1
|
Zheng W, Tang S, Ren X, Song S, Ai C. Fucoidan alleviated colitis aggravated by fiber deficiency through protecting the gut barrier, suppressing the MAPK/NF-κB pathway, and modulating gut microbiota and metabolites. Front Nutr 2025; 11:1462584. [PMID: 39925971 PMCID: PMC11802440 DOI: 10.3389/fnut.2024.1462584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/26/2024] [Indexed: 02/11/2025] Open
Abstract
Insufficient dietary fiber intake has become a global public health issue, affecting the development and management of various diseases, including intestinal diseases and obesity. This study showed that dietary fiber deficiency enhanced the susceptibility of mice to colitis, which could be attributed to the disruption of the gut barrier integrity, activation of the NF-κB pathway, and oxidative stress. Undaria pinnatifida fucoidan (UPF) alleviated colitis symptoms in mice that fed with a fiber deficient diet (FD), characterized by increased weight gain and reduced disease activity index, liver and spleen indexes, and histological score. The protective effect of UPF against FD-exacerbated colitis can be attributed to the alleviation of oxidative stress, the preservation of the gut barrier integrity, and inhibition of the MAPK/NF-κB pathway. UPF ameliorated the gut microbiota composition, leading to increased microbiota richness, as well as increased levels of Muribaculaceae, Lactobacillaceae, and Bifidobacterium and reduced levels of Proteobacteria, Bacteroidetes, and Bacteroides. Metabolomics analysis revealed that UPF improved the profile of microbiota metabolites, with increased levels of carnitine and taurine and decreased levels of tyrosine and deoxycholic acid. This study suggests that UPF has the potential to be developed as a novel prebiotic agent to enhance human health.
Collapse
Affiliation(s)
- Weiyun Zheng
- School of Agronomy and Life Science, Shanxi Datong University, Datong, China
| | - Shuangru Tang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiaomeng Ren
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, China
| | - Shuang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, China
| | - Chunqing Ai
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
2
|
Yin W, Liu M, Jin Z, Hao Z, Liu C, Liu J, Liu H, Zheng M, Cai D. Ameliorative effects of insoluble dietary fiber and its bound polyphenols from adzuki bean seed coat on acute murine colitis induced by DSS: The inflammatory response, intestinal barrier and gut microbiota. Int J Biol Macromol 2025; 286:138343. [PMID: 39638184 DOI: 10.1016/j.ijbiomac.2024.138343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
The incidence of ulcerative colitis (UC) is closely associated with dietary fiber (DF) intake. This study aims to evaluate the ameliorative effects of insoluble dietary fiber from adzuki bean seed coat (AIDF) on dextran sulfate sodium (DSS)-induced UC in mice, both with and without bound polyphenols (BPs). We employed a model based on the "remove/backfill" of components. Compared to dephenolized dietary fiber (AIDF-DF) and AIDF-DF with replaced BPs (AIDF-BP), AIDF was found to effectively reduce the splenic index, alleviate colonic histopathological damage, lower serum levels of inflammatory mediators (TNF-α, IL-1β, IFN-γ, IL-6), decrease activities of LPS, DAO, MPO, and iNOS, regulate intestinal tight junction (TJ) mRNA and protein expression, and restore the integrity of the colonic epithelial cell barrier. AIDF mitigated the inflammatory response in UC by inhibiting the TLR4/NF-κB inflammatory signaling pathway. It increased the abundance of beneficial gut microbiota (e.g., Akkermansia, Verrucomicrobiota) while reducing the abundance of harmful bacteria (e.g., Proteobacteria), thereby alleviating intestinal disturbances in DSS-induced colitis in mice. In conclusion, the presence of BPs in AIDF plays a critical role in attenuating DSS-induced UC in mice.
Collapse
Affiliation(s)
- Wandi Yin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Zhibo Jin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Zhina Hao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Chenyu Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| |
Collapse
|
3
|
Santacroce L, Bottalico L, Charitos IA, Castellaneta F, Gaxhja E, Topi S, Palmirotta R, Jirillo E. Exploitation of Natural By-Products for the Promotion of Healthy Outcomes in Humans: Special Focus on Antioxidant and Anti-Inflammatory Mechanisms and Modulation of the Gut Microbiota. Antioxidants (Basel) 2024; 13:796. [PMID: 39061865 PMCID: PMC11273986 DOI: 10.3390/antiox13070796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Daily, a lot of food is wasted, and vegetables, fruit, and cereals as well as marine products represent the major sources of unwanted by-products. The sustainability, waste recovery, and revalorization of food by-products have been proposed as the main goals of the so-called circular economy. In fact, food wastes are enriched in by-products endowed with beneficial effects on human health. Grape, olives, vegetables, and rice contain different compounds, such as polyphenols, dietary fibers, polysaccharides, vitamins, and proteins, which exert antioxidant and anti-inflammatory activities, inhibiting pro-oxidant genes and the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-kβ) pathway, as demonstrated by in vitro and in vivo experiments. Dietary fibers act upon the gut microbiota, expanding beneficial bacteria, which contribute to healthy outcomes. Furthermore, marine foods, even including microalgae, arthropods, and wastes of fish, are rich in carotenoids, polyphenols, polyunsaturated fatty acids, proteins, and chitooligosaccharides, which afford antioxidant and anti-inflammatory protection. The present review will cover the major by-products derived from food wastes, describing the mechanisms of action involved in the antioxidant and anti-inflammatory activities, as well as the modulation of the gut microbiota. The effects of some by-products have also been explored in clinical trials, while others, such as marine by-products, need more investigation for their full exploitation as bioactive compounds in humans.
Collapse
Affiliation(s)
- Luigi Santacroce
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (R.P.); (E.J.)
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania (E.G.); (S.T.)
| | - Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, Institute of Bari, 70124 Bari, Italy;
| | - Francesca Castellaneta
- School of Clinical Biochemistry and Pathology, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Elona Gaxhja
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania (E.G.); (S.T.)
| | - Skender Topi
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania (E.G.); (S.T.)
| | - Raffaele Palmirotta
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (R.P.); (E.J.)
| | - Emilio Jirillo
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (R.P.); (E.J.)
