology in the hope of prompting additional research in the area of non-canonical Wnt signalling pathways.
Collapse
Affiliation(s)
- Jasna Lojk
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
- University Clinical Center Ljubljana, Clinical Department of Clinical Chemistry and Biochemistry, 1000 Ljubljana, Slovenia
| |
Collapse
|
19
|
Kahn M. Taking the road less traveled - the therapeutic potential of CBP/β-catenin antagonists. Expert Opin Ther Targets 2021; 25:701-719. [PMID: 34633266 PMCID: PMC8745629 DOI: 10.1080/14728222.2021.1992386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
AREAS COVERED This perspective discusses the challenges of targeting the Wnt signaling cascade, the safety, efficacy, and therapeutic potential of specific CBP/β-catenin antagonists and a rationale for the pleiotropic effects of CBP/β-catenin antagonists beyond Wnt signaling. EXPERT OPINION CBP/β-catenin antagonists can correct lineage infidelity, enhance wound healing, both normal and aberrant (e.g. fibrosis) and force the differentiation and lineage commitment of stem cells and cancer stem cells by regulating enhancer and super-enhancer coactivator occupancy. Small molecule CBP/β-catenin antagonists rebalance the equilibrium between CBP/β-catenin versus p300/β-catenin dependent transcription and may be able to treat or prevent many diseases of aging, via maintenance of our somatic stem cell pool, and regulating mitochondrial function and metabolism involved in differentiation and immune cell function.
Collapse
Affiliation(s)
- Michael Kahn
- Department of Molecular Medicine, City of Hope, Beckman Research Institute, 1500 East Duarte Road Flower Building, Duarte, CA, USA
| |
Collapse
|
20
|
Weerackoon N, Gunawardhana KL, Mani A. Wnt Signaling Cascades and Their Role in Coronary Artery Health and Disease. JOURNAL OF CELLULAR SIGNALING 2021; 2:52-62. [PMID: 33969358 PMCID: PMC8098721 DOI: 10.33696/signaling.2.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Wnt signaling is classified as two distinct pathways of canonical Wnt/β-catenin signaling, and the non-canonical pathways of planar cell polarity and Wnt/Ca2+ pathways. However, the scientific discoveries in recent years have shown that canonical and non-canonical Wnts pathways are intertwined and have complex interaction with other major signaling pathways such as hedgehog, Hippo and TOR signaling. Wnt signaling plays important roles in cell proliferation, differentiation and migration during embryonic development. The impairment of these pathways during embryonic development often leads to major congenital defects. In adult organisms Wnt expression is more restricted to proliferating tissues, where it plays a key role in tissue regeneration. In addition, the disruption of homeostatic processes of multicellular organisms may give rise to reactivation and/or altered activation of Wnt signaling, leading to development of malignant tumors and chronic diseases such as type-2 diabetes and adult cardiovascular diseases. Coronary artery disease (CAD) is the leading cause of death in the world. The disease is the consequences of two distinct disease processes: Atherosclerosis, a primarily inflammatory disease and plaque erosion, a disease process associated with endothelial cell defect and smooth muscle proliferation with only modest contribution of inflammatory cells. The atherosclerosis is itself a multifactorial disease that is initiated by lipid deposition and endothelial dysfunction, triggering vascular inflammation via recruitment and aggregation of monocytes and their transformation to foam cell by the uptake of modified low-density lipoprotein (LDL), culminating in an atheromatous plaque core formation. Further accumulation of lipids, infiltration and proliferation of vascular smooth muscle cells (VSMCs) and extracellular matrix deposition result in intimal hyperplasia. Myocardial infarction is the ultimate consequence of these processes and is caused by plaque rupture and hypercoagulation. In vivo studies have established the role of the Wnt pathway in all phases of atherosclerosis development, though much remains unknown or controversial. Less is known about the mechanisms that induce plaque erosion. The limited evidence in mouse models of Wnt coreceptor LRP6 mutation and heterozygous TCF7L2 knock out mice implicate altered Wnt signaling also in the pathogenesis of plaque erosion. In this article we focus and review the role of the Wnt pathway in CAD pathophysiology from clinical and experimental standpoints.
