1
|
Zhao W, Zhou Y, Yin L. Cell-free DNA-scavenging nano/microsystems for immunotherapy. J Control Release 2025; 381:113609. [PMID: 40054627 DOI: 10.1016/j.jconrel.2025.113609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/13/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
In the context of inflammation, autoimmune diseases, infections, and cancers, cfDNA plays a pivotal role in disease progression through various mechanisms. Immunotherapies based on cfDNA scavenging has emerged as a promising approach for treating these conditions. This review offers a comprehensive exploration of cfDNA-binding and degradation strategies, providing detailed insights into the corresponding nano/microsystems for each approach. Nano/microsystems used for cfDNA binding include cationic polymers, nanoparticles, nanogels, and other materials that physically capture cfDNA via electrostatic interactions or other affinity mechanisms, thereby mitigating the immunological effects of cfDNA. Nano/microsystems designed for cfDNA degradation primarily involve DNase delivery systems and artificial enzymes with DNase-like activity, which degrade cfDNA through chemical cleavage. Furthermore, this review discusses the potential synergy between cfDNA-scavenging therapies and other treatment modalities, aiming to achieve more effective and comprehensive immunotherapy. By thoroughly analyzing these strategies, we aim to emphasize the transformative potential of cfDNA-scavenging nano/microsystems in advancing immunotherapy, and offer valuable perspectives for future research in this emerging field.
Collapse
Affiliation(s)
- Wenhan Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Yang Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Miao Y, Wang K, Liu X, Wang X, Hu Y, Yuan Z, Deng D. Multifunctional biomimetic liposomal nucleic acid scavengers inhibit the growth and metastasis of breast cancer. Biomater Sci 2025; 13:2475-2488. [PMID: 40152107 DOI: 10.1039/d4bm01721h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Chemotherapy and surgery, though effective in cancer treatment, trigger the release of nucleic acid-containing pro-inflammatory compounds from damaged tumor cells, known as nucleic acid-associated damage-associated molecular patterns (NA-DAMPs). This inflammation promotes tumor metastasis, and currently, no effective treatment exists for this treatment-induced inflammation and subsequent tumor metastasis. To address this challenge, we developed a biomimetic liposome complex (Lipo-Rh2) incorporating a hybrid structure of liposomes and dendritic polymers, mimicking cell membrane morphology. Lipo-Rh2 leverages the multivalent surface properties of dendritic polymers to clear cell-free nucleic acids while serving as both a structural stabilizer and targeting ligand via embedded ginsenoside Rh2. Experimental data show that Lipo-Rh2 effectively reduces free nucleic acids in mouse serum through charge interactions, downregulates Toll-like receptor expression, decreases inflammatory cytokine secretion, and inhibits both primary tumor growth and metastasis. Compared to the current nucleic acid scavenger PAMAM-G3, Lipo-Rh2 demonstrates stronger antitumor effects, lower toxicity, and enhanced targeting capabilities. This biomimetic liposome-based nucleic acid scavenger represents a novel approach to nucleic acid clearance, expanding the framework for designing effective therapeutic agents.
Collapse
Affiliation(s)
- Yuhang Miao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Kaizhen Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Xin Liu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xin Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Yanwei Hu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Zhenwei Yuan
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dawei Deng
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
3
|
Zhang W, Jing X, Li B, Wu X. Clearance of Cell-Free DNA: A Novel Target for Therapeutic Utilization in Multiple Systemic Disorders. ACS Biomater Sci Eng 2025; 11:2069-2079. [PMID: 40178087 DOI: 10.1021/acsbiomaterials.5c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Cell-free DNA (cfDNA) holds significant promise for diagnostic and therapeutic advancements in medicine. This review delineates the utility of cfDNA in diagnostics and its therapeutic potential through clearance mechanisms for an array of diseases. Damage-associated molecular patterns (DAMPs) are endogenous molecules released by host cells during stress, or injury. As a trigger for inflammatory responses via damage-associated molecular patterns (DAMPs), cfDNA's removal via nanotechnological approaches can attenuate inflammation and promote tissue repair. While the application of cfDNA clearance is particularly auspicious in cancer, sepsis, and inflammatory conditions, it is confronted with challenges including toxicity, specificity, and the rigors of clinical trial validation. Collectively, this review delineates novel therapeutic targets to inform the development of innovative treatment strategies.
