1
|
Queen NJ, Zou X, Huang W, Mohammed T, Cao L. Environmental Enrichment Normalizes Metabolic Function in the Murine Model of Prader-Willi Syndrome Magel2-Null Mice. Endocrinology 2025; 166:bqaf001. [PMID: 39801003 PMCID: PMC11808065 DOI: 10.1210/endocr/bqaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Indexed: 02/11/2025]
Abstract
Prader-Willi syndrome (PWS) is a rare genetic disease that causes developmental delays, intellectual impairment, constant hunger, obesity, endocrine dysfunction, and various behavioral and neuropsychiatric abnormalities. Standard care of PWS is limited to strict supervision of food intake and GH therapy, highlighting the unmet need for new therapeutic strategies. Environmental enrichment (EE), a housing environment providing physical, social, and cognitive stimulations, exerts broad benefits on mental and physical health. Here we assessed the metabolic and behavioral effects of EE in the Magel2-null mouse model of PWS. EE initiated after the occurrence of metabolic abnormality was sufficient to normalize body weight and body composition, reverse hyperleptinemia, and improve glucose metabolism in the male Magel2-null mice. These metabolic improvements induced by EE were comparable to those achieved by a hypothalamic brain-derived neurotrophic factor gene therapy although the underlying mechanisms remain to be determined. These data suggest biobehavioral interventions such as EE could be effective in the treatment of PWS-related metabolic abnormalities.
Collapse
Affiliation(s)
- Nicholas J Queen
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xunchang Zou
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Wei Huang
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Tawfiq Mohammed
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Lei Cao
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Johnson LM. A genetic condition that spans both extremes of the nutritional spectrum. Pract Lab Med 2024; 40:e00405. [PMID: 38953015 PMCID: PMC11216003 DOI: 10.1016/j.plabm.2024.e00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/21/2024] [Indexed: 07/03/2024] Open
Abstract
Prader-Willi syndrome (PWS) is a complex genetic disorder caused by lack of expression of genes on the paternally inherited chromosome 15q11.2-q13 region, known as the Prader Willi critical region. Nutritional clinical manifestations change with age and are described in four different phases. The phases span both extremes of the nutritional spectrum, beginning with an infant with poor sucking reflexes and failure to thrive then progressing to an adolescent who may have hyperphagia and be at risk for obesity. The phenotype is likely due to hypothalamic dysfunction due to genetic changes in the Prader Willi critical region. Researchers are examining the pathological mechanisms that determine the disease course.
Collapse
Affiliation(s)
- Lisa M. Johnson
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA, 98105, USA
- Department of Laboratory Medicine and Pathology, University of Washington, WA, 98195, USA
| |
Collapse
|
3
|
Wei N, Ju M, Su X, Zhang Y, Huang Y, Rao X, Cui L, Lin Z, Dong Y. Transplantation of gut microbiota derived from patients with schizophrenia induces schizophrenia-like behaviors and dysregulated brain transcript response in mice. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:44. [PMID: 38589422 PMCID: PMC11001608 DOI: 10.1038/s41537-024-00460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
Schizophrenia (SCZ), as a neurodevelopmental disorder and devastating disease, affects approximately 1% of the world population. Although numerous studies have attempted to elucidate the causes of SCZ occurrence, it is not clearly understood. Recently, the emerging roles of the gut microbiota in a range of brain disorders, including SCZ, have attracted much attention. While the molecular mechanism of gut microbiota in regulating the pathogenesis of SCZ is still lacking. Here, we first confirmed the difference of gut microbiome between SCZ patients and healthy controls, and then, we performed fecal microbiota transplantation (FMT) to clarify the roles of SCZ patients-derived microbiota in a specific pathogen free (SPF) mice model. 16 S rDNA sequencing confirmed that a significant difference of gut microbiome was present between two groups of FMT mice, which has a similar trend with the above human gut microbiome. Furthermore, we found that transplantation of fecal microbiota from SCZ patients into SPF mice was sufficient to induce schizophrenia-like (SCZ-like) symptoms, such as deficits in sociability and hyperactivity. Furthermore, the brains of mice colonized with SCZ microbiota displayed dysregulated transcript response and alternative splicing of SCZ-relevant genes. Moreover, 10 key genes were identified to be correlated with SCZ by an integrative transcriptome data analysis. Finally, 4 key genes were identified to be correlated with the 12 differential genera between two groups of FMT mice. Our results thus demonstrated that the gut microbiome might modify the transcriptomic profile in the brain, thereby modulating social behavior, and our present study can help better understand the link between gut microbiota and SCZ pathogenesis through the gut-brain axis.
