1
|
Zahedifard Z, Mahmoodi S, Ghasemian A. Genetically Engineered Bacteria as a Promising Therapeutic Strategy Against Cancer: A Comprehensive Review. Biotechnol Appl Biochem 2025. [PMID: 39985148 DOI: 10.1002/bab.2738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/06/2025] [Indexed: 02/24/2025]
Abstract
As a significant cause of global mortality, the cancer has also economic impacts. In the era of cancer therapy, mitigating side effects and costs and overcoming drug resistance is crucial. Microbial species can grow inside the tumor microenvironment and inhibit cancer growth through direct killing of tumor cells and immunoregulatory effects. Although microbiota or their products have demonstrated anticancer effects, the possibility of acting as pathogens and exerting side effects in certain individuals is a risk. Hence, several genetically modified/engineered bacteria (GEB) have been developed to this aim with ability of diagnosing and selective targeting and destruction of cancers. Additionally, GEB are expected to be considerably more efficient, safer, more permeable, less costly, and less invasive theranostic approaches compared to wild types. Potential GEB strains such as Escherichia coli (Nissle 1917, and MG1655), Salmonella typhimurium YB1 SL7207 (aroA gene deletion), VNP20009 (∆msbB/∆purI) and ΔppGpp (PTet and PBAD), and Listeria monocytogenes Lmat-LLO have been developed to combat cancer cells. When used in tandem with conventional treatments, GEB substantially improve the efficacy of anticancer therapy outcomes. In addition, public acceptance, optimal timing (s), duration (s), dose (s), and strains identification, interactions with other strains and the host cells, efficacy, safety and quality, and potential risks and ethical dilemmas include major challenges.
Collapse
Affiliation(s)
- Zahra Zahedifard
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
2
|
Laguna JG, Freitas ADS, Barroso FAL, De Jesus LCL, De Vasconcelos OAGG, Quaresma LS, Américo MF, Campos GM, Glória RDA, Dutra JDCF, Da Silva TF, Vital KD, Fernandes SO, Souza RO, Martins FDS, Ferreira E, Santos TM, Birbrair A, De Oliveira MFA, Faria AMC, Carvalho RDDO, Venanzi FM, Le Loir Y, Jan G, Guédon É, Azevedo VADC. Recombinant probiotic Lactococcus lactis delivering P62 mitigates moderate colitis in mice. Front Microbiol 2024; 15:1309160. [PMID: 38680913 PMCID: PMC11047439 DOI: 10.3389/fmicb.2024.1309160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/21/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction and objective p62 is a human multifunctional adaptor protein involved in key cellular processes such as tissue homeostasis, inflammation, and cancer. It acts as a negative regulator of inflammasome complexes. It may thus be considered a good candidate for therapeutic use in inflammatory bowel diseases (IBD), such as colitis. Probiotics, including recombinant probiotic strains producing or delivering therapeutic biomolecules to the host mucosal surfaces, could help prevent and mitigate chronic intestinal inflammation. The objective of the present study was to combine the intrinsic immunomodulatory properties of the probiotic Lactococcus lactis NCDO2118 with its ability to deliver health-promoting molecules to enhance its protective and preventive effects in the context of ulcerative colitis (UC). Material and methods This study was realized in vivo in which mice were supplemented with the recombinant strain. The intestinal barrier function was analyzed by monitoring permeability, secretory IgA total levels, mucin expression, and tight junction genes. Its integrity was evaluated by histological analyses. Regarding inflammation, colonic cytokine levels, myeloperoxidase (MPO), and expression of key genes were monitored. The intestinal microbiota composition was investigated using 16S rRNA Gene Sequencing. Results and discussion No protective effect of L. lactis NCDO2118 pExu:p62 was observed regarding mice clinical parameters compared to the L. lactis NCDO2118 pExu: empty. However, the recombinant strain, expressing p62, increased the goblet cell counts, upregulated Muc2 gene expression in the colon, and downregulated pro-inflammatory cytokines Tnf and Ifng when compared to L. lactis NCDO2118 pExu: empty and inflamed groups. This recombinant strain also decreased colonic MPO activity. No difference in the intestinal microbiota was observed between all treatments. Altogether, our results show that recombinant L. lactis NCDO2118 delivering p62 protein protected the intestinal mucosa and mitigated inflammatory damages caused by dextran sodium sulfate (DSS). We thus suggest that p62 may constitute part of a therapeutic approach targeting inflammation.
Collapse
Affiliation(s)
- Juliana Guimarães Laguna
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria dos Santos Freitas
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Luís Cláudio Lima De Jesus
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Ludmila Silva Quaresma
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Américo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gabriela Munis Campos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rafael de Assis Glória
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Joyce da Cruz Ferraz Dutra
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tales Fernando Da Silva
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Kátia Duarte Vital
- Department of Clinical Analysis and Toxicology, Federal University of Minas Gerais Belo Horizonte, Minas Gerais, Brazil
| | - Simone O. Fernandes
- Department of Clinical Analysis and Toxicology, Federal University of Minas Gerais Belo Horizonte, Minas Gerais, Brazil
| | - Ramon O. Souza
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Enio Ferreira
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Túlio Marcos Santos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alexander Birbrair
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Ana Maria Caetano Faria
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Franco Maria Venanzi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | | | | | | | | |
Collapse
|
3
|
Campos GM, Américo MF, Dos Santos Freitas A, Barroso FAL, da Cruz Ferraz Dutra J, Quaresma LS, Cordeiro BF, Laguna JG, de Jesus LCL, Fontes AM, Birbrair A, Santos TM, Azevedo V. Lactococcus lactis as an Interleukin Delivery System for Prophylaxis and Treatment of Inflammatory and Autoimmune Diseases. Probiotics Antimicrob Proteins 2024; 16:352-366. [PMID: 36746838 PMCID: PMC9902259 DOI: 10.1007/s12602-023-10041-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Target delivery of therapeutic agents with anti-inflammatory properties using probiotics as delivery and recombinant protein expression vehicles is a promising approach for the prevention and treatment of many diseases, such as cancer and intestinal immune disorders. Lactococcus lactis, a Lactic Acid Bacteria (LAB) widely used in the dairy industry, is one of the most important microorganisms with GRAS status for human consumption, for which biotechnological tools have already been developed to express and deliver recombinant biomolecules with anti-inflammatory properties. Cytokines, for example, are immune system communication molecules present at virtually all levels of the immune response. They are essential in cellular and humoral processes, such as hampering inflammation or adjuvating in the adaptive immune response, making them good candidates for therapeutic approaches. This review discusses the advances in the development of new therapies and prophylactic approaches using LAB to deliver/express cytokines for the treatment of inflammatory and autoimmune diseases in the future.