Collapse
Affiliation(s)
- Wenjun Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi030001, China
| | - Xuan Jing
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi030001, China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi030001, China
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi030001, China
| |
Collapse
|
4
|
Zhou Y, Ye H, Yu Y, Ge C, Yin M, Liu Z, Shen J, Zhou R, Li Y, Leong KW, Yin L. Helix-Guarded Molecular Clips for Cell-Free DNA Scavenging and Treatment of Systemic Lupus Erythematosus. J Am Chem Soc 2025; 147:6612-6622. [PMID: 39932220 DOI: 10.1021/jacs.4c15646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Immune disorders induced by cell-free DNA (cfDNA) account for the incidence and deterioration of systemic lupus erythematosus (SLE). Scavenging of cfDNA using cationic polymers represents a promising modality for SLE management. However, they bind cfDNA mainly via electrostatic interaction, which would result in an undesired discharge of the captured cfDNA upon competitive replacement by the negatively charged serum/intracellular components. Inspired by the natural recognition mechanism of biomacromolecules via spatial matching, we herein developed a library of dendrimer-templated, spherical, α-helical, and guanidine-rich polypeptides as molecular clips for cfDNA scavenging. Upon optimization of the polypeptide length and density on the dendrimer surface, the top-performing G3-8 was identified, which could tightly confine cfDNA within the cavity between the adjacent, rod-like α-helices. As thus, the helical G3-8 but not the random-coiled analogue D,L-G3-8 enabled robust cfDNA scavenging under serum-rich conditions to inhibit TLR9 activation and inflammation. In SLE mice, i.v. injected G3-8 efficiently prevented organ failure and inhibited inflammation by scavenging cfDNA. This study provides an enlightened strategy to stably bind and scavenge cfDNA and may shift the current paradigm of SLE management.
Collapse
Affiliation(s)
- Yang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Huan Ye
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Yi Yu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Chenglong Ge
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Mengyuan Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Zhongmin Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Jingrui Shen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Renxiang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Youyong Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, New York 10032, United States
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Alshahrani MY, Oghenemaro EF, Rizaev J, Kyada A, Roopashree R, Kumar S, Taha ZA, Yadav G, Mustafa YF, Abosaoda MK. Exploring the modulation of TLR4 and its associated ncRNAs in cancer immunopathogenesis, with an emphasis on the therapeutic implications and mechanisms underlying drug resistance. Hum Immunol 2025; 86:111188. [PMID: 39631102 DOI: 10.1016/j.humimm.2024.111188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
This study provides an in-depth analysis of the pathogenic relevance, therapeutic implications, and mechanisms of treatment resistance associated with TLR4 and its ncRNAs in cancer immunopathogenesis. TLR4, a pivotal component of the innate immune response, has been implicated in promoting inflammation, tumorigenesis, and immune evasion across various malignancies, including gastric, ovarian, and hepatocellular carcinoma. The interactions between TLR4 and specific ncRNAs, such as lncRNAs and miRNAs, play a crucial role in modulating TLR4 signaling pathways, influencing immune cell dynamics, and contributing to chemoresistance. These ncRNAs facilitate tumor-promoting processes, including macrophage polarization, dendritic cell suppression, and T-cell regulation, effectively establishing an immunosuppressive tumor microenvironment that further enhances therapeutic resistance. A comprehensive understanding of the complex interplay between TLR4 and ncRNAs unveils potential avenues for identifying predictive biomarkers and discovering novel therapeutic targets in cancer. Future research initiatives should prioritize the development of personalized therapeutic strategies that specifically target TLR4 signaling and its ncRNA regulators to counteract drug resistance and improve clinical outcomes. This review extensively evaluates the role of TLR4 in cancer biology, emphasizing its critical importance in developing innovative cancer management strategies.
Collapse
Affiliation(s)
- Mohammad Y Alshahrani
- Central Labs, King Khalid University, AlQura 'a, Abha, P.O. Box 960, Saudi Arabia; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Enwa Felix Oghenemaro
- Delta State University, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Abraka, Delta State, Nigeria.
| | - Jasur Rizaev
- Professor, Doctor of Medical Sciences, Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan.
| | - Ashishkumar Kyada
- Marwadi University, Research Center, Department of Pharmacy, Faculty of Health Sciences, Marwadi University, Rajkot 360003, Gujarat, India.
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Zahraa Ahmed Taha
- Medical Laboratory Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001 Babylon, Iraq.
| | - Geeta Yadav
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, -41001, Iraq.
| | - Munthar Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq; College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Pharmacy, The Islamic University of Babylon, Babylon, Iraq.
| |
Collapse
|
6
|
Pallathadka H, Khaleel AQ, Zwamel AH, Malathi H, Sharma S, Rizaev JA, Mustafa YF, Pramanik A, Shuhata Alubiady MH, Jawad MA. Multi-Drug Resistance and Breast Cancer Progression via Toll-Like Receptors (TLRs) Signaling. Cell Biochem Biophys 2024; 82:3015-3030. [PMID: 39110298 DOI: 10.1007/s12013-024-01418-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 11/20/2024]
Abstract
Toll-like receptors (TLRs) are essential receptors involved in inflammation and innate immunity. Various types of cancer cells, as well as innate immune cells, express TLRs. There is mounting proof that TLRs are critical to the development and spread of cancer as well as metabolism. In breast cancer, up-regulated levels of TLRs have been linked to the aggressiveness of the diseases, worse treatment outcomes, and the emergence of therapeutic resistance. Patients with advanced non-resectable, recurring, and metastatic breast cancer currently have few available treatment choices. An intriguing new strategy is an innate immunity-mediated anticancer immunotherapy, either used alone or in conjunction with existing treatments. In fact, several TLR agonists and antagonists have been used in clinical studies for anti-cancer immunotherapy. Consequently, TLRs serve as critical targets for controlling the course of breast cancer and treatment resistance in addition to being implicated in immune responses against pathogen infection and cancer immunology. In this review, we deliver an overview of the most current findings on TLR involvement in the development of breast cancer and treatment resistance.
