1
|
Ratwani M, Bisht S, Prakash S. Association between sleep disturbance and metabolic dysfunctions in adipose tissue: Insights into melatonin's role. Biochem Biophys Res Commun 2025; 770:151978. [PMID: 40378618 DOI: 10.1016/j.bbrc.2025.151978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/19/2025]
Abstract
The increased prevalence of sleep disturbances in modern society is frequently linked to various metabolic disorders, including insulin resistance, obesity, hypertension, fatty liver disease, and cardiometabolic complications. Melatonin, a pineal gland-secreted neurohormone, plays a pivotal role in maintaining the circadian rhythm. It is involved in regulating adipose tissue development, lipid accumulation, browning of white adipose tissue, and activation of brown adipose tissue. The adipose tissue is a dynamic endocrine organ that secretes hormones and cytokines. Recent research has highlighted the significant role of melatonin in the modulation of lipid metabolism, adipogenesis, and thermogenesis in adipose tissues. Circadian rhythms are important in synchronizing metabolic functions with environmental cues, such as light and dark, feeding-fasting states, etc. Irregular sleep patterns, shift work, and exposure to artificial light at night disrupt these rhythms, affecting circadian regulation and compromising metabolic health. Melatonin imbalance due to sleep disturbances results in metabolic dysfunction, increased fat storage, and adipose tissue inflammation. As circadian rhythm and melatonin are both related, a change in circadian rhythm affects the physiology of adipose tissues thereby precipitating metabolic complications through melatonin signaling. This study attempted to understand the mechanisms by which melatonin influences adipose tissue activity, highlighting the role of circadian rhythms in this process. This will enable the development of melatonin-based therapies to mitigate the adverse effects of chronobiological disturbances on the physiology of adipose tissue. Understanding these interactions will provide novel insights for combating obesity and related metabolic conditions.
Collapse
Affiliation(s)
- Mishthi Ratwani
- Amity Institute of Pharmacy, Amity University, Sector 125, Uttar Pradesh, Lucknow, 201313, India
| | - Shradha Bisht
- College of Pharmacy, Shivalik Campus, Dehradun, 248197, Uttarakhand, India
| | - Swati Prakash
- Amity Institute of Pharmacy, Amity University, Sector 125, Uttar Pradesh, Lucknow, 201313, India.
| |
Collapse
|
2
|
Randeni N, Luo J, Xu B. Critical Review on Anti-Obesity Effects of Anthocyanins Through PI3K/Akt Signaling Pathways. Nutrients 2025; 17:1126. [PMID: 40218884 PMCID: PMC11990295 DOI: 10.3390/nu17071126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/18/2025] [Accepted: 03/23/2025] [Indexed: 04/14/2025] Open
Abstract
Obesity is a global health crisis and is one of the major reasons for the rising prevalence of metabolic disorders such as type 2 diabetes, cardiovascular diseases, and certain cancers. There has been growing interest in the search for natural molecules with potential anti-obesity effects; among the phytochemicals of interest are anthocyanins, which are flavonoid pigments present in many fruits and vegetables. Anthocyanins influence obesity via several signaling pathways. The PI3K/Akt signaling pathway plays a major role with a focus on downstream targets such as GLUT4, FOXO, GSK3β, and mTOR, which play a central role in the regulation of glucose metabolism, lipid storage, and adipogenesis. The influence of critical factors such as oxidative stress and inflammation also affect the pathophysiology of obesity. However, the studies reviewed have certain limitations, including variations in experimental models, bioavailability challenges, and a lack of extensive clinical validation. While anthocyanin shows tremendous potential, challenges such as poor bioavailability, stability, and regulatory matters must be overcome for successful functional food inclusion of anthocyanins. The future of anthocyanin-derived functional foods lies in their ability to overcome hurdles. Therefore, this review highlights the molecular mechanisms of obesity through the PI3K/Akt signaling pathways and explores how anthocyanins can modulate these signaling pathways to address obesity and related metabolic disorders. It also addresses some ways to solve the challenges, like bioavailability and stability, while emphasizing future possibilities for anthocyanin-based functional foods in obesity management.
