1
|
Alonso AV, Aguado RG, Camerano AM, Enseñat JF, de la Fuente EO, Angulo CM. Hearing and Vestibular Impairment Related to a Variant (c.263G>C) of the COCH Gene. Otolaryngol Head Neck Surg 2025; 172:982-992. [PMID: 39666779 DOI: 10.1002/ohn.1074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/31/2024] [Accepted: 11/16/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVE To ascertain pathogenic variants frequency and type in the COCH gene among Cantabrian patients with nonsyndromic hereditary hearing loss (HL), and to understand their cochleovestibular manifestations. STUDY DESIGN An observational study on patients with postlingual nonsyndromic sensorineural hearing loss (SNHL), who underwent a genetic study using next-generation sequencing (gene panel) in the otolaryngology clinics between January 2019 and December 2023. SETTING Referral center Marqués de Valdecilla University Hospital in Santander (Spain). METHODS A cohort of 248 otolaryngologic clinic-referred patients suspected of genetic SNHL underwent sequencing analysis targeting 231 genes. RESULTS A likely pathogenic or pathogenic variant causing HL was found in 57 (22.8%) patients. Among them, 7 (2.8%) were heterozygous carriers of the c.263G>C variant in the LCCL domain of the COCH gene, included as index cases. Subsequent familial segregation studies were performed. A total of 22 genetically and clinically studied patients were included. All but 3 family members displayed bilateral progressive SNHL starting in adulthood. Thirteen patients reported instability, but none met Meniere's disease criteria. CONCLUSION COCH gene variants are frequent in Cantabria. A variant with pathogenic evidence (c.263G>C in the LCCL domain) was detected. The phenotype observed is similar to a subgroup of patients with other variants described in the same functional domain: progressive SNHL and instability secondary to vestibular hypofunction.
Collapse
Affiliation(s)
- Aida Veiga Alonso
- Department of Otolaryngology, Marqués de Valdecilla University Hospital, Santander, Spain
| | - Rocío González Aguado
- Department of Otolaryngology, Marqués de Valdecilla University Hospital, Santander, Spain
| | | | | | - Esther Onecha de la Fuente
- Department of Genetics, Marqués de Valdecilla University Hospital, Santander, Spain
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Carmelo Morales Angulo
- Department of Otolaryngology, Marqués de Valdecilla University Hospital, Santander, Spain
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), Santander, Spain
- Department of Otolaryngology, Faculty of Medicine, University of Cantabria, Santander, Cantabria, Spain
| |
Collapse
|
2
|
Verdoodt D, van Wijk E, Broekman S, Venselaar H, Aben F, Sels L, De Backer E, Gommeren H, Szewczyk K, Van Camp G, Ponsaerts P, Van Rompaey V, de Vrieze E. Rational design of a genomically humanized mouse model for dominantly inherited hearing loss, DFNA9. Hear Res 2024; 442:108947. [PMID: 38218018 DOI: 10.1016/j.heares.2023.108947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/04/2023] [Accepted: 12/30/2023] [Indexed: 01/15/2024]
Abstract
DFNA9 is a dominantly inherited form of adult-onset progressive hearing impairment caused by mutations in the COCH gene. COCH encodes cochlin, a crucial extracellular matrix protein. We established a genomically humanized mouse model for the Dutch/Belgian c.151C>T founder mutation in COCH. Considering upcoming sequence-specific genetic therapies, we exchanged the genomic murine Coch exons 3-6 for the corresponding human sequence. Introducing human-specific genetic information into mouse exons can be risky. To mitigate unforeseen consequences on cochlin function resulting from the introduction of the human COCH protein-coding sequence, we converted all human-specific amino acids to mouse equivalents. We furthermore optimized the recognition of the human COCH exons by the murine splicing machinery during pre-mRNA splicing. Subsequent observations in mouse embryonic stem cells revealed correct splicing of the hybrid Coch transcript. The inner ear of the established humanized Coch mice displays correctly-spliced wild-type and mutant humanized Coch alleles. For a comprehensive study of auditory function, mice were crossbred with C57BL/6 Cdh23753A>G mice to remove the Cdh23ahl allele from the genetic background of the mice. At 9 months, all humanized Coch genotypes showed hearing thresholds comparable to wild-type C57BL/6 Cdh23753A>G mice. This indicates that both the introduction of human wildtype COCH, and correction of Cdh23ahl in the humanized Coch lines was successful. Overall, our approach proved beneficial in eliminating potential adverse events of genomic humanization of mouse genes, and provides us with a model in which sequence-specific therapies directed against the human mutant COCH alle can be investigated. With the hearing and balance defects anticipated to occur late in the second year of life, a long-term follow-up study is ongoing to fully characterize the humanized Coch mouse model.