Collapse
Affiliation(s)
| | - Abdulrahman Qais Khaleel
- Department of Medical Instruments Engineering, Al-Maarif University College, Al Anbar, 31001, Iraq.
| | - Ahmed Hussein Zwamel
- Medical laboratory technique college, the Islamic University, Najaf, Iraq
- Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Snehlata Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, 140307, Punjab, India
| | - Jasur Alimdjanovich Rizaev
- Department of Public health and Healthcare management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| |
Collapse
|
7
|
Guenther C. Stiffness regulates dendritic cell and macrophage subtype development and increased stiffness induces a tumor-associated macrophage phenotype in cancer co-cultures. Front Immunol 2024; 15:1434030. [PMID: 39211033 PMCID: PMC11358102 DOI: 10.3389/fimmu.2024.1434030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Mechanical properties of tissues including their stiffness change throughout our lives, during both healthy development but also during chronic diseases like cancer. How changes to stiffness, occurring during cancer progression, impact leukocytes is unknown. To address this, myeloid phenotypes resulting from mono- and cancer co-cultures of primary murine and human myeloid cells on 2D and 3D hydrogels with varying stiffnesses were analyzed. On soft hydrogels, conventional DCs (cDCs) developed, whereas on stiff hydrogels plasmacytoid DCs (pDCs) developed. Soft substrates promoted T cell proliferation and activation, while phagocytosis was increased on stiffer substrates. Cell populations expressing macrophage markers CD14, Ly6C, and CD16 also increased on stiff hydrogels. In cancer co-cultures, CD86+ populations decreased on higher stiffnesses across four different cancer types. High stiffness also led to increased vascular endothelial growth factor A (VEGFA), matrix metalloproteinases (MMP) and CD206 expression; 'M2' markers expressed by tumor-associated macrophages (TAMs). Indeed, the majority of CD11c+ cells expressed CD206 across human cancer models. Targeting the PI3K/Akt pathway led to a decrease in CD206+ cells in murine cultures only, while human CD86+ cells increased. Increased stiffness in cancer could, thus, lead to the dysregulation of infiltrating myeloid cells and shift their phenotypes towards a M2-like TAM phenotype, thereby actively enabling tumor progression. Additionally, stiffness-dependent intracellular signaling appears extremely cell context-dependent, potentially contributing to the high failure rate of clinical trials.
Collapse
Affiliation(s)
- Carla Guenther
- Department of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
8
|
Bhansali D, Akinade T, Li T, Zhong Y, Liu F, Huang H, Tu Z, Devey EA, Zhu Y, Jensen DD, Leong KW. Comparative Analysis of Nucleic Acid-Binding Polymers as Potential Anti-Inflammatory Nanocarriers. Pharmaceutics 2023; 16:10. [PMID: 38276488 PMCID: PMC10819575 DOI: 10.3390/pharmaceutics16010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Conventionally, nanocarriers are used to regulate the controlled release of therapeutic payloads. Increasingly, they can also be designed to have an intrinsic therapeutic effect. For example, a positively charged nanocarrier can bind damage-associated molecular patterns, inhibiting toll-like receptor (TLR) pathway activation and thus modulating inflammation. These nucleic acid-binding nanomaterials (NABNs), which scavenge pro-inflammatory stimuli, exist in diverse forms, ranging from soluble polymers to nanoparticles and 2D nanosheets. Unlike conventional drugs that primarily address inflammation symptoms, these NABPs target the upstream inflammation initiation pathway by removing the agonists responsible for inflammation. Many NABNs have demonstrated effectiveness in murine models of inflammatory diseases. However, these scavengers have not been systematically studied and compared within a single setting. Herein, we screen a subset of the most potent NABNs to define their relative efficiency in scavenging cell-free nucleic acids and inhibiting various TLR pathways. This study helps interpret existing in vivo results and provides insights into the future design of anti-inflammatory nanocarriers.
Collapse
Affiliation(s)
- Divya Bhansali
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; (D.B.)
| | - Tolulope Akinade
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; (D.B.)
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; (D.B.)
| | - Yiling Zhong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; (D.B.)
| | - Feng Liu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; (D.B.)
| | - Hanyao Huang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; (D.B.)
| | - Zhaoxu Tu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; (D.B.)
| | - Elsie A. Devey
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; (D.B.)
| | - Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; (D.B.)
| | - Dane D. Jensen
- Translational Research Center, College of Dentistry, New York University, New York, NY 10010, USA;
- Pain Research Center, New York University, New York, NY 10010, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; (D.B.)
