1
|
Love KS, Johnstone CP, Peterman EL, Gaglione S, Birnbaum ME, Galloway KE. Model-guided design of microRNA-based gene circuits supports precise dosage of transgenic cargoes into diverse primary cells. Cell Syst 2025:101269. [PMID: 40300600 DOI: 10.1016/j.cels.2025.101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/12/2024] [Accepted: 04/02/2025] [Indexed: 05/01/2025]
Abstract
In a therapeutic context, supraphysiological expression of transgenes can compromise engineered phenotypes and lead to toxicity. To ensure a narrow range of transgene expression, we developed a single-transcript, microRNA-based incoherent feedforward loop called compact microRNA-mediated attenuator of noise and dosage (ComMAND). We experimentally tuned the ComMAND output profile, and we modeled the system to explore additional tuning strategies. By comparing ComMAND to two-gene implementations, we demonstrate the precise control afforded by the single-transcript architecture, particularly at low copy numbers. We show that ComMAND tightly regulates transgene expression from lentiviruses and precisely controls expression in primary human T cells, primary rat neurons, primary mouse embryonic fibroblasts, and human induced pluripotent stem cells. Finally, ComMAND effectively sets levels of the clinically relevant transgenes frataxin (FXN) and fragile X messenger ribonucleoprotein 1 (Fmr1) within a narrow window. Overall, ComMAND is a compact tool well suited to precisely specify the expression of therapeutic cargoes. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Kasey S Love
- Department of Biological Engineering, MIT, 25 Ames St., Cambridge, MA 02139, USA
| | | | - Emma L Peterman
- Department of Chemical Engineering, MIT, 25 Ames St., Cambridge, MA 02139, USA
| | - Stephanie Gaglione
- Department of Chemical Engineering, MIT, 25 Ames St., Cambridge, MA 02139, USA
| | - Michael E Birnbaum
- Department of Biological Engineering, MIT, 25 Ames St., Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Kate E Galloway
- Department of Chemical Engineering, MIT, 25 Ames St., Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
| |
Collapse
|
2
|
Indelicato E, Delatycki MB, Farmer J, França MC, Perlman S, Rai M, Boesch S. A global perspective on research advances and future challenges in Friedreich ataxia. Nat Rev Neurol 2025; 21:204-215. [PMID: 40032987 DOI: 10.1038/s41582-025-01065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 03/05/2025]
Abstract
Friedreich ataxia (FRDA) is a rare multisystem, life-limiting disease and is the most common early-onset inherited ataxia in populations of European, Arab and Indian descent. In recent years, substantial progress has been made in dissecting the pathogenesis and natural history of FRDA, and several clinical trials have been initiated. A particularly notable recent achievement was the approval of the nuclear factor erythroid 2-related factor 2 activator omaveloxolone as the first disease-specific therapy for FRDA. In light of these developments, we review milestones in FRDA translational and clinical research over the past 10 years, as well as the various therapeutic strategies currently in the pipeline. We also consider the lessons that have been learned from failed trials and other setbacks. We conclude by presenting a global roadmap for future research, as outlined by the recently established Friedreich's Ataxia Global Clinical Consortium, which covers North and South America, Europe, India, Australia and New Zealand.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | | | | | | | - Myriam Rai
- Friedreich's Ataxia Research Alliance, Downingtown, PA, USA
- Laboratory of Experimental Neurology, Brussels, Belgium
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
3
|
Rihtar E, Fink T, Lebar T, Lainšček D, Kolenc Ž, Polajnar LK, Jerala R. Ligand-induced assembly of antibody variable fragments for the chemical regulation of biological processes. Cell Chem Biol 2025; 32:474-485.e5. [PMID: 39952240 PMCID: PMC11935766 DOI: 10.1016/j.chembiol.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/30/2024] [Accepted: 01/26/2025] [Indexed: 02/17/2025]
Abstract
Precise control of biological processes by the application of small molecules can increase the safety and efficiency of therapies. Adverse side effects of small molecule signals and/or immunogenicity of regulatory domains hinder their biomedical utility. Here, we designed small molecule-responsive switches, based on the conditional reassembly of human antibody variable fragments, called Fv-CID switches. The principle was validated using high-affinity antibodies against nicotine and β-estradiol to construct chemically responsive transcription factors. Further, we developed an Fv-CID switch responsive to bio-inert, clinically approved compound fluorescein, which was used to control the activity of chimeric antigen receptor (CAR) T cells and bispecific T cell engagers (BiTEs) in vivo. This study provides a framework to regulate the expression of endogenous genes, combine multiple chemical signals, and regulate T cell-based immunotherapy in an animal cancer model using a clinically approved small molecule regulator that could be customized for regulating therapeutic proteins or cells.
Collapse
Affiliation(s)
- Erik Rihtar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Tina Fink
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; Centre for Technologies of Gene and Cell Therapy, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Tina Lebar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; Centre for Technologies of Gene and Cell Therapy, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Živa Kolenc
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Lucija Kadunc Polajnar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; Centre for Technologies of Gene and Cell Therapy, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Eisel MLS, Burns M, Ashizawa T, Byrne B, Corti M, Subramony SH. Emerging therapies in hereditary ataxias. Trends Mol Med 2025; 31:181-194. [PMID: 39153956 DOI: 10.1016/j.molmed.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Recent investigations have defined the pathophysiological basis of many hereditary ataxias (HAs), including loss-of-function as well as gain-of-function mechanisms at either the RNA or protein level. Preclinical studies have assessed gene editing, gene and protein replacement, gene enhancement, and gene knockdown strategies. Methodologies include viral vector delivery of genes, oligonucleotide therapies, cell-penetrating peptides, synthetic transcription factors, and technologies to deliver therapies to defined targets. In this review, we focus on Friedreich ataxia (FRDA) and the polyglutamine ataxias in which translational research is active. However, much remains to be done to identify safe and effective molecules, create ideal delivery methods, and perform innovative clinical trials to prove the safety and efficacy of treatments for these rare but devastating diseases.
Collapse
Affiliation(s)
- Mallory L S Eisel
- Department of Neurology and the Fixel Institute for Neurological Disorders, University of Florida College of Medicine, Gainesville, FL, USA
| | - Matthew Burns
- Department of Neurology and the Fixel Institute for Neurological Disorders, University of Florida College of Medicine, Gainesville, FL, USA
| | - Tetsuo Ashizawa
- Stanley H. Appel Department of Neurology, Weill Cornell Medicine at Houston Methodist Hospital, Houston, TX, USA
| | - Barry Byrne
- Department of Pediatrics and the Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Manuela Corti
- Department of Pediatrics and the Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sub H Subramony
- Department of Neurology and the Fixel Institute for Neurological Disorders, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
5
|
Pandolfo M. Friedreich Ataxia: An (Almost) 30-Year History After Gene Discovery. Neurol Genet 2025; 11:e200236. [PMID: 39810753 PMCID: PMC11731367 DOI: 10.1212/nxg.0000000000200236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025]
Abstract
In the late 1800s, Nikolaus Friedreich first described "degenerative atrophy of the posterior columns of the spinal cord," noting its connection to progressive ataxia, sensory loss, and muscle weakness, now recognized as Friedreich ataxia (FRDA). Renewed interest in the disease in the 1970s and 80s by the Quebec Cooperative Group and by Anita Harding led to the development of clinical diagnostic criteria and insights into associated biochemical abnormalities, although the primary defect remained unknown. In 1988, Susan Chamberlain mapped FRDA's location on chromosome 9. In the early 90s, collaborative research, including work by the author's team, identified a gene, later named FXN, containing an expanded GAA repeat-confirming it as the FRDA mutation. This discovery established a diagnostic foundation for FRDA, advancing genetic testing and opening new research avenues. These new areas of study included the characteristics, origin, and pathogenicity of the GAA repeat expansion; the characterization of frataxin, the encoded protein, including its subcellular localization, structure, and function; the identification of cellular pathways disrupted by frataxin deficiency; and the redefinition of FRDA phenotypes based on genetic testing, along with the study of FRDA's natural history. In addition, efforts focused on the search for biomarkers to reflect diagnosis, disease severity, and progression and, most importantly, the identification and development of therapeutic approaches in both preclinical and clinical settings. The creation of cellular and animal models was crucial to this progress, as was the formation of consortia to collaboratively drive basic and clinical research forward. Now, 28 years after the gene discovery, although much remains to be understood about the disease's mechanisms and the development of effective therapies, the progress is undeniable. A thriving community has emerged, uniting researchers, health care providers, industry professionals, individuals with FRDA, their families, and dedicated volunteers. With this collective effort, a cure is within reach.
Collapse
Affiliation(s)
- Massimo Pandolfo
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| |
Collapse
|
6
|
Want K, D'Autréaux B. Mechanism of mitochondrial [2Fe-2S] cluster biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119811. [PMID: 39128597 DOI: 10.1016/j.bbamcr.2024.119811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Iron‑sulfur (Fe-S) clusters constitute ancient cofactors that accompany a versatile range of fundamental biological reactions across eukaryotes and prokaryotes. Several cellular pathways exist to coordinate iron acquisition and sulfur mobilization towards a scaffold protein during the tightly regulated synthesis of Fe-S clusters. The mechanism of mitochondrial eukaryotic [2Fe-2S] cluster synthesis is coordinated by the Iron-Sulfur Cluster (ISC) machinery and its aberrations herein have strong implications to the field of disease and medicine which is therefore of particular interest. Here, we describe our current knowledge on the step-by-step mechanism leading to the production of mitochondrial [2Fe-2S] clusters while highlighting the recent developments in the field alongside the challenges that are yet to be overcome.
Collapse
Affiliation(s)
- Kristian Want
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Benoit D'Autréaux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
7
|
Assaf BT. Systemic Toxicity of Recombinant Adeno-Associated Virus Gene Therapy Vectors. Toxicol Pathol 2024; 52:523-530. [PMID: 39576022 DOI: 10.1177/01926233241298892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Recombinant adeno-associated virus (rAAV) vectors have emerged as a promising tool for gene therapy. However, the systemic administration of rAAV vectors is not without risks, particularly for dose levels >1 × 1014 viral genome per kilogram of body weight (vg/kg). rAAV-associated toxicities can variably manifest either acutely or in a delayed manner. Acute toxicities often present shortly after administration and can include severe immune responses, hepatotoxicity, and thrombotic microangiopathy (TMA). Delayed toxicities, on the other hand, may emerge weeks to months post-treatment, potentially involving chronic liver damage or prolonged immune activation. Thrombotic microangiopathy is often associated with complement activation and endothelial damage. The activation of the complement system can additionally trigger a cascade of inflammatory responses, exacerbating systemic toxicity. While many of these toxicities are reversible with appropriate medical intervention, there have been instances where the adverse effects were severe enough to lead to fatalities. Both human and animal studies have reported these adverse effects, highlighting the critical importance of thorough preclinical testing. However, a differential toxicity profile associated with systemic AAV administration exists between humans and nonhuman primates (NHPs), in which certain toxicities reported in humans are yet to be observed in NHPs, and vice versa. This review aims to explore the recent literature on systemic rAAV toxicities, focusing on dose levels, the role of the complement activation pathway, endothelial injury, TMA, hepatotoxicity, and the bidirectional translational safety profiles from both human and animal studies.