Collapse
Affiliation(s)
| | | | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, Beijing Normal-Hong Kong Baptist University, Zhuhai 519087, China; (N.R.); (J.L.)
| |
Collapse
|
3
|
Seifishahpar M, Kim JH, Parkman JK, Rhode A, Menikdiwela K, Zu Y, Scoggin S, Freeman L, Kalupahana NS, Moustaid-Moussa N. Mechanisms Mediating Tart Cherry and Fish Oil Metabolic Effects in Diet-Induced (C57BL/6J) and Genetically (TALYHO/Jng) Obese Mice. Nutrients 2024; 16:4179. [PMID: 39683572 DOI: 10.3390/nu16234179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Obesity is a major public health concern that increases the risk of chronic diseases. In obesity, adipose tissue undergoes remodeling, which is associated with chronic low-grade inflammation and disruption of its homeostatic mechanisms including endoplasmic reticulum (ER) function and autophagy. Fish oil (FO) and tart cherry (TC) have known anti-inflammatory properties. We hypothesized that while TC and FO individually decrease inflammation, their combined effects will be greater and will be either synergistic or additive in regulating inflammation and other adipose tissue functions. METHODS Here, we conducted gene expression analyses, using qRT-PCR, on gonadal white adipose tissues from a previous study where male and female C57BL/6J (B6) and TALLYHO/Jng (TH) mice were fed low fat (LF), high fat (HF), or HF diets supplemented with TC, FO, or TC + FO for 14 weeks from weaning. Data was statistically analyzed by one or two-way ANOVA, using GraphPad Prism. RESULTS HF diet increased adiposity and upregulated markers of inflammation, ER stress, and autophagy compared to the LF diet in both mouse models. While both TC and FO supplementation individually reduced the expression of inflammatory, ER stress, and autophagy markers on HF diet, their combination showed no consistent additive or synergistic effects. CONCLUSIONS Overall, our findings suggest that although TC and FO effectively mitigate inflammation in white adipose tissue, their combined use did not result in synergistic or additive effects of the two interventions.
Collapse
Affiliation(s)
- Maryam Seifishahpar
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Jung Han Kim
- Department of Biomedical Sciences, School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Jacaline K Parkman
- Department of Biomedical Sciences, School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Ana Rhode
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Kalhara Menikdiwela
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Yujiao Zu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Logan Freeman
- Department of Biomedical Sciences, School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Nishan Sudheera Kalupahana
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
- Institute for One Health Innovation, Texas Tech University, Lubbock, TX 79409, USA
- Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
4
|
Mohaghegh N, Ahari A, Buttles C, Davani S, Hoang H, Huang Q, Huang Y, Hosseinpour B, Abbasgholizadeh R, Cottingham AL, Farhadi N, Akbari M, Kang H, Khademhosseini A, Jucaud V, Pearson RM, Hassani Najafabadi A. Simvastatin-Loaded Polymeric Nanoparticles: Targeting Inflammatory Macrophages for Local Adipose Tissue Browning in Obesity Treatment. ACS NANO 2024; 18:27764-27781. [PMID: 39342648 DOI: 10.1021/acsnano.4c10742] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Obesity is defined as chronic, low-grade inflammation within specific tissues. Given the escalating prevalence of obesity among individuals of all ages, obesity has reached epidemic proportions, posing an important public health challenge. Despite significant advancements in treating obesity, conventional approaches remain largely ineffective or involve severe side effects, thus underscoring the pressing need to explore and develop treatment approaches. Targeted and local immunomodulation using nanoparticles (NPs) can influence fat production and utilization processes. Statins, known for their anti-inflammatory properties, show the potential for mitigating obesity-related inflammation. A localized delivery option offers several advantages over oral and parenteral delivery methods. Here, we developed simvastatin (Sim) encapsulated within PLGA NPs (Sim-NP) for localized delivery of Sim to adipose tissues (ATs) for immunomodulation to treat obesity. In vitro experiments revealed the strong anti-inflammatory effects of Sim-NPs, which resulted in enhanced modulation of macrophage (MΦ) polarization and induction of AT browning. We then extended our investigation to an in vivo mouse model of high-fat-diet (HFD)-induced obesity. Sim-NP administration led to the controlled release of Sim within AT, directly impacting MΦ activity and inducing AT browning while inducing weight loss. Our findings demonstrated that Sim-NP administration effectively inhibited the progression of obesity-related inflammation, controlled white fat production, and enhanced AT modulation. These results highlight the potential of Sim-NP as a potent nanotherapy for treating obesity by modulating the immune system.