Collapse
Affiliation(s)
- Dorien Verdoodt
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, Nijmegen, GA 6525, the Netherlands
| | - Sanne Broekman
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, Nijmegen, GA 6525, the Netherlands
| | - Hanka Venselaar
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, GA 6525, the Netherlands
| | - Fien Aben
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, Nijmegen, GA 6525, the Netherlands
| | - Lize Sels
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Evi De Backer
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - Hanne Gommeren
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Krystyna Szewczyk
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Guy Van Camp
- Center for Medical Genetics, University of Antwerp, Antwerp 2000, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Vincent Van Rompaey
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, Nijmegen, GA 6525, the Netherlands.
| |
Collapse
|
3
|
Moyaert J, Gilles A, Mertens G, Lammers MJW, Gommeren H, Janssens de Varebeke S, Fransen E, Verhaert N, Denys S, van de Berg R, Pennings R, Vanderveken O, Van Rompaey V. Interaural and sex differences in the natural evolution of hearing levels in pre-symptomatic and symptomatic carriers of the p.Pro51Ser variant in the COCH gene. Sci Rep 2024; 14:184. [PMID: 38167558 PMCID: PMC10762206 DOI: 10.1038/s41598-023-50583-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Hearing impairment constitutes a significant health problem in developed countries. If hearing loss is slowly progressive, the first signs may not be noticed in time, or remain untreated until the moment the auditory dysfunction becomes more apparent. The present study will focus on DFNA9, an autosomal dominant disorder caused by pathogenic variants in the COCH gene. Although several cross-sectional studies on this topic have been conducted, a crucial need for longitudinal research has been reported by many authors. Longitudinal trajectories of individual hearing thresholds were established as function of age and superimposed lowess curves were generated for 101 female and male carriers of the p.Pro51Ser variant. The average number of times patients have been tested was 2.49 years with a minimum of 1 year and a maximum of 4 years. In addition, interaural and sex differences were studied, as they could modify the natural evolution of the hearing function. The current study demonstrates that, both in female carriers and male carriers, the first signs of hearing decline, i.e. hearing thresholds of 20 dB HL, become apparent as early as the 3rd decade in the highest frequencies. In addition, a rapid progression of SNHL occurs between 40 and 50 years of age. Differences between male and female carriers in the progression of hearing loss are most obvious between the age of 50 and 65 years. Furthermore, interaural discrepancies also manifest from the age of 50 years onwards. High-quality prospective data on the long-term natural evolution of hearing levels offer the opportunity to identify different disease stages in each cochlea and different types of evolution. This will provide more insights in the window of opportunity for future therapeutic intervention trials.
Collapse
Affiliation(s)
- Julie Moyaert
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium.
| | - Annick Gilles
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Griet Mertens
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Marc J W Lammers
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Hanne Gommeren
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | | | - Erik Fransen
- Centre of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Nicolas Verhaert
- Department of Neurosciences, Research Group Experimental Otorhinolaryngology (ExpORL), KU Leuven, Leuven, Belgium
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospitals of Leuven, Leuven, Belgium
| | - Sam Denys
- Department of Neurosciences, Research Group Experimental Otorhinolaryngology (ExpORL), KU Leuven, Leuven, Belgium
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospitals of Leuven, Leuven, Belgium
| | - Raymond van de Berg
- Division of Balance Disorders, Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Health Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ronald Pennings
- Department of Otorhinolaryngology and Head and Neck Surgery, Radboud UMC, Nijmegen, The Netherlands
| | - Olivier Vanderveken
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Vincent Van Rompaey
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
4
|
Lye J, Delaney DS, Leith FK, Sardesai VS, McLenachan S, Chen FK, Atlas MD, Wong EYM. Recent Therapeutic Progress and Future Perspectives for the Treatment of Hearing Loss. Biomedicines 2023; 11:3347. [PMID: 38137568 PMCID: PMC10741758 DOI: 10.3390/biomedicines11123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Up to 1.5 billion people worldwide suffer from various forms of hearing loss, with an additional 1.1 billion people at risk from various insults such as increased consumption of recreational noise-emitting devices and ageing. The most common type of hearing impairment is sensorineural hearing loss caused by the degeneration or malfunction of cochlear hair cells or spiral ganglion nerves in the inner ear. There is currently no cure for hearing loss. However, emerging frontier technologies such as gene, drug or cell-based therapies offer hope for an effective cure. In this review, we discuss the current therapeutic progress for the treatment of hearing loss. We describe and evaluate the major therapeutic approaches being applied to hearing loss and summarize the key trials and studies.