Collapse
|
8
|
Pena-Rasgado C, Rodriguez-Manriquez E, Dundr M, Bridges R, Hastings M, Michaels W. Systematic deletion of symmetrical CFTR exons reveals new therapeutic targets for exon skipping antisense oligonucleotides. NAR MOLECULAR MEDICINE 2024; 1:ugae017. [PMID: 39582793 PMCID: PMC11579696 DOI: 10.1093/narmme/ugae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024]
Abstract
There is a major need for therapeutics that treat disease caused by premature termination codons (PTCs). Splice-switching antisense oligonucleotides (ASOs) can be directed to block splicing and cause exon skipping, a process that can be used to effectively remove PTCs from an mRNA. This ASO-induced exon skipping can restore protein coding potential when the exons on either side of the skipped exon are in the same reading frame, or symmetrical. We demonstrate the potential of this approach as a therapeutic using the cystic fibrosis (CF) transmembrane regulator (CFTR) gene, which has CF-associated, PTC-causing variants in all 27 of its exons. We functionally screened all CFTR isoforms that can be generated by deletion of symmetrical exons and identify four that are functionally responsive to CFTR modulators. We identified ASOs that induce skipping of these exons and show that they recover CFTR function in airway cells derived from individuals with CFTR PTC variants. This study demonstrates that systematic functional analysis of in-frame exon-deleted protein isoforms can successfully identify targets for ASO-based splice-switching therapies, a therapeutic concept that can be broadly applied to any multi-exon protein-coding gene disrupted by PTCs.
Collapse
Affiliation(s)
- Cecilia Pena-Rasgado
- Center for Genetic Diseases, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL 60064, USA
- Compound Screening and Drug Discovery Core, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL 60064, USA
| | - Elvia Rodriguez-Manriquez
- Center for Genetic Diseases, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL 60064, USA
- Compound Screening and Drug Discovery Core, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL 60064, USA
| | - Miroslav Dundr
- Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL 60064, USA
| | - Robert J Bridges
- Center for Genetic Diseases, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL 60064, USA
| | - Michelle L Hastings
- Center for Genetic Diseases, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL 60064, USA
- Department of Pharmacology, University of Michigan Medical School, 1150 W Medical Center Dr, Ann Arbor, MI 48109, USA
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, 1150 W Medical Center Dr, Ann Arbor, MI 48109, USA
| | - Wren E Michaels
- Center for Genetic Diseases, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL 60064, USA
- Compound Screening and Drug Discovery Core, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL 60064, USA
| |
Collapse
|
9
|
Walker BR, Theard LM, Pinto M, Rodriguez-Silva M, Bacman SR, Moraes CT. Restoration of defective oxidative phosphorylation to a subset of neurons prevents mitochondrial encephalopathy. EMBO Mol Med 2024; 16:2210-2232. [PMID: 39169163 PMCID: PMC11392956 DOI: 10.1038/s44321-024-00111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
Oxidative Phosphorylation (OXPHOS) defects can cause severe encephalopathies and no effective treatment exists for these disorders. To assess the ability of gene replacement to prevent disease progression, we subjected two different CNS-deficient mouse models (Ndufs3/complex I or Cox10/complex IV conditional knockouts) to gene therapy. We used retro-orbitally injected AAV-PHP.eB to deliver the missing gene to the CNS of these mice. In both cases, we observed survival extension from 5-6 to more than 15 months, with no detectable disease phenotypes. Likewise, molecular and cellular phenotypes were mostly recovered in the treated mice. Surprisingly, these remarkable phenotypic improvements were achieved with only ~30% of neurons expressing the transgene from the AAV-PHP.eB vector in the conditions used. These findings suggest that neurons lacking OXPHOS are protected by the surrounding neuronal environment and that partial compensation for neuronal OXPHOS loss can have disproportionately positive effects.
Collapse
Affiliation(s)
- Brittni R Walker
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, USA
| | - Lise-Michelle Theard
- Department of Neurology, University of Miami Miller School of Medicine, Miami, USA
| | - Milena Pinto
- Department of Neurology, University of Miami Miller School of Medicine, Miami, USA
- Mitobridge Inc, Cambridge, MA, USA
| | | | - Sandra R Bacman
- Department of Neurology, University of Miami Miller School of Medicine, Miami, USA
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, USA.
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, USA.
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, USA.
| |
Collapse
|
10
|
Beaudin M, Dupre N, Manto M. The importance of synthetic pharmacotherapy for recessive cerebellar ataxias. Expert Rev Neurother 2024; 24:897-912. [PMID: 38980086 DOI: 10.1080/14737175.2024.2376840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION The last decade has witnessed major breakthroughs in identifying novel genetic causes of hereditary ataxias, deepening our understanding of disease mechanisms, and developing therapies for these debilitating disorders. AREAS COVERED This article reviews the currently approved and most promising candidate pharmacotherapies in relation to the known disease mechanisms of the most prevalent autosomal recessive ataxias. Omaveloxolone is an Nrf2 activator that increases antioxidant defense and was recently approved for treatment of Friedreich ataxia. Its therapeutic effect is modest, and further research is needed to find synergistic treatments that would halt or reverse disease progression. Promising approaches include upregulation of frataxin expression by epigenetic mechanisms, direct protein replacement, and gene replacement therapy. For ataxia-telangiectasia, promising approaches include splice-switching antisense oligonucleotides and small molecules targeting oxidative stress, inflammation, and mitochondrial function. Rare recessive ataxias for which disease-modifying therapies exist are also reviewed, emphasizing recently approved therapies. Evidence supporting the use of riluzole and acetyl-leucine in recessive ataxias is discussed. EXPERT OPINION Advances in genetic therapies for other neurogenetic conditions have paved the way to implement feasible approaches with potential dramatic benefits. Particularly, as we develop effective treatments for these conditions, we may need to combine therapies, consider newborn testing for pre-symptomatic treatment, and optimize non-pharmacological approaches.
Collapse
Affiliation(s)
- Marie Beaudin
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Nicolas Dupre
- Neuroscience axis, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Mario Manto
- Service des Neurosciences, Université de Mons, Mons, Belgique
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, Charleroi, Belgique
| |
Collapse
|
11
|
Rojsajjakul T, Selvan N, De B, Rosenberg JB, Kaminsky SM, Sondhi D, Janki P, Crystal RG, Mesaros C, Khanna R, Blair IA. Expression and processing of mature human frataxin after gene therapy in mice. Sci Rep 2024; 14:8391. [PMID: 38600238 PMCID: PMC11006666 DOI: 10.1038/s41598-024-59060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/06/2024] [Indexed: 04/12/2024] Open
Abstract
Friedreich's ataxia is a degenerative and progressive multisystem disorder caused by mutations in the highly conserved frataxin (FXN) gene that results in FXN protein deficiency and mitochondrial dysfunction. While gene therapy approaches are promising, consistent induction of therapeutic FXN protein expression that is sub-toxic has proven challenging, and numerous therapeutic approaches are being tested in animal models. FXN (hFXN in humans, mFXN in mice) is proteolytically modified in mitochondria to produce mature FXN. However, unlike endogenous hFXN, endogenous mFXN is further processed into N-terminally truncated, extra-mitochondrial mFXN forms of unknown function. This study assessed mature exogenous hFXN expression levels in the heart and liver of C57Bl/6 mice 7-10 months after intravenous administration of a recombinant adeno-associated virus encoding hFXN (AAVrh.10hFXN) and examined the potential for hFXN truncation in mice. AAVrh.10hFXN induced dose-dependent expression of hFXN in the heart and liver. Interestingly, hFXN was processed into truncated forms, but found at lower levels than mature hFXN. However, the truncations were at different positions than mFXN. AAVrh.10hFXN induced mature hFXN expression in mouse heart and liver at levels that approximated endogenous mFXN levels. These results suggest that AAVrh.10hFXN can likely induce expression of therapeutic levels of mature hFXN in mice.
Collapse
Affiliation(s)
- Teerapat Rojsajjakul
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine, Penn/CHOP Friedreich's Ataxia Center of Excellence, Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Bishnu De
- Department of Genetic Medicine, Weill Cornell College of Medicine, New York, NY, USA
| | - Jonathan B Rosenberg
- Department of Genetic Medicine, Weill Cornell College of Medicine, New York, NY, USA
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell College of Medicine, New York, NY, USA
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell College of Medicine, New York, NY, USA
| | | | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell College of Medicine, New York, NY, USA
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine, Penn/CHOP Friedreich's Ataxia Center of Excellence, Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine, Penn/CHOP Friedreich's Ataxia Center of Excellence, Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Gunther K, Lynch DR. Pharmacotherapeutic strategies for Friedreich Ataxia: a review of the available data. Expert Opin Pharmacother 2024; 25:529-539. [PMID: 38622054 DOI: 10.1080/14656566.2024.2343782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION Friedreich ataxia (FRDA) is a rare autosomal recessive disease, marked by loss of coordination as well as impaired neurological, endocrine, orthopedic, and cardiac function. There are many symptomatic medications for FRDA, and many clinical trials have been performed, but only one FDA-approved medication exists. AREAS COVERED The relative absence of the frataxin protein (FXN) in FRDA causes mitochondrial dysfunction, resulting in clinical manifestations. Currently, the only approved treatment for FRDA is an Nrf2 activator called omaveloxolone (Skyclarys). Patients with FRDA also rely on various symptomatic medications for treatment. Because there is only one approved medication for FRDA, clinical trials continue to advance in FRDA. Although some trials have not met their endpoints, many current and upcoming clinical trials provide exciting possibilities for the treatment of FRDA. EXPERT OPINION The approval of omaveloxolone provides a major advance in FRDA therapeutics. Although well tolerated, it is not curative. Reversal of deficient frataxin levels with gene therapy, protein replacement, or epigenetic approaches provides the most likely prospect for enduring, disease-modifying therapy in the future.
Collapse
Affiliation(s)
- Katherine Gunther
- Friedreich Ataxia Program, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David R Lynch
- Friedreich Ataxia Program, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
13
|
Chang JC, Ryan MR, Stark MC, Liu S, Purushothaman P, Bolan F, Johnson CA, Champe M, Meng H, Lawlor MW, Halawani S, Ngaba LV, Lynch DR, Davis C, Gonzalo-Gil E, Lutz C, Urbinati F, Medicherla B, Fonck C. AAV8 gene therapy reverses cardiac pathology and prevents early mortality in a mouse model of Friedreich's ataxia. Mol Ther Methods Clin Dev 2024; 32:101193. [PMID: 38352270 PMCID: PMC10862410 DOI: 10.1016/j.omtm.2024.101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
Friedreich's ataxia (FRDA) is an autosomal-recessive disorder primarily attributed to biallelic GAA repeat expansions that reduce expression of the mitochondrial protein frataxin (FXN). FRDA is characterized by progressive neurodegeneration, with many patients developing cardiomyopathy that progresses to heart failure and death. The potential to reverse or prevent progression of the cardiac phenotype of FRDA was investigated in a mouse model of FRDA, using an adeno-associated viral vector (AAV8) containing the coding sequence of the FXN gene. The Fxnflox/null::MCK-Cre conditional knockout mouse (FXN-MCK) has an FXN gene ablation that prevents FXN expression in cardiac and skeletal muscle, leading to cardiac insufficiency, weight loss, and morbidity. FXN-MCK mice received a single intravenous injection of an AAV8 vector containing human (hFXN) or mouse (mFXN) FXN genes under the control of a phosphoglycerate kinase promoter. Compared to vehicle-treated FXN-MCK control mice, AAV-treated FXN-MCK mice displayed increases in body weight, reversal of cardiac deficits, and increases in survival without apparent toxicity in the heart or liver for up to 12 weeks postdose. FXN protein expression in heart tissue was detected in a dose-dependent manner, exhibiting wide distribution throughout the heart similar to wild type, but more speckled. These results support an AAV8-based approach to treat FRDA-associated cardiomyopathy.