Collapse
Affiliation(s)
- Neda Mohaghegh
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Amir Ahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Surgery, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Claire Buttles
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - Saya Davani
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Briggs Hall, Davis, California 95616, United States
| | - Hanna Hoang
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90024, United States
| | - Qiang Huang
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Yixuan Huang
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Bahareh Hosseinpour
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Reza Abbasgholizadeh
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Andrea L Cottingham
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Neda Farhadi
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Mohsen Akbari
- Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Biotechnology Center, Silesian University of Technology, Gliwice 44-100, Poland
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | | |
Collapse
|
5
|
López-Pérez SJ, Ureña-Guerrero ME, Bañuelos-Pineda J. An extract of Hibiscus sabdariffa improves short-term memory in rats with experimental diabetic hyperglycemia. Nutr Neurosci 2024; 27:1102-1112. [PMID: 38193451 DOI: 10.1080/1028415x.2023.2301166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
BACKGROUND Calyxes of Hibiscus sabdariffa (Hs) contain anthocyanins, that normalize blood glucose levels (BGL) in diabetic patients. Diabetes also causes memory alterations, which could hypothetically decrease with the consumption of Hs. OBJECTIVES To investigate the effect of dietary supplementation with a Hs extract on working memory and BGL in rats. METHODS Diabetic hyperglycemia (DHG) was induced with streptozotocin (STZ, 55 mg/kg i.p.) in Wistar rats. After 72 h DHG was confirmed, and the consumption of Hs extract began (50 mg/Kg/day). BGL and body weight (BW) were measured at 10, 20 and 30 days after DHG induction in controls and treated animals. Learning and short-term memory were evaluated after 30 days with Novel Object Recognition Test (NOR) and Barnes Maze (BM). The gross hippocampal structure was histologically analyzed. RESULTS STZ-treated animals presented low BW and persistent DHG (BGL <300 mg/dL). Diabetic animals consuming the Hs extract had a dual response: some showed BGL comparable to controls, while others had levels comparable to diabetic animals not consuming extract. Diabetic animals that consumed the Hs extract had a better performance in NOR and BM than the diabetic animals not consuming the extract. At the histological level, hippocampal morphological differences were observed between diabetic animals that consumed the extract and those that did not. DISCUSSION The Hs extract used here could be a good co-adjuvant in the treatment of DHG, aimed at mitigating memory deficits and high BGL. These beneficial effects could be attributed to the anthocyanin content in the extract.
Collapse
Affiliation(s)
- Silvia J López-Pérez
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara. Zapopan, Jalisco, México
| | - Mónica E Ureña-Guerrero
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara. Zapopan, Jalisco, México
| | - Jacinto Bañuelos-Pineda
- Departamento de Medicina Veterinaria, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara. Zapopan, Jalisco, México
| |
Collapse
|
6
|
Xin M, Xu A, Tian J, Wang L, He Y, Jiang H, Yang B, Li B, Sun Y. Anthocyanins as natural bioactives with anti-hypertensive and atherosclerotic potential: Health benefits and recent advances. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155889. [PMID: 39047414 DOI: 10.1016/j.phymed.2024.155889] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Hypertension is a highly prevalent chronic metabolic illness affecting individuals of all age groups. Furthermore, it is a significant risk factor for the development of atherosclerosis (AS), as a correlation between hypertension and AS has been observed. However, the effective treatments for either of these disorders appear to be uncommon. METHODS A systematic search of articles published in PubMed, Web of Science, ScienceDirect, Scopus, and Google Scholar databases over the last decade was performed using the following keywords: hypertension, AS, anthocyanins, antioxidants, gut microbes, health benefits, and bioactivity. RESULTS The available research indicates that anthocyanin consumption can achieve antioxidant effects by inducing the activation of intracellular nuclear factor erythroid 2-related factor (Nrf2) and the expression of antioxidant genes. Moreover, previous reports showed that anthocyanins can enhance the human body's ability to fight against inflammation and cancer through the inhibition of inflammatory factors and the regulation of related signaling pathways. They can also protect the blood vessels and nervous system by regulating the production and function of endothelial nitric oxide synthase (eNOS). Gut microorganisms play an important role in various chronic diseases. Our research has also investigated the role of anthocyanins in the metabolism of the gut microbiota, leading to significant breakthroughs. This study not only presents a unique strategy for reducing the risk of cardiovascular diseases (CVDs) without the need for medicine but also provides insights into the development and utilization of intestinal probiotic dietary supplements. CONCLUSION In this review, different in vitro and in vivo studies have shown that anthocyanins slow down the onset and progression of hypertension and AS through different mechanisms. In addition, gut microbial metabolites also play a crucial role in diseases through the gut-liver axis.