Collapse
Affiliation(s)
- Joey Lye
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Derek S. Delaney
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Fiona K. Leith
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Varda S. Sardesai
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
| | - Samuel McLenachan
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia; (S.M.); (F.K.C.)
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Fred K. Chen
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia; (S.M.); (F.K.C.)
- Centre for Ophthalmology and Visual Sciences, The University of Western Australia, Nedlands, WA 6009, Australia
- Vitroretinal Surgery, Royal Perth Hospital, Perth, WA 6000, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Marcus D. Atlas
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Elaine Y. M. Wong
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA 6009, Australia; (J.L.); (D.S.D.); (F.K.L.); (V.S.S.); (M.D.A.)
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
5
|
Zhou H, Arechavala-Gomeza V, Garanto A. Experimental Model Systems Used in the Preclinical Development of Nucleic Acid Therapeutics. Nucleic Acid Ther 2023; 33:238-247. [PMID: 37145922 PMCID: PMC10457615 DOI: 10.1089/nat.2023.0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/23/2023] [Indexed: 05/07/2023] Open
Abstract
Preclinical evaluation of nucleic acid therapeutics (NATs) in relevant experimental model systems is essential for NAT drug development. As part of COST Action "DARTER" (Delivery of Antisense RNA ThERapeutics), a network of researchers in the field of RNA therapeutics, we have conducted a survey on the experimental model systems routinely used by our members in preclinical NAT development. The questionnaire focused on both cellular and animal models. Our survey results suggest that skin fibroblast cultures derived from patients is the most commonly used cellular model, while induced pluripotent stem cell-derived models are also highly reported, highlighting the increasing potential of this technology. Splice-switching antisense oligonucleotide is the most frequently investigated RNA molecule, followed by small interfering RNA. Animal models are less prevalent but also widely used among groups in the network, with transgenic mouse models ranking the top. Concerning the research fields represented in our survey, the mostly studied disease area is neuromuscular disorders, followed by neurometabolic diseases and cancers. Brain, skeletal muscle, heart, and liver are the top four tissues of interest reported. We expect that this snapshot of the current preclinical models will facilitate decision making and the share of resources between academics and industry worldwide to facilitate the development of NATs.
Collapse
Affiliation(s)
- Haiyan Zhou
- Genetics and Genomic Medicine Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Center, London, United Kingdom
| | - Virginia Arechavala-Gomeza
- Nucleic Acid Therapeutics for Rare Disorders (NAT-RD), Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Alejandro Garanto
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Robillard KN, de Vrieze E, van Wijk E, Lentz JJ. Altering gene expression using antisense oligonucleotide therapy for hearing loss. Hear Res 2022; 426:108523. [PMID: 35649738 DOI: 10.1016/j.heares.2022.108523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/20/2022] [Accepted: 05/14/2022] [Indexed: 12/12/2022]
Abstract
Hearing loss affects more than 430 million people, worldwide, and is the third most common chronic physical condition in the United States and Europe (GBD Hearing Loss Collaborators, 2021; NIOSH, 2021; WHO, 2021). The loss of hearing significantly impacts motor and cognitive development, communication, education, employment, and overall quality of life. The inner ear houses the sensory organs for both hearing and balance and provides an accessible target for therapeutic delivery. Antisense oligonucleotides (ASOs) use various mechanisms to manipulate gene expression and can be tailor-made to treat disorders with defined genetic targets. In this review, we discuss the preclinical advancements within the field of the highly promising ASO-based therapies for hereditary hearing loss disorders. Particular focus is on ASO mechanisms of action, preclinical studies on ASO treatments of hearing loss, timing of therapeutic intervention, and delivery routes to the inner ear.