Collapse
Affiliation(s)
- Nana Wei
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, 200241, Shanghai, China
| | - Mingliang Ju
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030, Shanghai, China
| | - Xichen Su
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yan Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, 200241, Shanghai, China
| | - Yonghe Huang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, 200241, Shanghai, China
| | - Xinyue Rao
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Li Cui
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Zhibing Lin
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Yi Dong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, 200241, Shanghai, China.
| |
Collapse
|
4
|
Parovincaka J, Szijj JV, Serracino-Inglott A, Azzopardi LM. Cannabis for medicinal use in patients with rare diseases. TRANSLATIONAL SCIENCE OF RARE DISEASES 2023; 6:123-135. [DOI: 10.3233/trd-230060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
BACKGROUND: Patients with Rare Diseases (RDs) present with chronic and debilitating symptoms such as pain, anxiety and epileptic seizures. Symptoms can be unresponsive to conventional treatment and may lead to a decreased Quality of Life for patients. Cannabinoids have been reported to be efficacious against chronic pain refractory to conventional analgesics, anxiety and seizures. OBJECTIVE: Identification of RDs for which Medicinal Cannabis (MC) can be used and identification of issues related to RDs and perceptions on the use of MC in patients with RDs. METHODS: Study was divided into 2 phases. Phase 1: Literature Review to identify RDs in which cannabis or cannabinoids are used Phase 2: Development, validation and dissemination of 2 questionnaires for: (i) Health Care Professionals (HCPs) and (ii) RD patients. RESULTS: Cannabinoids were described as possible therapeutic agents in 20 RDs. The questionnaires were completed by 101 HCPs and 38 RD patients. Thirty-three HCPs had no experience on use of MC but would consider using it in their practice for management of RDs. Most patients (n = 29) did not have experience with use of MC and 20 patients would consider using MC to treat their condition or relieve symptoms of their disease. CONCLUSION: The study helps identify the potential of MC use in RDs associated with chronic symptoms such as pain, muscle spasticity, seizures and anxiety.
Collapse
Affiliation(s)
- Jekaterina Parovincaka
- Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Janis Vella Szijj
- Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | | - Lilian M. Azzopardi
- Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| |
Collapse
|
5
|
Hoyos Sanchez MC, Bayat T, Gee RRF, Fon Tacer K. Hormonal Imbalances in Prader-Willi and Schaaf-Yang Syndromes Imply the Evolution of Specific Regulation of Hypothalamic Neuroendocrine Function in Mammals. Int J Mol Sci 2023; 24:13109. [PMID: 37685915 PMCID: PMC10487939 DOI: 10.3390/ijms241713109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
The hypothalamus regulates fundamental aspects of physiological homeostasis and behavior, including stress response, reproduction, growth, sleep, and feeding, several of which are affected in patients with Prader-Willi (PWS) and Schaaf-Yang syndrome (SYS). PWS is caused by paternal deletion, maternal uniparental disomy, or imprinting defects that lead to loss of expression of a maternally imprinted region of chromosome 15 encompassing non-coding RNAs and five protein-coding genes; SYS patients have a mutation in one of them, MAGEL2. Throughout life, PWS and SYS patients suffer from musculoskeletal deficiencies, intellectual disabilities, and hormonal abnormalities, which lead to compulsive behaviors like hyperphagia and temper outbursts. Management of PWS and SYS is mostly symptomatic and cures for these debilitating disorders do not exist, highlighting a clear, unmet medical need. Research over several decades into the molecular and cellular roles of PWS genes has uncovered that several impinge on the neuroendocrine system. In this review, we will discuss the expression and molecular functions of PWS genes, connecting them with hormonal imbalances in patients and animal models. Besides the observed hormonal imbalances, we will describe the recent findings about how the loss of individual genes, particularly MAGEL2, affects the molecular mechanisms of hormone secretion. These results suggest that MAGEL2 evolved as a mammalian-specific regulator of hypothalamic neuroendocrine function.