Collapse
Affiliation(s)
- Gabriela Munis Campos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Monique Ferrary Américo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andria Dos Santos Freitas
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Joyce da Cruz Ferraz Dutra
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ludmila Silva Quaresma
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bárbara Fernandes Cordeiro
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana Guimarães Laguna
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aparecida Maria Fontes
- Genetics Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alexander Birbrair
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tulio Marcos Santos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Uniclon Biotecnologia, Belo Horizonte, MG, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
4
|
Mahdizade Ari M, Dadgar L, Elahi Z, Ghanavati R, Taheri B. Genetically Engineered Microorganisms and Their Impact on Human Health. Int J Clin Pract 2024; 2024:6638269. [PMID: 38495751 PMCID: PMC10944348 DOI: 10.1155/2024/6638269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The emergence of antibiotic-resistant strains, the decreased effectiveness of conventional therapies, and the side effects have led researchers to seek a safer, more cost-effective, patient-friendly, and effective method that does not develop antibiotic resistance. With progress in synthetic biology and genetic engineering, genetically engineered microorganisms effective in treatment, prophylaxis, drug delivery, and diagnosis have been developed. The present study reviews the types of genetically engineered bacteria and phages, their impacts on diseases, cancer, and metabolic and inflammatory disorders, the biosynthesis of these modified strains, the route of administration, and their effects on the environment. We conclude that genetically engineered microorganisms can be considered promising candidates for adjunctive treatment of diseases and cancers.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | | | - Behrouz Taheri
- Department of Biotechnology, School of Medicine, Ahvaz Jundishapour University of medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
Xu H, Zhu S, Govinden R, Chenia HY. Multiple Vaccines and Strategies for Pandemic Preparedness of Avian Influenza Virus. Viruses 2023; 15:1694. [PMID: 37632036 PMCID: PMC10459121 DOI: 10.3390/v15081694] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Avian influenza viruses (AIV) are a continuous cause of concern due to their pandemic potential and devasting effects on poultry, birds, and human health. The low pathogenic avian influenza virus has the potential to evolve into a highly pathogenic avian influenza virus, resulting in its rapid spread and significant outbreaks in poultry. Over the years, a wide array of traditional and novel strategies has been implemented to prevent the transmission of AIV in poultry. Mass vaccination is still an economical and effective approach to establish immune protection against clinical virus infection. At present, some AIV vaccines have been licensed for large-scale production and use in the poultry industry; however, other new types of AIV vaccines are currently under research and development. In this review, we assess the recent progress surrounding the various types of AIV vaccines, which are based on the classical and next-generation platforms. Additionally, the delivery systems for nucleic acid vaccines are discussed, since these vaccines have attracted significant attention following their significant role in the fight against COVID-19. We also provide a general introduction to the dendritic targeting strategy, which can be used to enhance the immune efficiency of AIV vaccines. This review may be beneficial for the avian influenza research community, providing ideas for the design and development of new AIV vaccines.
Collapse
Affiliation(s)
- Hai Xu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China;
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Shanyuan Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China;
| | - Roshini Govinden
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Hafizah Y. Chenia
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4001, South Africa;
| |
Collapse
|
6
|
Alves JL, Lemos L, Rodrigues NM, Pereira VB, Barros PAV, Canesso MCC, Guimarães MAF, Cara DC, Miyoshi A, Azevedo VA, Maioli TU, Gomes-Santos AC, Faria AMC. Immunomodulatory effects of different strains of Lactococcus lactis in DSS-induced colitis. Braz J Microbiol 2023; 54:1203-1215. [PMID: 36821043 PMCID: PMC10234881 DOI: 10.1007/s42770-023-00928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are gastrointestinal disorders characterized by a breakdown in intestinal homeostasis by inflammatory immune responses to luminal antigens. Novel strategies for ameliorating IBD have been proposed in many studies using animal models. Our group has demonstrated that administration of Lactococcus lactis NCDO 2118 can improve clinical parameters of colitis induced by oral administration of dextran sulphate sodium (DSS). However, it is not clear whether other strains of L. lactis can yield the same effect. The objective of present study was to analyze the effects of three different L. lactis strains (NCDO2118, IL1403 and MG1363) in the development of DSS-induced colitis in C57BL/6 mice. Acute colitis was induced in C57/BL6 mice by the administration of 2% DSS during 7 consecutive days. Body weight loss and shortening of colon length were observed in DSS-treated mice, and none of L. lactis strains had an impact in these clinical signs of colitis. On the other hand, all strains improved the global macroscopical disease index and prevented goblet cells depletion as well as the increase of intestinal permeability. TNF-α production was reduced in gut mucosa of L. lactis DSS-treated mice indicating a modulation of a critical pro-inflammatory response by all strains tested. However, only L. lactis NCDO2118 and MG1363 induced a higher frequency of CD11c+CD11b-CD103+ tolerogenic dendritic cells in lymphoid organs of mice at steady state. We conclude that all tested strains of L. lactis improved the clinical scores and parameters of colitis, which confirm their anti-inflammatory properties in this model of colitis.