- Department of Systems Biology, Columbia University, New York, NY 10027, USA
| |
Collapse
|
9
|
Yang J, Zhang J, Chen J, Yang X, Sun H, Zhao Z, Zhou H, Shen H. Thymidylate synthase promotes esophageal squamous cell carcinoma growth by relieving oxidative stress through activating nuclear factor erythroid 2-related factor 2 expression. PLoS One 2023; 18:e0290264. [PMID: 37682862 PMCID: PMC10490860 DOI: 10.1371/journal.pone.0290264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/03/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Thymidylate synthase (TYMS) is involved in the malignant process of multiple cancers, and has gained much attention as a cancer treatment target. However, the mechanism in carcinogenesis of esophageal squamous cell cancer (ESCC) is little reported. The present study was to clear the biological roles and carcinogenic mechanism of TYMS in ESCC, and explored the possibility to use TYMS as a tumor marker in diagnosis and a drug target for the treatment of ESCC. METHODS Stably TYMS-overexpression cells established by lentivirus transduction were used for the analysis of cell proliferation. RNA sequencing was performed to explore the possible carcinogenic mechanisms. RESULTS GEPIA databases analysis showed that TYMS expression in esophageal cancer tissues was higher than that in normal tissues. The MTT assay, colony formation assay, and nude mouse subcutaneous tumor model found that the overexpression of TYMS increased cell proliferation. Transcriptome sequencing analysis revealed that the promoted cell proliferation in TYMS-overexpression ESCC cells were mediated through activating genes expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2 dependent antioxidant enzymes to relieve oxidative stress, which was confirmed by increased glutathione (GSH), glutathione peroxidase (GPX) activities, and reduced reactive oxygen species. Nrf2 active inhibitors (ML385) used in TYMS-overexpression cells inhibited the expression of Nrf2-dependent antioxidant enzyme genes, thereby increasing oxidative stress and blocking cell proliferation. CONCLUSION Our study indicated a novel and effective regulatory capacity of TYMS in the cell proliferation of ESCC by relieving oxidative stress through activating expression of Nrf2 and Nrf2-dependent antioxidant enzymes genes. These properties make TYMS and Nrf2 as appealing targets for ESCC clinical chemotherapy.
Collapse
Affiliation(s)
- Jian Yang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China
- Department of Cell Biology and Genetics, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jingjing Zhang
- Department of Physiology, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jingtian Chen
- Department of Colorectal Surgery, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Xiaolong Yang
- Department of Cell Biology and Genetics, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Hui Sun
- Science & Technology Information and Strategy Research Center of Shanxi, Taiyuan, Shanxi, PR China
| | - Zhenxiang Zhao
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Hui Zhou
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Hao Shen
- College of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, PR China
| |
Collapse
|
10
|
Kim K, Hong HL, Kim GM, Leem J, Kwon HH. Eupatilin Ameliorates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting Inflammation, Oxidative Stress, and Apoptosis in Mice. Curr Issues Mol Biol 2023; 45:7027-7042. [PMID: 37754228 PMCID: PMC10530142 DOI: 10.3390/cimb45090444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Acute kidney injury (AKI) is a common complication of sepsis. Eupatilin (EUP) is a natural flavone with multiple biological activities and has beneficial effects against various inflammatory disorders. However, whether EUP has a favorable effect on septic AKI remains unknown. Here, we examined the effect of EUP on lipopolysaccharide (LPS)-evoked AKI in mice. LPS-evoked renal dysfunction was attenuated by EUP, as reflected by reductions in serum creatinine and blood urea nitrogen levels. LPS injection also induced structural damage such as tubular cell detachment, tubular dilatation, brush border loss of proximal tubules, and upregulation of tubular injury markers. However, EUP significantly ameliorated this structural damage. EUP decreased serum and renal cytokine levels, prevented macrophage infiltration, and inhibited mitogen-activated protein kinase and NF-κB signaling cascades. Lipid peroxidation and DNA oxidation were increased after LPS treatment. However, EUP mitigated LPS-evoked oxidative stress through downregulation of NPDPH oxidase 4 and upregulation of antioxidant enzymes. EUP also inhibited p53-mediated apoptosis in LPS-treated mice. Therefore, these results suggest that EUP ameliorates LPS-evoked AKI through inhibiting inflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Kiryeong Kim
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (K.K.); (H.-L.H.)
| | - Hyo-Lim Hong
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (K.K.); (H.-L.H.)
| | - Gyun Moo Kim
- Department of Emergency Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea
| | - Hyun Hee Kwon
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (K.K.); (H.-L.H.)