| |
Collapse
|
4
|
Chukwuma CI. Antioxidative, Metabolic and Vascular Medicinal Potentials of Natural Products in the Non-Edible Wastes of Fruits Belonging to the Citrus and Prunus Genera: A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:191. [PMID: 38256745 PMCID: PMC10818484 DOI: 10.3390/plants13020191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Diabetes mellitus and related metabolic and vascular impairments are notable health problems. Fruits and vegetables contain phenolics that are beneficial to metabolic and oxidative health and useful in preventing associated disease. Scientific evidence has shown that some bioactive phenolics are more abundant in the non-edible parts (especially the peels) of many fruits than in their respective edible tissues. Fruits belonging to the Citrus and Prunus genera are commonly consumed worldwide, including in South Africa, and their non-edible wastes (peel and seed) have been shown to have antioxidative, metabolic and vascular pharmacological potentials and medicinal phytochemistry. It is therefore imperative to evaluate the pharmacological actions and phytochemical properties of the non-edible wastes of these fruits and understand how they could potentially be of medicinal relevance in oxidative, metabolic and vascular diseases, including diabetes, oxidative stress, obesity, hypertension and related cardiovascular impairments. In the absence of a previous review that has concomitantly presented the medicinal potentials of fruits wastes from both genera, this review presents a critical analysis of previous and recent perspectives on the medicinal potential of the non-edible wastes from the selected Citrus and Prunus fruits in metabolic, vascular and oxidative health. This review further exposes the medicinal phytochemistry, while elucidating the underlying mechanisms through the fruit wastes potentiates their therapeutic effects. A literature search was carried out on "PubMed" to identify peer-reviewed published (mostly 2015 and beyond) studies reporting the antidiabetic, antioxidative, antihypertensive, anti-hyperlipidemic and anti-inflammatory properties of the non-edible parts of the selected fruits. The data of the selected studies were analyzed to understand the bioactive mechanisms, bioactive principles and toxicological profiles. The wastes (seed and peel) of the selected fruits had antioxidant, anti-obesogenic, antihypertensive, anti-inflammatory, antidiabetic and tissue protective potentials. Some phenolic acids and terpenes, as well as flavonoids and glycosides such as narirutin, nobiletin, hesperidin, naringin, naringenin, quercetin, rutin, diosmin, etc., were the possible bioactive principles. The peel and seed of the selected fruits belonging to the Citrus and Prunus genera are potential sources of bioactive compounds that could be of medicinal relevance for improving oxidative, metabolic and vascular health. However, there is a need for appropriate toxicological studies.
Collapse
Affiliation(s)
- Chika I Chukwuma
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9300, Free State, South Africa
| |
Collapse
|
5
|
Gandhi GR, Mohana T, Athesh K, Hillary VE, Vasconcelos ABS, Farias de Franca MN, Montalvão MM, Ceasar SA, Jothi G, Sridharan G, Gurgel RQ, Xu B. Anti-inflammatory natural products modulate interleukins and their related signaling markers in inflammatory bowel disease: A systematic review. J Pharm Anal 2023; 13:1408-1428. [PMID: 38223446 PMCID: PMC10785269 DOI: 10.1016/j.jpha.2023.09.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 01/16/2024] Open
Abstract
This review aims to identify in vivo studies investigating the potential of plant substances and their natural molecules in managing inflammatory bowel disease (IBD). Specifically, the objective is to examine the impact of these substances on interleukins and other key inflammatory signaling markers. Relevant articles published up to December 2022 were identified through a search of the PubMed, Scopus, Web of Science, and Embase databases. The search used keywords including "inflammatory bowel disease", "medicinal plants", "natural molecules", "anti-inflammatory", and "ulcerative colitis", and identified 1,878 potentially relevant articles, of which 89 were included in this review after completion of the selection process. This study provides preclinical data on natural products (NPs) that can potentially treat IBD, including ulcerative colitis. The main actions of these NPs relate to their effects on nuclear factor kappa B (NF-κB), the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway, the regulation of T helper 17/regulatory T cells balance, and oxidative stress. The ability of these NPs to inhibit intestinal inflammation appears to be dependent on lowering levels of the pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-17, via the Jun N-terminal kinase (JNK)1, NF-κβ-p65, and STAT3 pathways. In addition, NPs were shown to reduce oxidative stress and the severity of ulcerative colitis, as well as increase the activity of antioxidant enzymes. These actions suggest that NPs represent a promising treatment for IBD, and potentially have greater efficacy and safety than current treatments.
Collapse
Affiliation(s)
- Gopalsamy Rajiv Gandhi
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamaserry, Kochi, 683104, Kerala, India
| | - Thiruchenduran Mohana
- Department of Biochemistry, Meenakshi Ammal Dental College and Hospital (MAHER), Maduravoyal, 600095, Chennai, Tamil Nadu, India
| | - Kumaraswamy Athesh
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapalli, 620005, Tamil Nadu, India
| | - Varghese Edwin Hillary
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamaserry, Kochi, 683104, Kerala, India
| | - Alan Bruno Silva Vasconcelos
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Mariana Nobre Farias de Franca
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Postgraduate Program in Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, CEP 49060.108, Sergipe, Brazil
| | - Monalisa Martins Montalvão
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Postgraduate Program in Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, CEP 49060.108, Sergipe, Brazil
| | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamaserry, Kochi, 683104, Kerala, India
| | - Gnanasekaran Jothi
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapalli, 620005, Tamil Nadu, India
| | - Gurunagarajan Sridharan
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapalli, 620005, Tamil Nadu, India
| | - Ricardo Queiroz Gurgel
- Postgraduate Program in Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, CEP 49060.108, Sergipe, Brazil
| | - Baojun Xu
- Programme of Food Science and Technology, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong, 519087, China
| |
Collapse
|
6
|
Aurori M, Andrei S, Dreanca AI, Morohoschi AG, Cotul M, Niculae M, Nan MI, Codea AR, Gal AF. The Nephroprotective Effect of Cornelian Cherry ( Cornus mas L.) and Rowanberry ( Sorbus aucuparia L.) in Gentamicin-Induced Nephrotoxicity on Wistar Rats with Emphasis on the Evaluation of Novel Renal Biomarkers and the Antioxidant Capacity in Correlation with Nitro-Oxidative Stress. Nutrients 2023; 15:4392. [PMID: 37892466 PMCID: PMC10609733 DOI: 10.3390/nu15204392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
In spite of its well-known nephrotoxicity, gentamicin is nonetheless routinely used in humans and animals. However, no adjuvant treatments have been implemented to mitigate this harmful effect. Given this concern, medicinal plants represent a significant reservoir of natural antioxidants that could potentially reduce the renal oxidative stress induced by gentamicin. Therefore, the main objective of this research was to investigate the nephroprotective properties of Cornus mas and Sorbus aucuparia fruits in an experimental model of nephrotoxicity. The 3-week study was performed on male Wistar rats, which were randomly divided into six experimental groups, being subcutaneously treated with 50 mg/kg gentamicin and orally given Cornus mas and Sorbus aucuparia extracts, in doses of 40 mg/kg and 10 mg/kg, respectively. Antioxidant therapy significantly improved the nitro-oxidative stress parameters as well as the specific renal biomarkers KIM-1 and iNAG, demonstrating a considerable renal tubular protective impact. These outcomes were reinforced by biochemical and histopathological enhancements. Nevertheless, neither of the tested extracts succeeded in substantially diminishing BUN levels. Additionally, CysC did not significantly decline following extracts treatment, suggesting that the remedies did not effectively protect renal glomeruli against gentamicin stress. Future studies are required in order to determine the underlying mechanisms of these berries.