Collapse
Affiliation(s)
- Juliana Lima Alves
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| | - Luisa Lemos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Nubia Morais Rodrigues
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Vanessa Bastos Pereira
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Ecologia E Evolução, Belo Horizonte, MG, Brazil
| | - Patrícia A Vieira Barros
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Maria Cecília Campos Canesso
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Mauro A F Guimarães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Denise Carmona Cara
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Anderson Miyoshi
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Ecologia E Evolução, Belo Horizonte, MG, Brazil
| | - Vasco Ariston Azevedo
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Ecologia E Evolução, Belo Horizonte, MG, Brazil
| | - Tatiani Uceli Maioli
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ana Cristina Gomes-Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ana Maria Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
7
|
Américo MF, Freitas ADS, da Silva TF, de Jesus LCL, Barroso FAL, Campos GM, Santos RCV, Gomes GC, Assis R, Ferreira Ê, Mancha-Agresti P, Laguna JG, Chatel JM, Carvalho RDDO, Azevedo V. Growth differentiation factor 11 delivered by dairy Lactococcus lactis strains modulates inflammation and prevents mucosal damage in a mice model of intestinal mucositis. Front Microbiol 2023; 14:1157544. [PMID: 37138633 PMCID: PMC10149842 DOI: 10.3389/fmicb.2023.1157544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Mucositis is an inflammation of the gastrointestinal mucosa that debilitate the quality of life of patients undergoing chemotherapy treatments. In this context, antineoplastic drugs, such as 5-fluorouracil, provokes ulcerations in the intestinal mucosa that lead to the secretion of pro-inflammatory cytokines by activating the NF-κB pathway. Alternative approaches to treat the disease using probiotic strains show promising results, and thereafter, treatments that target the site of inflammation could be further explored. Recently, studies reported that the protein GDF11 has an anti-inflammatory role in several diseases, including in vitro and in vivo results in different experimental models. Hence, this study evaluated the anti-inflammatory effect of GDF11 delivered by Lactococcus lactis strains NCDO2118 and MG1363 in a murine model of intestinal mucositis induced by 5-FU. Our results showed that mice treated with the recombinant lactococci strains presented improved histopathological scores of intestinal damage and a reduction of goblet cell degeneration in the mucosa. It was also observed a significant reduction of neutrophil infiltration in the tissue in comparison to positive control group. Moreover, we observed immunomodulation of inflammatory markers Nfkb1, Nlrp3, Tnf, and upregulation of Il10 in mRNA expression levels in groups treated with recombinant strains that help to partially explain the ameliorative effect in the mucosa. Therefore, the results found in this study suggest that the use of recombinant L. lactis (pExu:gdf11) could offer a potential gene therapy for intestinal mucositis induced by 5-FU.
Collapse
Affiliation(s)
- Monique Ferrary Américo
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria dos Santos Freitas
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tales Fernando da Silva
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- INRAE, Institut Agro Rennes-Angers, STLO, Rennes, France
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gabriela Munis Campos
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rhayane Cristina Viegas Santos
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel Camargos Gomes
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rafael Assis
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ênio Ferreira
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Juliana Guimarães Laguna
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jean-Marc Chatel
- INRAE, AgroParisTech, MICALIS, Université Paris-Saclay, Jouy-en-Josas, France
| | - Rodrigo Dias de Oliveira Carvalho
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Vasco Azevedo,
| |
Collapse
|
8
|
Zhou Y, Han Y. Engineered bacteria as drug delivery vehicles: Principles and prospects. ENGINEERING MICROBIOLOGY 2022; 2:100034. [PMID: 39629029 PMCID: PMC11611002 DOI: 10.1016/j.engmic.2022.100034] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/06/2024]
Abstract
The development of drug delivery vehicles is in significant demand in the context of precision medicine. With the development of synthetic biology, the use of genetically engineered bacteria as drug delivery vectors has attracted more and more attention. Herein, we reviewed the research advances in bioengineered bacteria as drug carriers, with emphasis on the synthetic biology strategies for modifying these bacteria, including the targeted realization method of engineered bacteria, the designing scheme of genetic circuits, and the release pathways of therapeutic compounds. Based on this, the essential components, design principles, and health concerns of engineering bacteria as drug carriers and the development prospects in this field have been discussed.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, USA
| | - Yong Han
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, USA
| |
Collapse
|
9
|
Osterloh A. Vaccination against Bacterial Infections: Challenges, Progress, and New Approaches with a Focus on Intracellular Bacteria. Vaccines (Basel) 2022; 10:751. [PMID: 35632507 PMCID: PMC9144739 DOI: 10.3390/vaccines10050751] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Many bacterial infections are major health problems worldwide, and treatment of many of these infectious diseases is becoming increasingly difficult due to the development of antibiotic resistance, which is a major threat. Prophylactic vaccines against these bacterial pathogens are urgently needed. This is also true for bacterial infections that are still neglected, even though they affect a large part of the world's population, especially under poor hygienic conditions. One example is typhus, a life-threatening disease also known as "war plague" caused by Rickettsia prowazekii, which could potentially come back in a war situation such as the one in Ukraine. However, vaccination against bacterial infections is a challenge. In general, bacteria are much more complex organisms than viruses and as such are more difficult targets. Unlike comparatively simple viruses, bacteria possess a variety of antigens whose immunogenic potential is often unknown, and it is unclear which antigen can elicit a protective and long-lasting immune response. Several vaccines against extracellular bacteria have been developed in the past and are still used successfully today, e.g., vaccines against tetanus, pertussis, and diphtheria. However, while induction of antibody production is usually sufficient for protection against extracellular bacteria, vaccination against intracellular bacteria is much more difficult because effective defense against these pathogens requires T cell-mediated responses, particularly the activation of cytotoxic CD8+ T cells. These responses are usually not efficiently elicited by immunization with non-living whole cell antigens or subunit vaccines, so that other antigen delivery strategies are required. This review provides an overview of existing antibacterial vaccines and novel approaches to vaccination with a focus on immunization against intracellular bacteria.
Collapse
Affiliation(s)
- Anke Osterloh
- Department of Infection Immunology, Research Center Borstel, Parkallee 22, 23845 Borstel, Germany
| |
Collapse
|
10
|
Garduño-González KA, Peña-Benavides SA, Araújo RG, Castillo-Zacarías C, Melchor-Martínez EM, Oyervides-Muñoz MA, Sosa-Hernández JE, Purton S, Iqbal HM, Parra-Saldívar R. Current challenges for modern vaccines and perspectives for novel treatment alternatives. J Drug Deliv Sci Technol 2022; 70:103222. [DOI: 10.1016/j.jddst.2022.103222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Plasmid Replicons for the Production of Pharmaceutical-Grade pDNA, Proteins and Antigens by Lactococcus lactis Cell Factories. Int J Mol Sci 2021; 22:ijms22031379. [PMID: 33573129 PMCID: PMC7866527 DOI: 10.3390/ijms22031379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
The Lactococcus lactis bacterium found in different natural environments is traditionally associated with the fermented food industry. But recently, its applications have been spreading to the pharmaceutical industry, which has exploited its probiotic characteristics and is moving towards its use as cell factories for the production of added-value recombinant proteins and plasmid DNA (pDNA) for DNA vaccination, as a safer and industrially profitable alternative to the traditional Escherichia coli host. Additionally, due to its food-grade and generally recognized safe status, there have been an increasing number of studies about its use in live mucosal vaccination. In this review, we critically systematize the plasmid replicons available for the production of pharmaceutical-grade pDNA and recombinant proteins by L. lactis. A plasmid vector is an easily customized component when the goal is to engineer bacteria in order to produce a heterologous compound in industrially significant amounts, as an alternative to genomic DNA modifications. The additional burden to the cell depends on plasmid copy number and on the expression level, targeting location and type of protein expressed. For live mucosal vaccination applications, besides the presence of the necessary regulatory sequences, it is imperative that cells produce the antigen of interest in sufficient yields. The cell wall anchored antigens had shown more promising results in live mucosal vaccination studies, when compared with intracellular or secreted antigens. On the other side, engineering L. lactis to express membrane proteins, especially if they have a eukaryotic background, increases the overall cellular burden. The different alternative replicons for live mucosal vaccination, using L. lactis as the DNA vaccine carrier or the antigen producer, are critically reviewed, as a starting platform to choose or engineer the best vector for each application.