Collapse
Affiliation(s)
- Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Tara Bayat
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| |
Collapse
|
6
|
Marty V, Butler JJ, Coutens B, Chargui O, Chagraoui A, Guiard BP, De Deurwaerdère P, Cavaillé J. Deleting Snord115 genes in mice remodels monoaminergic systems activity in the brain toward cortico-subcortical imbalances. Hum Mol Genet 2023; 32:244-261. [PMID: 35951020 DOI: 10.1093/hmg/ddac139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 01/18/2023] Open
Abstract
The neuronal-specific SNORD115 has gathered interest because its deficiency may contribute to the pathophysiology of Prader-Willi syndrome (PWS), possibly by altering post-transcriptional regulation of the gene encoding the serotonin (HTR2C) receptor. Yet, Snord115-KO mice do not resume the main symptoms of PWS, and only subtle-altered A-to-I RNA editing of Htr2c mRNAs was uncovered. Because HTR2C signaling fine-tunes the activity of monoaminergic neurons, we addressed the hypothesis that lack of Snord115 alters monoaminergic systems. We first showed that Snord115 was expressed in both monoaminergic and non-monoaminergic cells of the ventral tegmental area (VTA) and the dorsal raphe nucleus (DRN) harboring cell bodies of dopaminergic and serotonergic neurons, respectively. Measuring the tissue level of monoamines and metabolites, we found very few differences except that the content of homovanillic acid-a metabolite of dopamine-was decreased in the orbitofrontal and prefrontal cortex of Snord115-KO mice. The latter effects were, however, associated with a few changes in monoamine tissue content connectivity across the 12 sampled brain regions. Using in vivo single-cell extracellular recordings, we reported that the firing rate of VTA dopaminergic neurons and DRN serotonergic neurons was significantly increased in Snord115-KO mice. These neural circuit dysfunctions were not, however, associated with apparent defects in binge eating, conditioned place preference to cocaine, cocaine-induced hyperlocomotion or compulsive behavior. Altogether, our multiscale study shows that the absence of Snord115 impacts central monoaminergic circuits to an extent that does not elicit gross behavioral abnormalities.
Collapse
Affiliation(s)
- Virginie Marty
- Molecular, Cellular and Developmental Biology (MCD) unit, Center of Integrative Biology (CBI), CNRS - University of Toulouse; CNRS, UPS, 31 062 Toulouse, France
| | - Jasmine J Butler
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS-UMR 5287, 146 rue Léo Saignat, B.P.281, F-33000 Bordeaux Cedex, France
| | - Basile Coutens
- Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse; CNRS, UPS, 31 062 Toulouse, France
| | - Oumaima Chargui
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS-UMR 5287, 146 rue Léo Saignat, B.P.281, F-33000 Bordeaux Cedex, France
| | - Abdeslam Chagraoui
- Différenciation et Communication Neuroendocrine, Endocrine et Germinale (NorDic), INSERM U1239, IRIB, CHU Rouen, 76 000 Rouen, France.,Department of Medical Biochemistry, Rouen University Hospital, 76 000 Rouen, France
| | - Bruno P Guiard
- Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse; CNRS, UPS, 31 062 Toulouse, France
| | - Philippe De Deurwaerdère
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS-UMR 5287, 146 rue Léo Saignat, B.P.281, F-33000 Bordeaux Cedex, France
| | - Jérôme Cavaillé
- Molecular, Cellular and Developmental Biology (MCD) unit, Center of Integrative Biology (CBI), CNRS - University of Toulouse; CNRS, UPS, 31 062 Toulouse, France
| |
Collapse
|
7
|
Queen NJ, Zou X, Anderson JM, Huang W, Appana B, Komatineni S, Wevrick R, Cao L. Hypothalamic AAV-BDNF gene therapy improves metabolic function and behavior in the Magel2-null mouse model of Prader-Willi syndrome. Mol Ther Methods Clin Dev 2022; 27:131-148. [PMID: 36284766 PMCID: PMC9573893 DOI: 10.1016/j.omtm.2022.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022]
Abstract
Individuals with Prader-Willi syndrome (PWS) display developmental delays, cognitive impairment, excessive hunger, obesity, and various behavioral abnormalities. Current PWS treatments are limited to strict supervision of food intake and growth hormone therapy, highlighting the need for new therapeutic strategies. Brain-derived neurotrophic factor (BDNF) functions downstream of hypothalamic feeding circuitry and has roles in energy homeostasis and behavior. In this preclinical study, we assessed the translational potential of hypothalamic adeno-associated virus (AAV)-BDNF gene therapy as a therapeutic for metabolic dysfunction in the Magel2-null mouse model of PWS. To facilitate clinical translation, our BDNF vector included an autoregulatory element allowing for transgene titration in response to the host's physiological needs. Hypothalamic BDNF gene transfer prevented weight gain, decreased fat mass, increased lean mass, and increased relative energy expenditure in female Magel2-null mice. Moreover, BDNF gene therapy improved glucose metabolism, insulin sensitivity, and circulating adipokine levels. Metabolic improvements were maintained through 23 weeks with no adverse behavioral effects, indicating high levels of efficacy and safety. Male Magel2-null mice also responded positively to BDNF gene therapy, displaying improved body composition, insulin sensitivity, and glucose metabolism. Together, these data suggest that regulating hypothalamic BDNF could be effective in the treatment of PWS-related metabolic abnormalities.