Collapse
Affiliation(s)
| | - Erik de Vrieze
- Department of Otorhinolaryngology, RUMC, Geert Grooteplein 10, Route 855, GA, Nijmegen 6525, the Netherlands; Donders Institute for Brain, Cognition, and Behavior, RUMC, Nijmegen, NL
| | - Erwin van Wijk
- Department of Otorhinolaryngology, RUMC, Geert Grooteplein 10, Route 855, GA, Nijmegen 6525, the Netherlands; Donders Institute for Brain, Cognition, and Behavior, RUMC, Nijmegen, NL.
| | - Jennifer J Lentz
- Neuroscience Center of Excellence, LSUHSC, New Orleans, LA, USA; Department of Otorhinolaryngology, LSUHSC, 2020 Gravier Street, Lions Building, Room 795, New Orleans, LA, USA.
| |
Collapse
|
7
|
Splicing mutations in the CFTR gene as therapeutic targets. Gene Ther 2022; 29:399-406. [PMID: 35650428 PMCID: PMC9385490 DOI: 10.1038/s41434-022-00347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022]
Abstract
The marketing approval, about ten years ago, of the first disease modulator for patients with cystic fibrosis harboring specific CFTR genotypes (~5% of all patients) brought new hope for their treatment. To date, several therapeutic strategies have been approved and the number of CFTR mutations targeted by therapeutic agents is increasing. Although these drugs do not reverse the existing disease, they help to increase the median life expectancy. However, on the basis of their CFTR genotype, ~10% of patients presently do not qualify for any of the currently available CFTR modulator therapies, particularly patients with splicing mutations (~12% of the reported CFTR mutations). Efforts are currently made to develop therapeutic agents that target disease-causing CFTR variants that affect splicing. This highlights the need to fully identify them by scanning non-coding regions and systematically determine their functional consequences. In this review, we present some examples of CFTR alterations that affect splicing events and the different therapeutic options that are currently developed and tested for splice switching.
Collapse
|
8
|
Rauterkus G, Maxwell AK, Kahane JB, Lentz JJ, Arriaga MA. Conversations in Cochlear Implantation: The Inner Ear Therapy of Today. Biomolecules 2022; 12:649. [PMID: 35625577 PMCID: PMC9138212 DOI: 10.3390/biom12050649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
As biomolecular approaches for hearing restoration in profound sensorineural hearing loss evolve, they will be applied in conjunction with or instead of cochlear implants. An understanding of the current state-of-the-art of this technology, including its advantages, disadvantages, and its potential for delivering and interacting with biomolecular hearing restoration approaches, is helpful for designing modern hearing-restoration strategies. Cochlear implants (CI) have evolved over the last four decades to restore hearing more effectively, in more people, with diverse indications. This evolution has been driven by advances in technology, surgery, and healthcare delivery. Here, we offer a practical treatise on the state of cochlear implantation directed towards developing the next generation of inner ear therapeutics. We aim to capture and distill conversations ongoing in CI research, development, and clinical management. In this review, we discuss successes and physiological constraints of hearing with an implant, common surgical approaches and electrode arrays, new indications and outcome measures for implantation, and barriers to CI utilization. Additionally, we compare cochlear implantation with biomolecular and pharmacological approaches, consider strategies to combine these approaches, and identify unmet medical needs with cochlear implants. The strengths and weaknesses of modern implantation highlighted here can mark opportunities for continued progress or improvement in the design and delivery of the next generation of inner ear therapeutics.
Collapse
Affiliation(s)
- Grant Rauterkus
- Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Anne K. Maxwell
- Department of Otorhinolaryngology and Biocommunications, Division of Neurotology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (A.K.M.); (J.B.K.)
| | - Jacob B. Kahane
- Department of Otorhinolaryngology and Biocommunications, Division of Neurotology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (A.K.M.); (J.B.K.)
| | - Jennifer J. Lentz
- Department of Otorhinolaryngology and Biocommunications, Division of Neurotology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (A.K.M.); (J.B.K.)
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Moises A. Arriaga
- Department of Otorhinolaryngology and Biocommunications, Division of Neurotology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (A.K.M.); (J.B.K.)
- Hearing and Balance Center, Our Lady of the Lake Regional Medical Center, Baton Rouge, LA 70808, USA
- Hearing Balance Center, Culicchia Neurological Clinic, New Orleans, LA 70112, USA
| |
Collapse
|
9
|
Antisense RNA Therapeutics: A Brief Overview. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2434:33-49. [PMID: 35213008 DOI: 10.1007/978-1-0716-2010-6_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nucleic acid therapeutics is a growing field aiming to treat human conditions that has gained special attention due to the successful development of mRNA vaccines against SARS-CoV-2. Another type of nucleic acid therapeutics is antisense oligonucleotides, versatile tools that can be used in multiple ways to target pre-mRNA and mRNA. While some years ago these molecules were just considered a useful research tool and a curiosity in the clinical market, this has rapidly changed. These molecules are promising strategies for personalized treatments for rare genetic diseases and they are in development for very common disorders too. In this chapter, we provide a brief description of the different mechanisms of action of these RNA therapeutic molecules, with clear examples at preclinical and clinical stages.