Collapse
Affiliation(s)
- Mara Aurori
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania; (M.A.); (A.I.D.); (A.G.M.); (M.C.); (M.I.N.); (A.F.G.)
| | - Sanda Andrei
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania; (M.A.); (A.I.D.); (A.G.M.); (M.C.); (M.I.N.); (A.F.G.)
| | - Alexandra Iulia Dreanca
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania; (M.A.); (A.I.D.); (A.G.M.); (M.C.); (M.I.N.); (A.F.G.)
| | - Andreea Georgiana Morohoschi
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania; (M.A.); (A.I.D.); (A.G.M.); (M.C.); (M.I.N.); (A.F.G.)
| | - Mihaela Cotul
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania; (M.A.); (A.I.D.); (A.G.M.); (M.C.); (M.I.N.); (A.F.G.)
| | - Mihaela Niculae
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania; (M.N.); (A.R.C.)
| | - Monica Irina Nan
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania; (M.A.); (A.I.D.); (A.G.M.); (M.C.); (M.I.N.); (A.F.G.)
| | - Andrei Răzvan Codea
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania; (M.N.); (A.R.C.)
| | - Adrian Florin Gal
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania; (M.A.); (A.I.D.); (A.G.M.); (M.C.); (M.I.N.); (A.F.G.)
| |
Collapse
|
7
|
Ekhtiar M, Ghasemi-Dehnoo M, Mirzaei Y, Azadegan-Dehkordi F, Amini-Khoei H, Lorigooini Z, Samiei-Sefat A, Bagheri N. The coumaric acid and syringic acid ameliorate acetic acid-induced ulcerative colitis in rats via modulator of Nrf2/HO-1 and pro-inflammatory cytokines. Int Immunopharmacol 2023; 120:110309. [PMID: 37182450 DOI: 10.1016/j.intimp.2023.110309] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) that causes uncontrolled inflammation and ulcers in your digestive tract. The coumaric acid and syringic acid are phenolic derivative found in many fruits and vegetables and is widely recognized for the ability of anti-parasitic, anti-microbial, anti-viral, anti-inflammatory, and antioxidant. The purpose of this study was to investigate the anti-inflammatory and antioxidant properties of coumaric acid and syringic acid on acetic acid-induced colitis in rats. METHODS A total of 64 male Wistar rats were divided into eight equal groups (n = 8). Colitis was induced by intrarectal administration of acetic acid, and rats orally received coumaric acid (100 and 150 mg/kg), syringic acid (10, 25, and 50 mg/kg), and dexamethasone (2 mg/kg) once per day for four days after colitis induction. Then, HO-1, Nrf2, and NQO1 mRNA expression were quantified by real time-PCR. Finally, the tissue levels of TNF-α and IL-1β protein were measured by ELISA. RESULTS Colitis led to a decrease in HO-1, Nrf2, and NQO1 mRNA expression and an increase in the tissue levels of TNF-α and IL-1β protein in the colon tissue. Treatment with dexamethasone significantly increased HO-1, Nrf2, and NQO1 mRNA expression and decreased the tissue levels of TNF-α and IL-1β protein compared to the UC group. Treatment with 150 mg/kg of coumaric acid and 50 mg/kg of syringic acid significantly increased HO-1, Nrf2, and NQO1 mRNA expression compared to the UC group. Also, treatment with 100 and 150 mg/kg of coumaric acid and 10, 25, and 50 mg/kg of syringic acid significantly decreased the tissue levels of TNF-α and IL-1β protein compared to the UC group. CONCLUSION The coumaric acid and syringic acid, especially at high doses, may be an alternative strategy for the treatment of UC by the reduction of TNF-α and IL-1β levels and upregulation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Mahsa Ekhtiar
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Ghasemi-Dehnoo
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Yousef Mirzaei
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Fatemeh Azadegan-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Azadeh Samiei-Sefat
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
8
|
Russo C, Maugeri A, Albergamo A, Dugo G, Navarra M, Cirmi S. Protective Effects of a Red Grape Juice Extract against Bisphenol A-Induced Toxicity in Human Umbilical Vein Endothelial Cells. TOXICS 2023; 11:391. [PMID: 37112618 PMCID: PMC10145567 DOI: 10.3390/toxics11040391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 06/19/2023]
Abstract
Human exposure to bisphenol A (BPA) occurs through the ingestion of contaminated food and water, thus leading to endothelial dysfunction, the first signal of atherosclerosis. Vitis vinifera L. (grape) juice is well known for its health-promoting properties, due to its numerous bioactive compounds among which are polyphenols. The aim of this study was to evaluate the protective effect of a red grape juice extract (RGJe) against the endothelial damage induced by BPA in human umbilical vein endothelial cells (HUVECs) as an in vitro model of endothelial dysfunction. Our results showed that RGJe treatment counteracted BPA-induced cell death and apoptosis in HUVECs, blocking caspase 3 and modulating p53, Bax, and Bcl-2. Moreover, RGJe demonstrated antioxidant properties in abiotic tests and in vitro, where it reduced BPA-induced reactive oxygen species as well as restored mitochondrial membrane potential, DNA integrity, and nitric oxide levels. Furthermore, RGJe reduced the increase of chemokines (IL-8, IL-1β, and MCP-1) and adhesion molecules (VCAM-1, ICAM-1, and E-selectin), caused by BPA exposure, involved in the primary phase of atheromatous plaque formation. Overall, our results suggest that RGJe prevents BPA-induced vascular damage modulating specific intracellular mechanisms, along with protecting cells, owing to its antioxidant capability.
Collapse
Affiliation(s)
- Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (S.C.)
| | - Alessandro Maugeri
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Ambrogina Albergamo
- Department of Biomedical, Dental, Morphological and Functional Images Sciences, University of Messina, 98100 Messina, Italy; (A.A.); (G.D.)
- Science4Life s.r.l., a Spin-Off of the University of Messina, 98168 Messina, Italy
| | - Giacomo Dugo
- Department of Biomedical, Dental, Morphological and Functional Images Sciences, University of Messina, 98100 Messina, Italy; (A.A.); (G.D.)
- Science4Life s.r.l., a Spin-Off of the University of Messina, 98168 Messina, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (S.C.)