Collapse
Affiliation(s)
- Meili Xin
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Aihua Xu
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Liang Wang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, Zhejiang 311800, China
| | - Ying He
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, Zhejiang 311800, China
| | - Hongzhou Jiang
- Anhui Ziyue Biotechnology Co., Ltd, Wuhu, Anhui,241000, China
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
| | - Yongxin Sun
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
7
|
Li S, Liu Y. Intestinal absorption mechanism and nutritional synergy promotion strategy of dietary flavonoids: transintestinal epithelial pathway mediated by intestinal transport proteins. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39086266 DOI: 10.1080/10408398.2024.2387320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Dietary flavonoids exhibit a variety of physiological functions in regulating glucose and lipid metabolism, improving cardiovascular function, and enhancing stress resistance. However, poor intestinal absorption limits their health benefits. Previous studies on improving the absorption efficiency of flavonoids have focused on targeted release, enhanced gastrointestinal stability and prolonged retention time in digestive tract. But less attention has been paid to promoting the uptake and transport of flavonoids by intestinal epithelial cells through modulation of transporter protein-mediated pathways. Interestingly, some dietary nutrients have been found to modulate the expression or function of transporter proteins, thereby synergistically or antagonistically affecting flavonoid absorption. Therefore, this paper proposed an innovative regulatory strategy known as the "intestinal transport protein-mediated pathway" to promote intestinal absorption of dietary flavonoids. The flavonoid absorption mechanism in the intestinal epithelium, mediated by intestinal transport proteins, was summarized. The functional differences between the uptake transporter and efflux transporters during flavonoid trans-intestinal cellular transport were discussed. Finally, from the perspective of nutritional synergy promotion of absorption, the feasibility of promoting flavonoid intestinal absorption by regulating the expression/function of transport proteins through dietary nutrients was emphasized. This review provides a new perspective and developing precise dietary nutrient combinations for efficient dietary flavonoid absorption.
Collapse
Affiliation(s)
- Shuqiong Li
- College of Ocean Food and Biological Engineering, National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian, People's Republic of China
| |
Collapse
|
8
|
de Lima EP, Moretti RC, Torres Pomini K, Laurindo LF, Sloan KP, Sloan LA, de Castro MVM, Baldi E, Ferraz BFR, de Souza Bastos Mazuqueli Pereira E, Catharin VMCS, Mellen CH, Caracio FCC, Spilla CSG, Haber JFS, Barbalho SM. Glycolipid Metabolic Disorders, Metainflammation, Oxidative Stress, and Cardiovascular Diseases: Unraveling Pathways. BIOLOGY 2024; 13:519. [PMID: 39056712 PMCID: PMC11273409 DOI: 10.3390/biology13070519] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Glycolipid metabolic disorders (GLMDs) are various metabolic disorders resulting from dysregulation in glycolipid levels, consequently leading to an increased risk of obesity, diabetes, liver dysfunction, neuromuscular complications, and cardiorenal vascular diseases (CRVDs). In patients with GLMDs, excess caloric intake and a lack of physical activity may contribute to oxidative stress (OxS) and systemic inflammation. This study aimed to review the connection between GLMD, OxS, metainflammation, and the onset of CRVD. GLMD is due to various metabolic disorders causing dysfunction in the synthesis, breakdown, and absorption of glucose and lipids in the body, resulting in excessive ectopic accumulation of these molecules. This is mainly due to neuroendocrine dysregulation, insulin resistance, OxS, and metainflammation. In GLMD, many inflammatory markers and defense cells play a vital role in related tissues and organs, such as blood vessels, pancreatic islets, the liver, muscle, the kidneys, and adipocytes, promoting inflammatory lesions that affect various interconnected organs through their signaling pathways. Advanced glycation end products, ATP-binding cassette transporter 1, Glucagon-like peptide-1, Toll-like receptor-4, and sphingosine-1-phosphate (S1P) play a crucial role in GLMD since they are related to glucolipid metabolism. The consequences of this is system organ damage and increased morbidity and mortality.