Collapse
Affiliation(s)
- Nicholas J. Queen
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xunchang Zou
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Jacqueline M. Anderson
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Wei Huang
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Bhavya Appana
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Suraj Komatineni
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Rachel Wevrick
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Lei Cao
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Althammer F, Wimmer MC, Krabichler Q, Küppers S, Schimmer J, Fröhlich H, Dötsch L, Gruber T, Wunsch S, Schubert T, Kirchner MK, Stern JE, Charlet A, Grinevich V, Schaaf CP. Analysis of the hypothalamic oxytocin system and oxytocin receptor-expressing astrocytes in a mouse model of Prader-Willi syndrome. J Neuroendocrinol 2022; 34:e13217. [PMID: 36458331 DOI: 10.1111/jne.13217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder characterized by hyperphagia, obesity, developmental delay and intellectual disability. Studies suggest dysfunctional signaling of the neuropeptide oxytocin as one of the key mechanisms in PWS, and administration of oxytocin via intranasal or systemic routes yielded promising results in both humans and mouse models. However, a detailed assessment of the oxytocin system in mouse models of PWS such as the Magel2-deficient Magel2tm1.Stw mouse, is lacking. In the present study, we performed an automated counting of oxytocin cells in the entire paraventricular nucleus of the hypothalamus of Magel2tm1.Stw and wild-type control mice and found a significant reduction in the caudal part, which represents the parvocellular subdivision. In addition, based on the recent discovery that some astrocytes express the oxytocin receptor (OTR), we performed detailed analysis of astrocyte numbers and morphology in various brain regions, and assessed expression levels of the astrocyte marker glial fibrillary acidic protein, which was significantly decreased in the hypothalamus, but not other brain regions in Magel2tm1.Stw mice. Finally, we analyzed the number of OTR-expressing astrocytes in various brain regions and found a significant reduction in the nucleus accumbens of Magel2tm1.Stw mice, as well as a sex-specific difference in the lateral septum. This study suggests a role for caudal paraventricular nucleus oxytocin neurons as well as OTR-expressing astrocytes in a mouse model of PWS, provides novel information about sex-specific expression of astrocytic OTRs, and presents several new brain regions containing OTR-expressing astrocytes in the mouse brain.
Collapse
Affiliation(s)
| | | | - Quirin Krabichler
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Stephanie Küppers
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Jonas Schimmer
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Henning Fröhlich
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Laura Dötsch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Tim Gruber
- Van Andel Institute, Grand Rapids, MI, USA
| | - Selina Wunsch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Tim Schubert
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Matthew K Kirchner
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
| | - Javier E Stern
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
| | - Alexandre Charlet
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute of Cellular and Integrative Neuroscience, Strasbourg, France
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | | |
Collapse
|
9
|
Oxytocin-based therapies for treatment of Prader-Willi and Schaaf-Yang syndromes: evidence, disappointments, and future research strategies. Transl Psychiatry 2022; 12:318. [PMID: 35941105 PMCID: PMC9360032 DOI: 10.1038/s41398-022-02054-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
The prosocial neuropeptide oxytocin is being developed as a potential treatment for various neuropsychiatric disorders including autism spectrum disorder (ASD). Early studies using intranasal oxytocin in patients with ASD yielded encouraging results and for some time, scientists and affected families placed high hopes on the use of intranasal oxytocin for behavioral therapy in ASD. However, a recent Phase III trial obtained negative results using intranasal oxytocin for the treatment of behavioral symptoms in children with ASD. Given the frequently observed autism-like behavioral phenotypes in Prader-Willi and Schaaf-Yang syndromes, it is unclear whether oxytocin treatment represents a viable option to treat behavioral symptoms in these diseases. Here we review the latest findings on intranasal OT treatment, Prader-Willi and Schaaf-Yang syndromes, and propose novel research strategies for tailored oxytocin-based therapies for affected individuals. Finally, we propose the critical period theory, which could explain why oxytocin-based treatment seems to be most efficient in infants, but not adolescents.
Collapse
|
10
|
Ben-Cnaan E, Permyakova A, Azar S, Hirsch S, Baraghithy S, Hinden L, Tam J. The Metabolic Efficacy of a Cannabidiolic Acid (CBDA) Derivative in Treating Diet- and Genetic-Induced Obesity. Int J Mol Sci 2022; 23:ijms23105610. [PMID: 35628417 PMCID: PMC9144717 DOI: 10.3390/ijms23105610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is a global medical problem; its common form is known as diet-induced obesity (DIO); however, there are several rare genetic disorders, such as Prader-Willi syndrome (PWS), that are also associated with obesity (genetic-induced obesity, GIO). The currently available therapeutics for treating DIO and GIO are very limited, and they result in only a partial improvement. Cannabidiolic acid (CBDA), a constituent of Cannabis sativa, gradually decarboxylates to cannabidiol (CBD). Whereas the anti-obesity properties of CBD have been reasonably identified, our knowledge of the pharmacology of CBDA is more limited due to its instability. To stabilize CBDA, a new derivative, CBDA-O-methyl ester (HU-580, EPM301), was synthesized. The therapeutic potential of EPM301 in appetite reduction, weight loss, and metabolic improvements in DIO and GIO was tested in vivo. EPM301 (40 mg/kg/d, i.p.) successfully resulted in weight loss, increased ambulation, as well as improved glycemic and lipid profiles in DIO mice. Additionally, EPM301 ameliorated DIO-induced hepatic dysfunction and steatosis. Importantly, EPM301 (20 and 40 mg/kg/d, i.p.) effectively reduced body weight and hyperphagia in a high-fat diet-fed Magel2null mouse model for PWS. In addition, when given to standard-diet-fed Magel2null mice as a preventive treatment, EPM301 completely inhibited weight gain and adiposity. Lastly, EPM301 increased the oxidation of different nutrients in each strain. All together, EPM301 ameliorated obesity and its metabolic abnormalities in both DIO and GIO. These results support the idea to further promote this synthetic CBDA derivative toward clinical evaluation in humans.