Collapse
Affiliation(s)
- Joshua C. Chang
- Astellas Gene Therapies, Inc., South San Francisco, CA 94080, USA
| | - Molly R. Ryan
- Astellas Gene Therapies, Inc., South San Francisco, CA 94080, USA
| | - Marie C. Stark
- Astellas Gene Therapies, Inc., South San Francisco, CA 94080, USA
| | - Su Liu
- Astellas Gene Therapies, Inc., South San Francisco, CA 94080, USA
| | | | - Fria Bolan
- Astellas Gene Therapies, Inc., South San Francisco, CA 94080, USA
| | | | - Mark Champe
- Astellas Gene Therapies, Inc., South San Francisco, CA 94080, USA
| | - Hui Meng
- Diverge Translational Science Laboratory, Milwaukee, WI 53204, USA
- Medical College of Wisconsin, Department of Pathology and Laboratory Medicine, Milwaukee, WI 53226, USA
| | - Michael W. Lawlor
- Diverge Translational Science Laboratory, Milwaukee, WI 53204, USA
- Medical College of Wisconsin, Department of Pathology and Laboratory Medicine, Milwaukee, WI 53226, USA
| | - Sarah Halawani
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lucie V. Ngaba
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David R. Lynch
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | - Fabrizia Urbinati
- Formerly of Astellas Gene Therapies, Inc., South San Francisco, CA 94080, USA
| | - Bala Medicherla
- Astellas Gene Therapies, Inc., South San Francisco, CA 94080, USA
| | - Carlos Fonck
- Astellas Gene Therapies, Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
14
|
Psaras Y, Toepfer CN. Targeted genetic therapies for inherited disorders that affect both cardiac and skeletal muscle. Exp Physiol 2024; 109:175-189. [PMID: 38095849 PMCID: PMC10988723 DOI: 10.1113/ep090436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/27/2023] [Indexed: 12/21/2023]
Abstract
Skeletal myopathies and ataxias with secondary cardiac involvement are complex, progressive and debilitating conditions. As life expectancy increases across these conditions, cardiac involvement often becomes more prominent. This highlights the need for targeted therapies that address these evolving cardiac pathologies. Musculopathies by and large lack cures that directly target the genetic basis of the diseases; however, as our understanding of the genetic causes of these conditions has evolved, it has become tractable to develop targeted therapies using biologics, to design precision approaches to target the primary genetic causes of these varied diseases. Using the examples of Duchenne muscular dystrophy, Friedreich ataxia and Pompe disease, we discuss how the genetic causes of such diseases derail diverse homeostatic, energetic and signalling pathways, which span multiple cellular systems in varied tissues across the body. We outline existing therapeutics and treatments in the context of emerging novel genetic approaches. We discuss the hurdles that the field must overcome to deliver targeted therapies across the many tissue types affected in primary myopathies.
Collapse
Affiliation(s)
- Yiangos Psaras
- Division of Cardiovascular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Christopher N. Toepfer
- Division of Cardiovascular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
15
|
Perfitt TL, Huichalaf C, Gooch R, Kuperman A, Ahn Y, Chen X, Ullas S, Hirenallur-Shanthappa D, Zhan Y, Otis D, Whiteley LO, Bulawa C, Martelli A. A modified mouse model of Friedreich's ataxia with conditional Fxn allele homozygosity delays onset of cardiomyopathy. Am J Physiol Heart Circ Physiol 2024; 326:H357-H369. [PMID: 38038720 DOI: 10.1152/ajpheart.00496.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Friedreich's ataxia (FA) is an autosomal recessive disorder caused by a deficiency in frataxin (FXN), a mitochondrial protein that plays a critical role in the synthesis of iron-sulfur clusters (Fe-S), vital inorganic cofactors necessary for numerous cellular processes. FA is characterized by progressive ataxia and hypertrophic cardiomyopathy, with cardiac dysfunction as the most common cause of mortality in patients. Commonly used cardiac-specific mouse models of FA use the muscle creatine kinase (MCK) promoter to express Cre recombinase in cardiomyocytes and striated muscle cells in mice with one conditional Fxn allele and one floxed-out/null allele. These mice quickly develop cardiomyopathy that becomes fatal by 9-11 wk of age. Here, we generated a cardiac-specific model with floxed Fxn allele homozygosity (MCK-Fxnflox/flox). MCK-Fxnflox/flox mice were phenotypically normal at 9 wk of age, despite no detectable FXN protein expression. Between 13 and 15 wk of age, these mice began to display progressive cardiomyopathy, including decreased ejection fraction and fractional shortening and increased left ventricular mass. MCK-Fxnflox/flox mice began to lose weight around 16 wk of age, characteristically associated with heart failure in other cardiac-specific FA models. By 18 wk of age, MCK-Fxnflox/flox mice displayed elevated markers of Fe-S deficiency, cardiac stress and injury, and cardiac fibrosis. This modified model reproduced important pathophysiological and biochemical features of FA over a longer timescale than previous cardiac-specific mouse models, offering a larger window for studying potential therapeutics.NEW & NOTEWORTHY Previous cardiac-specific frataxin knockout models exhibit rapid and fatal cardiomyopathy by 9 wk of age. This severe phenotype poses challenges for the design and execution of intervention studies. We introduce an alternative cardiac-specific model, MCK-Fxnflox/flox, with increased longevity and delayed onset of all major phenotypes. These phenotypes develop to the same severity as previous models. Thus, this new model provides the same cardiomyopathy-associated mortality with a larger window for potential studies.
Collapse
Affiliation(s)
- Tyler L Perfitt
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Claudia Huichalaf
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Renea Gooch
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Anna Kuperman
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Youngwook Ahn
- Target Sciences, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Xian Chen
- Comparative Medicine, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Soumya Ullas
- Comparative Medicine, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Dinesh Hirenallur-Shanthappa
- Comparative Medicine, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Yutian Zhan
- Drug Safety Research and Development, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Diana Otis
- Drug Safety Research and Development, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Laurence O Whiteley
- Drug Safety Research and Development, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Christine Bulawa
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Alain Martelli
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| |
Collapse
|
16
|
Gardin A, Rouillon J, Montalvo-Romeral V, Rossiaud L, Vidal P, Launay R, Vie M, Krimi Benchekroun Y, Cosette J, Bertin B, La Bella T, Dubreuil G, Nozi J, Jauze L, Fragnoud R, Daniele N, Van Wittenberghe L, Esque J, André I, Nissan X, Hoch L, Ronzitti G. A functional mini-GDE transgene corrects impairment in models of glycogen storage disease type III. J Clin Invest 2024; 134:e172018. [PMID: 38015640 PMCID: PMC10786702 DOI: 10.1172/jci172018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023] Open
Abstract
Glycogen storage disease type III (GSDIII) is a rare inborn error of metabolism affecting liver, skeletal muscle, and heart due to mutations of the AGL gene encoding for the glycogen debranching enzyme (GDE). No curative treatment exists for GSDIII. The 4.6 kb GDE cDNA represents the major technical challenge toward the development of a single recombinant adeno-associated virus-derived (rAAV-derived) vector gene therapy strategy. Using information on GDE structure and molecular modeling, we generated multiple truncated GDEs. Among them, an N-terminal-truncated mutant, ΔNter2-GDE, had a similar efficacy in vivo compared with the full-size enzyme. A rAAV vector expressing ΔNter2-GDE allowed significant glycogen reduction in heart and muscle of Agl-/- mice 3 months after i.v. injection, as well as normalization of histology features and restoration of muscle strength. Similarly, glycogen accumulation and histological features were corrected in a recently generated Agl-/- rat model. Finally, transduction with rAAV vectors encoding ΔNter2-GDE corrected glycogen accumulation in an in vitro human skeletal muscle cellular model of GSDIII. In conclusion, our results demonstrated the ability of a single rAAV vector expressing a functional mini-GDE transgene to correct the muscle and heart phenotype in multiple models of GSDIII, supporting its clinical translation to patients with GSDIII.
Collapse
Affiliation(s)
- Antoine Gardin
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Jérémy Rouillon
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Valle Montalvo-Romeral
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Lucille Rossiaud
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Patrice Vidal
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Romain Launay
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Mallaury Vie
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Youssef Krimi Benchekroun
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | | | - Bérangère Bertin
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Tiziana La Bella
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | | | - Justine Nozi
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Louisa Jauze
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | | | | | | | - Jérémy Esque
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Xavier Nissan
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Lucile Hoch
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Giuseppe Ronzitti
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| |
Collapse
|
17
|
Wang M, Xuan T, Li H, An J, Hao T, Cheng J. Protective effect of FXN overexpression on ferroptosis in L-Glu-induced SH-SY5Y cells. Acta Histochem 2024; 126:152135. [PMID: 38266318 DOI: 10.1016/j.acthis.2024.152135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a complex, multifactorial neurodegenerative disease. However, the pathogenesis remains unclear. Recently, an increasing number of studies have demonstrated that ferroptosis is a new type of iron-dependent programmed cell death, contributes to the death of nerve cells in AD. By controlling iron homeostasis and mitochondrial function, the particular protein called frataxin (FXN), which is situated in the mitochondrial matrix, is a critical regulator of ferroptosis disease. It is encoded by the nuclear gene FXN. Here, we identified a novel underlying mechanism through which ferroptosis mediated by FXN contributes to AD. METHODS Human neuroblastoma cells (SH-SY5Y) were injured by L-glutamate (L-Glu). Overexpression of FXN by lentiviral transfection. In each experimental group, we assessed the ultrastructure of the mitochondria, the presence of iron and intracellular Fe2 + , the levels of reactive oxygen species, the mitochondrial membrane potential (MMP), and lipid peroxidation. Quantification was done for malondialdehyde (MDA) and reduced glutathione (GSH), as well as reactive oxygen species (ROS). Western blot and cellular immunofluorescence assays were used to detect the expression of xCT and GPX4 proteins which in System Xc-/GPX4 pathway, and the protein expressions of ACSL4 and TfR1 were investigated by Western blot. RESULTS The present work showed: (1) The expression of FXN was reduced in the L-Glu group; (2) Compared with the Control group, MMP was reduced in the L-Glu group, and mitochondria were observed to shrink and cristae were deformed, reduced or disappeared by transmission electron microscopy, and after FXN overexpression and ferrostatin-1 (Fer-1) (10 μmol/L) intervened, MMP was increased and mitochondrial morphology was significantly improved, suggesting that mitochondrial function was impaired in the L-Glu group, and overexpression of FXN could improve the manifestation of mitochondrial function impairment. (3) In the L-Glu group, ROS, MDA, iron ion concentration and Fe2+ levels were increased, GSH was decreased. Elevated expression of ACSL4 and TfR1, important regulatory proteins of ferroptosis, was detected by Western blot, and the expression of xCT and GPX4 in the System Xc-/GPX4 pathway was reduced by Western blot and cellular immunofluorescence. However, the above results were reversed when FXN overexpression and Fer-1 intervened. CONCLUSION To conclude, our research demonstrates that an elevated expression of FXN effectively demonstrates a robust neuroprotective effect against oxidative damage induced by L-Glu. Moreover, it mitigates mitochondrial dysfunction and lipid metabolic dysregulation associated with ferroptosis. FXN overexpression holds promise in potential therapeutic strategies for AD by inhibiting ferroptosis in nerve cells and fostering their protection.
