1
|
Tang S, Yong L, Cui Y, Li H, Bischof E, Cai F. Harnessing Oncolytic Viruses for Targeted Therapy in Triple-Negative Breast Cancer. Int J Med Sci 2025; 22:2186-2207. [PMID: 40303488 PMCID: PMC12035831 DOI: 10.7150/ijms.105683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/19/2025] [Indexed: 05/02/2025] Open
Abstract
Breast cancer is the most prevalent malignant tumor among women, with triple-negative breast cancer (TNBC) being one of the most aggressive forms due to its high invasiveness and metastatic potential. Traditional treatments such as endocrine therapy and anti-HER2-targeted therapy are largely ineffective for TNBC, and while chemotherapy shows some promise, resistance remains a significant hurdle. Recently, there has been increasing interest in biological therapies, especially oncolytic viruses (OVs). OVs promote anti-tumor effects by selectively killing tumor cells and stimulating immune responses, and have achieved notable breakthroughs in breast cancer treatment. OVs have demonstrated effectiveness comparable to surgery, radiotherapy, or chemotherapy in selected cancers, but data are sparse in the context of TNBC. This review provides an overview of recent progress in the application of OVs as a tool for precision TNBC treatment.
Collapse
Affiliation(s)
- Shasha Tang
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Rd, Shanghai 200065, China
| | - Liyun Yong
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Rd, Shanghai 200065, China
| | - Yong Cui
- Department of General Surgery, People's Hospital of Otog Qianqi, Sharita Tara East Street, Aolezhaoqi Town, Otog Qianqi 016200, China
| | - Haibin Li
- Department of General Surgery, People's Hospital of Otog Qianqi, Sharita Tara East Street, Aolezhaoqi Town, Otog Qianqi 016200, China
| | - Evelyne Bischof
- Department of Medical Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Fengfeng Cai
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Rd, Shanghai 200065, China
| |
Collapse
|
2
|
Chattopadhyay S, Hazra R, Mallick A, Gayen S, Roy S. A review exploring the fusion of oncolytic viruses and cancer immunotherapy: An innovative strategy in the realm of cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189110. [PMID: 38754793 DOI: 10.1016/j.bbcan.2024.189110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Oncolytic viruses (OVs) are increasingly recognized as potent tools in cancer therapy, effectively targeting and eradicating oncogenic conditions while sparing healthy cells. They enhance antitumor immunity by triggering various immune responses throughout the cancer cycle. Genetically engineered OVs swiftly destroy cancerous tissues and activate the immune system by releasing soluble antigens like danger signals and interferons. Their ability to stimulate both innate and adaptive immunity makes them particularly attractive in cancer immunotherapy. Recent advancements involve combining OVs with other immune therapies, yielding promising results. Transgenic OVs, designed to enhance immunostimulation and specifically target cancer cells, further improve immune responses. This review highlights the intrinsic mechanisms of OVs and underscores their synergistic potential with other immunotherapies. It also proposes strategies for optimizing armed OVs to bolster immunity against tumors.
Collapse
Affiliation(s)
- Soumyadeep Chattopadhyay
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Rudradeep Hazra
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Arijit Mallick
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Sakuntala Gayen
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India.
| |
Collapse
|
3
|
De Silva M, Tse BCY, Diakos CI, Clarke S, Molloy MP. Immunogenic cell death in colorectal cancer: a review of mechanisms and clinical utility. Cancer Immunol Immunother 2024; 73:53. [PMID: 38353760 PMCID: PMC10866783 DOI: 10.1007/s00262-024-03641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related morbidity and mortality worldwide. Despite several clinical advances the survival of patients with advanced colorectal cancer remains limited, demanding newer approaches. The immune system plays a central role in cancer development, propagation, and treatment response. Within the bowel, the colorectal mucosa is a key barrier and site of immune regulation that is generally immunosuppressive. Nonetheless, within this tumour microenvironment, it is evident that anti-neoplastic treatments which cause direct cytotoxic and cytostatic effects may also induce immunogenic cell death (ICD), a form of regulated cell death that leads to an anti-tumour immune response. Therefore, novel ICD inducers and molecular biomarkers of ICD action are urgently needed to advance treatment options for advanced CRC. This article reviews our knowledge of ICD in CRC.