Collapse
Affiliation(s)
- Nadisha Weerackoon
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kushan L Gunawardhana
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Arya Mani
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
21
|
Garay-Sevilla ME, Gomez-Ojeda A, González I, Luévano-Contreras C, Rojas A. Contribution of RAGE axis activation to the association between metabolic syndrome and cancer. Mol Cell Biochem 2021; 476:1555-1573. [PMID: 33398664 DOI: 10.1007/s11010-020-04022-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
Far beyond the compelling proofs supporting that the metabolic syndrome represents a risk factor for diabetes and cardiovascular diseases, a growing body of evidence suggests that it is also a risk factor for different types of cancer. However, the involved molecular mechanisms underlying this association are not fully understood, and they have been mainly focused on the individual contributions of each component of the metabolic syndrome such as obesity, hyperglycemia, and high blood pressure to the development of cancer. The Receptor for Advanced Glycation End-products (RAGE) axis activation has emerged as an important contributor to the pathophysiology of many clinical entities, by fueling a chronic inflammatory milieu, and thus supporting an optimal microenvironment to promote tumor growth and progression. In the present review, we intend to highlight that RAGE axis activation is a crosswise element on the potential mechanistic contributions of some relevant components of metabolic syndrome into the association with cancer.
Collapse
Affiliation(s)
- Ma Eugenia Garay-Sevilla
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, Guanajuato, Mexico
| | - Armando Gomez-Ojeda
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, Guanajuato, Mexico
| | - Ileana González
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Claudia Luévano-Contreras
- Department of Medical Science, Division of Health Science, University of Guanajuato, Campus León, Guanajuato, Mexico
| | - Armando Rojas
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile.
| |
Collapse
|
22
|
Yang J, Shi BY. Dickkopf (Dkk)-2 is a beige fat-enriched adipokine to regulate adipogenesis. Biochem Biophys Res Commun 2021; 548:211-216. [PMID: 33647798 DOI: 10.1016/j.bbrc.2021.02.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/16/2021] [Indexed: 01/15/2023]
Abstract
In the past decades, remarkable efforts have been made to unravel the regulation of adipose tissue metabolism, given the increasing prevalence of obesity and its huge impact on human health. Wnt signaling pathway is closely involved in this entity. As extracellular inhibitors to Wnt signaling, secreted protein Dickkopfs (Dkks) may be potential targets to combat obesity and related metabolic disorders. In this study, we showed that Dkk2 was a beige fat-enriched adipokine to regulate adipogenesis. Dkk2 was strikingly expressed in beige fat depot compared to classic white, brown, and subcutaneous fat. Dkk2 treatment inhibited adipogenesis in 3T3-L1 pre-adipocytes, C3H10T1/2 mesenchymal stem cells, and primary bone marrow mesenchymal stromal cells. Activation of the master adipogenic factor PPARγ by the synthetic Thiazolidinedione ligand rosiglitazone largely rescued the inhibition of adipogenesis by Dkk2. Furthermore, adenoviral overexpression of Dkk2 in the liver to mimic its gain-of-function showed minimal effect on whole-body metabolism. These results collectively suggest that Dkk2 is a first-in-class beige fat adipokine and functions mainly through a paracrine manner to inhibit adipogenesis rather than as an endocrine factor. Our findings aid a better understanding of beige fat function and regulation and further, provide a potential therapeutic target for treating obesity.
Collapse
Affiliation(s)
- Jing Yang
- The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Road, Xi'an, Shaanxi, 710061, PR China
| | - Bing-Yin Shi
- Department of Endocrinology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Road, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
23
|
Mineo C. Lipoprotein receptor signalling in atherosclerosis. Cardiovasc Res 2021; 116:1254-1274. [PMID: 31834409 DOI: 10.1093/cvr/cvz338] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/01/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
The founding member of the lipoprotein receptor family, low-density lipoprotein receptor (LDLR) plays a major role in the atherogenesis through the receptor-mediated endocytosis of LDL particles and regulation of cholesterol homeostasis. Since the discovery of the LDLR, many other structurally and functionally related receptors have been identified, which include low-density lipoprotein receptor-related protein (LRP)1, LRP5, LRP6, very low-density lipoprotein receptor, and apolipoprotein E receptor 2. The scavenger receptor family members, on the other hand, constitute a family of pattern recognition proteins that are structurally diverse and recognize a wide array of ligands, including oxidized LDL. Among these are cluster of differentiation 36, scavenger receptor class B type I and lectin-like oxidized low-density lipoprotein receptor-1. In addition to the initially assigned role as a mediator of the uptake of macromolecules into the cell, a large number of studies in cultured cells and in in vivo animal models have revealed that these lipoprotein receptors participate in signal transduction to modulate cellular functions. This review highlights the signalling pathways by which these receptors influence the process of atherosclerosis development, focusing on their roles in the vascular cells, such as macrophages, endothelial cells, smooth muscle cells, and platelets. Human genetics of the receptors is also discussed to further provide the relevance to cardiovascular disease risks in humans. Further knowledge of the vascular biology of the lipoprotein receptors and their ligands will potentially enhance our ability to harness the mechanism to develop novel prophylactic and therapeutic strategies against cardiovascular diseases.