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (S.C.)
| |
Collapse
|
9
|
Zeng Y, Zhou W, Yu J, Zhao L, Wang K, Hu Z, Liu X. By-Products of Fruit and Vegetables: Antioxidant Properties of Extractable and Non-Extractable Phenolic Compounds. Antioxidants (Basel) 2023; 12:antiox12020418. [PMID: 36829977 PMCID: PMC9951942 DOI: 10.3390/antiox12020418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Non-extractable phenolic compounds (NEPs), or bound phenolic compounds, represent a crucial component of polyphenols. They are an essential fraction that remains in the residual matrix after the extraction of extractable phenolic compounds (EPs), making them a valuable resource for numerous applications. These compounds encompass a diverse range of phenolic compounds, ranging from low molecular weight phenolic to high polymeric polyphenols attached to other macro molecules, e.g., cell walls and proteins. Their status as natural, green antioxidants have been well established, with numerous studies showcasing their anti-inflammatory, anti-aging, anti-cancer, and hypoglycemic activities. These properties make them a highly desirable alternative to synthetic antioxidants. Fruit and vegetable (F&Veg) wastes, e.g., peels, pomace, and seeds, generated during the harvest, transport, and processing of F&Vegs, are abundant in NEPs and EPs. This review delves into the various types, contents, structures, and antioxidant activities of NEPs and EPs in F&Veg wastes. The relationship between the structure of these compounds and their antioxidant activity is explored in detail, highlighting the importance of structure-activity relationships in the field of natural antioxidants. Their potential applications ranging from functional food and beverage products to nutraceutical and cosmetic products. A glimpse into their bright future as a valuable resource for a greener, healthier, and more sustainable future, and calling for researchers, industrialists, and policymakers to explore their full potential, are elaborated.
Collapse
Affiliation(s)
- Yu Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenyi Zhou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiahao Yu
- School of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310058, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Z.H.); or (X.L.); Tel.: +86-20-8528-0266 (Z.H. & X.L.)
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Z.H.); or (X.L.); Tel.: +86-20-8528-0266 (Z.H. & X.L.)
| |
Collapse
|
10
|
Laurindo LF, Direito R, Bueno Otoboni AMM, Goulart RA, Quesada K, Barbalho SM. Grape Processing Waste: Effects on Inflammatory Bowel Disease and Colorectal Cancer. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2168281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology/School of Medicine, UNIMAR, Marília, São Paulo, Brazil
| | - Rosa Direito
- Department of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | - Ricardo Alvares Goulart
- Postgraduate Program (Structural and Functional Interactions in Rehabilitation), UNIMAR, Marília, São Paulo, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology/School of Medicine, UNIMAR, Marília, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology/School of Medicine, UNIMAR, Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, FATEC, Avenida Castro Alves, São Paulo, Brazil
- Postgraduate Program (Structural and Functional Interactions in Rehabilitation), UNIMAR, Marília, São Paulo, Brazil
| |
Collapse
|
11
|
Han P, Yu Y, Zhang L, Ruan Z. Citrus peel ameliorates mucus barrier damage in HFD-fed mice. J Nutr Biochem 2023; 112:109206. [PMID: 36370925 DOI: 10.1016/j.jnutbio.2022.109206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/17/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022]
Abstract
Citrus peel is rich in bioactive components, especially polyphenols, which are considered to have great potential in the prevention of intestinal diseases. The intestinal mucus barrier is the first defense against the invasion of foreign substances. In this study, we aimed to explore the possibility and mechanism of citrus peel in alleviating the mucus barrier damage in high-fat-diet (HFD) mice. We found that citrus peel powder (CPP) supplementation effectively reduced body weight, fat weight, intestinal permeability, hyperlipidemia, and systemic inflammation in HFD-fed mice. In particular, CPP increased the number of goblet cells, the protein expression of Mucin-2 (Muc2), and the thickness of the mucus layer, thereby strengthening the colonic mucus barrier function. Moreover, CPP supplementation also reduced the expression of endoplasmic reticulum stress (ERS) proteins (GRP78 and CHOP) and increased the expression of T-synthase (O-glycosylation rate-limiting enzyme) and its chaperone protein (Cosmc) in the colon of HFD-fed mice, which suggested that CPP could improve the abnormal protein folding and O-glycosylation of Muc2 during processing and modification. In summary, our study indicates that CPP plays an effective role in relieving mucus barrier damage by improving the production and properties of Muc2, providing new perspectives on the development of CPP as a dietary supplement for strengthening the intestinal barrier.
Collapse
Affiliation(s)
- Peiheng Han
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, P R China
| | - Yujuan Yu
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, P R China
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, P R China.
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, P R China
| |
Collapse
|
12
|
Baranzelli J, Somacal S, Monteiro CS, Mello RDO, Rodrigues E, Prestes OD, López-Ruiz R, Garrido Frenich A, Romero-González R, de Miranda MZ, Emanuelli T. Grain Germination Changes the Profile of Phenolic Compounds and Benzoxazinoids in Wheat: A Study on Hard and Soft Cultivars. Molecules 2023; 28:molecules28020721. [PMID: 36677783 PMCID: PMC9864386 DOI: 10.3390/molecules28020721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Pre-harvest sprouting is a frequent problem for wheat culture that can be simulated by laboratory-based germination. Despite reducing baking properties, wheat sprouting has been shown to increase the bioavailability of some nutrients. It was investigated whether wheat cultivars bearing distinct grain texture characteristics (BRS Guaraim, soft vs. BRS Marcante, hard texture) would have different behavior in terms of the changes in phytochemical compounds during germination. Using LC-Q-TOF-MS, higher contents of benzoxazinoids and flavonoids were found in the hard cultivar than in the soft one. Free phytochemicals, mainly benzoxazinoids, increased during germination in both cultivars. Before germination, soft and hard cultivars had a similar profile of matrix-bound phytochemicals, but during germination, these compounds have been shown to decrease only in the hard-texture cultivar, due to decreased levels of phenolic acids (trans-ferulic acid) and flavonoids (apigenin) that were bound to the cell wall through ester-type bonds. These findings confirm the hypothesis that hard and soft wheat cultivars have distinct behavior during germination concerning the changes in phytochemical compounds, namely the matrix-bound compounds. In addition, germination has been shown to remarkably increase the content of benzoxazinoids and the antioxidant capacity, which could bring a health-beneficial appeal for pre-harvested sprouted grains.