Collapse
Affiliation(s)
- M De Silva
- Bowel Cancer and Biomarker Research Laboratory, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - B C Y Tse
- Bowel Cancer and Biomarker Research Laboratory, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - C I Diakos
- Department of Medical Oncology, Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - S Clarke
- Department of Medical Oncology, Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - M P Molloy
- Bowel Cancer and Biomarker Research Laboratory, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia.
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
4
|
Chen L, Zuo M, Zhou Q, Wang Y. Oncolytic virotherapy in cancer treatment: challenges and optimization prospects. Front Immunol 2023; 14:1308890. [PMID: 38169820 PMCID: PMC10758479 DOI: 10.3389/fimmu.2023.1308890] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Oncolytic viruses (OVs) are emerging cancer therapeutics that offer a multifaceted therapeutic platform for the benefits of replicating and lysing tumor cells, being engineered to express transgenes, modulating the tumor microenvironment (TME), and having a tolerable safety profile that does not overlap with other cancer therapeutics. The mechanism of OVs combined with other antitumor agents is based on immune-mediated attack resistance and might benefit patients who fail to achieve durable responses after immune checkpoint inhibitor (ICI) treatment. In this Review, we summarize data on the OV mechanism and limitations of monotherapy, which are currently in the process of combination partner development, especially with ICIs. We discuss some of the hurdles that have limited the preclinical and clinical development of OVs. We also describe the available data and provide guidance for optimizing OVs in clinical practice, as well as a summary of approved and promising novel OVs with clinical indications.
Collapse
Affiliation(s)
- Lingjuan Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Mengsi Zuo
- Department of Oncology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Qin Zhou
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Yang Wang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Bioengineering, Hubei University of Technology, Wuhan, China
| |
Collapse
|
5
|
Hu D, Tian Y, Xu J, Xie D, Wang Y, Liu M, Wang Y, Yang L. Oncolytic viral therapy as promising immunotherapy against glioma. MEDCOMM – FUTURE MEDICINE 2023; 2. [DOI: 10.1002/mef2.61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/22/2023] [Indexed: 03/19/2025]
Abstract
AbstractGlioma is a common primary central nervous system malignant tumor in clinical, traditional methods such as surgery and chemoradiotherapy are not effective in treatment. Therefore, more effective treatments need to be found. Oncolytic viruses (OVs) are a new type of immunotherapy that selectively infects and kills tumor cells instead of normal cells. OVs can mediate antitumor immune responses through a variety of mechanisms, and have the ability to activate antitumor immune responses, transform the tumor microenvironment from “cold” to “hot,” and enhance the efficacy of immune checkpoint inhibitors. Recently, a large number of preclinical and clinical studies have shown that OVs show great prospects in the treatment of gliomas. In this review, we summarize the current status of glioma therapies with a focus on OVs. First, this article introduces the current status of treatment of glioma and their respective shortcomings. Then, the important progress of OVs of in clinical trials of glioma is summarized. Finally, the urgent challenges of oncolytic virus treatment for glioma are sorted out, and related solutions are proposed. This review will help to further promote the use of OVs in the treatment of glioma.
Collapse
Affiliation(s)
- Die Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Yaomei Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
- College of Bioengineering Sichuan University of Science & Engineering Zigong China
| | - Jie Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Daoyuan Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Mohan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Yuanda Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| |
Collapse
|
6
|
Yu ZZ, Xu BQ, Wang YY, Zhang PW, Shu YB, Shi Z. GSK2606414 Sensitizes ABCG2-Overexpressing Multidrug-Resistant Colorectal Cancer Cells to Chemotherapeutic Drugs. Biomedicines 2023; 11:3103. [PMID: 38002103 PMCID: PMC10669325 DOI: 10.3390/biomedicines11113103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Colorectal cancer is a common malignant tumor. A major factor in the high mortality rate of colorectal cancer is the emergence of multidrug resistance (MDR). Overexpression of the ABCG2 gene in cancer cells directly leads to MDR. Finding new inhibitors of ABCG2 may be an effective way to overcome drug resistance. We found that the compound GSK2606414 enhanced the sensitivity of the ABCG2 substrate to the chemotherapeutic drugs mitoxantrone and doxorubicin in ABCG2-overexpressing multidrug-resistant colorectal cancer cells by increasing their intracellular accumulation without affecting the protein expression of ABCG2. Molecular docking experiments predicted that GSK2606414 could stably bind in the drug-binding pocket of ABCG2. In conclusion, GSK2606414 can sensitize ABCG2-overexpressed multidrug-resistant colorectal cancer cells to chemotherapy drugs and can be used as a potential inhibitor of ABCG2.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Z.-Z.Y.); (B.-Q.X.); (Y.-Y.W.); (P.-W.Z.); (Y.-B.S.)