Collapse
Affiliation(s)
- Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.P.d.L.)
| | - Renato Cesar Moretti
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.P.d.L.)
| | - Karina Torres Pomini
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.P.d.L.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17525-902, SP, Brazil
| | | | - Lance Alan Sloan
- Texas Institute for Kidney and Endocrine Disorders, Lufkin, TX 75904, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Department of Odontology, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Edgar Baldi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.P.d.L.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | | | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Department of Odontology, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Virgínia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.P.d.L.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Carolina Haber Mellen
- Department of Internal Medicine, Irmandade da Santa Casa de Misericórdia de São Paulo (ISCMSP), São Paulo 01221-010, SP, Brazil
| | | | - Caio Sérgio Galina Spilla
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.P.d.L.)
| | - Jesselina F. S. Haber
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.P.d.L.)
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.P.d.L.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Charity Hospital, UNIMAR (HBU), Universidade de Marília, UNIMAR, São Paulo 17525-160, SP, Brazil
| |
Collapse
|
9
|
Khan NN, Zurayyir EJ, Almuslem MY, Alshamrani R, Alamri RA, Sulaimani GHT, Sulimani MHT, Albalawi MSF, Alzehair Alqahani RM, Alanazi EM, Aljawi HH, Alsuliman JA. Anthocyanins as Adjuvant Treatment for Non-alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Cureus 2024; 16:e63445. [PMID: 39077306 PMCID: PMC11285696 DOI: 10.7759/cureus.63445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
Recent studies suggest a role for anthocyanins in the treatment of non-alcoholic fatty liver disease (NAFLD). The purpose of the present review was to assess the effect of anthocyanins as an adjuvant treatment in patients with NAFLD. The literature search was conducted on MEDLINE/PubMed, the Cochrane Central Register of Controlled Trials (CENTRAL), the Web of Science, and Scopus without language or time limits up to March 27, 2024. The primary outcomes included the severity of liver fibrosis and the level of liver transaminases. Secondary outcomes included obesity and lipid profile assessments. Standardized mean differences (SMDs) with 95% CIs were calculated for numerical outcomes. Five studies were included. The pooled effect sizes showed lower levels of liver fibrosis and liver transaminases in the anthocyanin group, but the difference was nonsignificant and small in size. The same result was obtained with anthropometric measurements of total cholesterol, low-density lipoprotein, and serum triglycerides, where effect sizes ranged from negligible to medium in magnitude but were all nonsignificant. The anthocyanin group showed a significantly lower body fat percentage (SMD = -0.41 (95%CI: -0.76; -0.06), P = 0.021). Currently, no evidence is available on the efficacy of anthocyanins in improving liver fibrosis or dyslipidemia in patients with NAFLD. There is limited evidence that anthocyanins can lower body fat percentages, but the effect was not reflected in the pooled results of other obesity indices. The few available clinical trials showed several limitations and variations regarding the doses of anthocyanins. Future clinical trials should avoid the limitations of the current studies and provide evidence supporting or refuting the use of anthocyanins in NAFLD patients.