Collapse
Affiliation(s)
- Mengran Wang
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China; School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Tingting Xuan
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China; School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Haining Li
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China; Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jing An
- Department of Neurology, People Hospital of Zhong wei, Zhongwei, China
| | - Tianhui Hao
- Department of Neurology, People Hospital of Zhong wei, Zhongwei, China.
| | - Jiang Cheng
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China; Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia Hui Autonomous Region, Yinchuan, China.
| |
Collapse
|
18
|
Rojsajjakul T, Selvan N, De B, Rosenberg JB, Kaminsky SM, Sondhi D, Janki P, Crystal RG, Mesaros C, Khanna R, Blair IA. Expression and processing of mature human frataxin after gene therapy in mice. RESEARCH SQUARE 2023:rs.3.rs-3788652. [PMID: 38234818 PMCID: PMC10793484 DOI: 10.21203/rs.3.rs-3788652/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Friedreich's ataxia is a degenerative and progressive multisystem disorder caused by mutations in the highly conserved frataxin (FXN) gene that results in FXN protein deficiency and mitochondrial dysfunction. While gene therapy approaches are promising, consistent induction of therapeutic FXN protein expression that is sub-toxic has proven challenging, and numerous therapeutic approaches are being tested in animal models. FXN (hFXN in humans, mFXN in mice) is proteolytically modified in mitochondria to produce mature FXN. However, unlike endogenous hFXN, endogenous mFXN is further processed into N-terminally truncated, extra-mitochondrial mFXN forms of unknown function. This study assessed mature exogenous hFXN expression levels in the heart and liver of C57Bl/6 mice 7-10 months after intravenous administration of a recombinant adeno-associated virus encoding hFXN (AAVrh.10hFXN) and examined the potential for hFXN truncation in mice. AAVrh.10hFXN induced dose-dependent expression of hFXN in the heart and liver. Interestingly, hFXN was processed into truncated forms, but found at lower levels than mature hFXN. However, the truncations were at different positions than mFXN. AAVrh.10hFXN induced mature hFXN expression in mouse heart and liver at levels that approximated endogenous mFXN levels. These results demonstrate that AAVrh.10hFXN may induce expression of therapeutic levels of mature hFXN in mice.
Collapse
|
19
|
Rizzo F, Bono S, Ruepp MD, Salani S, Ottoboni L, Abati E, Melzi V, Cordiglieri C, Pagliarani S, De Gioia R, Anastasia A, Taiana M, Garbellini M, Lodato S, Kunderfranco P, Cazzato D, Cartelli D, Lonati C, Bresolin N, Comi G, Nizzardo M, Corti S. Combined RNA interference and gene replacement therapy targeting MFN2 as proof of principle for the treatment of Charcot-Marie-Tooth type 2A. Cell Mol Life Sci 2023; 80:373. [PMID: 38007410 PMCID: PMC10676309 DOI: 10.1007/s00018-023-05018-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/27/2023]
Abstract
Mitofusin-2 (MFN2) is an outer mitochondrial membrane protein essential for mitochondrial networking in most cells. Autosomal dominant mutations in the MFN2 gene cause Charcot-Marie-Tooth type 2A disease (CMT2A), a severe and disabling sensory-motor neuropathy that impacts the entire nervous system. Here, we propose a novel therapeutic strategy tailored to correcting the root genetic defect of CMT2A. Though mutant and wild-type MFN2 mRNA are inhibited by RNA interference (RNAi), the wild-type protein is restored by overexpressing cDNA encoding functional MFN2 modified to be resistant to RNAi. We tested this strategy in CMT2A patient-specific human induced pluripotent stem cell (iPSC)-differentiated motor neurons (MNs), demonstrating the correct silencing of endogenous MFN2 and replacement with an exogenous copy of the functional wild-type gene. This approach significantly rescues the CMT2A MN phenotype in vitro, stabilizing the altered axonal mitochondrial distribution and correcting abnormal mitophagic processes. The MFN2 molecular correction was also properly confirmed in vivo in the MitoCharc1 CMT2A transgenic mouse model after cerebrospinal fluid (CSF) delivery of the constructs into newborn mice using adeno-associated virus 9 (AAV9). Altogether, our data support the feasibility of a combined RNAi and gene therapy strategy for treating the broad spectrum of human diseases associated with MFN2 mutations.
Collapse
Affiliation(s)
- Federica Rizzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Bono
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marc David Ruepp
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Sabrina Salani
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Linda Ottoboni
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Abati
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Melzi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Cordiglieri
- Istituto Di Genetica Molecolare "Romeo Ed Enrica Invernizzi", Milan, Italy
| | - Serena Pagliarani
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberta De Gioia
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessia Anastasia
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Michela Taiana
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Simona Lodato
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, 20089, Milan, Italy
| | - Paolo Kunderfranco
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, 20089, Milan, Italy
| | - Daniele Cazzato
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
| | - Nereo Bresolin
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Giacomo Comi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Monica Nizzardo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Milan, Italy.
| |
Collapse
|
20
|
Gardin A, Ronzitti G. Current limitations of gene therapy for rare pediatric diseases: Lessons learned from clinical experience with AAV vectors. Arch Pediatr 2023; 30:8S46-8S52. [PMID: 38043983 DOI: 10.1016/s0929-693x(23)00227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Gene therapy using adeno-associated viral (AAV) vectors is a promising therapeutic strategy for multiple inherited diseases. Following intravenous injection, AAV vectors carrying a copy of the missing gene or the genome-editing machinery reach their target cells and deliver the genetic material. Several clinical trials are currently ongoing and significant success has already been achieved with at least six AAV gene therapy products with market approval in Europe and the United States. Nonetheless, clinical trials and preclinical studies have uncovered several limitations of AAV gene transfer, which need to be addressed in order to improve the safety and enable the treatment of the largest patient population. Limitations include the occurrence of immune-mediated toxicities, the potential loss of correction in the long run, and the development of neutralizing antibodies against AAV vectors preventing re-administration. In this review, we summarize these limitations and discuss the potential technological developments to overcome them. © 2023 Published by Elsevier Masson SAS on behalf of French Society of Pediatrics.
Collapse
Affiliation(s)
- Antoine Gardin
- Genethon, 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000 Evry, France; Hépatologie et Transplantation Hépatique Pédiatriques, Centre de référence de l'atrésie des voies biliaires et des cholestases génétiques, FSMR FILFOIE, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Hôpital Bicêtre, AP-HP, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Giuseppe Ronzitti
- Genethon, 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000 Evry, France.
| |
Collapse
|
21
|
Rojsajjakul T, Hordeaux JJ, Choudhury GR, Hinderer CJ, Mesaros C, Wilson JM, Blair IA. Quantification of human mature frataxin protein expression in nonhuman primate hearts after gene therapy. Commun Biol 2023; 6:1093. [PMID: 37891254 PMCID: PMC10611776 DOI: 10.1038/s42003-023-05472-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Deficiency in human mature frataxin (hFXN-M) protein is responsible for the devastating neurodegenerative and cardiodegenerative disease of Friedreich's ataxia (FRDA). It results primarily through epigenetic silencing of the FXN gene by GAA triplet repeats on intron 1 of both alleles. GAA repeat lengths are most commonly between 600 and 1200 but can reach 1700. A subset of approximately 3% of FRDA patients have GAA repeats on one allele and a mutation on the other. FRDA patients die most commonly in their 30s from heart disease. Therefore, increasing expression of heart hFXN-M using gene therapy offers a way to prevent early mortality in FRDA. We used rhesus macaque monkeys to test the pharmacology of an adeno-associated virus (AAV)hu68.CB7.hFXN therapy. The advantage of using non-human primates for hFXN-M gene therapy studies is that hFXN-M and monkey FXN-M (mFXN-M) are 98.5% identical, which limits potential immunologic side-effects. However, this presented a formidable bioanalytical challenge in quantification of proteins with almost identical sequences. This could be overcome by the development of a species-specific quantitative mass spectrometry-based method, which has revealed for the first time, robust transgene-specific human protein expression in monkey heart tissue. The dose response is non-linear resulting in a ten-fold increase in monkey heart hFXN-M protein expression with only a three-fold increase in dose of the vector.
Collapse
Affiliation(s)
- Teerapat Rojsajjakul
- Penn/CHOP Friedreich's Ataxia Center of Excellence and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Juliette J Hordeaux
- Gene Therapy Program, Departments of Medicine and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gourav R Choudhury
- Gene Therapy Program, Departments of Medicine and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christian J Hinderer
- Gene Therapy Program, Departments of Medicine and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Clementina Mesaros
- Penn/CHOP Friedreich's Ataxia Center of Excellence and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James M Wilson
- Gene Therapy Program, Departments of Medicine and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Ian A Blair
- Penn/CHOP Friedreich's Ataxia Center of Excellence and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
22
|
Zhang Z, Jiang W, Zhang C, Yin Y, Mu N, Wang Y, Yu L, Ma H. Frataxin inhibits the sensitivity of the myocardium to ferroptosis by regulating iron homeostasis. Free Radic Biol Med 2023; 205:305-317. [PMID: 37343689 DOI: 10.1016/j.freeradbiomed.2023.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023]
Abstract
RATIONALE Myocardial ischemia/reperfusion (I/R) injury is characterized by cell death via various cellular mechanisms upon reperfusion. As a new type of cell death, ferroptosis provides new opportunities to reduce myocardial cell death. Ferroptosis is known to be more active during reperfusion than ischemia. However, the mechanisms regulating ferroptosis during ischemia and reperfusion remain largely unknown. METHODS The contribution of ferroptosis in ischemic and reperfused myocardium were detected by administered of Fer-1, a ferroptosis inhibitor to C57BL/6 mice, followed by left anterior descending (LAD) ligation surgery. Ferroptosis was evaluated by measurement of cell viability, ptgs2 mRNA level, iron production, malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) levels. H9C2 cells were exposed to hypoxia/reoxygenation to mimic in vivo I/R. We used LC-MS/MS to identify potential E3 ligases that interacted with frataxin in heart tissue. Cardiac-specific overexpression of frataxin in whole heart was achieved by intracardiac injection of frataxin, carried by adeno-associated virus serotype 9 (AAV9) containing cardiac troponin T (cTnT) promoter. RESULTS We showed that regulators of iron metabolism, especially iron regulatory protein activity, were increased in the ischemic myocardium or hypoxia cardiomyocytes. In addition, we found that frataxin, which is involved in iron metabolism, is differentially expressed in the ischemic and reperfused myocardium and involved in the regulation of cardiomyocytes ferroptosis. Furthermore, we identified an E3 ligase, NHL repeat-containing 1 (NHLRC1), that mediates frataxin ubiquitination degradation. Cardiac-specific overexpression of frataxin ameliorated myocardial I/R injury through ferroptosis inhibition. CONCLUSIONS Through a multi-level study from molecule to animal model, these findings uncover the key role of frataxin in inhibiting cardiomyocyte ferroptosis and provide new strategies and perspectives for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Zihui Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Wenhua Jiang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Chan Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Nan Mu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Yishi Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Heng Ma
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China; Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China.
| |
Collapse
|
23
|
Bouchard C, Gérard C, Yanyabé SGF, Majeau N, Aloui M, Buisson G, Yameogo P, Couture V, Tremblay JP. Finding an Appropriate Mouse Model to Study the Impact of a Treatment for Friedreich Ataxia on the Behavioral Phenotype. Genes (Basel) 2023; 14:1654. [PMID: 37628705 PMCID: PMC10454134 DOI: 10.3390/genes14081654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Friedreich ataxia (FRDA) is a progressive neurodegenerative disease caused by a GAA repeat in the intron 1 of the frataxin gene (FXN) leading to a lower expression of the frataxin protein. The YG8sR mice are Knock-Out (KO) for their murine frataxin gene but contain a human frataxin transgene derived from an FRDA patient with 300 GAA repeats. These mice are used as a FRDA model but even with a low frataxin concentration, their phenotype is mild. We aimed to find an optimized mouse model with a phenotype comparable to the human patients to study the impact of therapy on the phenotype. We compared two mouse models: the YG8sR injected with an AAV. PHP.B coding for a shRNA targeting the human frataxin gene and the YG8-800, a new mouse model with a human transgene containing 800 GAA repeats. Both mouse models were compared to Y47R mice containing nine GAA repeats that were considered healthy mice. Behavior tests (parallel rod floor apparatus, hanging test, inverted T beam, and notched beam test) were carried out from 2 to 11 months and significant differences were noticed for both YG8sR mice injected with an anti-FXN shRNA and the YG8-800 mice compared to healthy mice. In conclusion, YG8sR mice have a slight phenotype, and injecting them with an AAV-PHP.B expressing an shRNA targeting frataxin does increase their phenotype. The YG8-800 mice have a phenotype comparable to the human ataxic phenotype.