| |
Collapse
|
7
|
Yeap JW, Ali IAH, Ibrahim B, Tan ML. Chronic obstructive pulmonary disease and emerging ER stress-related therapeutic targets. Pulm Pharmacol Ther 2023; 81:102218. [PMID: 37201652 DOI: 10.1016/j.pupt.2023.102218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
COPD pathogenesis is frequently associated with endoplasmic reticulum stress (ER stress) progression. Targeting the major unfolded protein response (UPR) branches in the ER stress pathway may provide pharmacotherapeutic selection strategies for treating COPD and enable relief from its symptoms. In this study, we aimed to systematically review the potential role of the ER stress inhibitors of major UPR branches (IRE1, PERK, and ATF6) in COPD-related studies and determine the current stage of knowledge in this field. The systematic review was carried out adhering to the PRISMA checklist based on published studies obtained from specific keyword searches of three databases, namely PubMed, ScienceDirect and Springer Database. The search was limited to the year 2000-2022 which includes all in vitro studies, in vivo studies and clinical trials related to the application of ER stress inhibitors toward COPD-induced models and disease. The risk of bias was evaluated using the QUIN, SYRCLE, revised Cochrane risk of bias tool for randomized trials (RoB 2.0) and NIH tool respectively. A total of 7828 articles were screened from three databases and a final total of 37 studies were included in the review. The ER stress and UPR pathways are potentially useful to prevent COPD progression and attenuate the exacerbation of COPD and related symptoms. Interestingly, the off-target effects from inhibition of the UPR pathway may be desirable or undesirable depending on context and therapeutic applications. Targeting the UPR pathway could have complex consequences as the production of ER molecules involved in folding may be impaired which could continuously provoke misfolding of proteins. Although several emerging compounds were noted to be potentially useful for targeted therapy against COPD, clinical studies have yet to be thoroughly explored.
Collapse
Affiliation(s)
- Jia Wen Yeap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Irfhan Ali Hyder Ali
- Respiratory Department, Penang General Hospital, Jalan Residensi, 10990, Pulau Pinang, Malaysia
| | - Baharudin Ibrahim
- Department of Clinical Pharmacy & Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mei Lan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia; Centre For Global Sustainability Studies (CGSS), Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia.
| |
Collapse
|
8
|
Shi S, Ding C, Zhu S, Xia F, Buscho SE, Li S, Motamedi M, Liu H, Zhang W. PERK Inhibition Suppresses Neovascularization and Protects Neurons During Ischemia-Induced Retinopathy. Invest Ophthalmol Vis Sci 2023; 64:17. [PMID: 37566408 PMCID: PMC10424802 DOI: 10.1167/iovs.64.11.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Purpose Retinal ischemia is a common cause of a variety of eye diseases, such as retinopathy of prematurity, diabetic retinopathy, and vein occlusion. Protein kinase RNA-activated-like endoplasmic reticulum (ER) kinase (PERK), one of the main ER stress sensor proteins, has been involved in many diseases. In this study, we investigated the role of PERK in ischemia-induced retinopathy using a mouse model of oxygen-induced retinopathy (OIR). Methods OIR was induced by subjecting neonatal pups to 70% oxygen at postnatal day 7 (P7) followed by returning to room air at P12. GSK2606414, a selective PERK inhibitor, was orally administrated to pups right after they were returned to room air once daily until 1 day before sample collection. Western blot, immunostaining, and quantitative PCR were used to assess PERK phosphorylation, retinal changes, and signaling pathways in relation to PERK inhibition. Results PERK phosphorylation was prominently increased in OIR retinas, which was inhibited by GSK2606414. Concomitantly, PERK inhibition significantly reduced retinal neovascularization (NV) and retinal ganglion cell (RGC) loss, restored astrocyte network, and promoted revascularization. Furthermore, PERK inhibition downregulated the recruitment/proliferation of mononuclear phagocytes but did not affect OIR-upregulated canonical angiogenic pathways. Conclusions Our results demonstrate that PERK is involved in ischemia-induced retinopathy and its inhibition using GSK2606414 could offer an effective therapeutic intervention aimed at alleviating retinal NV while preventing neuron loss during retinal ischemia.