Collapse
|
11
|
Anti-Obesity Medication Use in Children and Adolescents with Prader-Willi Syndrome: Case Review and Literature Search. J Clin Med 2021; 10:jcm10194540. [PMID: 34640558 PMCID: PMC8509766 DOI: 10.3390/jcm10194540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 01/26/2023] Open
Abstract
(1) Background: children with Prader-Willi syndrome (PWS) have high obesity rates due to hyperphagia and decreased metabolic rates. Although anti-obesity medications (AOMs) are prescribed to this population, there are no consensus guidelines on acceptability, safety, and efficacy. We present literature review and case series on AOMs in youth with PWS. (2) Methods: we performed PubMed review from January 2000 to April 2021 utilizing keywords: "Prader-Willi syndrome" or "PWS" and "medication" including: topiramate, metformin, phentermine, liraglutide, orlistat, oxytocin, semaglutide, naltrexone-bupropion. For our case series, patients were identified through retrospective chart reviews from a multi-disciplinary PWS clinic. Eligibility criteria: age ≤ 18 years, genetically confirmed PWS, AOM use for at least 16 weeks, and recent anthropometric data. (3) Results: a literature search yielded 14 articles (3 topiramate, 1 metformin, 4 liraglutide, 5 oxytocin, 1 naltrexone-bupropion). All studies reported improved hyperphagia with variable BMI effects. Ten adolescents met case series eligibility (mean age 13.2 ± 2.6 years, 40% female; AOMs: 6 metformin, 5 topiramate, 2 semaglutide, 3 liraglutide). After AOM course, 60% had decreased or stable BMI z-score. No significant side effects. (4) Conclusions: results suggest AOMs may be useful for weight management in youth with PWS. Additional studies are required to validate findings and support AOM treatment guidelines.
Collapse
|
12
|
Huang WK, Wong SZH, Pather SR, Nguyen PTT, Zhang F, Zhang DY, Zhang Z, Lu L, Fang W, Chen L, Fernandes A, Su Y, Song H, Ming GL. Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells. Cell Stem Cell 2021; 28:1657-1670.e10. [PMID: 33961804 PMCID: PMC8419002 DOI: 10.1016/j.stem.2021.04.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/21/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Human brain organoids represent remarkable platforms for recapitulating features of human brain development and diseases. Existing organoid models do not resolve fine brain subregions, such as different nuclei in the hypothalamus. We report the generation of arcuate organoids (ARCOs) from human induced pluripotent stem cells (iPSCs) to model the development of the human hypothalamic arcuate nucleus. Single-cell RNA sequencing of ARCOs revealed significant molecular heterogeneity underlying different arcuate cell types, and machine learning-aided analysis based on the neonatal human hypothalamus single-nucleus transcriptome further showed a human arcuate nucleus molecular signature. We also explored ARCOs generated from Prader-Willi syndrome (PWS) patient iPSCs. These organoids exhibit aberrant differentiation and transcriptomic dysregulation similar to postnatal hypothalamus of PWS patients, indicative of cellular differentiation deficits and exacerbated inflammatory responses. Thus, patient iPSC-derived ARCOs represent a promising experimental model for investigating nucleus-specific features and disease-relevant mechanisms during early human arcuate development.