Collapse
Affiliation(s)
- Naveed N Khan
- Internal Medicine, King Salman Armed Forces Hospital, Tabuk, SAU
| | | | | | | | | | | | | | | | | | | | - Huda H Aljawi
- Internal Medicine, King Faisal Specialist Hospital & Research Centre, Makkah, SAU
| | | |
Collapse
|
10
|
Suresh S, Vellapandian C. Assessment of oral toxicity and safety profile of cyanidin: acute and subacute studies on anthocyanin. Future Sci OA 2024; 10:FSO982. [PMID: 38827809 PMCID: PMC11140675 DOI: 10.2144/fsoa-2023-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/22/2024] [Indexed: 06/05/2024] Open
Abstract
Aim: Purified anthocyanins lack a detailed safety profile, prompting the need for comprehensive oral toxicity research. Materials & methods: Sprague-Dawley rats aged 8 weeks received 300 mg/kg cyanidin orally for 14 days in acute toxicity (OECD 423). In the subacute study (OECD 407), adult SD rats were administered 7.5, 15 and 30 mg/kg/day cyanidin orally for 28 days. Results: Acute toxicity indicated an LD50 exceeding 300 mg/kg/day without adverse effects. Subacute toxicity at 7.5-30 mg/kg/day showed well-tolerated responses in both genders. No significant alterations in organ weights, hematological parameters, liver/kidney functions or adverse histopathological findings were observed. Conclusion: Oral cyanidin administration demonstrated high safety and tolerance in rats, establishing a NOAEL at 30 mg/kg/day, affirming cyanidin's safety for oral use.
Collapse
Affiliation(s)
- Swathi Suresh
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science & Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Chitra Vellapandian
- Dean, SRM College of Pharmacy, SRM Institute of Science & Technology, Kattankulathur, Chengalpattu,Tamil Nadu, 603203, India
| |
Collapse
|
11
|
Saini RK, Khan MI, Shang X, Kumar V, Kumari V, Kesarwani A, Ko EY. Dietary Sources, Stabilization, Health Benefits, and Industrial Application of Anthocyanins-A Review. Foods 2024; 13:1227. [PMID: 38672900 PMCID: PMC11049351 DOI: 10.3390/foods13081227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Natural phytochemicals are well known to protect against numerous metabolic disorders. Anthocyanins are vacuolar pigments belonging to the parent class of flavonoids. They are well known for their potent antioxidant and gut microbiome-modulating properties, primarily responsible for minimizing the risk of cardiovascular diseases, diabetes, obesity, neurodegenerative diseases, cancer, and several other diseases associated with metabolic syndromes. Berries are the primary source of anthocyanin in the diet. The color and stability of anthocyanins are substantially influenced by external environmental conditions, constraining their applications in foods. Furthermore, the significantly low bioavailability of anthocyanins greatly diminishes the extent of the actual health benefits linked to these bioactive compounds. Multiple strategies have been successfully developed and utilized to enhance the stability and bioavailability of anthocyanins. This review provides a comprehensive view of the recent advancements in chemistry, biosynthesis, dietary sources, stabilization, bioavailability, industrial applications, and health benefits of anthocyanins. Finally, we summarize the prospects and challenges of applications of anthocyanin in foods.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India;
| | - Mohammad Imtiyaj Khan
- Biochemistry and Molecular Biology Lab, Department of Biotechnology, Gauhati University, Guwahati 781014, Assam, India;
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China;
| | - Vikas Kumar
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana 141004, Punjab, India;
| | - Varsha Kumari
- Department of Plant Breeding and Genetics, Sri Karan Narendra Agriculture University, Jobner, Jaipur 302001, Rajasthan, India;
| | - Amit Kesarwani
- Department of Agronomy, College of Agriculture, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India;
| | - Eun-Young Ko
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
12
|
Hidalgo-Lozada GM, Villarruel-López A, Nuño K, García-García A, Sánchez-Nuño YA, Ramos-García CO. Clinically Effective Molecules of Natural Origin for Obesity Prevention or Treatment. Int J Mol Sci 2024; 25:2671. [PMID: 38473918 DOI: 10.3390/ijms25052671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The prevalence and incidence of obesity and the comorbidities linked to it are increasing worldwide. Current therapies for obesity and associated pathologies have proven to cause a broad number of adverse effects, and often, they are overpriced or not affordable for all patients. Among the alternatives currently available, natural bioactive compounds stand out. These are frequently contained in pharmaceutical presentations, nutraceutical products, supplements, or functional foods. The clinical evidence for these molecules is increasingly solid, among which epigallocatechin-3-gallate, ellagic acid, resveratrol, berberine, anthocyanins, probiotics, carotenoids, curcumin, silymarin, hydroxy citric acid, and α-lipoic acid stand out. The molecular mechanisms and signaling pathways of these molecules have been shown to interact with the endocrine, nervous, and gastroenteric systems. They can regulate the expression of multiple genes and proteins involved in starvation-satiety processes, activate the brown adipose tissue, decrease lipogenesis and inflammation, increase lipolysis, and improve insulin sensitivity. This review provides a comprehensive view of nature-based therapeutic options to address the increasing prevalence of obesity. It offers a valuable perspective for future research and subsequent clinical practice, addressing everything from the molecular, genetic, and physiological bases to the clinical study of bioactive compounds.