Collapse
Affiliation(s)
- Shuizhen Shi
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Chun Ding
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Shuang Zhu
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Fan Xia
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Seth E. Buscho
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Shengguo Li
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Massoud Motamedi
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Hua Liu
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Wenbo Zhang
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
- Departments of Neurobiology, University of Texas Medical Branch, Galveston, Texas, United States
| |
Collapse
|
9
|
Xu D, Liu Z, Liang MX, Fei YJ, Zhang W, Wu Y, Tang JH. Endoplasmic reticulum stress targeted therapy for breast cancer. Cell Commun Signal 2022; 20:174. [PMCID: PMC9639265 DOI: 10.1186/s12964-022-00964-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractRecurrence, metastasis, and drug resistance are still big challenges in breast cancer therapy. Internal and external stresses have been proven to substantially facilitate breast cancer progression through molecular and systemic mechanisms. For example, endoplasmic reticulum stress (ERS) results in activation of the unfolded protein response (UPR), which are considered an important cellular stress response. More and more reports indicate its key role in protein homeostasis and other diverse functions involved in the process of breast cancer progression. Therefore, therapies targeting the activation of ERS and its downstream signaling pathways are potentially helpful and novel tools to counteract and fight breast cancer. However, recent advances in our understanding of ERS are focused on characterizing and modulating ERS between healthy and disease states, and so little attention has been paid to studying the role and clinical application of targeting ERS in a certain cancer. In this review, we summarize the function and main mechanisms of ERS in different molecular types of breast cancer, and focus on the development of agents targeting ERS to provide new treatment strategies for breast cancer.
Collapse
|
10
|
Augustine T, John P, Friedman T, Jiffry J, Guzik H, Mannan R, Gupta R, Delano C, Mariadason JM, Zang X, Maitra R, Goel S. Potentiating effect of reovirus on immune checkpoint inhibition in microsatellite stable colorectal cancer. Front Oncol 2022; 12:1018767. [PMID: 36387154 PMCID: PMC9642964 DOI: 10.3389/fonc.2022.1018767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/28/2022] [Indexed: 09/27/2023] Open
Abstract
The majority of colorectal cancers (CRCs) are microsatellite stable (MSS) and resistant to immunotherapy. The current study explores the possibility of using oncolytic reovirus to sensitize MSS CRC to immune checkpoint inhibition. While reovirus reduced metabolic activity among KRAS Mut cells, microarray/computational analysis revealed microsatellite status-oriented activation of immune-response pathways. Reovirus plus anti-PD-1 treatment increased cell death among MSS cells ex vivo. Reduced tumorigenicity and proliferative index, and increased apoptosis were evident among CT26 [MSS, KRAS Mut], but not in MC38 [microsatellite unstable/MSI, KRAS Wt] syngeneic mouse models under combinatorial treatment. PD-L1-PD-1 signaling axis were differentially altered among CT26/MC38 models. Combinatorial treatment activated the innate immune system, pattern recognition receptors, and antigen presentation markers. Furthermore, we observed the reduction of immunosuppressive macrophages and expansion of effector T cell subsets, as well as reduction in T cell exhaustion. The current investigation sheds light on the immunological mechanisms of the reovirus-anti-PD-1 combination to reduce the growth of MSS CRC.