| |
Collapse
|
11
|
Luo Y, Ye Y, Chen Y, Zhang C, Sun Y, Wang C, Ou J. A degradome-based prognostic signature that correlates with immune infiltration and tumor mutation burden in breast cancer. Front Immunol 2023; 14:1140993. [PMID: 36993976 PMCID: PMC10040797 DOI: 10.3389/fimmu.2023.1140993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
IntroductionFemale breast cancer is the most common malignancy worldwide, with a high disease burden. The degradome is the most abundant class of cellular enzymes that play an essential role in regulating cellular activity. Dysregulation of the degradome may disrupt cellular homeostasis and trigger carcinogenesis. Thus we attempted to understand the prognostic role of degradome in breast cancer by means of establishing a prognostic signature based on degradome-related genes (DRGs) and assessed its clinical utility in multiple dimensions.MethodsA total of 625 DRGs were obtained for analysis. Transcriptome data and clinical information of patients with breast cancer from TCGA-BRCA, METABRIC and GSE96058 were collected. NetworkAnalyst and cBioPortal were also utilized for analysis. LASSO regression analysis was employed to construct the degradome signature. Investigations of the degradome signature concerning clinical association, functional characterization, mutation landscape, immune infiltration, immune checkpoint expression and drug priority were orchestrated. Cell phenotype assays including colony formation, CCK8, transwell and wound healing were conducted in MCF-7 and MDA-MB-435S breast cancer cell lines, respectively.ResultsA 10-gene signature was developed and verified as an independent prognostic predictor combined with other clinicopathological parameters in breast cancer. The prognostic nomogram based on risk score (calculated based on the degradome signature) showed favourable capability in survival prediction and advantage in clinical benefit. High risk scores were associated with a higher degree of clinicopathological events (T4 stage and HER2-positive) and mutation frequency. Regulation of toll-like receptors and several cell cycle promoting activities were upregulated in the high-risk group. PIK3CA and TP53 mutations were dominant in the low- and high-risk groups, respectively. A significantly positive correlation was observed between the risk score and tumor mutation burden. The infiltration levels of immune cells and the expressions of immune checkpoints were significantly influenced by the risk score. Additionally, the degradome signature adequately predicted the survival of patients undergoing endocrinotherapy or radiotherapy. Patients in the low-risk group may achieve complete response after the first round of chemotherapy with cyclophosphamide and docetaxel, whereas patients in the high-risk group may benefit from 5-flfluorouracil. Several regulators of the PI3K/AKT/mTOR signaling pathway and the CDK family/PARP family were identified as potential molecular targets in the low- and high-risk groups, respectively. In vitro experiments further revealed that the knockdown of ABHD12 and USP41 significantly inhibit the proliferation, invasion and migration of breast cancer cells.ConclusionMultidimensional evaluation verified the clinical utility of the degradome signature in predicting prognosis, risk stratification and guiding treatment for patients with breast cancer.
Collapse
Affiliation(s)
- Yulou Luo
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Yinghui Ye
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Chenguang Zhang
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Yutian Sun
- Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chengwei Wang
- Cancer Research Institute of Xinjiang Uygur Autonomous Region, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Chengwei Wang, ; Jianghua Ou,
| | - Jianghua Ou
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Chengwei Wang, ; Jianghua Ou,
| |
Collapse
|
12
|
Hegde M, Naliyadhara N, Unnikrishnan J, Alqahtani MS, Abbas M, Girisa S, Sethi G, Kunnumakkara AB. Nanoparticles in the diagnosis and treatment of cancer metastases: Current and future perspectives. Cancer Lett 2023; 556:216066. [PMID: 36649823 DOI: 10.1016/j.canlet.2023.216066] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Metastasis accounts for greater than 90% of cancer-related deaths. Despite recent advancements in conventional chemotherapy, immunotherapy, targeted therapy, and their rational combinations, metastatic cancers remain essentially untreatable. The distinct obstacles to treat metastases include their small size, high multiplicity, redundancy, therapeutic resistance, and dissemination to multiple organs. Recent advancements in nanotechnology provide the numerous applications in the diagnosis and prophylaxis of metastatic diseases, including the small particle size to penetrate cell membrane and blood vessels and their capacity to transport complex molecular 'cargo' particles to various metastatic regions such as bones, brain, liver, lungs, and lymph nodes. Indeed, nanoparticles (NPs) have demonstrated a significant ability to target specific cells within these organs. In this regard, the purpose of this review is to summarize the present state of nanotechnology in terms of its application in the diagnosis and treatment of metastatic cancer. We intensively reviewed applications of NPs in fluorescent imaging, PET scanning, MRI, and photoacoustic imaging to detect metastasis in various cancer models. The use of targeted NPs for cancer ablation in conjunction with chemotherapy, photothermal treatment, immuno therapy, and combination therapy is thoroughly discussed. The current review also highlights the research opportunities and challenges of leveraging engineering technologies with cancer cell biology and pharmacology to fabricate nanoscience-based tools for treating metastases.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia; Computers and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa, 35712, Egypt
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
13
|
Olson LB, Hunter NI, Rempel RE, Yu H, Spencer DM, Sullenger CZ, Greene WS, Varanko AK, Eghtesadi SA, Chilkoti A, Pisetsky DS, Everitt JI, Sullenger BA. Mixed-surface polyamidoamine polymer variants retain nucleic acid-scavenger ability with reduced toxicity. iScience 2022; 25:105542. [PMID: 36444294 PMCID: PMC9700028 DOI: 10.1016/j.isci.2022.105542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/02/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Nucleic acid-binding polymers can have anti-inflammatory properties and beneficial effects in animal models of infection, trauma, cancer, and autoimmunity. PAMAM G3, a polyamidoamine dendrimer, is fully cationic bearing 32 protonable surface amines. However, while PAMAM G3 treatment leads to improved outcomes for mice infected with influenza, at risk of cancer metastasis, or genetically prone to lupus, its administration can lead to serosal inflammation and elevation of biomarkers of liver and kidney damage. Variants with reduced density of cationic charge through the interspersal of hydroxyl groups were evaluated as potentially better-tolerated alternatives. Notably, the variant PAMAM G3 50:50, similar in size as PAMAM G3 but with half the charge, was not toxic in cell culture, less associated with weight loss or serosal inflammation after parenteral administration, and remained effective in reducing glomerulonephritis in lupus-prone mice. Identification of such modified scavengers should facilitate their development as safe and effective anti-inflammatory agents.