Collapse
|
12
|
Barroso FAL, de Jesus LCL, de Castro CP, Batista VL, Ferreira Ê, Fernandes RS, de Barros ALB, Leclerq SY, Azevedo V, Mancha-Agresti P, Drumond MM. Intake of Lactobacillus delbrueckii (pExu: hsp65) Prevents the Inflammation and the Disorganization of the Intestinal Mucosa in a Mouse Model of Mucositis. Microorganisms 2021; 9:microorganisms9010107. [PMID: 33466324 PMCID: PMC7824804 DOI: 10.3390/microorganisms9010107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
5-Fluorouracil (5-FU) is an antineoplastic drug that causes, as a side effect, intestinal mucositis, acute inflammation in the small bowel. The Heat Shock Protein (Hsp) are highly expressed in inflammatory conditions, developing an important role in immune modulation. Thus, they are potential candidates for the treatment of inflammatory diseases. In the mucositis mouse model, the present study aimed to evaluate the beneficial effect of oral administration of milk fermented by Lactobacillus delbrueckii CIDCA 133 (pExu:hsp65), a recombinant strain. This approach showed increased levels of sIgA in the intestinal fluid, reducing inflammatory infiltrate and intestinal permeability. Additionally, the histological score was improved. Protection was associated with a reduction in the gene expression of pro-inflammatory cytokines such as Tnf, Il6, Il12, and Il1b, and an increase in Il10, Muc2, and claudin 1 (Cldn1) and 2 (Cldn2) gene expression in ileum tissue. These findings are corroborated with the increased number of goblet cells, the electronic microscopy images, and the reduction of intestinal permeability. The administration of milk fermented by this recombinant probiotic strain was also able to reverse the high levels of gene expression of Tlrs caused by the 5-FU. Thus, the rCIDCA 133:Hsp65 strain was revealed to be a promising preventive strategy for small bowel inflammation.
Collapse
Affiliation(s)
- Fernanda Alvarenga Lima Barroso
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de—Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.A.L.B.); (L.C.L.d.J.); (C.P.d.C.); (V.L.B.); (V.A.)
| | - Luís Cláudio Lima de Jesus
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de—Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.A.L.B.); (L.C.L.d.J.); (C.P.d.C.); (V.L.B.); (V.A.)
| | - Camila Prosperi de Castro
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de—Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.A.L.B.); (L.C.L.d.J.); (C.P.d.C.); (V.L.B.); (V.A.)
| | - Viviane Lima Batista
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de—Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.A.L.B.); (L.C.L.d.J.); (C.P.d.C.); (V.L.B.); (V.A.)
| | - Ênio Ferreira
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Renata Salgado Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Campus da UFMG, Universidade Federal de Minas Gerais, Cidade Universitária, Belo Horizonte 31270-901, Brazil; (R.S.F.); (A.L.B.d.B.)
| | - André Luís Branco de Barros
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Campus da UFMG, Universidade Federal de Minas Gerais, Cidade Universitária, Belo Horizonte 31270-901, Brazil; (R.S.F.); (A.L.B.d.B.)
| | - Sophie Yvette Leclerq
- Laboratório de Inovação Biotecnológica, Fundação Ezequiel Dias (FUNED), Belo Horizonte 30510-010, Brazil;
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de—Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.A.L.B.); (L.C.L.d.J.); (C.P.d.C.); (V.L.B.); (V.A.)
| | - Pamela Mancha-Agresti
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de—Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.A.L.B.); (L.C.L.d.J.); (C.P.d.C.); (V.L.B.); (V.A.)
- Faculdade de Minas-Faminas-BH, Medicina, Belo Horizonte 31744-007, Brazil
- Correspondence: (P.M.-A.); (M.M.D.); Tel.: +55-31-99817-5004 (P.M.-A.); +55-31-99222-2761 (M.M.D.)
| | - Mariana Martins Drumond
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de—Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.A.L.B.); (L.C.L.d.J.); (C.P.d.C.); (V.L.B.); (V.A.)
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET/MG), Departamento de Ciências Biológicas, Belo Horizonte 31421-169, Brazil
- Correspondence: (P.M.-A.); (M.M.D.); Tel.: +55-31-99817-5004 (P.M.-A.); +55-31-99222-2761 (M.M.D.)
| |
Collapse
|
13
|
Coelho-Rocha ND, Barroso FAL, Tavares LM, Dos Santos ESS, Azevedo V, Drumond MM, Mancha-Agresti P. Main Features of DNA-Based Vectors for Use in Lactic Acid Bacteria and Update Protocols. Methods Mol Biol 2021; 2197:285-304. [PMID: 32827144 DOI: 10.1007/978-1-0716-0872-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
DNA vaccines have been used as a promising strategy for delivery of immunogenic and immunomodulatory molecules into the host cells. Although, there are some obstacles involving the capability of the plasmid vector to reach the cell nucleus in great number to promote the expected benefits. In order to improve the delivery and, consequently, increase the expression levels of the target proteins carried by DNA vaccines, alternative methodologies have been explored, including the use of non-pathogenic bacteria as delivery vectors to carry, deliver, and protect the DNA from degradation, enhancing plasmid expression.