Collapse
Affiliation(s)
- Titto Augustine
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Peter John
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tyler Friedman
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Jeeshan Jiffry
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Hillary Guzik
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Rifat Mannan
- Department of Pathology, City of Hope, Duarte, CA, United States
| | - Riya Gupta
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Computer Science, Columbia University, New York, NY, United States
| | - Catherine Delano
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - John M. Mariadason
- Gastrointestinal Cancers Program and Oncogenic Transcription Laboratory, Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Melbourne, VIC, Australia
| | - Xingxing Zang
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Radhashree Maitra
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
- Department of Biology, Yeshiva University, New York, NY, United States
| | - Sanjay Goel
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
11
|
Chakraborty P, Parikh RY, Choi S, Tran D, Gooz M, Hedley ZT, Kim DS, Pytel D, Kang I, Nadig SN, Beeson GC, Ball L, Mehrotra M, Wang H, Berto S, Palanisamy V, Li H, Chatterjee S, Rodriguez PC, Maldonado EN, Diehl JA, Gangaraju VK, Mehrotra S. Carbon Monoxide Activates PERK-Regulated Autophagy to Induce Immunometabolic Reprogramming and Boost Antitumor T-cell Function. Cancer Res 2022; 82:1969-1990. [PMID: 35404405 PMCID: PMC9117468 DOI: 10.1158/0008-5472.can-21-3155] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/27/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
Mitochondria and endoplasmic reticulum (ER) share structural and functional networks and activate well-orchestrated signaling processes to shape cells' fate and function. While persistent ER stress (ERS) response leads to mitochondrial collapse, moderate ERS promotes mitochondrial function. Strategies to boost antitumor T-cell function by targeting ER-mitochondria cross-talk have not yet been exploited. Here, we used carbon monoxide (CO), a short-lived gaseous molecule, to test whether engaging moderate ERS conditions can improve mitochondrial and antitumor functions in T cells. In melanoma antigen-specific T cells, CO-induced transient activation of ERS sensor protein kinase R-like endoplasmic reticulum kinase (PERK) significantly increased antitumor T-cell function. Furthermore, CO-induced PERK activation temporarily halted protein translation and induced protective autophagy, including mitophagy. The use of LC3-GFP enabled differentiation between the cells that prepare themselves to undergo active autophagy (LC3-GFPpos) and those that fail to enter the process (LC3-GFPneg). LC3-GFPpos T cells showed strong antitumor potential, whereas LC3-GFPneg cells exhibited a T regulatory-like phenotype, harbored dysfunctional mitochondria, and accumulated abnormal metabolite content. These anomalous ratios of metabolites rendered the cells with a hypermethylated state and distinct epigenetic profile, limiting their antitumor activity. Overall, this study shows that ERS-activated autophagy pathways modify the mitochondrial function and epigenetically reprogram T cells toward a superior antitumor phenotype to achieve robust tumor control. SIGNIFICANCE Transient activation of ER stress with carbon monoxide drives mitochondrial biogenesis and protective autophagy that elicits superior antitumor T-cell function, revealing an approach to improving adoptive cell efficacy therapy.
Collapse
Affiliation(s)
- Paramita Chakraborty
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Rasesh Y Parikh
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Seungho Choi
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Danh Tran
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Monika Gooz
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Zachariah T Hedley
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Do-Sung Kim
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Dariusz Pytel
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Inhong Kang
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Satish N Nadig
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Gyda C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Lauren Ball
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Meenal Mehrotra
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Viswanathan Palanisamy
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Hong Li
- Department of Public Health, Medical University of South Carolina, Charleston, South Carolina
| | - Shilpak Chatterjee
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Paulo C Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Eduardo N Maldonado
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - J Alan Diehl
- Department of Biochemistry, Case Western University, Cleveland, Ohio
| | - Vamsi K Gangaraju
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
- Department of Microbiology & Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
12
|
Tian Y, Xie D, Yang L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct Target Ther 2022; 7:117. [PMID: 35387984 PMCID: PMC8987060 DOI: 10.1038/s41392-022-00951-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses (OVs) are emerging as potentially useful platforms in treatment methods for patients with tumors. They preferentially target and kill tumor cells, leaving healthy cells unharmed. In addition to direct oncolysis, the essential and attractive aspect of oncolytic virotherapy is based on the intrinsic induction of both innate and adaptive immune responses. To further augment this efficacious response, OVs have been genetically engineered to express immune regulators that enhance or restore antitumor immunity. Recently, combinations of OVs with other immunotherapies, such as immune checkpoint inhibitors (ICIs), chimeric antigen receptors (CARs), antigen-specific T-cell receptors (TCRs) and autologous tumor-infiltrating lymphocytes (TILs), have led to promising progress in cancer treatment. This review summarizes the intrinsic mechanisms of OVs, describes the optimization strategies for using armed OVs to enhance the effects of antitumor immunity and highlights rational combinations of OVs with other immunotherapies in recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Yaomei Tian