Collapse
Affiliation(s)
- Julia Baranzelli
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil
| | - Sabrina Somacal
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil
| | - Camila Sant’Anna Monteiro
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil
| | - Renius de Oliveira Mello
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil
| | - Eliseu Rodrigues
- Department of Food Science, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Rio Grande do Sul, Brazil
| | - Osmar Damian Prestes
- Department of Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil
| | - Rosalía López-Ruiz
- Research Group ‘Analytical Chemistry of Contaminants’, Department of Chemistry and Physics, Research Center for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, 04120 Almeria, Spain
| | - Antonia Garrido Frenich
- Research Group ‘Analytical Chemistry of Contaminants’, Department of Chemistry and Physics, Research Center for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, 04120 Almeria, Spain
| | - Roberto Romero-González
- Research Group ‘Analytical Chemistry of Contaminants’, Department of Chemistry and Physics, Research Center for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, 04120 Almeria, Spain
| | - Martha Zavariz de Miranda
- Grain Quality Laboratory, Brazilian Agricultural Research Corporation-Embrapa Trigo, Passo Fundo 99050-970, Rio Grande do Sul, Brazil
| | - Tatiana Emanuelli
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil
- Correspondence:
| |
Collapse
|
13
|
Zhou DD, Li J, Xiong RG, Saimaiti A, Huang SY, Wu SX, Yang ZJ, Shang A, Zhao CN, Gan RY, Li HB. Bioactive Compounds, Health Benefits and Food Applications of Grape. Foods 2022; 11:2755. [PMID: 36140883 PMCID: PMC9497968 DOI: 10.3390/foods11182755] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 12/19/2022] Open
Abstract
Grape (Vitis vinifera L.) is one of the most popular fruits worldwide. It contains various bioactive compounds, such as proanthocyanidins, anthocyanins, flavonols, phenolic acids and stilbenes, the contents of which could vary considerably in grape skin, pulp and seed. Many studies have revealed that grape possesses a variety of health benefits, such as antioxidant, anti-inflammatory, gut-microbiota-modulating, anticancer and cardioprotective effects. Grape is eaten as fresh fruit and is also used as raw material to produce various products, such as wine, grape juice and raisins. Moreover, the byproducts of grape, such as grape pomace and grape seed, have many applications in the food industry. In this paper, the bioactive compounds in grape are briefly summarized based on literature published in recent years. In addition, the health benefits of grape and its bioactive components are discussed, with special attention paid to the underlying mechanisms. Furthermore, the applications of grape in the food industry are elucidated, especially the applications of grape pomace and grape seed. This paper can contribute to understanding the health benefits and mechanisms of grape and its bioactive compounds, as well as the promotion of the use of grape in the food industry.
Collapse
Affiliation(s)
- Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiahui Li
- School of Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Si-Xia Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhi-Jun Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
14
|
Ohira H, Oikawa D, Kurokawa Y, Aoki Y, Omura A, Kiyomoto K, Nakagawa W, Mamoto R, Fujioka Y, Nakayama T. Suppression of colonic oxidative stress caused by chronic ethanol administration and attenuation of ethanol-induced colitis and gut leakiness by oral administration of sesaminol in mice. Food Funct 2022; 13:9285-9298. [PMID: 35968694 DOI: 10.1039/d1fo04120g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chronic consumption of excess ethanol is one of the major risk factors for colorectal cancer (CRC), and the pathogenesis of ethanol-related CRC (ER-CRC) involves ethanol-induced oxidative-stress and inflammation in the colon and rectum, as well as gut leakiness. In this study, we hypothesised that oral administration of sesaminol, a sesame lignan, lowers the risk of ER-CRC because we found that it is a strong antioxidant with very low prooxidant activity. This hypothesis was examined using a mouse model, in which 2.0% v/v ethanol was administered ad libitum for 2 weeks with or without oral gavage with sesaminol (2.5 mg per day). Oral sesaminol administration suppressed the ethanol-induced colonic lesions and the ethanol-induced elevation of the colonic levels of oxidative stress markers (8-hydroxy-2'-deoxyguanosine, malondialdehyde, and 4-hydroxyalkenals). It consistently suppressed the chronic ethanol-induced expressions of cytochrome P450-2E1 and inducible nitric oxide synthase and upregulated heme oxygenase-1 expression, probably via the nuclear factor erythroid-derived 2-like 2 pathway in the mouse colon. Oral sesaminol administration also suppressed the chronic ethanol-induced elevation of colonic inflammation marker levels, such as those of tumour necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1, probably via the nuclear factor-kappa B pathway. Moreover, it prevented the chronic ethanol-induced gut leakiness by restoring tight junction proteins, giving rise to lower plasma endotoxin levels compared with those of ethanol-administered mice. All of these results suggest that dietary supplementation of sesaminol may lower the risk of ER-CRC by suppressing each of the above-mentioned steps in ER-CRC pathogenesis.
Collapse
Affiliation(s)
- Hideo Ohira
- Division of Clinical Nutrition, Faculty of Nutrition, Kobe Gakuin University, Kobe 651-2180, Japan
| | - Daiki Oikawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Yoichi Kurokawa
- Faculty of Bioscience, Fukui Prefectural University, Fukui 910-1195, Japan
| | - Yuichi Aoki
- Tohoku University Tohoku Medical Megabank Organization, Seiryo 2-1, Sendai, Miyagi 980-8573, Japan
| | - Ayano Omura
- Kiyomoto Co., Ltd., 6-1633 Totoro-cho, Nobeoka, Miyazaki 889-0595, Japan
| | - Kunio Kiyomoto
- Kiyomoto Co., Ltd., 6-1633 Totoro-cho, Nobeoka, Miyazaki 889-0595, Japan
| | - Wao Nakagawa
- Division of Clinical Nutrition, Faculty of Nutrition, Kobe Gakuin University, Kobe 651-2180, Japan
| | - Rie Mamoto
- Division of Clinical Nutrition, Faculty of Nutrition, Kobe Gakuin University, Kobe 651-2180, Japan
| | - Yoshio Fujioka
- Division of Clinical Nutrition, Faculty of Nutrition, Kobe Gakuin University, Kobe 651-2180, Japan
| | - Toru Nakayama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
15
|
Azevedo L, Serafim MSM, Maltarollo VG, Grabrucker AM, Granato D. Atherosclerosis fate in the era of tailored functional foods: Evidence-based guidelines elicited from structure- and ligand-based approaches. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Calabriso N, Scoditti E, Massaro M, Maffia M, Chieppa M, Laddomada B, Carluccio MA. Non-Celiac Gluten Sensitivity and Protective Role of Dietary Polyphenols. Nutrients 2022; 14:2679. [PMID: 35807860 PMCID: PMC9268201 DOI: 10.3390/nu14132679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022] Open
Abstract
Pathogenetically characterized by the absence of celiac disease and wheat allergy, non-celiac gluten sensitivity (NCGS) is a clinical entity triggered by the consumption of gluten-containing foods that relieved by a gluten-free diet. Since it is very difficult to maintain a complete gluten-free diet, there is a high interest in discovering alternative strategies aimed at reducing gluten concentration or mitigating its toxic effects. Plant-based dietary models are usually rich in bioactive compounds, such as polyphenols, recognized to prevent, delay, or even reverse chronic diseases, including intestinal disorders. However, research on the role of polyphenols in mitigating the toxicity of gluten-containing foods is currently limited. We address the metabolic fate of dietary polyphenols, both as free and bound macromolecule-linked forms, with particular reference to the gastrointestinal compartment, where the concentration of polyphenols can reach high levels. We analyze the potential targets of polyphenols including the gluten peptide bioavailability, the dysfunction of the intestinal epithelial barrier, intestinal immune response, oxidative stress and inflammation, and dysbiosis. Overall, this review provides an updated overview of the effects of polyphenols as possible dietary strategies to counteract the toxic effects of gluten, potentially resulting in the improved quality of life of patients with gluten-related disorders.