Collapse
Affiliation(s)
| | - Angelica Villarruel-López
- Department of Pharmacobiology, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara 44430, Mexico
| | - Karla Nuño
- Department of Psychology, Education and Health, ITESO Jesuit University of Guadalajara, Guadalajara 45604, Mexico
| | - Abel García-García
- Institute of Science and Technology for Health Innovation, Guadalajara 44770, Mexico
- Department of Medical Clinic, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico
| | - Yaír Adonaí Sánchez-Nuño
- Department of Pharmacobiology, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara 44430, Mexico
| | | |
Collapse
|
13
|
Chen T, Xie L, Wang G, Jiao J, Zhao J, Yu Q, Chen Y, Shen M, Wen H, Ou X, Xie J. Anthocyanins-natural pigment of colored rice bran: Composition and biological activities. Food Res Int 2024; 175:113722. [PMID: 38129038 DOI: 10.1016/j.foodres.2023.113722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Rice by-products are a potential source of various bioactive substances with great processing potential, which are receiving increasing attention. Among them, rice bran is a by-product of rice milling, with high nutritional value and health benefits. Colored rice bran contains a large amount of anthocyanins responsible for color and bioactivities. And anthocyanins are often added to foods as a natural pigment, serving to enhance both the visual appeal and nutritional value. Recent advances in the composition and bioactivities of four common colored rice bran anthocyanins (black, purple, red, and purple red rice) are reviewed in this paper. Rice bran anthocyanins have been confirmed to exhibit biological potential for human health, with their main biological activities being antioxidant, anti-atherosclerosis, anti-cancer, neuroprotective, retinoprotective, immunomodulatory, anti-aging and anti-obesity effects. The structure of anthocyanins determines their biological activities. The anthocyanins composition of rice bran with different colors varied greatly, while that of rice bran with the same color is also slightly different, which is attributed to the rice varieties, growing environment and cropping conditions. However, it remains necessary to conduct further clinical studies to support the health activities of anthocyanins. The present review provides information value for the further development and comprehensive utilization of rice bran anthocyanins.
Collapse
Affiliation(s)
- Ting Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Liuming Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jilan Jiao
- Affiliated Stomatological Hospital of Nanchang University, Nanchang 330006, China
| | - Junwei Zhao
- Affiliated Stomatological Hospital of Nanchang University, Nanchang 330006, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Huiliang Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xiaoyan Ou
- Affiliated Stomatological Hospital of Nanchang University, Nanchang 330006, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
14
|
Stoica R, Ganciarov M, Constantinescu-Aruxandei D, Capră L, Șuică-Bunghez IR, Senin RM, Pricope GD, Ivan GR, Călin C, Oancea F. Sustainable Recovery of Anthocyanins and Other Polyphenols from Red Cabbage Byproducts. Foods 2023; 12:4157. [PMID: 38002214 PMCID: PMC10669996 DOI: 10.3390/foods12224157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The objective of this work was to develop a sustainable process for the extraction of anthocyanins from red cabbage byproducts using, for the first time, apple vinegar in extractant composition. Our results showed that the mixture 50% (v/v) ethanol-water, acidified with apple vinegar, used in the proportion of 25 g of red cabbage by-products per 100 mL of solvent, was the best solvent for the preparation of an anthocyanin extract with good stability for food applications. The chemical characterization of this extract was performed by FTIR, UV-VIS, HPLC-DAD, and ICP-OES. The stability was evaluated by determining the dynamics of the total polyphenol content (TPC) and the total monomeric anthocyanin pigment content (TAC) during storage. On the basis of the statistical method for analysis of variance (ANOVA), the standard deviation between subsamples and the repeatability standard deviation were determined. The detection limit of the stability test of TPC was 3.68 mg GAE/100 g DW and that of TAC was 0.79 mg Cyd-3-Glu/100 g DW. The red cabbage extract has high TPC and TAC, good stability, and significant application potential. The extracted residues, depleted of anthocyanins and polyphenols with potential allelopathic risks, fulfill the requirements for a fertilizing product and could be used for soil treatment.