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China
- College of Bioengineering, Sichuan University of Science & Engineering, No. 519, Huixing Road, 643000, Zigong, Sichuan, People's Republic of China
| | - Daoyuan Xie
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
13
|
Gundu C, Arruri VK, Sherkhane B, Khatri DK, Singh SB. GSK2606414 attenuates PERK/p-eIF2α/ATF4/CHOP axis and augments mitochondrial function to mitigate high glucose induced neurotoxicity in N2A cells. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100087. [PMID: 35146419 PMCID: PMC8819026 DOI: 10.1016/j.crphar.2022.100087] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/04/2021] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Neuronal dysfunction and subsequent apoptosis under high glucose conditions during diabetes contribute majorly to the manifestation of diabetic peripheral neuropathy (DPN). PERK (protein kinase RNA (PKR)-like ER kinase) one among the three canonical arms of unfolded protein response (UPR), is believed to play a crucial role in determining the cell fate during endoplasmic reticulum stress (ERS/ER stress) conditions. We evaluated the role of PERK inhibitor GSK2606414 in high glucose (30 mM) treated neuroblastoma (N2A) cells. High glucose resulted in disruption of ER proteostasis by activation of UPR which is evident through increased (p < 0.001) expression of GRP78, p-PERK, p-eIF2α, ATF-4 and CHOP when compared to normal cells. It is accompanied with enhanced GRP78 localization in Endoplasmic Reticulum (ER) lumen evident from ER labeling Immunofluorescence (IF) staining. PERK activation resulted in altered mitochondrial function evident by increased mitochondrial superoxide production and compromised mitochondrial homeostasis with decrease in Mfn-2 levels. Additionally, ER stress induced neuronal apoptosis was attenuated by GSK2606414 treatment via inhibiting the PERK-eIF2α-ATF4-CHOP axis that not only curtailed the levels of apoptotic proteins like Bax and caspase 3 but also elevated the levels of anti-apoptotic Bcl-2. Collectively, our findings revealed the neuroprotective potential of GSK2606414 against high glucose induced neurotoxicity in N2A cells. Unregulated ER stress drives neuronal (N2A) apoptosis following high glucose (HG) exposure (30 mM). Mitochondrial dysfunction aggravated by ER stress under hyperglycemic conditions. PERK/p-eIF2α/ATF4/CHOP axis underlies the apoptosis of N2A cells upon HG exposure. GSK2606414 attenuates PERK/p-eIF2α/ATF4/CHOP axis to mitigate HG induced neurotoxicity in N2A cells.
Collapse
|
14
|
Kamynina M, Tskhovrebova S, Fares J, Timashev P, Laevskaya A, Ulasov I. Oncolytic Virus-Induced Autophagy in Glioblastoma. Cancers (Basel) 2021; 13:cancers13143482. [PMID: 34298694 PMCID: PMC8304501 DOI: 10.3390/cancers13143482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023] Open
Abstract
Simple Summary Glioblastoma (GBM) is the most common and aggressive brain tumor with an incidence rate of nearly 3.19/100,000. Current therapeutic options fall short in improving the survival of patients with GBM. Various genetic and microenvironmental factors contribute to GBM progression and resistance to therapy. The development of gene therapies using self-replicating oncolytic viruses can advance GBM treatment. Due to GBM heterogeneity, oncolytic viruses have been genetically modified to improve the antiglioma effect in vitro and in vivo. Oncolytic viruses can activate autophagy signaling in GBM upon tumoral infection. Autophagy can be cytoprotective, whereby the GBM cells catabolize damaged organelles to accommodate to virus-induced stress, or cytotoxic, whereby it leads to the destruction of GBM cells. Understanding the molecular mechanisms that control oncolytic virus-induced autophagic signaling in GBM can fuel further development of novel and more effective genetic vectors. Abstract Autophagy is a catabolic process that allows cells to scavenge damaged organelles and produces energy to maintain cellular homeostasis. It is also an effective defense method for cells, which allows them to identify an internalized pathogen and destroy it through the fusion of the autophagosome and lysosomes. Recent reports have demonstrated that various chemotherapeutic agents and viral gene therapeutic vehicles provide therapeutic advantages for patients with glioblastoma as monotherapy or in combination with standards of care. Despite nonstop efforts to develop effective antiglioma therapeutics, tumor-induced autophagy in some studies manifests tumor resistance and glioma progression. Here, we explore the functional link between autophagy regulation mediated by oncolytic viruses and discuss how intracellular interactions control autophagic signaling in glioblastoma. Autophagy induced by oncolytic viruses plays a dual role in cell death and survival. On the one hand, autophagy stimulation has mostly led to an increase in cytotoxicity mediated by the oncolytic virus, but, on the other hand, autophagy is also activated as a cell defense mechanism against intracellular pathogens and modulates antiviral activity through the induction of ER stress and unfolded protein response (UPR) signaling. Despite the fact that the moment of switch between autophagic prosurvival and prodeath modes remains to be known, in the context of oncolytic virotherapy, cytotoxic autophagy is a crucial mechanism of cancer cell death.