Collapse
Affiliation(s)
- Nadia Calabriso
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| | - Egeria Scoditti
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy; (M.M.); (M.C.)
| | - Marcello Chieppa
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy; (M.M.); (M.C.)
| | - Barbara Laddomada
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 73100 Lecce, Italy
| | - Maria Annunziata Carluccio
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| |
Collapse
|
17
|
Tan C, Wang M, Kong Y, Wan M, Deng H, Tong Y, Lyu C, Meng X. Anti-inflammatory and intestinal microbiota modulation properties of high hydrostatic pressure treated cyanidin-3-glucoside and blueberry pectin complexes on dextran sodium sulfate-induced ulcerative colitis mice. Food Funct 2022; 13:4384-4398. [PMID: 35297441 DOI: 10.1039/d1fo03376j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study investigated the anti-inflammatory effects of cyanidin-3-glucoside (C3G) and blueberry pectin (BP) complexes on mice with dextran sodium sulfate (DSS)-induced colitis before and after high hydrostatic pressure (HHP) treatment. Real-time polymerase chain reaction (RT-PCR), western blotting, and 16S rDNA sequencing were used to study the expression of inflammation-related factors, activation of signal pathway-related proteins, and changes in the intestinal flora in ulcerative colitis (UC) mice. The results showed that HHP-treated C3G-BP complexes significantly relieved diarrhea and blood loss in the stool of UC mice and alleviated colon shortening. The potential mechanism of action involved reduction in intestinal oxidative stress mRNA expression of pro-inflammatory factors, improvement in anti-inflammatory factor levels, inhibition of the NF-κB signaling pathway, increased protein levels of Bcl-2/Bax and caspase-3/cleaved caspase-3 genes, and improved gut microbiota composition. Compared with other experimental groups, the HHP-treated C3G-BP complexes group exhibited the best anti-inflammatory effect on DSS-induced UC mice. The results may provide new ideas for using C3G-BP complexes for treating UC and help develop better processing methods.
Collapse
Affiliation(s)
- Chang Tan
- Food College, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China. .,Light Industry College, Liaoning University, Shenyang, Liaoning, 110031, China
| | - Mingyue Wang
- Food College, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
| | - Yanwen Kong
- Food College, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
| | - Meizhi Wan
- Food College, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
| | - Haotian Deng
- Food College, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
| | - Yuqi Tong
- Food College, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
| | - Chunmao Lyu
- Food College, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
| | - Xianjun Meng
- Food College, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
| |
Collapse
|
18
|
Chemoprevention with a tea from hawthorn ( Crataegus oxyacantha) leaves and flowers attenuates colitis in rats by reducing inflammation and oxidative stress. FOOD CHEMISTRY-X 2021; 12:100139. [PMID: 34712949 PMCID: PMC8531563 DOI: 10.1016/j.fochx.2021.100139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022]
Abstract
A tea from the leaves and flowers of hawthorn is rich in flavonoids, especially vitexin-2-O-rhamnoside. Mesalamine and hawthorn tea have positive healing effects in rats with colitis. Hawthorn tea reduces the length and area of the brownish necrotic lesions. Hawthorn tea diminishes the levels of the inflammatory markers MPO and IL-1β. Hawthorn tea regulates the activity of the oxidative stress enzymes CAT and GR.
The purpose of the study was to determine the effects of a tea from the leaves and flowers of Crataegus oxyacantha in rats with colitis. Colitis was induced by administration of 2,4,6-trinitrobenzene sulfonic acid. Hawthorn tea (HT) (100 mg/kg) was given via gavage for 21 days and the mesalamine drug (100 mg/kg) was administrated during the period of disease onset. HT was rich in total phenolic compounds (16.5%), flavonoids (1.8%), and proanthocyanidins (1.5%); vitexin-2-O-rhamnoside was the main compound detected. Mesalamine and the HT diminished the length of the lesions formed in the colon, in addition to reducing the levels of myeloperoxidase and interleukin-1β. Mesalamine was able to significantly reverse the body weight loss, while HT improved the activity of glutathione reductase and catalase. Histological scoring was not changed by the interventions, but it was highly correlated with the necrotic area. HT given at 100 mg/kg can be effective against colitis.