Collapse
Affiliation(s)
- Rusăndica Stoica
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Mihaela Ganciarov
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Diana Constantinescu-Aruxandei
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Luiza Capră
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Ioana-Raluca Șuică-Bunghez
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Raluca-Mădălina Senin
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Georgiana Diana Pricope
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Georgeta-Ramona Ivan
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
| | - Costin Călin
- Iprint3D Design & Consulting Srl, Str. George Enescu No.5, Sector 3, 030167 Bucharest, Romania;
| | - Florin Oancea
- Analysis and Bioresources Departments, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei No. 202, Sector 6, 060021 Bucharest, Romania; (R.S.); (M.G.); (D.C.-A.); (L.C.); (I.-R.Ș.-B.); (R.-M.S.); (G.D.P.); (G.-R.I.)
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv., No. 59, Sector 1, 011464 Bucharest, Romania
| |
Collapse
|
15
|
Hong KH, Um MY, Ahn J, Ha TY. 6-Gingerol Ameliorates Adiposity and Inflammation in Adipose Tissue in High Fat Diet-Induced Obese Mice: Association with Regulating of Adipokines. Nutrients 2023; 15:3457. [PMID: 37571394 PMCID: PMC10421254 DOI: 10.3390/nu15153457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
We investigated the effects of 6-gingerol on adiposity and obesity-induced inflammation by focusing on the regulation of adipogenesis and adipokines in white adipose tissue (WAT) of diet-induced obese mice. C57BL/6 mice were fed a high-fat diet (HFD) containing 0.05% 6-gingerol for 8 weeks. 6-Gingerol supplementation significantly reduced body weight, WAT mass, serum triglyceride, leptin and insulin levels, and HOMA-IR in HFD-fed mice. Additionally, the size of adipocytes in epididymal fat pads was reduced in HFD-fed mice by 6-gingerol supplementation. 6-Gingerol reduced the mRNA and protein levels of adipogenesis-related transcription factors, such as SREBP-1, PPARγ, and C/EBPα in WAT. Furthermore, 6-gingerol suppressed the expression of lipogenesis-related genes, such as fatty acid synthase and CD36 in WAT. Adiponectin expression was significantly increased, whereas inflammatory adipokines (leptin, resistin, TNF-α, MCP-1, and PAI-1) and the macrophage marker F4/80 were significantly reduced in the WAT of HFD-fed mice by 6-gingerol supplementation. In conclusion, 6-gingerol effectively contributed to the alleviation of adiposity and inflammation in WAT, which is associated with the regulation of adipokines in diet-induced obese mice.
Collapse
Affiliation(s)
- Kyung Hee Hong
- Department of Food Science and Nutrition, Dongseo University, Busan 47011, Republic of Korea;
| | - Min Young Um
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (M.Y.U.); (J.A.)
- Department of Food Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Jiyun Ahn
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (M.Y.U.); (J.A.)
- Department of Food Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Tae Youl Ha
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (M.Y.U.); (J.A.)
- Department of Food Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
16
|
Bolling BW. Anthocyanins and health: Are fruit and vegetable dietary recommendations outdated in the context of ultraprocessed foods? Nutr Res 2023; 115:61-62. [PMID: 37336041 DOI: 10.1016/j.nutres.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/21/2023]
Affiliation(s)
- Bradley W Bolling
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|