Collapse
Affiliation(s)
- Nina D Coelho-Rocha
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda A L Barroso
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Laísa M Tavares
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ester S S Dos Santos
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana M Drumond
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Center of Federal Education of Minas Gerais (CEFET-MG), Belo Horizonte, Minas Gerais, Brazil
| | - Pamela Mancha-Agresti
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
14
|
Batista VL, da Silva TF, de Jesus LCL, Tapia-Costa AP, Drumond MM, Azevedo V, Mancha-Agresti P. Lactic Acid Bacteria as Delivery Vehicle for Therapeutics Applications. Methods Mol Biol 2021; 2183:447-459. [PMID: 32959259 DOI: 10.1007/978-1-0716-0795-4_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lactic acid bacteria comprise a large group of Gram-positive organisms capable of converting sugar into lactic acid. They have been studied due to their therapeutic potential on the mucosal surface. Among the species, Lactococcus lactis is considered the model bacterium and it has been explored as an important vehicle for providing therapeutic molecules and antigens in the mucosa. They can be genetically engineered to produce a variety of molecules as well as deliver heterologous DNA and protein. DNA vaccines consist of the administration of a bacterial plasmid under the control of a eukaryotic promoter encoding the antigen of interest. The resulting proteins are capable of stimulating the immune system, becoming a promising technique for immunization against a variety of tumors and infection diseases and having several advantages compared to conventional nucleic acid delivery methods (such as bioballistic delivery, electroporation, and intramuscular administration).
Collapse
Affiliation(s)
- Viviane Lima Batista
- Laboratory of Cellular and Molecular Genetics (LGCM), Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Tales Fernando da Silva
- Laboratory of Cellular and Molecular Genetics (LGCM), Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Luis Cláudio Lima de Jesus
- Laboratory of Cellular and Molecular Genetics (LGCM), Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Tapia-Costa
- Biomedical Science Institute (ICBM), Catholic of Cuyo University, San Juan, CP, Argentina
| | - Mariana Martins Drumond
- Laboratory of Cellular and Molecular Genetics (LGCM), Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Department of Biological Sciences, Federal Center for Technological Education of Minas Gerais (CEFET/MG), Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics (LGCM), Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Pamela Mancha-Agresti
- Laboratory of Cellular and Molecular Genetics (LGCM), Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
- Biomedical Science Institute (ICBM), Catholic of Cuyo University, San Juan, CP, Argentina.
| |
Collapse
|
15
|
Tavares LM, de Jesus LCL, da Silva TF, Barroso FAL, Batista VL, Coelho-Rocha ND, Azevedo V, Drumond MM, Mancha-Agresti P. Novel Strategies for Efficient Production and Delivery of Live Biotherapeutics and Biotechnological Uses of Lactococcus lactis: The Lactic Acid Bacterium Model. Front Bioeng Biotechnol 2020; 8:517166. [PMID: 33251190 PMCID: PMC7672206 DOI: 10.3389/fbioe.2020.517166] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Lactic acid bacteria (LAB) are traditionally used in fermentation and food preservation processes and are recognized as safe for consumption. Recently, they have attracted attention due to their health-promoting properties; many species are already widely used as probiotics for treatment or prevention of various medical conditions, including inflammatory bowel diseases, infections, and autoimmune disorders. Some LAB, especially Lactococcus lactis, have been engineered as live vehicles for delivery of DNA vaccines and for production of therapeutic biomolecules. Here, we summarize work on engineering of LAB, with emphasis on the model LAB, L. lactis. We review the various expression systems for the production of heterologous proteins in Lactococcus spp. and its use as a live delivery system of DNA vaccines and for expression of biotherapeutics using the eukaryotic cell machinery. We have included examples of molecules produced by these expression platforms and their application in clinical disorders. We also present the CRISPR-Cas approach as a novel methodology for the development and optimization of food-grade expression of useful substances, and detail methods to improve DNA delivery by LAB to the gastrointestinal tract. Finally, we discuss perspectives for the development of medical applications of recombinant LABs involving animal model studies and human clinical trials, and we touch on the main safety issues that need to be taken into account so that bioengineered versions of these generally recognized as safe organisms will be considered acceptable for medical use.
Collapse
Affiliation(s)
- Laísa M Tavares
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luís C L de Jesus
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tales F da Silva
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda A L Barroso
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Viviane L Batista
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina D Coelho-Rocha
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mariana M Drumond
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Departamento de Ciências Biológicas, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil.,FAMINAS - BH, Belo Horizonte, Brazil
| |
Collapse
|
16
|
Cecarini V, Bonfili L, Gogoi O, Lawrence S, Venanzi FM, Azevedo V, Mancha-Agresti P, Drumond MM, Rossi G, Berardi S, Galosi L, Cuccioloni M, Angeletti M, Suchodolski JS, Pilla R, Lidbury JA, Eleuteri AM. Neuroprotective effects of p62(SQSTM1)-engineered lactic acid bacteria in Alzheimer's disease: a pre-clinical study. Aging (Albany NY) 2020; 12:15995-16020. [PMID: 32855357 PMCID: PMC7485699 DOI: 10.18632/aging.103900] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegeneration characterized by neuron death ending in memory and cognitive decline. A major concern in AD research is the identification of new therapeutics that could prevent or delay the onset of the disorder, with current treatments being effective only in reducing symptoms. In this perspective, the use of engineered probiotics as therapeutic tools for the delivery of molecules to eukaryotic cells is finding application in several disorders. This work introduces a new strategy for AD treatment based on the use of a Lactobacilluslactis strain carrying one plasmid (pExu) that contains a eukaryotic expression cassette encoding the human p62 protein. 3xTg-AD mice orally administered with these bacteria for two months showed an increased expression of endogenous p62 in the brain, with a protein delivery mechanism involving both lymphatic vessels and neural terminations, and positive effects on the major AD hallmarks. Mice showed ameliorated memory, modulation of the ubiquitin-proteasome system and autophagy, reduced levels of amyloid peptides, and diminished neuronal oxidative and inflammatory processes. Globally, we demonstrate that these extremely safe, non-pathogenic and non-invasive bacteria used as delivery vehicles for the p62 protein represent an innovative and realistic therapeutic approach in AD.