Collapse
Affiliation(s)
- Camille Bouchard
- Centre de Recherche du CHU, Québec-Université Laval, Québec, QC G1V 4G2, Canada (N.M.); (M.A.); (G.B.)
- Département de Médecine Moléculaire, l’Université Laval Québec, Québec, QC G1V 4G2, Canada
| | - Catherine Gérard
- Centre de Recherche du CHU, Québec-Université Laval, Québec, QC G1V 4G2, Canada (N.M.); (M.A.); (G.B.)
- Département de Médecine Moléculaire, l’Université Laval Québec, Québec, QC G1V 4G2, Canada
| | - Solange Gni-fiene Yanyabé
- Centre de Recherche du CHU, Québec-Université Laval, Québec, QC G1V 4G2, Canada (N.M.); (M.A.); (G.B.)
- Département de Médecine Moléculaire, l’Université Laval Québec, Québec, QC G1V 4G2, Canada
| | - Nathalie Majeau
- Centre de Recherche du CHU, Québec-Université Laval, Québec, QC G1V 4G2, Canada (N.M.); (M.A.); (G.B.)
- Département de Médecine Moléculaire, l’Université Laval Québec, Québec, QC G1V 4G2, Canada
| | - Malek Aloui
- Centre de Recherche du CHU, Québec-Université Laval, Québec, QC G1V 4G2, Canada (N.M.); (M.A.); (G.B.)
| | - Gabrielle Buisson
- Centre de Recherche du CHU, Québec-Université Laval, Québec, QC G1V 4G2, Canada (N.M.); (M.A.); (G.B.)
| | - Pouiré Yameogo
- Centre de Recherche du CHU, Québec-Université Laval, Québec, QC G1V 4G2, Canada (N.M.); (M.A.); (G.B.)
- Département de Médecine Moléculaire, l’Université Laval Québec, Québec, QC G1V 4G2, Canada
| | - Vanessa Couture
- Centre de Recherche du CHU, Québec-Université Laval, Québec, QC G1V 4G2, Canada (N.M.); (M.A.); (G.B.)
- Département de Médecine Moléculaire, l’Université Laval Québec, Québec, QC G1V 4G2, Canada
| | - Jacques P. Tremblay
- Centre de Recherche du CHU, Québec-Université Laval, Québec, QC G1V 4G2, Canada (N.M.); (M.A.); (G.B.)
- Département de Médecine Moléculaire, l’Université Laval Québec, Québec, QC G1V 4G2, Canada
| |
Collapse
|
24
|
Monda E, Bakalakos A, Rubino M, Verrillo F, Diana G, De Michele G, Altobelli I, Lioncino M, Perna A, Falco L, Palmiero G, Elliott PM, Limongelli G. Targeted Therapies in Pediatric and Adult Patients With Hypertrophic Heart Disease: From Molecular Pathophysiology to Personalized Medicine. Circ Heart Fail 2023; 16:e010687. [PMID: 37477018 DOI: 10.1161/circheartfailure.123.010687] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/06/2023] [Indexed: 07/22/2023]
Abstract
Hypertrophic cardiomyopathy is a myocardial disease defined by an increased left ventricular wall thickness not solely explained by abnormal loading conditions. It is often genetically determined, with sarcomeric gene mutations accounting for around 50% of cases. Several conditions, including syndromic, metabolic, infiltrative, and neuromuscular diseases, may present with left ventricular hypertrophy, mimicking the hypertrophic cardiomyopathy phenotype but showing a different pathophysiology, clinical course, and outcome. Despite being rare, they are collectively responsible for a large proportion of patients presenting with hypertrophic heart disease, and their timely diagnosis can significantly impact patients' management. The understanding of disease pathophysiology has advanced over the last few years, and several therapeutic targets have been identified, leading to a new era of tailored treatments applying to different etiologies associated with left ventricular hypertrophy. This review aims to provide an overview of the existing and emerging therapies for the principal causes of hypertrophic heart disease, discussing the potential impact on patients' management and clinical outcome.
Collapse
Affiliation(s)
- Emanuele Monda
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
- Institute of Cardiovascular Sciences, University College London, United Kingdom (E.M., A.B., P.M.E., G.L.)
| | - Athanasios Bakalakos
- Institute of Cardiovascular Sciences, University College London, United Kingdom (E.M., A.B., P.M.E., G.L.)
| | - Marta Rubino
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Federica Verrillo
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Gaetano Diana
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Gianantonio De Michele
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Ippolita Altobelli
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Michele Lioncino
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Alessia Perna
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Luigi Falco
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Giuseppe Palmiero
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Perry M Elliott
- Institute of Cardiovascular Sciences, University College London, United Kingdom (E.M., A.B., P.M.E., G.L.)
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
- Institute of Cardiovascular Sciences, University College London, United Kingdom (E.M., A.B., P.M.E., G.L.)
| |
Collapse
|
25
|
Yaméogo P, Gérard C, Majeau N, Tremblay JP. Removal of the GAA repeat in the heart of a Friedreich's ataxia mouse model using CjCas9. Gene Ther 2023; 30:612-619. [PMID: 36781946 DOI: 10.1038/s41434-023-00387-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/15/2023]
Abstract
Most Friedreich ataxia (FRDA) cases are caused by the elongation of the GAA repeat (GAAr) sequence in the first intron of the FXN gene, leading to a decrease of the frataxin protein expression. Deletion of this GAAr with CRISPR/Cas9 technology leads to an increase in frataxin expression in vitro. We are therefore aiming to develop FRDA treatment based on the deletion of GAAr with CRISPR/Cas9 technology using a single AAV expressing a small Cas9 (CjCas9) and two single guide RNAs (sgRNAs) targeting the FXN gene. This AAV was intraperitoneally administrated to YG8sR (250-300 GAAr) and to YG8-800 (800 GAAr) mice. DNA and RNA were extracted from different organs a month later. PCR amplification of part of intron 1 of the FXN gene detected some GAAr deletion in some cells in heart and liver of both mouse models, but the editing rate was not sufficient to cause an increase in frataxin mRNA in the heart. However, the correlation observed between the editing rate and the distribution of AAV suggests a possible therapy based on the removal of the GAAr with a better delivery tool of the CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Pouiré Yaméogo
- Centre de Recherche du CHU de Québec-Université Laval, Québec city, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec city, QC, Canada
| | - Catherine Gérard
- Centre de Recherche du CHU de Québec-Université Laval, Québec city, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec city, QC, Canada
| | - Nathalie Majeau
- Centre de Recherche du CHU de Québec-Université Laval, Québec city, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec city, QC, Canada
| | - Jacques P Tremblay
- Centre de Recherche du CHU de Québec-Université Laval, Québec city, QC, Canada.
- Département de Médecine Moléculaire, Université Laval, Québec city, QC, Canada.
| |
Collapse
|
26
|
Munoz-Zuluaga C, Gertz M, Yost-Bido M, Greco A, Gorman N, Chen A, Kooner V, Rosenberg JB, De BP, Kaminsky SM, Borczuk A, Ricart Arbona RJ, Martin HR, Monette S, Khanna R, Barth JA, Crystal RG, Sondhi D. Identification of Safe and Effective Intravenous Dose of AAVrh.10hFXN to Treat the Cardiac Manifestations of Friedreich's Ataxia. Hum Gene Ther 2023; 34:605-615. [PMID: 37166361 PMCID: PMC10354731 DOI: 10.1089/hum.2023.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/16/2023] [Indexed: 05/12/2023] Open
Abstract
Friedreich's ataxia (FA) is a life-threatening autosomal recessive disorder characterized by neurological and cardiac dysfunction. Arrhythmias and heart failure are the main cause of premature death. From prior studies in murine models of FA, adeno-associated virus encoding the normal human frataxin gene (AAVrh.10hFXN) effectively treated the cardiac manifestations of the disease. However, the therapeutic dose window is limited by high level of human frataxin (hFXN) gene expression associated with toxicity. As a therapeutic goal, since FA heterozygotes have no clinical manifestations of FA, we estimated the level of frataxin (FXN) necessary to convert the heart of a homozygote to that of a heterozygote. In noncardiac cells, FA heterozygotes have 30-80% of normal FXN levels (17.7-47.2 ng/mg, average 32.5 ng/mg) and FA homozygotes 2-30% normal levels (1.2-17.7 ng/mg, average 9.4 ng/mg). Therefore, an AAV vector would need to augment endogenous in an FA homozygote by >8.3 ng/mg. To determine the required dose of AAVrh.10hFXN, we administered 1.8 × 1011, 5.7 × 1011, or 1.8 × 1012 gc/kg of AAVrh.10hFXN intravenously (IV) to muscle creatine kinase (mck)-Cre conditional knockout Fxn mice, a cardiac and skeletal FXN knockout model. The minimally effective dose was 5.7 × 1011 gc/kg, resulting in cardiac hFXN levels of 6.1 ± 4.2 ng/mg and a mild (p < 0.01 compared with phosphate-buffered saline controls) improvement in mortality. A dose of 1.8 × 1012 gc/kg resulted in cardiac hFXN levels of 33.7 ± 6.4 ng/mg, a significant improvement in ejection fraction and fractional shortening (p < 0.05, both comparisons) and a 21.5% improvement in mortality (p < 0.001). To determine if the significantly effective dose of 1.8 × 1012 gc/kg could achieve human FA heterozygote levels in a large animal, this dose was administered IV to nonhuman primates. After 12 weeks, the vector-expressed FXN in the heart was 17.8 ± 4.9 ng/mg, comparable to the target human levels. These data identify both minimally and significantly effective therapeutic doses that are clinically relevant for the treatment of the cardiac manifestations of FA.
Collapse
Affiliation(s)
| | - Monica Gertz
- Department of Genetic Medicine, New York, New York, USA
| | | | | | | | - Alvin Chen
- Department of Genetic Medicine, New York, New York, USA
| | - Vikrum Kooner
- Department of Genetic Medicine, New York, New York, USA
| | | | - Bishnu P. De
- Department of Genetic Medicine, New York, New York, USA
| | | | - Alain Borczuk
- Department of Pathology, Weill Cornell Medicine, New York, New York, USA
| | - Rodolfo J. Ricart Arbona
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Heather R. Martin
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Sebastien Monette
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | | | | | | | - Dolan Sondhi
- Department of Genetic Medicine, New York, New York, USA
| |
Collapse
|
27
|
Khorkova O, Stahl J, Joji A, Volmar CH, Wahlestedt C. Amplifying gene expression with RNA-targeted therapeutics. Nat Rev Drug Discov 2023; 22:539-561. [PMID: 37253858 PMCID: PMC10227815 DOI: 10.1038/s41573-023-00704-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 06/01/2023]
Abstract
Many diseases are caused by insufficient expression of mutated genes and would benefit from increased expression of the corresponding protein. However, in drug development, it has been historically easier to develop drugs with inhibitory or antagonistic effects. Protein replacement and gene therapy can achieve the goal of increased protein expression but have limitations. Recent discoveries of the extensive regulatory networks formed by non-coding RNAs offer alternative targets and strategies to amplify the production of a specific protein. In addition to RNA-targeting small molecules, new nucleic acid-based therapeutic modalities that allow highly specific modulation of RNA-based regulatory networks are being developed. Such approaches can directly target the stability of mRNAs or modulate non-coding RNA-mediated regulation of transcription and translation. This Review highlights emerging RNA-targeted therapeutics for gene activation, focusing on opportunities and challenges for translation to the clinic.