Collapse
Affiliation(s)
- Margarita Kamynina
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (S.T.); (A.L.)
| | - Salome Tskhovrebova
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (S.T.); (A.L.)
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Department of Polymers and Composites, N. N. Semenov Institute of Chemical Physics, 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasia Laevskaya
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (S.T.); (A.L.)
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (S.T.); (A.L.)
- Correspondence:
| |
Collapse
|
15
|
Dent P, Booth L, Roberts JL, Poklepovic A, Cridebring D, Reiman EM. Inhibition of heat shock proteins increases autophagosome formation, and reduces the expression of APP, Tau, SOD1 G93A and TDP-43. Aging (Albany NY) 2021; 13:17097-17117. [PMID: 34252884 PMCID: PMC8312464 DOI: 10.18632/aging.203297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022]
Abstract
Aberrant expression and denaturation of Tau, amyloid-beta and TDP-43 can lead to cell death and is a major component of pathologies such as Alzheimer’s Disease (AD). AD neurons exhibit a reduced ability to form autophagosomes and degrade proteins via autophagy. Using genetically manipulated colon cancer cells we determined whether drugs that directly inhibit the chaperone ATPase activity or cause chaperone degradation and endoplasmic reticulum stress signaling leading to macroautophagy could reduce the levels of these proteins. The antiviral chaperone ATPase inhibitor AR12 reduced the ATPase activities and total expression of GRP78, HSP90, and HSP70, and of Tau, Tau 301L, APP, APP692, APP715, SOD1 G93A and TDP-43. In parallel, it increased the phosphorylation of ATG13 S318 and eIF2A S51 and caused eIF2A-dependent autophagosome formation and autophagic flux. Knock down of Beclin1 or ATG5 prevented chaperone, APP and Tau degradation. Neratinib, used to treat HER2+ breast cancer, reduced chaperone levels and expression of Tau and APP via macroautophagy, and neratinib interacted with AR12 to cause further reductions in protein levels. The autophagy-regulatory protein ATG16L1 is expressed as two isoforms, T300 or A300: Africans trend to express T300 and Europeans A300. We observed higher basal expression of Tau in T300 cells when compared to isogenic A300 cells. ATG16L1 isoform expression did not alter basal levels of HSP90, HSP70 or HSP27, however, basal levels of GRP78 were reduced in A300 cells. The abilities of both AR12 and neratinib to stimulate ATG13 S318 and eIF2A S51 phosphorylation and autophagic flux was also reduced in A300 cells. Our data support further evaluation of AR12 and neratinib in neuronal cells as repurposed treatments for AD.
Collapse
Affiliation(s)
- Paul Dent
- Department of Biochemistry and Molecular Biology, Richmond, VA 23298, USA
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Richmond, VA 23298, USA
| | - Jane L Roberts
- Department of Pharmacology and Toxicology, Richmond, VA 23298, USA
| | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Derek Cridebring
- Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, USA
| | - Eric M Reiman
- Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, USA.,Banner Alzheimer's Institute, Phoenix, AZ 85006, USA
| |
Collapse
|
16
|
Chianese A, Santella B, Ambrosino A, Stelitano D, Rinaldi L, Galdiero M, Zannella C, Franci G. Oncolytic Viruses in Combination Therapeutic Approaches with Epigenetic Modulators: Past, Present, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13112761. [PMID: 34199429 PMCID: PMC8199618 DOI: 10.3390/cancers13112761] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Cancer rates have been accelerating significantly in recent years. Despite notable advances having been made in cancer therapy, and numerous studies being currently conducted in clinical trials, research is always looking for new treatment. Novel and promising anticancer therapies comprise combinations of oncolytic viruses and epigenetic modulators, including chromatin modifiers, such as DNA methyltransferase and histone deacetylases, and microRNA. Combinatorial treatments have several advantages: they enhance viral entry, replication, and spread between proximal cells and, moreover, they strengthen the immune response. In this review we summarize the main combination of therapeutic approaches, giving an insight into past, present, and future perspectives. Abstract According to the World Cancer Report, cancer rates have been increased by 50% with 15 million new cases in the year 2020. Hepatocellular carcinoma (HCC) is the only one of the most common tumors to cause a huge increase in mortality with a survival rate between 40% and 70% at 5 years, due to the high relapse and limitations associated with current therapies. Despite great progress in medicine, oncological research is always looking for new therapies: different technologies have been evaluated in clinical trials and others have been already used in clinics. Among them, oncolytic virotherapy represents a therapeutic option with a widespread possibility of approaches and applications. Oncolytic viruses are naturally occurring, or are engineered, viruses characterized by the unique features of preferentially infecting, replicating, and lysing malignant tumor cells, as well as activating the immune response. The combination of oncolytic virotherapy and chemical drugs are arousing great interest in the tumor treatment. In this scenario, novel and promising anticancer therapies comprise combinations of oncolytic viruses and epigenetic modulators or inhibitors of the signalling pathways. Combination treatments are required to improve the immune response and allow viral entry, replication, and diffusion between proximal cells. In this review, we summarize all combination therapies associated with virotherapy, including co-administered inhibitors of chromatin modifiers (combination strategies) and inserted target sites for miRNAs (recombination or arming strategies).