Collapse
Affiliation(s)
- Valentina Cecarini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | - Olee Gogoi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | - Solomon Lawrence
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | | | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- FAMINAS- BH, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana Martins Drumond
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- FAMINAS- BH, Belo Horizonte, Minas Gerais, Brazil
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET/MG), Departamento de Ciências Biológicas, Belo Horizonte, Brazil
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | - Sara Berardi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | - Livio Galosi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | - Massimiliano Cuccioloni
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | - Mauro Angeletti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Science, Texas A&M University, College Station, TX 77843, USA
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Science, Texas A&M University, College Station, TX 77843, USA
| | - Jonathan A. Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical Science, Texas A&M University, College Station, TX 77843, USA
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, Italy
| |
Collapse
|
17
|
Takahashi K, Orito N, Yanagisawa D, Yano A, Mori Y, Inoue N. Eosinophils are the main cellular targets for oral gene delivery using Lactic acid bacteria. Vaccine 2020; 38:3330-3338. [PMID: 32197922 DOI: 10.1016/j.vaccine.2020.02.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/24/2020] [Accepted: 02/29/2020] [Indexed: 01/21/2023]
Abstract
Lactic acid bacteria have been studied as a vehicle for the delivery of plasmid DNA to the gastrointestinal tract. However, low levels of gene expression in vivo limit their practical use. Furthermore, it is still unclear how the orally administrated bacteria transfer their harbored plasmid DNA to host intestinal cells. To more easily track the delivery of plasmid DNA for eukaryotic expression in the intestine, we constructed an L. lactis-E. coli shuttle plasmid (pLEC) that allowed significantly elevated expression of the target protein of interest in eukaryotic cells. We first demonstrated its usefulness for delivery from L. lactis to Caco-2 cells in vitro. We then investigated the cellular target for the L. lactis DNA delivery system in vivo. Mice were orally administrated with LL/pLEC:EGFP, an L. lactis strain carrying pLEC for EGFP expression, and immunofluorescent analyses of frozen sections prepared from their small intestines identified a number of EGFP-expressing cells in the lamina propria and some in the sub-epithelial dome of the Peyer's patches. Flow cytometric analysis revealed that these EGFP-expressing cells were both CD11c- and F4/80-positive but CX3CR1-negative, suggesting that they are eosinophils. Immunostaining of the sections with an antibody against Siglec-F, a marker protein of eosinophils, confirmed the flow cytometric findings. Thus, the target cells of DNA delivery from L. lactis in the intestines are mainly eosinophils in the lamina propria and Peyer's patches. This finding may open a new approach to the development of DNA vaccines for oral administration.
Collapse
Affiliation(s)
- Keita Takahashi
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, 1-25-4 Daigaku Nishi, Gifu 501-1196, Japan.
| | - Nozomi Orito
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, 1-25-4 Daigaku Nishi, Gifu 501-1196, Japan
| | - Daiki Yanagisawa
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, 1-25-4 Daigaku Nishi, Gifu 501-1196, Japan
| | - Ayumu Yano
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, 1-25-4 Daigaku Nishi, Gifu 501-1196, Japan
| | - Yusuke Mori
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, 1-25-4 Daigaku Nishi, Gifu 501-1196, Japan
| | - Naoki Inoue
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, 1-25-4 Daigaku Nishi, Gifu 501-1196, Japan
| |
Collapse
|
18
|
Chiabai MJ, Almeida JF, de Azevedo MGD, Fernandes SS, Pereira VB, de Castro RJA, Jerônimo MS, Sousa IG, de Souza Vianna LM, Miyoshi A, Bocca AL, Maranhão AQ, Brigido MM. Mucosal delivery of Lactococcus lactis carrying an anti-TNF scFv expression vector ameliorates experimental colitis in mice. BMC Biotechnol 2019; 19:38. [PMID: 31238939 PMCID: PMC6593574 DOI: 10.1186/s12896-019-0518-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Background Anti-Tumor Necrosis Factor-alpha therapy has become clinically important for treating inflammatory bowel disease. However, the use of conventional immunotherapy requires a systemic exposure of patients and collateral side effects. Lactic acid bacteria have been shown to be effective as mucosal delivering system for cytokine and single domain antibodies, and it is amenable to clinical purposes. Therefore, lactic acid bacteria may function as vehicles for delivery of therapeutic antibodies molecules to the gastrointestinal tract restricting the pharmacological effect towards the gut. Here, we use the mucosal delivery of Lactococcus lactis carrying an anti-TNFα scFv expression plasmid on a DSS-induced colitis model in mice. Results Experimental colitis was induced with DSS administered in drinking water. L. lactis carrying the scFv expression vector was introduced by gavage. After four days of treatment, animals showed a significant improvement in histological score and disease activity index compared to those of untreated animals. Moreover, treated mice display IL-6, IL17A, IL1β, IL10 and FOXP3 mRNA levels similar to health control mice. Therefore, morphological and molecular markers suggest amelioration of the experimentally induced colitis. Conclusion These results provide evidence for the use of this alternative system for delivering therapeutic biopharmaceuticals in loco for treating inflammatory bowel disease, paving the way for a novel low-cost and site-specific biotechnological route for the treatment of inflammatory disorders. Electronic supplementary material The online version of this article (10.1186/s12896-019-0518-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria José Chiabai
- Laboratório de Imunologia Molecular, Departamento de Biologia Molecular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Juliana Franco Almeida
- Centro de Biotecnologia, Departamento de Biologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Suelen Soares Fernandes
- Laboratório de Imunologia Molecular, Departamento de Biologia Molecular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Vanessa Bastos Pereira
- Laboratório de Tecnologia Genética, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Raffael Júnio Araújo de Castro
- Laboratório de Imunologia Aplicada, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Márcio Sousa Jerônimo
- Laboratório de Imunologia Aplicada, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Isabel Garcia Sousa
- Laboratório de Imunologia Molecular, Departamento de Biologia Molecular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | | | - Anderson Miyoshi
- Laboratório de Tecnologia Genética, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anamelia Lorenzetti Bocca
- Laboratório de Imunologia Aplicada, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Andrea Queiroz Maranhão
- Laboratório de Imunologia Molecular, Departamento de Biologia Molecular, Universidade de Brasília, Brasília, Distrito Federal, Brazil.,Instituto Nacional de Investigação em Imunologia, INCTii, Brasília, Distrito Federal, Brazil