Collapse
Key Words
- CAT, Catalase
- CD, Crohn’s disease
- Colon
- Crataegus oxyacantha
- DAD, Diode array detection
- DAI, Disease Activity Index
- DSS, Dextran sodium sulfate
- ELISA, Enzyme-linked immunosorbent assay
- ESI, Electrospray ionization
- FID, Flame ionization detector
- FRAP, Ferric reducing antioxidant power
- GC, Gas chromatograph
- GPx, glutathione peroxidase
- GR, Glutathione reductase
- GSH, Glutathione
- HT, Hawthorn tea
- IBD, Inflammatory bowel disease
- IL-1β, Interleukin-1beta
- Inflammatory bowel diseases
- MDA, Malondialdehyde
- MPO, Myeloperoxidase
- MS, Mass spectrometry
- ORAC, Oxygen-radical absorbing capacity
- Polyphenol
- SCFA, Short-chain fatty acid
- SOD, Superoxide dismutase
- TFC, Total flavonoids content
- TNBS, 2,4,6-trinitrobenzene sulfonic acid
- TNF-α, Tumor necrosis factor-alpha
- TPC, Total polyphenols content
- TPOC, Total proanthocyanidin oligomers content
- UC, Ulcerative colitis
- UHPLC, Ultra-high-performance liquid chromatography
- Vitexin-2-O-rhamnoside
Collapse
|
19
|
Tan C, Kong Y, Tong Y, Deng H, Wang M, Zhao Y, Wan M, Lin S, Liu X, Meng X, Ma Y. Anti-apoptotic effects of high hydrostatic pressure treated cyanidin-3-glucoside and blueberry pectin complexes on lipopolysaccharide-induced inflammation in Caco-2 cells. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
20
|
Sireswar S, Dey G, Biswas S. Influence of fruit-based beverages on efficacy of Lacticaseibacillus rhamnosus GG (Lactobacillus rhamnosus GG) against DSS-induced intestinal inflammation. Food Res Int 2021; 149:110661. [PMID: 34600663 DOI: 10.1016/j.foodres.2021.110661] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/30/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Different lines of evidences from clinical, epidemiological and biochemical studies have established that optimal nutrition including probiotic and fruit phenolics can mitigate the risk and morbidity associated with some chronic diseases. The basis for this observation is the potential synergies that may exist between probiotic strains and different bioactive components of food matrices. This study was conceptualized to compare the efficiency of a probiotic strain in two different fruit matrices. Two fruits, viz., sea buckthorn (Hippophae rhamnoides) (SBT) and apples (Malus pumila) (APJ) were chosen and the anti-inflammatory effects of L. rhamnosus GG (ATCC 53103) (LR) fortified in SBT and APJ were analysed against dextran sulphate sodium (DSS) induced colitis in zebrafish (Danio rerio). The results showed that administration of probiotic (LR) fortified, malt supplemented SBT beverage (SBT + M + LR) had better restorative potential on the intestinal barrier function and mucosal damage, in comparison to LR fortified, malt supplemented APJ beverage (APJ + M + LR). SBT + M + LR demonstrated adequate anti-oxidant potential by enhancing the CAT, SOD, GPx and GSH activities, impaired due to DSS administration. The increase in the expressions of toll like receptor (TLR)-2, TLR-4 and TLR-5 induced by DSS were significantly inhibited by SBT + M + LR administration. Gene expression of pro-inflammatory markers, (NF-κB, TNF-α, IL-1β, IL-6, IL-8, CCL20, MPO and MMP9) were attenuated by SBT + M + LR treatment in intestinal tissues of DSS-treated zebrafishes. Notably, SBT + M + LR increased the expression of anti-inflammatory cytokine, IL-10. The study provides evidence that specific interactions between fruit matrix and probiotic strain can provide adjunct therapeutic strategy to manage intestinal inflammation.
Collapse
Affiliation(s)
- Srijita Sireswar
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Patia, Bhubaneswar, Odisha 751024. India
| | - Gargi Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Patia, Bhubaneswar, Odisha 751024. India.
| | - Sutapa Biswas
- Care Hospital, Chandrasekharpur, Bhubaneswar, Odisha 751016, India
| |
Collapse
|
21
|
Whole and polysaccharide powdered Sporisorium reilianum improves DSS-induced colitis in BALB/c mice by modulating gut microbiota. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
22
|
Machado APDF, Geraldi MV, do Nascimento RDP, Moya AMTM, Vezza T, Diez-Echave P, Gálvez JJ, Cazarin CBB, Maróstica Júnior MR. Polyphenols from food by-products: An alternative or complementary therapy to IBD conventional treatments. Food Res Int 2021; 140:110018. [PMID: 33648249 DOI: 10.1016/j.foodres.2020.110018] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel diseases (IBD) are illnesses characterized by chronic intestinal inflammation and microbial dysbiosis that have emerged as a public health challenge worldwide. It comprises two main conditions: Crohn's disease and ulcerative colitis. Currently, conventional therapy to treat IBD are not free from side effects, such as liver and kidney toxicity, drug resistance, and allergic reactions. In view of this, there is growing research for alternative and complementary therapies that, in addition to acting in the prevention or the control of the disease, do not compromise the quality of life and health of individuals. In this sense, a growing body of evidence has confirmed the benefits of natural phenolic compounds in intestinal health. Phenolic compounds or polyphenols are molecules widely distributed throughout the plant kingdom (flowers, vegetables, leaves, and fruits), including plant materials remaining of the handling and food industrial processing, referred to in the scientific literature as by-products, food waste, or bagasse. Since by-products are low-cost, abundant, easily accessible, safe, and rich in bioactive compounds, it becomes an exciting option to extract, concentrate or isolate phenolic compounds to be posteriorly applied in the therapeutic approach of IBD. In this article, we have reviewed the main phenolic compounds present in various plants and by-products that have shown beneficial and/or promising effects in experimental pre-clinical, clinical, and in vitro research with IBD. In addition, we have mentioned and suggested several plants and by-products originated and produced in Latin America that could be part of future research as good sources of specific phenolic compounds to be applied in the prevention and development of alternative treatments for IBD. This review may offer a valuable reference for studies related to IBD administering phenolic compounds from natural, cheap, and easily accessible raw and undervalued materials.
Collapse
Affiliation(s)
| | - Marina Vilar Geraldi
- University of Campinas, School of Food Engineering, 80 Monteiro Lobato Street, 13083-862 Campinas, SP, Brazil
| | | | | | - Teresa Vezza
- University of Granada, Department of Pharmacology, CIBER-EHD, Institute of Biosanitary Research of Granada (ibs.GRANADA), Biomedical Research Center (CIBM), Campus de la Salud, 18071 Granada, Spain
| | - Patricia Diez-Echave
- University of Granada, Department of Pharmacology, CIBER-EHD, Institute of Biosanitary Research of Granada (ibs.GRANADA), Biomedical Research Center (CIBM), Campus de la Salud, 18071 Granada, Spain
| | - Julio Juan Gálvez
- University of Granada, Department of Pharmacology, CIBER-EHD, Institute of Biosanitary Research of Granada (ibs.GRANADA), Biomedical Research Center (CIBM), Campus de la Salud, 18071 Granada, Spain
| | - Cinthia Bau Betim Cazarin
- University of Campinas, School of Food Engineering, 80 Monteiro Lobato Street, 13083-862 Campinas, SP, Brazil
| | | |
Collapse
|
23
|
Comparison of the Effects of Essential Oil Obtained from the Crude and Bran-Processed Atractylodes lancea on Lipopolysaccharide-Induced Inflammatory Injury of Human Colonic Epithelial Cells by Downregulating the IKK/NF- κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5219129. [PMID: 33628299 PMCID: PMC7884137 DOI: 10.1155/2021/5219129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/12/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023]
Abstract
Background Atractylodes lancea (AL) has been used in traditional Chinese medicine for the treatment of various diseases including digestive disorders. Ulcerative colitis (UC) is a common digestive system disease with a low cure rate and easy recurrence. However, it is still not clear whether AL is suitable for UC treatment. Currently, stir-baking with wheat bran is most commonly used to process AL. Here, we aimed to address the effects of the crude and bran-processed AL on UC in vitro and uncover the underlying mechanism based on regulating the IKK/NF-kappa B signaling pathway. Methods Human colonic epithelial cells (HCoEpiC) were treated with lipopolysaccharide (LPS) to mimic the inflammatory injury of UC in vitro. The essential oil from crude and bran-processed AL was used to treat LPS-induced HcoEpiC cells. The cell viability was detected by an MTT assay. The levels of IL-4, IL-6, IL-8, IL-12, IL-1-β, TNF-α, and NO were determined by ELISA, and the mRNA expressions of IKK-α, NF-κB, IL-4, IL-6, IL-8, and TNF-α were determined by RT-PCR. Meanwhile, the expressions of IKK-α, p-IKK-α, p-IKK-β, NF-κB, IL-6, and IL-8 proteins were determined by Western blot. Results The essential oil of AL, whether it was from crude or bran-processed AL, could significantly increase the viability of LPS-induced HCoEpiC cells. The treatment of AL essential oil also notably inhibited the productions of IL-6, IL-8, IL-12, IL-1-β, TNF-α, NO, p-IKK-α, p-IKK-β, and NF-κB and downregulated the mRNA expressions of NF-κB, IL-6, IL-8, and TNF-α. Meanwhile, IL-4 protein and mRNA expression were significantly stimulated by AL essential oil. Moreover, the essential oil from bran-processed AL was more effective than that from crude AL. Conclusion Both kinds of AL essential oil had the anti-inflammatory effect on LPS-induced HCoEpiC, and the essential oil from bran-processed AL was more effective. The mechanism could be through the IKK/NF-κB signaling pathway in vitro.