Collapse
|
10
|
Robijn SMM, Smits JJ, Sezer K, Huygen PLM, Beynon AJ, van Wijk E, Kremer H, de Vrieze E, Lanting CP, Pennings RJE. Genotype-Phenotype Correlations of Pathogenic COCH Variants in DFNA9: A HuGE Systematic Review and Audiometric Meta-Analysis. Biomolecules 2022; 12:220. [PMID: 35204720 PMCID: PMC8961530 DOI: 10.3390/biom12020220] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 02/04/2023] Open
Abstract
Pathogenic missense variants in COCH are associated with DFNA9, an autosomal dominantly inherited type of progressive sensorineural hearing loss with or without vestibular dysfunction. This study is a comprehensive overview of genotype-phenotype correlations using the PRISMA and HuGENet guidelines. Study characteristics, risk of bias, genotyping and data on the self-reported age of onset, symptoms of vestibular dysfunction, normative test results for vestibular function, and results of audiovestibular examinations were extracted for each underlying pathogenic COCH variant. The literature search yielded 48 studies describing the audiovestibular phenotypes of 27 DFNA9-associated variants in COCH. Subsequently, meta-analysis of audiometric data was performed by constructing age-related typical audiograms and by performing non-linear regression analyses on the age of onset and progression of hearing loss. Significant differences were found between the calculated ages of onset and progression of the audiovestibular phenotypes of subjects with pathogenic variants affecting either the LCCL domain of cochlin or the vWFA2 and Ivd1 domains. We conclude that the audiovestibular phenotypes associated with DFNA9 are highly variable. Variants affecting the LCCL domain of cochlin generally lead to more progression of hearing loss when compared to variants affecting the other domains. This review serves as a reference for prospective natural history studies in anticipation of mutation-specific therapeutic interventions.
Collapse
Affiliation(s)
- Sybren M. M. Robijn
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.M.M.R.); (J.J.S.); (K.S.); (P.L.M.H.); (A.J.B.); (E.v.W.); (E.d.V.); (C.P.L.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 GL Nijmegen, The Netherlands;
| | - Jeroen J. Smits
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.M.M.R.); (J.J.S.); (K.S.); (P.L.M.H.); (A.J.B.); (E.v.W.); (E.d.V.); (C.P.L.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 GL Nijmegen, The Netherlands;
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Kadriye Sezer
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.M.M.R.); (J.J.S.); (K.S.); (P.L.M.H.); (A.J.B.); (E.v.W.); (E.d.V.); (C.P.L.)
| | - Patrick L. M. Huygen
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.M.M.R.); (J.J.S.); (K.S.); (P.L.M.H.); (A.J.B.); (E.v.W.); (E.d.V.); (C.P.L.)
| | - Andy J. Beynon
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.M.M.R.); (J.J.S.); (K.S.); (P.L.M.H.); (A.J.B.); (E.v.W.); (E.d.V.); (C.P.L.)
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.M.M.R.); (J.J.S.); (K.S.); (P.L.M.H.); (A.J.B.); (E.v.W.); (E.d.V.); (C.P.L.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 GL Nijmegen, The Netherlands;
| | - Hannie Kremer
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 GL Nijmegen, The Netherlands;
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.M.M.R.); (J.J.S.); (K.S.); (P.L.M.H.); (A.J.B.); (E.v.W.); (E.d.V.); (C.P.L.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 GL Nijmegen, The Netherlands;
| | - Cornelis P. Lanting
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.M.M.R.); (J.J.S.); (K.S.); (P.L.M.H.); (A.J.B.); (E.v.W.); (E.d.V.); (C.P.L.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 GL Nijmegen, The Netherlands;
| | - Ronald J. E. Pennings
- Department of Otorhinolaryngology, Hearing & Genes, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.M.M.R.); (J.J.S.); (K.S.); (P.L.M.H.); (A.J.B.); (E.v.W.); (E.d.V.); (C.P.L.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 GL Nijmegen, The Netherlands;
| |
Collapse
|