Collapse
Affiliation(s)
- Chieko Mineo
- Department of Pediatrics and Cell Biology, Center for Pulmonary and Vascular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9063, USA
| |
Collapse
|
24
|
Bai Y, Du Q, Jiang R, Zhang L, Du R, Wu N, Li P, Li L. Secreted Frizzled-Related Protein 5 is Associated with Glucose and Lipid Metabolism Related Metabolic Syndrome Components Among Adolescents in Northeastern China. Diabetes Metab Syndr Obes 2021; 14:2735-2742. [PMID: 34168473 PMCID: PMC8216697 DOI: 10.2147/dmso.s301090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Secreted frizzled-related protein 5 (SFRP5) is a novel anti-inflammatory adipokine that has been associated with various metabolic diseases. However, such relationship among adolescents remains unclear. The purpose of this study was to clarify the relationship between SFRP5 and the components of metabolic syndrome in Chinese adolescents. PATIENTS AND METHODS In this cross-sectional study, we included a total of 684 adolescents aged 11-16 years old from Liaoyang city, Liaoning province, China. The ELISA kits were implemented to measure the plasma SFRP5 and high-sensitivity C-reactive protein. Serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and high-density lipoprotein cholesterol (HDL-C), serum uric acid (UA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), fasting plasma glucose (FPG), and fasting serum insulin (FINS) were also measured. RESULTS The multivariate logistic regression analysis showed that low SFRP5 level were an independent risk factor of high FPG [odds ratio (OR)=5.31, 95% confidence interval (CI): 1.85-15.22, P<0.01] and high TC (OR=1.73, 95% CI: 1.01-2.96, P<0.05) when adjusting for age, sex, family history of diabetes, body mass index, and high-sensitivity C-reactive protein. CONCLUSION The lower level of SFRP5 is strongly related to lipid and glucose metabolism among adolescents in Northeast China. The risk of high fasting plasma glucose and high total cholesterol increases significantly as the plasma SFRP5 level decreases.
Collapse
Affiliation(s)
- Yu Bai
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Qiang Du
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Ranhua Jiang
- Department of Endocrinology, Liaoyang Diabetes Hospital, Liaoyang, Liaoning Province, People’s Republic of China
| | - Le Zhang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Runyu Du
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Ping Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Ling Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- Correspondence: Ling Li Department of Endocrinology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning Province, 110004, People’s Republic of ChinaTel +86 189 4025 1181Fax +86 24 2594 4460 Email
| |
Collapse
|
25
|
Regulation of Wnt Signaling through Ubiquitination and Deubiquitination in Cancers. Int J Mol Sci 2020; 21:ijms21113904. [PMID: 32486158 PMCID: PMC7311976 DOI: 10.3390/ijms21113904] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
The Wnt signaling pathway plays important roles in embryonic development, homeostatic processes, cell differentiation, cell polarity, cell proliferation, and cell migration via the β-catenin binding of Wnt target genes. Dysregulation of Wnt signaling is associated with various diseases such as cancer, aging, Alzheimer’s disease, metabolic disease, and pigmentation disorders. Numerous studies entailing the Wnt signaling pathway have been conducted for various cancers. Diverse signaling factors mediate the up- or down-regulation of Wnt signaling through post-translational modifications (PTMs), and aberrant regulation is associated with several different malignancies in humans. Of the numerous PTMs involved, most Wnt signaling factors are regulated by ubiquitination and deubiquitination. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and usually induces proteasomal degradation of Wnt signaling factors such as β-catenin, Axin, GSK3, and Dvl. Conversely, deubiquitination induced by the deubiquitinating enzymes (DUBs) detaches the ubiquitins and modulates the stability of signaling factors. In this review, we discuss the effects of ubiquitination and deubiquitination on the Wnt signaling pathway, and the inhibitors of DUBs that can be applied for cancer therapeutic strategies.