Collapse
|
24
|
Review on the potential application of non-phenolic compounds from native Latin American food byproducts in inflammatory bowel diseases. Food Res Int 2021; 139:109796. [DOI: 10.1016/j.foodres.2020.109796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022]
|
25
|
da Silva DT, Rodrigues RF, Machado NM, Maurer LH, Ferreira LF, Somacal S, da Veiga ML, Rocha MIDUMD, Vizzotto M, Rodrigues E, Barcia MT, Emanuelli T. Natural deep eutectic solvent (NADES)-based blueberry extracts protect against ethanol-induced gastric ulcer in rats. Food Res Int 2020; 138:109718. [PMID: 33292963 DOI: 10.1016/j.foodres.2020.109718] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/12/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022]
Abstract
Blueberry is a polyphenol-rich fruit bearing great bioactive potential. Natural deep eutectic solvents (NADES) emerged as putatively biocompatible solvents that could substitute for toxic organic solvents in the extraction of fruit phenolic compounds for developing nutraceuticals or functional foods. Therefore, the aim of this study was to investigate the gastroprotective effects and the biocompatibility of a blueberry crude extract (CE) obtained using NADES and of the extract fractions (anthocyanin-rich fraction - ARF; non-anthocyanin phenolic fraction - NAPF) in a model of ethanol-induced gastric ulcer in rats. CE was the NADES-containing, ready-to-use extract that was obtained using choline chloride:glycerol:citric acid NADES (0.5:2:0.5 M ratio). ARF and NAPF were the NADES-free fractions obtained by solid phase purification of CE and were investigated to identify the bioactive fraction responsible for the effects of CE. Animals were treated for 14 days with water, NADES vehicle, CE, ARF, NAPF or lansoprazole (intragastric) and then received ethanol to induce gastric ulcer. CE decreased ulcer index and preserved the integrity of gastric mucosa. The pretreatment with CE or ARF reduced glutathione depletion and the inflammatory response. All treatments, including NADES vehicle reduced protein oxidation and nitric oxide overproduction in ethanol-treated rats. Additionally, ARF increased short-chain fatty acids in feces. These findings suggest that NADES can be used to obtain biocompatible extracts of blueberry that exhibit gastroprotective effects with no need of solvent removal. The gastroprotective effects were mainly associated to ARF but NAPF and even NADES vehicle also contributed to some protective effects.
Collapse
Affiliation(s)
- Dariane Trivisiol da Silva
- Postgraduate Program on Pharmacology, Center of Health Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Renata Fritzsche Rodrigues
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Natália Minuzzi Machado
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | | | - Lauren Fresinghelli Ferreira
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Sabrina Somacal
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Marcelo Leite da Veiga
- Department of Morphology, Center of Health Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | | | - Marcia Vizzotto
- Brazilian Agricultural Research Corporation, Embrapa Temperate Climate, 96010-971 Pelotas, RS, Brazil
| | - Eliseu Rodrigues
- Natural Antioxidants Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, 91501-970 Porto Alegre, RS, Brazil
| | - Milene Teixeira Barcia
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Tatiana Emanuelli
- Postgraduate Program on Pharmacology, Center of Health Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil; Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
26
|
Yang L, Lin Q, Han L, Wang Z, Luo M, Kang W, Liu J, Wang J, Ma T, Liu H. Soy hull dietary fiber alleviates inflammation in BALB/C mice by modulating the gut microbiota and suppressing the TLR-4/NF-κB signaling pathway. Food Funct 2020; 11:5965-5975. [PMID: 32662806 DOI: 10.1039/d0fo01102a] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The present study is undertaken to assess the ability of insoluble dietary fiber (IDF) and soluble dietary fiber (SDF) extracted from soy hulls to relieve colitis in dextran sulfate sodium (DSS) induced inflammatory bowel disease (IBD) in a BALB/C mouse model. We characterized dietary fiber (DF) structures by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Water retention capacity (WRC), water swelling capacity (WSC), oil adsorption capacity (OAC), glucose adsorption capacity (GAC), and the bile acid retardation index (BRI) were measured. The unique surface and chemical structural characteristics endowed DF with good absorption capacity and hydration ability, along with delayed glucose diffusion and absorption of bile acids. IBD was induced with a solution containing 5% DSS in male mice, which were administered a total oral dose of IDF (300 mg kg-1) and SDF (300 mg kg-1) three times per day after successful model establishment. All the mice were assessed weekly for weight change, diarrhea index, and fecal bleeding index. Levels of TLR-4 and NF-κB proteins were measured with western blotting analysis. Cytokine TNF-α in the serum was detected with an enzyme-linked immunosorbent assay (ELISA). Histological methods (H&E) were used to observe part of the mouse colon. The gut microbiota in the colonic contents was analyzed by 16S rRNA gene sequencing. DF decreased weight loss, diarrhea, and fecal bleeding, and also slowed serum TNF-α release. Increases in the levels of NF-κB proteins in inflamed colon tissue were also significantly suppressed by DF treatment. DF ameliorates the colitis induced decrease in gut microbiota species richness. The effect of SDF seemed clearer: the relative abundance of Barnesiella, Lactobacillus, Ruminococcus and Flavonifractor at the genus level was greater than that in the normal control group.
Collapse
Affiliation(s)
- Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China. and China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Qian Lin
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Lin Han
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Ziyi Wang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Mingshuo Luo
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Wanrong Kang
- Scientific Research Center, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Tao Ma
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| |
Collapse
|