| | - Marcelo Macedo Brigido
- Laboratório de Imunologia Molecular, Departamento de Biologia Molecular, Universidade de Brasília, Brasília, Distrito Federal, Brazil. .,Instituto Nacional de Investigação em Imunologia, INCTii, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
19
|
Coelho-Rocha ND, de Castro CP, de Jesus LCL, Leclercq SY, de Cicco Sandes SH, Nunes AC, Azevedo V, Drumond MM, Mancha-Agresti P. Microencapsulation of Lactic Acid Bacteria Improves the Gastrointestinal Delivery and in situ Expression of Recombinant Fluorescent Protein. Front Microbiol 2018; 9:2398. [PMID: 30344518 PMCID: PMC6182071 DOI: 10.3389/fmicb.2018.02398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/19/2018] [Indexed: 01/25/2023] Open
Abstract
The microencapsulation process of bacteria has been used for many years, mainly in the food industry and, among the different matrixes used, sodium alginate stands out. This matrix forms a protective wall around the encapsulated bacterial culture, increasing its viability and protecting against environmental adversities, such as low pH, for example. The aim of the present study was to evaluate both in vitro and in vivo, the capacity of the encapsulation process to maintain viable lactic acid bacteria (LAB) strains for a longer period of time and to verify if they are able to reach further regions of mouse intestine. For this purpose, a recombinant strain of LAB (L. lactis ssp. cremoris MG1363) carrying the pExu vector encoding the fluorescence protein mCherry [L. lactis MG1363 (pExu:mCherry)] was constructed. The pExu was designed by our group and acts as a vector for DNA vaccines, enabling the host cell to produce the protein of interest. The functionality of the pExu:mCherry vector, was demonstrated in vitro by fluorescence microscopy and flow cytometry after transfection of eukaryotic cells. After this confirmation, the recombinant strain was submitted to encapsulation protocol with sodium alginate (1%). Non-encapsulated, as well as encapsulated strains were orally administered to C57BL/6 mice and the expression of mCherry protein was evaluated at different times (0-168 h) in different bowel portions. Confocal microscopy showed that the expression of mCherry was higher in animals who received the encapsulated strain in all portions of intestine analyzed. These results were confirmed by qRT-PCR assay. Therefore, this is the first study comparing encapsulated and non-encapsulated L. lactis bacteria for mucosal DNA delivery applications. Our results showed that the microencapsulation process is an effective method to improve DNA delivery, ensuring a greater number of viable bacteria are able to reach different sections of the bowel.
Collapse
Affiliation(s)
- Nina D Coelho-Rocha
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila P de Castro
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Kroton Educacional, Faculdade Pitágoras, Contagem, Brazil
| | - Luis C L de Jesus
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sophie Y Leclercq
- Laboratório de Inovação Biotecnológica, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Savio H de Cicco Sandes
- Laboratório de Genética Molecular de Protozoários Parasitas, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alvaro C Nunes
- Laboratório de Genética Molecular de Protozoários Parasitas, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariana M Drumond
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Centro Federal de Educação Tecnológica de Minas Gerais, Coordenação de Ciências, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
20
|
Farris E, Sanderfer K, Lampe A, Brown DM, Ramer-Tait AE, Pannier AK. Oral Non-Viral Gene Delivery for Applications in DNA Vaccination and Gene Therapy. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 7:51-57. [PMID: 31011691 PMCID: PMC6474414 DOI: 10.1016/j.cobme.2018.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Non-viral gene delivery via the oral route is a promising strategy for improving outcomes of DNA vaccination and gene therapy applications. Unlike traditional parenteral administration routes, the oral route is a non-invasive approach that lends itself to high patient compliance and ease of dosing. Moreover, oral administration allows for both local and systemic production of therapeutic genes or, in the case of DNA vaccination, mucosal and systemic immunity. However, the oral route presents distinct challenges and barriers to achieving successful gene delivery. Oral non-viral gene delivery systems must be able to survive the harsh and variable environments (e.g. acidic pH, degrading enzymes, mucus layer) encountered during transit through the gastrointestinal tract, while still allowing for efficient transgene production at sites of interest. These barriers present unique design challenges for researchers in material selection and in improving the transfection efficiency of orally delivered genes. This review provides an overview of advancements in the design of oral non-viral gene delivery systems, and highlights recent and important developments towards improving orally delivered genes for applications in gene therapy and DNA vaccination.
Collapse
Affiliation(s)
- Eric Farris
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Kari Sanderfer
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Anna Lampe
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Deborah M Brown
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588
- Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, NE 68588
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
21
|
de Castro CP, Drumond MM, Batista VL, Nunes A, Mancha-Agresti P, Azevedo V. Vector Development Timeline for Mucosal Vaccination and Treatment of Disease Using Lactococcus lactis and Design Approaches of Next Generation Food Grade Plasmids. Front Microbiol 2018; 9:1805. [PMID: 30154762 PMCID: PMC6102412 DOI: 10.3389/fmicb.2018.01805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/18/2018] [Indexed: 11/17/2022] Open
Abstract
Lactococcus lactis has been used historically in fermentation and food preservation processes as it is considered safe for human consumption (GRAS—Generally Recognized As Safe). Nowadays, in addition to its wide use in the food industry, L. lactis has been used as a bioreactor for the production of molecules of medical interest, as well as vectors for DNA delivery. These applications are possible due to the development of promising genetic tools over the past few decades, such as gene expression, protein targeting systems, and vaccine plasmids. Thus, this review presents some of these genetic tools and their evolution, which allow us to envision new biotechnological and therapeutic uses of L. lactis. Constitutive and inductive expression systems will be discussed, many of which have been used successfully for heterologous production of different proteins, tested on animal models. In addition, advances in the construction of new plasmids to be used as potential DNA vaccines, delivered by this microorganism, will also be viewed. Finally, we will focus on the scene of gene expression systems known as “food-grade systems” based on inducing compounds and safe selection markers, which eliminate the need for the use of compounds harmful to humans or animal health and potential future prospects for their applications.