Collapse
Affiliation(s)
- Lyra B. Olson
- Department of Surgery, Duke University, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Nicole I. Hunter
- Department of Surgery, Duke University, Durham, NC 27710, USA
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | | | - Haixiang Yu
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Diane M. Spencer
- Department of Medicine and Immunology, Division of Rheumatology, Duke University Medical Center, Durham, NC 27710, USA
| | - Cynthia Z. Sullenger
- Department of Surgery, Duke University, Durham, NC 27710, USA
- Department of Biology, Duke University, Durham, NC 27710, USA
| | | | | | - Seyed A. Eghtesadi
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - David S. Pisetsky
- Department of Medicine and Immunology, Division of Rheumatology, Duke University Medical Center, Durham, NC 27710, USA
- Medical Research Service, Veterans Administration Medical Center, Durham, NC 27705, USA
| | | | - Bruce A. Sullenger
- Department of Surgery, Duke University, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| |
Collapse
|
14
|
Li T, Akinade T, Zhou J, Wang H, Tong Q, He S, Rinebold E, Valencia Salazar LE, Bhansali D, Zhong Y, Ruan J, Du J, Dalerba P, Leong KW. Therapeutic Nanocarriers Inhibit Chemotherapy-Induced Breast Cancer Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203949. [PMID: 36220339 PMCID: PMC9685442 DOI: 10.1002/advs.202203949] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/04/2022] [Indexed: 05/09/2023]
Abstract
Chemotherapy, although effective against primary tumors, may promote metastasis by causing the release of proinflammatory factors from damaged cells. Here, polymeric nanoparticles that deliver chemotherapeutics and scavenge proinflammatory factors simultaneously to inhibit chemotherapy-induced breast cancer metastasis are developed. The cationic nanoparticles can adsorb cell-free nucleic acids (cfNAs) based on charge-charge interaction, which downregulates the expression of Toll-like receptors and then reduces the secretion of inflammatory cytokines. Through in vitro structural optimization, cationic polyamidoamine (PAMAM) dendrimers modified with drug-binding dodecyl groups and diethylethanolamine surface groups (PAMAM-G3-C125 -DEEA20 ) exhibit the most desirable combination of nanoparticle size (≈140 nm), drug loading, cytotoxicity, cfNA binding, and anti-inflammatory activity. In the mouse models of breast cancer metastasis, paclitaxel-loaded nanoparticles reduce serum levels of cfNAs and inflammatory cytokines compared with paclitaxel treatment alone and inhibit both primary tumor growth and tumor metastasis. Additionally, no significant side effects are detected in the serum or major organs. These results provide a strategy to deliver chemotherapeutics to primary tumors while reducing the prometastatic effects of chemotherapy.
Collapse
Affiliation(s)
- Tianyu Li
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Tolulope Akinade
- Graduate Program in Cellular, Molecular and Biomedical StudiesVagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNY10027USA
| | - Jie Zhou
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
- Department of Breast OncologyAffiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhou510095P. R. China
| | - Hongxia Wang
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Qisong Tong
- School of Biomedical Sciences and EngineeringGuangzhou International CampusSouth China University of TechnologyGuangzhou511442P. R. China
| | - Siyu He
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Emily Rinebold
- Department of Pathology & Cell BiologyDepartment of Medicine (Division of Digestive and Liver Diseases)Herbert Irving Comprehensive Cancer Center (HICCC) and Columbia Stem Cell Initiative (CSCI)Columbia UniversityNew YorkNY10032USA
- Department of Surgery (Division of Colorectal Surgery)Columbia University Medical CenterNew YorkNY10032USA
| | - Luis E. Valencia Salazar
- Department of Pathology & Cell BiologyDepartment of Medicine (Division of Digestive and Liver Diseases)Herbert Irving Comprehensive Cancer Center (HICCC) and Columbia Stem Cell Initiative (CSCI)Columbia UniversityNew YorkNY10032USA
| | - Divya Bhansali
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Yiling Zhong
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Jing Ruan
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Jinzhi Du
- School of Biomedical Sciences and EngineeringGuangzhou International CampusSouth China University of TechnologyGuangzhou511442P. R. China
| | - Piero Dalerba
- Department of Pathology & Cell BiologyDepartment of Medicine (Division of Digestive and Liver Diseases)Herbert Irving Comprehensive Cancer Center (HICCC) and Columbia Stem Cell Initiative (CSCI)Columbia UniversityNew YorkNY10032USA
| | - Kam W. Leong
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
- Department of Systems BiologyColumbia University Medical CenterNew YorkNY10032USA
| |
Collapse
|
15
|