Collapse
Affiliation(s)
- Wei-Kai Huang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Program in Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Samuel Zheng Hao Wong
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sarshan R Pather
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Phuong T T Nguyen
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Feng Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Y Zhang
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhijian Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lu Lu
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wanqi Fang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luyun Chen
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Analiese Fernandes
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yijing Su
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Langouët M, Gorka D, Orniacki C, Dupont-Thibert CM, Chung MS, Glatt-Deeley HR, Germain N, Crandall LJ, Cotney JL, Stoddard CE, Lalande M, Chamberlain SJ. Specific ZNF274 binding interference at SNORD116 activates the maternal transcripts in Prader-Willi syndrome neurons. Hum Mol Genet 2021; 29:3285-3295. [PMID: 32977341 DOI: 10.1093/hmg/ddaa210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/15/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
Prader-Willi syndrome (PWS) is characterized by neonatal hypotonia, developmental delay and hyperphagia/obesity. This disorder is caused by the absence of paternally expressed gene products from chromosome 15q11-q13. We previously demonstrated that knocking out ZNF274, a Kruppel-associated box-A-domain zinc finger protein capable of recruiting epigenetic machinery to deposit the H3K9me3 repressive histone modification, can activate expression from the normally silent maternal allele of SNORD116 in neurons derived from PWS induced pluripotent stem cells (iPSCs). However, ZNF274 has many other targets in the genome in addition to SNORD116. Depleting ZNF274 will surely affect the expression of other important genes and disrupt other pathways. Here, we used CRISPR/Cas9 to delete ZNF274 binding sites at the SNORD116 locus to determine whether activation of the maternal copy of SNORD116 could be achieved without altering ZNF274 protein levels. We obtained similar activation of gene expression from the normally silenced maternal allele in neurons derived from PWS iPSCs, compared with ZNF274 knockout, demonstrating that ZNF274 is directly involved in the repression of SNORD116. These results suggest that interfering with ZNF274 binding at the maternal SNORD116 locus is a potential therapeutic strategy for PWS.
Collapse
Affiliation(s)
- Maéva Langouët
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Dea Gorka
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Clarisse Orniacki
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Clémence M Dupont-Thibert
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Michael S Chung
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Heather R Glatt-Deeley
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Noelle Germain
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Leann J Crandall
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Justin L Cotney
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Institute for Systems Genomics, University of Connecticut, Farmington, CT 06030, USA
| | - Christopher E Stoddard
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Marc Lalande
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Institute for Systems Genomics, University of Connecticut, Farmington, CT 06030, USA
| | - Stormy J Chamberlain
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Institute for Systems Genomics, University of Connecticut, Farmington, CT 06030, USA
| |
Collapse
|
14
|
Vaidyanathan R, Schaller F, Muscatelli F, Hammock EAD. Colocalization of Oxtr with Prader-Willi syndrome transcripts in the trigeminal ganglion of neonatal mice. Hum Mol Genet 2021; 29:2065-2075. [PMID: 32420597 DOI: 10.1093/hmg/ddaa094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/25/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022] Open
Abstract
Prader-Willi syndrome (PWS) is caused by deficient expression of the paternal copy of several contiguous genes on chromosome 15q11-q13 and affects multiple organ systems in the body, including the nervous system. Feeding and suckling deficits in infants with PWS are replaced with excessive feeding and obesity in childhood through adulthood. Clinical trials using intranasal oxytocin (OXT) show promise to improve feeding deficits in infants with PWS. The mechanism and location of action of exogenous OXT are unknown. We have recently shown in neonatal mice that OXT receptors (OXTR) are present in several regions of the face with direct roles in feeding. Here we show that the trigeminal ganglion, which provides sensory innervation to the face, is a rich source of Oxtr and a site of cellular co-expression with PWS gene transcripts. We also quantified OXTR ligand binding in mice deficient in Magel2, a PWS gene, within the trigeminal ganglion and regions that are anatomically relevant to feeding behavior and innervated by the trigeminal ganglion including the lateral periodontium, rostral periodontium, tongue, olfactory epithelium, whisker pads and brainstem. We found that peripheral OXTR ligand binding in the head is mostly intact in Magel2-deficient mice, although it is reduced in the lateral periodontium (gums) of neonatal Magel2-deficient mice compared to wild-type controls. These data suggest that OXT via orofacial OXTR may play a peripheral role to modulate sensory-motor reflexes necessary for suckling and may be part of the mechanism by which intranasal OXT shows promise for therapeutic benefit in PWS.