Collapse
Affiliation(s)
- Olga Khorkova
- OPKO Health, Miami, FL, USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
| | - Jack Stahl
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Aswathy Joji
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
- Department of Chemistry, University of Miami, Miami, FL, USA
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA.
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA.
- Department of Chemistry, University of Miami, Miami, FL, USA.
| |
Collapse
|
28
|
Blair I, Rojsajjakul T, Hordeaux J, Chaudhary G, Hinderer C, Mesaros C, Wilson J. Quantification of human mature frataxin protein expression in nonhuman primate hearts after gene therapy. RESEARCH SQUARE 2023:rs.3.rs-3121549. [PMID: 37461697 PMCID: PMC10350221 DOI: 10.21203/rs.3.rs-3121549/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Deficiency in human mature frataxin (hFXN-M) protein is responsible for the devastating neurodegenerative and cardiodegenerative disease of Friedreich's ataxia (FRDA). It results primarily by epigenetic silencing the FXN gene due to up to 1400 GAA triplet repeats in intron 1 of both alleles of the gene; a subset of approximately 3% of FRDA patients have a mutation on one allele. FRDA patients die most commonly in their 30s from heart disease. Therefore, increasing expression of heart hFXN-M using gene therapy offers a way to prevent early mortality in FRDA. We used rhesus macaque monkeys to test the pharmacology of an adeno-associated virus (AAV)hu68.CB7.hFXN therapy. The advantage of using non-human primates for hFXN-M gene therapy studies is that hFXN-M and monkey FXN-M (mFXN-M) are 98.5% identical, which limits potential immunologic side-effects. However, this presented a formidable bioanalytical challenge in quantification of proteins with almost identical sequences. This was overcome by development of a species-specific quantitative mass spectrometry-based method, which revealed for the first time, robust transgene-specific human protein expression in monkey heart tissue. The dose response was non-linear resulting in a ten-fold increase in monkey heart hFXN-M protein expression with only a three-fold increase in dose of the vector.
Collapse
|
29
|
Yan R, Cigliola V, Oonk KA, Petrover Z, DeLuca S, Wolfson DW, Vekstein A, Mendiola MA, Devlin G, Bishawi M, Gemberling MP, Sinha T, Sargent MA, York AJ, Shakked A, DeBenedittis P, Wendell DC, Ou J, Kang J, Goldman JA, Baht GS, Karra R, Williams AR, Bowles DE, Asokan A, Tzahor E, Gersbach CA, Molkentin JD, Bursac N, Black BL, Poss KD. An enhancer-based gene-therapy strategy for spatiotemporal control of cargoes during tissue repair. Cell Stem Cell 2023; 30:96-111.e6. [PMID: 36516837 PMCID: PMC9830588 DOI: 10.1016/j.stem.2022.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 10/06/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022]
Abstract
The efficacy and safety of gene-therapy strategies for indications like tissue damage hinge on precision; yet, current methods afford little spatial or temporal control of payload delivery. Here, we find that tissue-regeneration enhancer elements (TREEs) isolated from zebrafish can direct targeted, injury-associated gene expression from viral DNA vectors delivered systemically in small and large adult mammalian species. When employed in combination with CRISPR-based epigenome editing tools in mice, zebrafish TREEs stimulated or repressed the expression of endogenous genes after ischemic myocardial infarction. Intravenously delivered recombinant AAV vectors designed with a TREE to direct a constitutively active YAP factor boosted indicators of cardiac regeneration in mice and improved the function of the injured heart. Our findings establish the application of contextual enhancer elements as a potential therapeutic platform for spatiotemporally controlled tissue regeneration in mammals.
Collapse
Affiliation(s)
- Ruorong Yan
- Duke Regeneration Center, Duke University, Durham, NC, USA; Department of Cell Biology, Duke University Medical School, Durham, NC, USA
| | - Valentina Cigliola
- Duke Regeneration Center, Duke University, Durham, NC, USA; Department of Cell Biology, Duke University Medical School, Durham, NC, USA
| | - Kelsey A Oonk
- Duke Regeneration Center, Duke University, Durham, NC, USA; Department of Cell Biology, Duke University Medical School, Durham, NC, USA
| | - Zachary Petrover
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sophia DeLuca
- Department of Cell Biology, Duke University Medical School, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - David W Wolfson
- Duke Regeneration Center, Duke University, Durham, NC, USA; Department of Cell Biology, Duke University Medical School, Durham, NC, USA; Department of Surgery, Duke University School of Medicine, Durham, NC, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Andrew Vekstein
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | - Garth Devlin
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Muath Bishawi
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Matthew P Gemberling
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Tanvi Sinha
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Michelle A Sargent
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Allen J York
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Avraham Shakked
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - David C Wendell
- Duke Cardiovascular Magnetic Resonance Center, Duke University Medical Center, Durham, NC, USA
| | - Jianhong Ou
- Duke Regeneration Center, Duke University, Durham, NC, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Joseph A Goldman
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Gurpreet S Baht
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA; Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Ravi Karra
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Adam R Williams
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Dawn E Bowles
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Aravind Asokan
- Duke Regeneration Center, Duke University, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Surgery, Duke University School of Medicine, Durham, NC, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Charles A Gersbach
- Duke Regeneration Center, Duke University, Durham, NC, USA; Department of Cell Biology, Duke University Medical School, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Surgery, Duke University School of Medicine, Durham, NC, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA; Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Kenneth D Poss
- Duke Regeneration Center, Duke University, Durham, NC, USA; Department of Cell Biology, Duke University Medical School, Durham, NC, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA.
| |
Collapse
|
30
|
Profeta V, McIntyre K, Wells M, Park C, Lynch DR. Omaveloxolone: an activator of Nrf2 for the treatment of Friedreich ataxia. Expert Opin Investig Drugs 2023; 32:5-16. [PMID: 36708320 DOI: 10.1080/13543784.2023.2173063] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Friedreich ataxia (FRDA) is a rare autosomal recessive degenerative disorder characterized by ataxia, dysarthria, diabetes, cardiomyopathy, scoliosis, and occasionally vision loss in late-stage disease. The discovery of the abnormal gene in FRDA and its product frataxin has provided insight into the pathophysiology and mechanisms of treatment. AREAS COVERED Although the neurologic phenotype of FRDA is well defined, there are currently no established pharmacological treatments. Omaveloxolone, a nuclear factor erythroid 2-related factor 2 (Nrf2) activator, is currently under review by the Food and Drug Administration (FDA) and has the potential to be the first approved treatment for FRDA. In the present report, we have reviewed the basic and clinical literature on Nrf2 deficiency in FRDA, and evidence for the benefit of omaveloxolone. EXPERT OPINION The present perspective suggests that omaveloxolone is a rational and efficacious therapy that is possibly disease modifying in treatment of FRDA.
Collapse
Affiliation(s)
- Victoria Profeta
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kellie McIntyre
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - McKenzie Wells
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Courtney Park
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David R Lynch
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
31
|
Angulo MB, Bertalovitz A, Argenziano MA, Yang J, Patel A, Zesiewicz T, McDonald TV. Frataxin deficiency alters gene expression in Friedreich ataxia derived IPSC-neurons and cardiomyocytes. Mol Genet Genomic Med 2022; 11:e2093. [PMID: 36369844 PMCID: PMC9834160 DOI: 10.1002/mgg3.2093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/16/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Friedreich's ataxia (FRDA) is an autosomal recessive disease, whereby homozygous inheritance of an expanded GAA trinucleotide repeat expansion in the first intron of the FXN gene leads to transcriptional repression of the encoded protein frataxin. FRDA is a progressive neurodegenerative disorder, but the primary cause of death is heart disease which occurs in 60% of the patients. Several functions of frataxin have been proposed, but none of them fully explain why its deficiency causes the FRDA phenotypes nor why the most affected cell types are neurons and cardiomyocytes. METHODS To investigate, we generated iPSC-derived neurons (iNs) and cardiomyocytes (iCMs) from an FRDA patient and upregulated FXN expression via lentivirus without altering genomic GAA repeats at the FXN locus. RESULTS RNA-seq and differential gene expression enrichment analyses demonstrated that frataxin deficiency affected the expression of glycolytic pathway genes in neurons and extracellular matrix pathway genes in cardiomyocytes. Genes in these pathways were differentially expressed when compared to a control and restored to control levels when FRDA cells were supplemented with frataxin. CONCLUSIONS These results offer novel insight into specific roles of frataxin deficiency pathogenesis in neurons and cardiomyocytes.
Collapse
Affiliation(s)
- Mariana B. Angulo
- Heart Institute, Morsani College of Medicine, University of South FloridaTampaFloridaUSA,Department of Molecular Pharmacology & PhysiologyMorsani College of Medicine, University of South FloridaTampaFloridaUSA
| | - Alexander Bertalovitz
- Heart Institute, Morsani College of Medicine, University of South FloridaTampaFloridaUSA,Department of Medicine (Cardiology)Morsani College of Medicine, University of South FloridaTampaFloridaUSA
| | - Mariana A. Argenziano
- Heart Institute, Morsani College of Medicine, University of South FloridaTampaFloridaUSA
| | - Jiajia Yang
- Heart Institute, Morsani College of Medicine, University of South FloridaTampaFloridaUSA,Department of Molecular Pharmacology & PhysiologyMorsani College of Medicine, University of South FloridaTampaFloridaUSA
| | - Aarti Patel
- Department of Medicine (Cardiology)Morsani College of Medicine, University of South FloridaTampaFloridaUSA
| | - Theresa Zesiewicz
- Department of NeurologyMorsani College of Medicine, University of South FloridaTampaFloridaUSA
| | - Thomas V. McDonald
- Heart Institute, Morsani College of Medicine, University of South FloridaTampaFloridaUSA,Department of Molecular Pharmacology & PhysiologyMorsani College of Medicine, University of South FloridaTampaFloridaUSA,Department of Medicine (Cardiology)Morsani College of Medicine, University of South FloridaTampaFloridaUSA
| |
Collapse
|
32
|
Keita M, McIntyre K, Rodden LN, Schadt K, Lynch DR. Friedreich ataxia: clinical features and new developments. Neurodegener Dis Manag 2022; 12:267-283. [PMID: 35766110 PMCID: PMC9517959 DOI: 10.2217/nmt-2022-0011] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Friedreich's ataxia (FRDA), a neurodegenerative disease characterized by ataxia and other neurological features, affects 1 in 50,000-100,000 individuals in the USA. However, FRDA also includes cardiac, orthopedic and endocrine dysfunction, giving rise to many secondary disease characteristics. The multifaceted approach for clinical care has necessitated the development of disease-specific clinical care guidelines. New developments in FRDA include the advancement of clinical drug trials targeting the NRF2 pathway and frataxin restoration. Additionally, a novel understanding of gene silencing in FRDA, reflecting a variegated silencing pattern, will have applications to current and future therapeutic interventions. Finally, new perspectives on the neuroanatomy of FRDA and its developmental features will refine the time course and anatomical targeting of novel approaches.
Collapse
Affiliation(s)
- Medina Keita
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kellie McIntyre
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Layne N Rodden
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kim Schadt
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David R Lynch
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Kelekçi S, Yıldız AB, Sevinç K, Çimen DU, Önder T. Perspectives on current models of Friedreich’s ataxia. Front Cell Dev Biol 2022; 10:958398. [PMID: 36036008 PMCID: PMC9403045 DOI: 10.3389/fcell.2022.958398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Friedreich’s ataxia (FRDA, OMIM#229300) is the most common hereditary ataxia, resulting from the reduction of frataxin protein levels due to the expansion of GAA repeats in the first intron of the FXN gene. Why the triplet repeat expansion causes a decrease in Frataxin protein levels is not entirely known. Generation of effective FRDA disease models is crucial for answering questions regarding the pathophysiology of this disease. There have been considerable efforts to generate in vitro and in vivo models of FRDA. In this perspective article, we highlight studies conducted using FRDA animal models, patient-derived materials, and particularly induced pluripotent stem cell (iPSC)-derived models. We discuss the current challenges in using FRDA animal models and patient-derived cells. Additionally, we provide a brief overview of how iPSC-based models of FRDA were used to investigate the main pathways involved in disease progression and to screen for potential therapeutic agents for FRDA. The specific focus of this perspective article is to discuss the outlook and the remaining challenges in the context of FRDA iPSC-based models.