Wang T, Ba X, Zhang X, Zhang N, Wang G, Bai B, Li T, Zhao J, Zhao Y, Yu Y, Wang B. Nuclear import of PTPN18 inhibits breast cancer metastasis mediated by MVP and importin β2. Cell Death Dis 2022; 13:720. [PMID: 35982039 PMCID: PMC9388692 DOI: 10.1038/s41419-022-05167-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 01/21/2023]
Abstract
Distant metastasis is the primary cause of breast cancer-associated death. The existing information, such as the precise molecular mechanisms and effective therapeutic strategies targeting metastasis, is insufficient to combat breast cancer. This study demonstrates that the protein tyrosine phosphatase PTPN18 is downregulated in metastatic breast cancer tissues and is associated with better metastasis-free survival. Ectopic expression of PTPN18 inhibits breast cancer cell metastasis. PTPN18 is translocated from the cytoplasm to the nucleus by MVP and importin β2 in breast cancer. Then, nuclear PTPN18 dephosphorylates ETS1 and promotes its degradation. Moreover, nuclear PTPN18 but not cytoplasmic PTPN18 suppresses transforming growth factor-β signaling and epithelial-to-mesenchymal transition by targeting ETS1. Our data highlight PTPN18 as a suppressor of breast cancer metastasis and provide an effective antimetastatic therapeutic strategy.
Collapse
Affiliation(s)
- Tao Wang
- grid.412252.20000 0004 0368 6968College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning P. R. China
| | - Xinlei Ba
- grid.412252.20000 0004 0368 6968College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning P. R. China
| | - Xiaonan Zhang
- grid.412252.20000 0004 0368 6968College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning P. R. China ,grid.252957.e0000 0001 1484 5512Department of Pathophysiology, Bengbu Medical College, Bengbu, Anhui P. R. China
| | - Na Zhang
- grid.412252.20000 0004 0368 6968College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning P. R. China
| | - Guowen Wang
- grid.414884.5Department of Thoracic surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui P. R. China
| | - Bin Bai
- grid.412252.20000 0004 0368 6968College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning P. R. China
| | - Tong Li
- grid.412252.20000 0004 0368 6968College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning P. R. China
| | - Jiahui Zhao
- grid.412252.20000 0004 0368 6968College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning P. R. China
| | - Yanjiao Zhao
- grid.412252.20000 0004 0368 6968College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning P. R. China
| | - Yang Yu
- grid.412252.20000 0004 0368 6968College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning P. R. China
| | - Bing Wang
- grid.412252.20000 0004 0368 6968College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning P. R. China
| |
Collapse
|
16
|
Olson LB, Hunter NI, Rempel RE, Sullenger BA. Targeting DAMPs with nucleic acid scavengers to treat lupus. Transl Res 2022; 245:30-40. [PMID: 35245691 PMCID: PMC9167234 DOI: 10.1016/j.trsl.2022.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/16/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic and often progressive autoimmune disorder marked clinically by a variable constellation of symptoms including fatigue, rash, joint pains, and kidney damage. The lungs, heart, gastrointestinal system, and brain can also be impacted, and individuals with lupus are at higher risk for atherosclerosis, thrombosis, thyroid disease, and other disorders associated with chronic inflammation . Autoimmune diseases are marked by erroneous immune responses in which the target of the immune response is a "self"-antigen, or autoantigen, driven by the development of antigen-specific B or T cells that have overcome the normal systems of self-tolerance built into the development of B and T cells. SLE is specifically characterized by the production of autoantibodies against nucleic acids and their binding proteins, including anti-double stranded DNA, anti-Smith (an RNA binding protein), and many others . These antibodies bind their nuclear-derived antigens to form immune complexes that cause injury and scarring through direct deposition in tissues and activation of innate immune cells . In over 50% of SLE patients, immune complex aggregation in the kidneys drives intrarenal inflammation and injury and leads to lupus nephritis, a progressive destruction of the glomeruli that is one of the most common causes of lupus-related death . To counter this pathology increasing attention has turned to developing approaches to reduce the development and continued generation of such autoantibodies. In particular, the molecular and cellular events that lead to long term, continuous activation of such autoimmune responses have become the focus of new therapeutic strategies to limit renal and other pathologies in lupus patients. The focus of this review is to consider how the innate immune system is involved in the development and progression of lupus nephritis and how a novel approach to inhibit innate immune activation by neutralizing the activators of this response, called Damage Associated Molecular Patterns, may represent a promising approach to treat this and other autoimmune disorders.