Collapse
Affiliation(s)
- Camila Prosperi de Castro
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Kroton Educacional, Faculdade Pitágoras, Contagem, Brazil
| | - Mariana M Drumond
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Centro Federal de Educação Tecnológica de Minas Gerais, Coordenação de Ciências, Belo Horizonte, Brazil
| | - Viviane L Batista
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Amanda Nunes
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
22
|
Yagnik B, Sharma D, Padh H, Desai P. In vivo delivery of pPERDBY to BALB/c mice by LacVax ® DNA-I and comparison of elicited immune response with conventional immunization methods. Gene Ther 2018; 25:485-496. [PMID: 30108273 DOI: 10.1038/s41434-018-0033-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 01/17/2023]
Abstract
The non-invasive food grade Lactococcus lactis (L. lactis) represents a safe and attractive alternative to invasive pathogens for the delivery of plasmid DNA at mucosal sites. We have earlier shown the DNA delivery potential of r-L. lactis harboring DNA vaccine reporter plasmid; pPERDBY in vitro. In the present work, we examined in vivo delivery potential of food grade non-invasive r-L. lactis::pPERDBY (LacVax® DNA-I) in BALB/c mice. Moreover, using EGFP as a model antigen, we also characterized and compared the immune response elicited by LacVax® DNA-I with other conventional vaccination approaches using protein and naked DNA immunization. The presence of antigen-specific serum IgG and fecal secretory IgA (sIgA) antibodies demonstrated in vivo DNA delivery and immune elicitation potential of the developed LacVax® DNA-I. As compared with intramuscular injection, oral delivery of pPERDBY via L. lactis resulted in a significantly rapid increase in IgG and higher sIgA titers, indicating the immunogenic and immunostimulatory properties of the LacVax® DNA-I. The needle-free immunization with LacVax® DNA-I led to increased production of IL-4, an indicator of Th2 screwed response. To the best of our knowledge, this report for the first time outlines comparison of orally administered LacVax® DNA-I with other conventional vaccination approaches.
Collapse
Affiliation(s)
- Bhrugu Yagnik
- Department of Cell and Molecular Biology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India.,B. R. D. School of Biosciences, Sardar Patel University, Vallabh Vidhyanagar, Gujarat, India
| | - Drashya Sharma
- Department of Cell and Molecular Biology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India.,B. R. D. School of Biosciences, Sardar Patel University, Vallabh Vidhyanagar, Gujarat, India
| | - Harish Padh
- Sardar Patel University, Vallabh Vidhyanagar, Gujarat, India
| | - Priti Desai
- Department of Cell and Molecular Biology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India. .,School of Biological Sciences & Biotechnology, Institute of Advanced Research, Koba, Gandhinagar, Gujarat, India.
| |
Collapse
|
23
|
Yurina V. Live Bacterial Vectors-A Promising DNA Vaccine Delivery System. Med Sci (Basel) 2018; 6:E27. [PMID: 29570602 PMCID: PMC6024733 DOI: 10.3390/medsci6020027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022] Open
Abstract
Vaccination is one of the most successful immunology applications that has considerably improved human health. The DNA vaccine is a new vaccine being developed since the early 1990s. Although the DNA vaccine is promising, no human DNA vaccine has been approved to date. The main problem facing DNA vaccine efficacy is the lack of a DNA vaccine delivery system. Several studies explored this limitation. One of the best DNA vaccine delivery systems uses a live bacterial vector as the carrier. The live bacterial vector induces a robust immune response due to its natural characteristics that are recognized by the immune system. Moreover, the route of administration used by the live bacterial vector is through the mucosal route that beneficially induces both mucosal and systemic immune responses. The mucosal route is not invasive, making the vaccine easy to administer, increasing the patient's acceptance. Lactic acid bacterium is one of the most promising bacteria used as a live bacterial vector. However, some other attenuated pathogenic bacteria, such as Salmonella spp. and Shigella spp., have been used as DNA vaccine carriers. Numerous studies showed that live bacterial vectors are a promising candidate to deliver DNA vaccines.
Collapse
Affiliation(s)
- Valentina Yurina
- Department of Pharmacy, Medical Faculty, Universitas Brawijaya, East Java 65145, Malang, Indonesia.
| |
Collapse
|
24
|
Mancha-Agresti P, de Castro CP, Dos Santos JSC, Araujo MA, Pereira VB, LeBlanc JG, Leclercq SY, Azevedo V. Recombinant Invasive Lactococcus lactis Carrying a DNA Vaccine Coding the Ag85A Antigen Increases INF-γ, IL-6, and TNF-α Cytokines after Intranasal Immunization. Front Microbiol 2017; 8:1263. [PMID: 28744263 PMCID: PMC5504179 DOI: 10.3389/fmicb.2017.01263] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/23/2017] [Indexed: 11/29/2022] Open
Abstract
Tuberculosis (TB) remains a major threat throughout the world and in 2015 it caused the death of 1.4 million people. The Bacillus Calmette-Guérin is the only existing vaccine against this ancient disease; however, it does not provide complete protection in adults. New vaccines against TB are eminently a global priority. The use of bacteria as vehicles for delivery of vaccine plasmids is a promising vaccination strategy. In this study, we evaluated the use of, an engineered invasive Lactococcus lactis (expressing Fibronectin-Binding Protein A from Staphylococcus aureus) for the delivery of DNA plasmid to host cells, especially to the mucosal site as a new DNA vaccine against tuberculosis. One of the major antigens documented that offers protective responses against Mycobacterium tuberculosis is the Ag85A. L. lactis FnBPA+ (pValac:Ag85A) which was obtained and used for intranasal immunization of C57BL/6 mice and the immune response profile was evaluated. In this study we observed that this strain was able to produce significant increases in the amount of pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-6) in the stimulated spleen cell supernatants, showing a systemic T helper 1 (Th1) cell response. Antibody production (IgG and sIgA anti-Ag85A) was also significantly increased in bronchoalveolar lavage, as well as in the serum of mice. In summary, these findings open new perspectives in the area of mucosal DNA vaccine, against specific pathogens using a Lactic Acid Bacteria such as L. lactis.
Collapse
Affiliation(s)
- Pamela Mancha-Agresti
- Laboratory of Cellular and Molecular Genetics, Department of General Biology, Instituto de Ciências Biológicas - Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Camila Prosperi de Castro
- Laboratory of Cellular and Molecular Genetics, Department of General Biology, Instituto de Ciências Biológicas - Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Janete S C Dos Santos
- Laboratório de Inovação Biotecnológica, Fundação Ezequiel DiasBelo Horizonte, Brazil
| | - Maíra A Araujo
- Laboratório de Inovação Biotecnológica, Fundação Ezequiel DiasBelo Horizonte, Brazil
| | - Vanessa B Pereira
- Laboratory of Cellular and Molecular Genetics, Department of General Biology, Instituto de Ciências Biológicas - Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Jean G LeBlanc
- Centro de Referencia para Lactobacilos - Consejo Nacional de Investigaciones Científicas y TécnicasSan Miguel de Tucumán, Argentina
| | - Sophie Y Leclercq
- Laboratório de Inovação Biotecnológica, Fundação Ezequiel DiasBelo Horizonte, Brazil
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Department of General Biology, Instituto de Ciências Biológicas - Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| |
Collapse
|