Collapse
|
26
|
Chin KY, Wong SK, Ekeuku SO, Pang KL. Relationship Between Metabolic Syndrome and Bone Health - An Evaluation of Epidemiological Studies and Mechanisms Involved. Diabetes Metab Syndr Obes 2020; 13:3667-3690. [PMID: 33116718 PMCID: PMC7569044 DOI: 10.2147/dmso.s275560] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome (MetS) and osteoporosis are two medical problems plaguing the ageing populations worldwide. Though seemingly distinctive to each other, metabolic derangements are shown to influence bone health. This review summarises the relationship between MetS and bone health derived from epidemiological studies and explains the mechanistic basis of this relationship. The discourse focuses on the link between MetS and bone mineral density, quantitative sonometric indices, geometry and fracture risk in humans. The interesting sex-specific trend in the relationship, probably due to factors related to body composition and hormonal status, is discussed. Mechanistically, each component of MetS affects the bone distinctly, forming a complex interacting network influencing the skeleton. Lastly, the effects of MetS management, such as pharmacotherapies, exercise and bariatric surgery, on bone, are presented. This review aims to highlight the significant relationship between MetS and bone, and proper management of MetS with the skeletal system in mind could prevent cardiovascular and bone complications.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Correspondence: Kok-Yong Chin Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, MalaysiaTel +60 3-9145 9573 Email
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Wnt signaling mediates TLR pathway and promote unrestrained adipogenesis and metaflammation: Therapeutic targets for obesity and type 2 diabetes. Pharmacol Res 2019; 152:104602. [PMID: 31846761 DOI: 10.1016/j.phrs.2019.104602] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/17/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022]
Abstract
Diabesity is the combination of type 2 diabetes and obesity characterized by chronic low-grade inflammation. The Wnt signaling act as an evolutionary pathway playing crucial role in regulating cellular homeostasis and energy balance from hypothalamus to metabolic organs. Aberrant activity of certain appendages in the canonical and non-canonical Wnt system deregulates metabolism and leads to adipose tissue expansion, this key event initiates metabolic stress causing metaflammation and obesity. Metaflammation induced obesity initiates abnormal development of adipocytes mediating through the non-canonical Wnt signaling inhibition of canonical Wnt pathway to fan the flames of adipogenesis. Moreover, activation of toll like receptor (TLR)-4 signaling in metabolic stress invites immune cells to release pro-inflammatory cytokines for recruitment of macrophages in adipose tissues, further causes polarization of macrophages into M1(classically activated) and M2 (alternatively activated) subtypes. These events end with chronic low-grade inflammation which interferes with insulin signaling in metabolic tissues to develop type 2 diabetes. However, there is a dearth in understanding the exact mechanism of Wnt-TLR axis during diabesity. This review dissects the molecular facets of Wnt and TLRs that modulates cellular components during diabesity and provides current progress, challenges and alternative therapeutic strategies at preclinical and clinical level.
Collapse
|
28
|
Genome-Wide Association Analyses of Equine Metabolic Syndrome Phenotypes in Welsh Ponies and Morgan Horses. Genes (Basel) 2019; 10:genes10110893. [PMID: 31698676 PMCID: PMC6895807 DOI: 10.3390/genes10110893] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 12/23/2022] Open
Abstract
Equine metabolic syndrome (EMS) is a complex trait for which few genetic studies have been published. Our study objectives were to perform within breed genome-wide association analyses (GWA) to identify associated loci in two high-risk breeds, coupled with meta-analysis to identify shared and unique loci between breeds. GWA for 12 EMS traits identified 303 and 142 associated genomic regions in 264 Welsh ponies and 286 Morgan horses, respectively. Meta-analysis demonstrated that 65 GWA regions were shared across breeds. Region boundaries were defined based on a fixed-size or the breakdown of linkage disequilibrium, and prioritized if they were: shared between breeds or across traits (high priority), identified in a single GWA cohort (medium priority), or shared across traits with no SNPs reaching genome-wide significance (low priority), resulting in 56 high, 26 medium, and seven low priority regions including 1853 candidate genes in the Welsh ponies; and 39 high, eight medium, and nine low priority regions including 1167 candidate genes in the Morgans. The prioritized regions contained protein-coding genes which were functionally enriched for pathways associated with inflammation, glucose metabolism, or lipid metabolism. These data demonstrate that EMS is a polygenic trait with breed-specific risk alleles as well as those shared across breeds.
Collapse
|
29
|
Deciphering the Role of WNT Signaling in Metabolic Syndrome–Linked Alzheimer’s Disease. Mol Neurobiol 2019; 57:302-314. [DOI: 10.1007/s12035-019-01700-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022]
|