Collapse
Affiliation(s)
- Lyra B Olson
- Department of Surgery, Duke University, Durham, North Carolina; Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Nicole I Hunter
- Department of Surgery, Duke University, Durham, North Carolina; Department of Chemistry, Duke University, Durham, North Carolina
| | - Rachel E Rempel
- Department of Surgery, Duke University, Durham, North Carolina
| | - Bruce A Sullenger
- Department of Surgery, Duke University, Durham, North Carolina; Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina; Department of Biomedical Engineering, Duke University, Durham, North Carolina.
| |
Collapse
|
17
|
Naqvi I, Giroux N, Olson L, Morrison SA, Llanga T, Akinade TO, Zhu Y, Zhong Y, Bose S, Arvai S, Abramson K, Chen L, Que L, Kraft B, Shen X, Lee J, Leong KW, Nair SK, Sullenger B. DAMPs/PAMPs induce monocytic TLR activation and tolerance in COVID-19 patients; nucleic acid binding scavengers can counteract such TLR agonists. Biomaterials 2022; 283:121393. [PMID: 35349874 PMCID: PMC8797062 DOI: 10.1016/j.biomaterials.2022.121393] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022]
Abstract
Millions of COVID-19 patients have succumbed to respiratory and systemic inflammation. Hyperstimulation of toll-like receptor (TLR) signaling is a key driver of immunopathology following infection by viruses. We found that severely ill COVID-19 patients in the Intensive Care Unit (ICU) display hallmarks of such hyper-stimulation with abundant agonists of nucleic acid-sensing TLRs present in their blood and lungs. These nucleic acid-containing Damage and Pathogen Associated Molecular Patterns (DAMPs/PAMPs) can be depleted using nucleic acid-binding microfibers to limit the patient samples' ability to hyperactivate such innate immune receptors. Single-cell RNA-sequencing revealed that CD16+ monocytes from deceased but not recovered ICU patients exhibit a TLR-tolerant phenotype and a deficient anti-viral response after ex vivo TLR stimulation. Plasma proteomics confirmed such myeloid hyperactivation and revealed DAMP/PAMP carrier consumption in deceased patients. Treatment of these COVID-19 patient samples with MnO nanoparticles effectively neutralizes TLR activation by the abundant nucleic acid-containing DAMPs/PAMPs present in their lungs and blood. Finally, MnO nanoscavenger treatment limits the ability of DAMPs/PAMPs to induce TLR tolerance in monocytes. Thus, treatment with microfiber- or nanoparticle-based DAMP/PAMP scavengers may prove useful for limiting SARS-CoV-2 induced hyperinflammation, preventing monocytic TLR tolerance, and improving outcomes in severely ill COVID-19 patients.
Collapse
Affiliation(s)
- Ibtehaj Naqvi
- Duke University School of Medicine, Department of Surgery, Division of Surgical Sciences, USA
| | - Nicholas Giroux
- Duke University, Department of Biomedical Engineering, Pratt School of Engineering, USA; Duke University, Graduate School, USA
| | - Lyra Olson
- Duke University, Graduate School, USA; Duke University School of Medicine, Department of Pharmacology and Cancer Biology, USA
| | - Sarah Ahn Morrison
- Duke University School of Medicine, Department of Surgery, Division of Surgical Sciences, USA
| | | | - Tolu O Akinade
- Columbia University, Department of Biomedical Engineering, USA
| | - Yuefei Zhu
- Columbia University, Department of Biomedical Engineering, USA
| | - Yiling Zhong
- Columbia University, Department of Biomedical Engineering, USA
| | - Shree Bose
- Duke University, Graduate School, USA; Duke University School of Medicine, Department of Pharmacology and Cancer Biology, USA
| | - Stephanie Arvai
- Duke University Center for Genomic and Computational Biology, RNA Sequencing Core, USA
| | - Karen Abramson
- Duke University Center for Genomic and Computational Biology, RNA Sequencing Core, USA
| | - Lingye Chen
- Duke University School of Medicine, Department of Medicine, Division of Pulmonary Medicine, USA
| | - Loretta Que
- Duke University School of Medicine, Department of Medicine, Division of Pulmonary Medicine, USA
| | - Bryan Kraft
- Duke University School of Medicine, Department of Medicine, Division of Pulmonary Medicine, USA
| | - Xiling Shen
- Duke University, Department of Biomedical Engineering, Pratt School of Engineering, USA
| | - Jaewoo Lee
- Duke University School of Medicine, Department of Surgery, Division of Surgical Sciences, USA
| | - Kam W Leong
- Columbia University, Department of Biomedical Engineering, USA
| | - Smita K Nair
- Duke University School of Medicine, Department of Surgery, Division of Surgical Sciences, USA; Duke University School of Medicine, Department of Pathology, USA; Duke University School of Medicine, Department of Neurosurgery, USA.
| | - Bruce Sullenger
- Duke University School of Medicine, Department of Surgery, Division of Surgical Sciences, USA; Duke University, Department of Biomedical Engineering, Pratt School of Engineering, USA; Duke University School of Medicine, Department of Pharmacology and Cancer Biology, USA; Duke University School of Medicine, Department of Neurosurgery, USA.
| |
Collapse
|