Collapse
Affiliation(s)
| | | | | | | | - Tamer Önder
- *Correspondence: Simge Kelekçi, , ; Tamer Önder,
| |
Collapse
|
34
|
Gene Therapy for Mitochondrial Diseases: Current Status and Future Perspective. Pharmaceutics 2022; 14:pharmaceutics14061287. [PMID: 35745859 PMCID: PMC9231068 DOI: 10.3390/pharmaceutics14061287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial diseases (MDs) are a group of severe genetic disorders caused by mutations in the nuclear or mitochondrial genome encoding proteins involved in the oxidative phosphorylation (OXPHOS) system. MDs have a wide range of symptoms, ranging from organ-specific to multisystemic dysfunctions, with different clinical outcomes. The lack of natural history information, the limits of currently available preclinical models, and the wide range of phenotypic presentations seen in MD patients have all hampered the development of effective therapies. The growing number of pre-clinical and clinical trials over the last decade has shown that gene therapy is a viable precision medicine option for treating MD. However, several obstacles must be overcome, including vector design, targeted tissue tropism and efficient delivery, transgene expression, and immunotoxicity. This manuscript offers a comprehensive overview of the state of the art of gene therapy in MD, addressing the main challenges, the most feasible solutions, and the future perspectives of the field.
Collapse
|
35
|
Affiliation(s)
- R. Mark Payne
- Indiana University School of Medicine, Wells Center for Pediatric Research, 1044 West Walnut, R4302b, Indianapolis, IN 46202, USA
- Corresponding author R. Mark Payne, MD, Indiana University School of Medicine, Wells Center for Pediatric Research, 1044 West Walnut, R4302b, Indianapolis, IN 46202, USA.
| |
Collapse
|
36
|
Hanaford AR, Cho YJ, Nakai H. AAV-vector based gene therapy for mitochondrial disease: progress and future perspectives. Orphanet J Rare Dis 2022; 17:217. [PMID: 35668433 PMCID: PMC9169410 DOI: 10.1186/s13023-022-02324-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/09/2022] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial diseases are a group of rare, heterogeneous diseases caused by gene mutations in both nuclear and mitochondrial genomes that result in defects in mitochondrial function. They are responsible for significant morbidity and mortality as they affect multiple organ systems and particularly those with high energy-utilizing tissues, such as the nervous system, skeletal muscle, and cardiac muscle. Virtually no effective treatments exist for these patients, despite the urgent need. As the majority of these conditions are monogenic and caused by mutations in nuclear genes, gene replacement is a highly attractive therapeutic strategy. Adeno-associated virus (AAV) is a well-characterized gene replacement vector, and its safety profile and ability to transduce quiescent cells nominates it as a potential gene therapy vehicle for several mitochondrial diseases. Indeed, AAV vector-based gene replacement is currently being explored in clinical trials for one mitochondrial disease (Leber hereditary optic neuropathy) and preclinical studies have been published investigating this strategy in other mitochondrial diseases. This review summarizes the preclinical findings of AAV vector-based gene replacement therapy for mitochondrial diseases including Leigh syndrome, Barth syndrome, ethylmalonic encephalopathy, and others.
Collapse
Affiliation(s)
- Allison R Hanaford
- Center for Integrative Brain Research, Seattle Children's Reserach Institute, Seattle, WA, 98101, USA.
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - Yoon-Jae Cho
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Pediatric Neurology, Doernbecher Children's Hospital, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Hiroyuki Nakai
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Molecular Immunology and Microbiology, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| |
Collapse
|
37
|
Hackett PT, Jia X, Li L, Ward DM. Posttranslational regulation of mitochondrial frataxin and identification of compounds that increase frataxin levels in Friedreich's ataxia. J Biol Chem 2022; 298:101982. [PMID: 35472330 PMCID: PMC9127368 DOI: 10.1016/j.jbc.2022.101982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a degenerative disease caused by a decrease in the mitochondrial protein frataxin (Fxn), which is involved in iron-sulfur cluster (ISC) synthesis. Diminutions in Fxn result in decreased ISC synthesis, increased mitochondrial iron accumulation, and impaired mitochondrial function. Here, we show that conditions that result in increased mitochondrial reactive oxygen species in yeast or mammalian cell culture give rise to increased turnover of Fxn but not of other ISC synthesis proteins. We demonstrate that the mitochondrial Lon protease is involved in Fxn degradation and that iron export through the mitochondrial metal transporter Mmt1 protects yeast Fxn from degradation. We also determined that when FRDA fibroblasts were grown in media containing elevated iron, mitochondrial reactive oxygen species increased and Fxn decreased compared to WT fibroblasts. Furthermore, we screened a library of FDA-approved compounds and identified 38 compounds that increased yeast Fxn levels, including the azole bifonazole, antiparasitic fipronil, antitumor compound dibenzoylmethane, antihypertensive 4-hydroxychalcone, and a nonspecific anion channel inhibitor 4,4-diisothiocyanostilbene-2,2-sulfonic acid. We show that top hits 4-hydroxychalcone and dibenzoylmethane increased mRNA levels of transcription factor nuclear factor erythroid 2-related factor 2 in FRDA patient-derived fibroblasts, as well as downstream antioxidant targets thioredoxin, glutathione reductase, and superoxide dismutase 2. Taken together, these findings reveal that FRDA progression may be in part due to oxidant-mediated decreases in Fxn and that some approved compounds may be effective in increasing mitochondrial Fxn in FRDA, delaying disease progression.
Collapse
Affiliation(s)
- Peter T Hackett
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Xuan Jia
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Liangtao Li
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Diane M Ward
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| |
Collapse
|
38
|
Sivakumar A, Cherqui S. Advantages and Limitations of Gene Therapy and Gene Editing for Friedreich's Ataxia. Front Genome Ed 2022; 4:903139. [PMID: 35663795 PMCID: PMC9157421 DOI: 10.3389/fgeed.2022.903139] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 12/26/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an inherited, multisystemic disorder predominantly caused by GAA hyper expansion in intron 1 of frataxin (FXN) gene. This expansion mutation transcriptionally represses FXN, a mitochondrial protein that is required for iron metabolism and mitochondrial homeostasis, leading to neurodegerative and cardiac dysfunction. Current therapeutic options for FRDA are focused on improving mitochondrial function and increasing frataxin expression through pharmacological interventions but are not effective in delaying or preventing the neurodegeneration in clinical trials. Recent research on in vivo and ex vivo gene therapy methods in FRDA animal and cell models showcase its promise as a one-time therapy for FRDA. In this review, we provide an overview on the current and emerging prospects of gene therapy for FRDA, with specific focus on advantages of CRISPR/Cas9-mediated gene editing of FXN as a viable option to restore endogenous frataxin expression. We also assess the potential of ex vivo gene editing in hematopoietic stem and progenitor cells as a potential autologous transplantation therapeutic option and discuss its advantages in tackling FRDA-specific safety aspects for clinical translation.
Collapse
Affiliation(s)
| | - Stephanie Cherqui
- Division of Genetics, Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
39
|
Mercado-Ayón E, Warren N, Halawani S, Rodden LN, Ngaba L, Dong YN, Chang JC, Fonck C, Mavilio F, Lynch DR, Lin H. Cerebellar Pathology in an Inducible Mouse Model of Friedreich Ataxia. Front Neurosci 2022; 16:819569. [PMID: 35401081 PMCID: PMC8987918 DOI: 10.3389/fnins.2022.819569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by deficiency of the mitochondrial protein frataxin. Lack of frataxin causes neuronal loss in various areas of the CNS and PNS. In particular, cerebellar neuropathology in FRDA patients includes loss of large principal neurons and synaptic terminals in the dentate nucleus (DN), and previous studies have demonstrated early synaptic deficits in the Knockin-Knockout mouse model of FRDA. However, the exact correlation of frataxin deficiency with cerebellar neuropathology remains unclear. Here we report that doxycycline-induced frataxin knockdown in a mouse model of FRDA (FRDAkd) leads to synaptic cerebellar degeneration that can be partially reversed by AAV8-mediated frataxin restoration. Loss of cerebellar Purkinje neurons and large DN principal neurons are observed in the FRDAkd mouse cerebellum. Levels of the climbing fiber-specific glutamatergic synaptic marker VGLUT2 decline starting at 4 weeks after dox induction, whereas levels of the parallel fiber-specific synaptic marker VGLUT1 are reduced by 18-weeks. These findings suggest initial selective degeneration of climbing fiber synapses followed by loss of parallel fiber synapses. The GABAergic synaptic marker GAD65 progressively declined during dox induction in FRDAkd mice, while GAD67 levels remained unaltered, suggesting specific roles for frataxin in maintaining cerebellar synaptic integrity and function during adulthood. Expression of frataxin following AAV8-mediated gene transfer partially restored VGLUT1/2 levels. Taken together, our findings show that frataxin knockdown leads to cerebellar degeneration in the FRDAkd mouse model, suggesting that frataxin helps maintain cerebellar structure and function.
Collapse
Affiliation(s)
- Elizabeth Mercado-Ayón
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nathan Warren
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Sarah Halawani
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Layne N. Rodden
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Lucie Ngaba
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Yi Na Dong
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | | | - Carlos Fonck
- Audentes Therapeutics, San Francisco, CA, United States
| | - Fulvio Mavilio
- Audentes Therapeutics, San Francisco, CA, United States
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - David R. Lynch
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Hong Lin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
40
|
Huichalaf C, Perfitt TL, Kuperman A, Gooch R, Kovi RC, Brenneman KA, Chen X, Hirenallur-Shanthappa D, Ma T, Assaf BT, Pardo I, Franks T, Monarski L, Cheng TW, Le K, Su C, Somanathan S, Whiteley LO, Bulawa C, Pregel MJ, Martelli A. In vivo overexpression of frataxin causes toxicity mediated by iron-sulfur cluster deficiency. Mol Ther Methods Clin Dev 2022; 24:367-378. [PMID: 35252470 PMCID: PMC8866050 DOI: 10.1016/j.omtm.2022.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/04/2022] [Indexed: 12/25/2022]
Abstract
Friedreich's ataxia is a rare disorder resulting from deficiency of frataxin, a mitochondrial protein implicated in the synthesis of iron-sulfur clusters. Preclinical studies in mice have shown that gene therapy is a promising approach to treat individuals with Friedreich's ataxia. However, a recent report provided evidence that AAVrh10-mediated overexpression of frataxin could lead to cardiotoxicity associated with mitochondrial dysfunction. While evaluating an AAV9-based frataxin gene therapy using a chicken β-actin promoter, we showed that toxic overexpression of frataxin could be reached in mouse liver and heart with doses between 1 × 1013 and 1 × 1014 vg/kg. In a mouse model of cardiac disease, these doses only corrected cardiac dysfunction partially and transiently and led to adverse findings associated with iron-sulfur cluster deficiency in liver. We demonstrated that toxicity required frataxin's primary function by using a frataxin construct bearing the N146K mutation, which impairs binding to the iron-sulfur cluster core complex. At the lowest tested dose, we observed moderate liver toxicity that was accompanied by progressive loss of transgene expression and liver regeneration. Together, our data provide insights into the toxicity of frataxin overexpression that should be considered in the development of a gene therapy approach for Friedreich's ataxia.