Collapse
Affiliation(s)
- Radhika Vaidyanathan
- Department of Psychology and Program in Neuroscience, The Florida State University, Tallahassee, FL 32306, USA
| | - Fabienne Schaller
- Aix-Marseille University UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France
| | - Françoise Muscatelli
- Aix-Marseille University UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France
| | - Elizabeth A D Hammock
- Department of Psychology and Program in Neuroscience, The Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
15
|
Converging vulnerability factors for compulsive food and drug use. Neuropharmacology 2021; 196:108556. [PMID: 33862029 DOI: 10.1016/j.neuropharm.2021.108556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022]
Abstract
Highly palatable foods and substance of abuse have intersecting neurobiological, metabolic and behavioral effects relevant for understanding vulnerability to conditions related to food (e.g., obesity, binge eating disorder) and drug (e.g., substance use disorder) misuse. Here, we review data from animal models, clinical populations and epidemiological evidence in behavioral, genetic, pathophysiologic and therapeutic domains. Results suggest that consumption of highly palatable food and drugs of abuse both impact and conversely are regulated by metabolic hormones and metabolic status. Palatable foods high in fat and/or sugar can elicit adaptation in brain reward and withdrawal circuitry akin to substances of abuse. Intake of or withdrawal from palatable food can impact behavioral sensitivity to drugs of abuse and vice versa. A robust literature suggests common substrates and roles for negative reinforcement, negative affect, negative urgency, and impulse control deficits, with both highly palatable foods and substances of abuse. Candidate genetic risk loci shared by obesity and alcohol use disorders have been identified in molecules classically associated with both metabolic and motivational functions. Finally, certain drugs may have overlapping therapeutic potential to treat obesity, diabetes, binge-related eating disorders and substance use disorders. Taken together, data are consistent with the hypotheses that compulsive food and substance use share overlapping, interacting substrates at neurobiological and metabolic levels and that motivated behavior associated with feeding or substance use might constitute vulnerability factors for one another. This article is part of the special issue on 'Vulnerabilities to Substance Abuse'.
Collapse
|
16
|
Kummerfeld DM, Raabe CA, Brosius J, Mo D, Skryabin BV, Rozhdestvensky TS. A Comprehensive Review of Genetically Engineered Mouse Models for Prader-Willi Syndrome Research. Int J Mol Sci 2021; 22:3613. [PMID: 33807162 PMCID: PMC8037846 DOI: 10.3390/ijms22073613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 02/05/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a neurogenetic multifactorial disorder caused by the deletion or inactivation of paternally imprinted genes on human chromosome 15q11-q13. The affected homologous locus is on mouse chromosome 7C. The positional conservation and organization of genes including the imprinting pattern between mice and men implies similar physiological functions of this locus. Therefore, considerable efforts to recreate the pathogenesis of PWS have been accomplished in mouse models. We provide a summary of different mouse models that were generated for the analysis of PWS and discuss their impact on our current understanding of corresponding genes, their putative functions and the pathogenesis of PWS. Murine models of PWS unveiled the contribution of each affected gene to this multi-facetted disease, and also enabled the establishment of the minimal critical genomic region (PWScr) responsible for core symptoms, highlighting the importance of non-protein coding genes in the PWS locus. Although the underlying disease-causing mechanisms of PWS remain widely unresolved and existing mouse models do not fully capture the entire spectrum of the human PWS disorder, continuous improvements of genetically engineered mouse models have proven to be very powerful and valuable tools in PWS research.
Collapse
Affiliation(s)
- Delf-Magnus Kummerfeld
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
| | - Carsten A. Raabe
- Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
- Institute of Experimental Pathology (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
| | - Juergen Brosius
- Institute of Experimental Pathology (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dingding Mo
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China;
| | - Boris V. Skryabin
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
| | - Timofey S. Rozhdestvensky
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
| |
Collapse
|
17
|
Salles J, Lacassagne E, Eddiry S, Franchitto N, Salles JP, Tauber M. What can we learn from PWS and SNORD116 genes about the pathophysiology of addictive disorders? Mol Psychiatry 2021; 26:51-59. [PMID: 33082508 DOI: 10.1038/s41380-020-00917-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/16/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Addictive disorders have been much investigated and many studies have underlined the role of environmental factors such as social interaction in the vulnerability to and maintenance of addictive behaviors. Research on addiction pathophysiology now suggests that certain behavioral disorders are addictive, one example being food addiction. Yet, despite the growing body of knowledge on addiction, it is still unknown why only some of the individuals exposed to a drug become addicted to it. This observation has prompted the consideration of genetic heritage, neurodevelopmental trajectories, and gene-environment interactions in addiction vulnerability. Prader-Willi syndrome (PWS) is a rare neurodevelopmental disorder in which children become addicted to food and show early social impairment. PWS is caused by the deficiency of imprinted genes located on the 15q11-q13 chromosome. Among them, the SNORD116 gene was identified as the minimal gene responsible for the PWS phenotype. Several studies have also indicated the role of the Snord116 gene in animal and cellular models to explain PWS pathophysiology and phenotype (including social impairment and food addiction). We thus present here the evidence suggesting the potential involvement of the SNORD116 gene in addictive disorders.
Collapse
Affiliation(s)
- Juliette Salles
- Université de Toulouse III, F-31000, Toulouse, France.,CHU de Toulouse, Service de psychiatrie et psychologie, psychiatrie Toulouse, F-31000, Toulouse, France.,Inserm Unité 1043, CNRS 5828, Université Paul Sabatier, Toulouse III, F-31000, Toulouse, France.,CHU de Toulouse, Institut des Handicaps Neurologiques, Psychiatriques et Sensoriels, F-31000, Toulouse, France
| | - Emmanuelle Lacassagne
- Inserm Unité 1043, CNRS 5828, Université Paul Sabatier, Toulouse III, F-31000, Toulouse, France
| | - Sanaa Eddiry
- Inserm Unité 1043, CNRS 5828, Université Paul Sabatier, Toulouse III, F-31000, Toulouse, France
| | - Nicolas Franchitto
- Université de Toulouse III, F-31000, Toulouse, France.,CHU de Toulouse, Service d'addictologie clinique, urgences réanimation médecine, F-31000, Toulouse, France
| | - Jean-Pierre Salles
- Inserm Unité 1043, CNRS 5828, Université Paul Sabatier, Toulouse III, F-31000, Toulouse, France
| | - Maithé Tauber
- Université de Toulouse III, F-31000, Toulouse, France. .,Inserm Unité 1043, CNRS 5828, Université Paul Sabatier, Toulouse III, F-31000, Toulouse, France. .,CHU de Toulouse, Institut des Handicaps Neurologiques, Psychiatriques et Sensoriels, F-31000, Toulouse, France. .,CHU de Toulouse, Centre de référence du Syndrome de Prader-Willi et autres syndromes avec troubles du comportement alimentaire, Unité d'endocrinologie, obésités, maladies osseuses, génétique et gynécologie médicale, F-31000, Toulouse, France.
| |
Collapse
|
18
|
Yang X. Growth hormone treatment for Prader-Willi syndrome: A review. Neuropeptides 2020; 83:102084. [PMID: 32859387 DOI: 10.1016/j.npep.2020.102084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/21/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022]
Abstract
The Prader-Willi Syndrome (PWS) is a rare developmental disorder that contributed by multiple genes. Phenotypically, infants with PWS exhibit hypotonia and developmental delay, whilst older children and adults have cognitive impairments, neuropsychiatric symptoms, impaired motor development, neurological anomalies, endocrine dysfunctions like growth hormone (GH) deficiency, and hyperphagia that leads to obesity. Although mechanisms remain elusive, GH treatment has been recommended as the standard treatment for PWS children. In addition to better motor development, improved body composition and linear growth have been well established, but mental flexibility and behavioural problems remained largely untouched. This review will systemically analyze the recent clinical trials of GH treatment on PWS patients. The emphasis is on the mental and behavioural improvements by GH treatment, and a few concerns to initiate GH treatment. This review will finally propose possible future explorations on basic studies that may shed new light on clinical trials of GH treatment on PWS.
Collapse
Affiliation(s)
- Xin Yang
- Gritscience Biopharmaceuticals Co., Ltd, Life Science Park Road, Changping District, Beijing, China.
| |
Collapse
|
19
|
Lee L, Ostrowski LE. Motile cilia genetics and cell biology: big results from little mice. Cell Mol Life Sci 2020; 78:769-797. [PMID: 32915243 DOI: 10.1007/s00018-020-03633-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/11/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
Our understanding of motile cilia and their role in disease has increased tremendously over the last two decades, with critical information and insight coming from the analysis of mouse models. Motile cilia form on specific epithelial cell types and typically beat in a coordinated, whip-like manner to facilitate the flow and clearance of fluids along the cell surface. Defects in formation and function of motile cilia result in primary ciliary dyskinesia (PCD), a genetically heterogeneous disorder with a well-characterized phenotype but no effective treatment. A number of model systems, ranging from unicellular eukaryotes to mammals, have provided information about the genetics, biochemistry, and structure of motile cilia. However, with remarkable resources available for genetic manipulation and developmental, pathological, and physiological analysis of phenotype, the mouse has risen to the forefront of understanding mammalian motile cilia and modeling PCD. This is evidenced by a large number of relevant mouse lines and an extensive body of genetic and phenotypic data. More recently, application of innovative cell biological techniques to these models has enabled substantial advancement in elucidating the molecular and cellular mechanisms underlying the biogenesis and function of mammalian motile cilia. In this article, we will review genetic and cell biological studies of motile cilia in mouse models and their contributions to our understanding of motile cilia and PCD pathogenesis.
Collapse
Affiliation(s)
- Lance Lee
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA. .,Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD, USA.
| | - Lawrence E Ostrowski
- Marsico Lung Institute/Cystic Fibrosis Center and Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
20
|
Wevrick R. Disentangling ingestive behavior-related phenotypes in Prader–Willi syndrome: Integrating information from nonclinical studies and clinical trials to better understand the pathophysiology of hyperphagia and obesity. Physiol Behav 2020; 219:112864. [DOI: 10.1016/j.physbeh.2020.112864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/27/2020] [Accepted: 02/25/2020] [Indexed: 12/25/2022]
|