Collapse
Affiliation(s)
- Claudia Huichalaf
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer Inc., 610 Main Street, Cambridge, MA 02139, USA
| | - Tyler L Perfitt
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer Inc., 610 Main Street, Cambridge, MA 02139, USA
| | - Anna Kuperman
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer Inc., 610 Main Street, Cambridge, MA 02139, USA
| | - Renea Gooch
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer Inc., 610 Main Street, Cambridge, MA 02139, USA
| | - Ramesh C Kovi
- Drug Safety Research and Development, Worldwide Research, Development and Medical, Pfizer Inc., Cambridge, MA 02139, USA
| | - Karrie A Brenneman
- Drug Safety Research and Development, Worldwide Research, Development and Medical, Pfizer Inc., Cambridge, MA 02139, USA
| | - Xian Chen
- Comparative Medicine, Worldwide Research, Development and Medical, Pfizer Inc., Cambridge, MA 02139, USA
| | | | - Tiffany Ma
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer Inc., 610 Main Street, Cambridge, MA 02139, USA
| | - Basel T Assaf
- Drug Safety Research and Development, Worldwide Research, Development and Medical, Pfizer Inc., Cambridge, MA 02139, USA
| | - Ingrid Pardo
- Drug Safety Research and Development, Worldwide Research, Development and Medical, Pfizer Inc., Cambridge, MA 02139, USA
| | - Tania Franks
- Drug Safety Research and Development, Worldwide Research, Development and Medical, Pfizer Inc., Cambridge, MA 02139, USA
| | - Laura Monarski
- Drug Safety Research and Development, Worldwide Research, Development and Medical, Pfizer Inc., Cambridge, MA 02139, USA
| | - Ting-Wen Cheng
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer Inc., 610 Main Street, Cambridge, MA 02139, USA
| | - Kevin Le
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer Inc., 610 Main Street, Cambridge, MA 02139, USA
| | - Chunyan Su
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer Inc., 610 Main Street, Cambridge, MA 02139, USA
| | - Suryanarayan Somanathan
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer Inc., 610 Main Street, Cambridge, MA 02139, USA
| | - Laurence O Whiteley
- Drug Safety Research and Development, Worldwide Research, Development and Medical, Pfizer Inc., Cambridge, MA 02139, USA
| | - Christine Bulawa
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer Inc., 610 Main Street, Cambridge, MA 02139, USA
| | - Marko J Pregel
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer Inc., 610 Main Street, Cambridge, MA 02139, USA
| | - Alain Martelli
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer Inc., 610 Main Street, Cambridge, MA 02139, USA
| |
Collapse
|
41
|
Monfort B, Want K, Gervason S, D’Autréaux B. Recent Advances in the Elucidation of Frataxin Biochemical Function Open Novel Perspectives for the Treatment of Friedreich’s Ataxia. Front Neurosci 2022; 16:838335. [PMID: 35310092 PMCID: PMC8924461 DOI: 10.3389/fnins.2022.838335] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/28/2022] [Indexed: 12/25/2022] Open
Abstract
Friedreich’s ataxia (FRDA) is the most prevalent autosomic recessive ataxia and is associated with a severe cardiac hypertrophy and less frequently diabetes. It is caused by mutations in the gene encoding frataxin (FXN), a small mitochondrial protein. The primary consequence is a defective expression of FXN, with basal protein levels decreased by 70–98%, which foremost affects the cerebellum, dorsal root ganglia, heart and liver. FXN is a mitochondrial protein involved in iron metabolism but its exact function has remained elusive and highly debated since its discovery. At the cellular level, FRDA is characterized by a general deficit in the biosynthesis of iron-sulfur (Fe-S) clusters and heme, iron accumulation and deposition in mitochondria, and sensitivity to oxidative stress. Based on these phenotypes and the proposed ability of FXN to bind iron, a role as an iron storage protein providing iron for Fe-S cluster and heme biosynthesis was initially proposed. However, this model was challenged by several other studies and it is now widely accepted that FXN functions primarily in Fe-S cluster biosynthesis, with iron accumulation, heme deficiency and oxidative stress sensitivity appearing later on as secondary defects. Nonetheless, the biochemical function of FXN in Fe-S cluster biosynthesis is still debated. Several roles have been proposed for FXN: iron chaperone, gate-keeper of detrimental Fe-S cluster biosynthesis, sulfide production stimulator and sulfur transfer accelerator. A picture is now emerging which points toward a unique function of FXN as an accelerator of a key step of sulfur transfer between two components of the Fe-S cluster biosynthetic complex. These findings should foster the development of new strategies for the treatment of FRDA. We will review here the latest discoveries on the biochemical function of frataxin and the implication for a potential therapeutic treatment of FRDA.
Collapse
|
42
|
Li Y, Li J, Wang J, Lynch D, Shen X, R. Corey D, Parekh D, Bhat B, Woo C, Cherry J, Napierala J, Napierala M. Targeting 3' and 5' untranslated regions with antisense oligonucleotides to stabilize frataxin mRNA and increase protein expression. Nucleic Acids Res 2021; 49:11560-11574. [PMID: 34718736 PMCID: PMC8599914 DOI: 10.1093/nar/gkab954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a severe multisystem disease caused by transcriptional repression induced by expanded GAA repeats located in intron 1 of the Frataxin (FXN) gene encoding frataxin. FRDA results from decreased levels of frataxin; thus, stabilization of the FXN mRNA already present in patient cells represents an attractive and unexplored therapeutic avenue. In this work, we pursued a novel approach based on oligonucleotide-mediated targeting of FXN mRNA ends to extend its half-life and availability as a template for translation. We demonstrated that oligonucleotides designed to bind to FXN 5' or 3' noncoding regions can increase FXN mRNA and protein levels. Simultaneous delivery of oligonucleotides targeting both ends increases efficacy of the treatment. The approach was confirmed in several FRDA fibroblast and induced pluripotent stem cell-derived neuronal progenitor lines. RNA sequencing and single-cell expression analyses confirmed oligonucleotide-mediated FXN mRNA upregulation. Mechanistically, a significant elongation of the FXN mRNA half-life without any changes in chromatin status at the FXN gene was observed upon treatment with end-targeting oligonucleotides, indicating that transcript stabilization is responsible for frataxin upregulation. These results identify a novel approach toward upregulation of steady-state mRNA levels via oligonucleotide-mediated end targeting that may be of significance to any condition resulting from transcription downregulation.
Collapse
Affiliation(s)
- Yanjie Li
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Jixue Li
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Jun Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - David R Lynch
- Division of Neurology and Pediatrics, Children’s Hospital of Philadelphia, Abramson Research Center, Room 502, Philadelphia, PA 19104, USA
| | - Xiulong Shen
- Department of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David R. Corey
- Department of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Darshan Parekh
- Translate Bio, 29 Hartwell Avenue, Lexington, MA 02421, USA
| | | | - Caroline Woo
- Translate Bio, 29 Hartwell Avenue, Lexington, MA 02421, USA
| | | | - Jill S Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| |
Collapse
|
43
|
Ocana-Santero G, Díaz-Nido J, Herranz-Martín S. Future Prospects of Gene Therapy for Friedreich's Ataxia. Int J Mol Sci 2021; 22:1815. [PMID: 33670433 PMCID: PMC7918362 DOI: 10.3390/ijms22041815] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022] Open
Abstract
Friedreich's ataxia is an autosomal recessive neurogenetic disease that is mainly associated with atrophy of the spinal cord and progressive neurodegeneration in the cerebellum. The disease is caused by a GAA-expansion in the first intron of the frataxin gene leading to a decreased level of frataxin protein, which results in mitochondrial dysfunction. Currently, there is no effective treatment to delay neurodegeneration in Friedreich's ataxia. A plausible therapeutic approach is gene therapy. Indeed, Friedreich's ataxia mouse models have been treated with viral vectors en-coding for either FXN or neurotrophins, such as brain-derived neurotrophic factor showing promising results. Thus, gene therapy is increasingly consolidating as one of the most promising therapies. However, several hurdles have to be overcome, including immunotoxicity and pheno-toxicity. We review the state of the art of gene therapy in Friedreich's ataxia, addressing the main challenges and the most feasible solutions for them.
Collapse
Affiliation(s)
- Gabriel Ocana-Santero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (G.O.-S.); (J.D.-N.)
- Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, University of Oxford, Oxford OX1 3PT, UK
| | - Javier Díaz-Nido
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (G.O.-S.); (J.D.-N.)
| | - Saúl Herranz-Martín
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (G.O.-S.); (J.D.-N.)
| |
Collapse
|
44
|
Buscara L, Gross DA, Daniele N. Of rAAV and Men: From Genetic Neuromuscular Disorder Efficacy and Toxicity Preclinical Studies to Clinical Trials and Back. J Pers Med 2020; 10:E258. [PMID: 33260623 PMCID: PMC7768510 DOI: 10.3390/jpm10040258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Neuromuscular disorders are a large group of rare pathologies characterised by skeletal muscle atrophy and weakness, with the common involvement of respiratory and/or cardiac muscles. These diseases lead to life-long motor deficiencies and specific organ failures, and are, in their worst-case scenarios, life threatening. Amongst other causes, they can be genetically inherited through mutations in more than 500 different genes. In the last 20 years, specific pharmacological treatments have been approved for human usage. However, these "à-la-carte" therapies cover only a very small portion of the clinical needs and are often partially efficient in alleviating the symptoms of the disease, even less so in curing it. Recombinant adeno-associated virus vector-mediated gene transfer is a more general strategy that could be adapted for a large majority of these diseases and has proved very efficient in rescuing the symptoms in many neuropathological animal models. On this solid ground, several clinical trials are currently being conducted with the whole-body delivery of the therapeutic vectors. This review recapitulates the state-of-the-art tools for neuron and muscle-targeted gene therapy, and summarises the main findings of the spinal muscular atrophy (SMA), Duchenne muscular dystrophy (DMD) and X-linked myotubular myopathy (XLMTM) trials. Despite promising efficacy results, serious adverse events of various severities were observed in these trials. Possible leads for second-generation products are also discussed.
Collapse
Affiliation(s)
| | - David-Alexandre Gross
- Genethon, 91000 Evry, France; (L.B.); (D.-A.G.)
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | | |
Collapse
|
45
|
Agrò M, Díaz-Nido J. Effect of Mitochondrial and Cytosolic FXN Isoform Expression on Mitochondrial Dynamics and Metabolism. Int J Mol Sci 2020; 21:E8251. [PMID: 33158039 PMCID: PMC7662637 DOI: 10.3390/ijms21218251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by recessive mutations in the frataxin gene that lead to a deficiency of the mitochondrial frataxin (FXN) protein. Alternative forms of frataxin have been described, with different cellular localization and tissue distribution, including a cerebellum-specific cytosolic isoform called FXN II. Here, we explored the functional roles of FXN II in comparison to the mitochondrial FXN I isoform, highlighting the existence of potential cross-talk between cellular compartments. To achieve this, we transduced two human cell lines of patient and healthy subjects with lentiviral vectors overexpressing the mitochondrial or the cytosolic FXN isoforms and studied their effect on the mitochondrial network and metabolism. We confirmed the cytosolic localization of FXN isoform II in our in vitro models. Interestingly, both cytosolic and mitochondrial isoforms have an effect on mitochondrial dynamics, affecting different parameters. Accordingly, increases of mitochondrial respiration were detected after transduction with FXN I or FXN II in both cellular models. Together, these results point to the existence of a potential cross-talk mechanism between the cytosol and mitochondria, mediated by FXN isoforms. A more thorough knowledge of the mechanisms of action behind the extra-mitochondrial FXN II isoform could prove useful in unraveling FRDA physiopathology.
Collapse
Affiliation(s)
| | - Javier Díaz-Nido
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049 Madrid, Spain;
| |
Collapse
|