Collapse
Affiliation(s)
- Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Biagio Santella
- Section of Microbiology and Virology, University Hospital “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Annalisa Ambrosino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Debora Stelitano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
- Section of Microbiology and Virology, University Hospital “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
- Correspondence: (C.Z.); (G.F.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Correspondence: (C.Z.); (G.F.)
| |
Collapse
|
17
|
Lee S, Kim HS, Min BH, Kim BG, Kim SA, Nam H, Lee M, Kim M, Hwang HY, Leesong AI, Leesong MM, Kim JH, Shin JS. Enhancement of anti-inflammatory and immunomodulatory effects of adipose-derived human mesenchymal stem cells by making uniform spheroid on the new nano-patterned plates. Biochem Biophys Res Commun 2021; 552:164-169. [PMID: 33751933 DOI: 10.1016/j.bbrc.2021.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/05/2021] [Indexed: 02/08/2023]
Abstract
Human mesenchymal stem cells (MSCs) are known to have anti-inflammatory and immunomodulatory functions; thus, several MSC products have been applied as cell therapy in clinical trials worldwide. Recent studies have demonstrated that MSC spheroids have superior anti-inflammatory and immunomodulatory functions to a single cell suspension. Current methods to prepare MSC spheroids include hanging drop, concave microwell aggregation, spinner flask, and gravity circulation. However, all these methods have limitations such as low scalability, easy cell clumping, low viability, and irregular size distribution. Here, we present a nano-patterned culture plasticware named PAMcell™ 3D plate to overcome these limitations. Nano-sized silica particles (700 nm) coated with RGD peptide were arrayed into fusiform onto the PLGA film. This uniform array enabled the seeded MSCs to grow only on the silica particles, forming uniform-sized semi-spheroids within 48 h. These MSC spheroids have been shown to have enhanced stemness, anti-inflammatory, and immunomodulatory functions, as revealed by the increased expression of stem cell markers (Oct4, Sox2, and Nanog), anti-inflammatory (IL-10, TSG6, and IDO), and immunomodulatory molecules (HGF, VEGF, CXCR4) both at mRNA and protein expression levels. Furthermore, these MSC spheroids demonstrated an increased palliative effect on glycemic control in a multiple low-dose streptozotocin-induced diabetes model compared with the same number of MSC single cell suspensions. Taken together, this study presents a new method to produce uniform-sized MSC spheroids with enhanced anti-inflammatory and immunomodulatory functions in vitro and in vivo.
Collapse
Affiliation(s)
- Sangho Lee
- R&D Center, YidoBio, Inc., 123 Beolmal-ro, Anyang-si, Gyeonggi-do, 14056, South Korea
| | - Hyo-Sop Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Byoung-Hoon Min
- R&D Center, YidoBio, Inc., 123 Beolmal-ro, Anyang-si, Gyeonggi-do, 14056, South Korea
| | - Byoung Geun Kim
- R&D Center, YidoBio, Inc., 123 Beolmal-ro, Anyang-si, Gyeonggi-do, 14056, South Korea
| | - Shin Ae Kim
- R&D Center, YidoBio, Inc., 123 Beolmal-ro, Anyang-si, Gyeonggi-do, 14056, South Korea
| | - Hyeyoung Nam
- R&D Center, YidoBio, Inc., 123 Beolmal-ro, Anyang-si, Gyeonggi-do, 14056, South Korea
| | - Minsuk Lee
- R&D Center, YidoBio, Inc., 123 Beolmal-ro, Anyang-si, Gyeonggi-do, 14056, South Korea
| | - Minsun Kim
- R&D Center, YidoBio, Inc., 123 Beolmal-ro, Anyang-si, Gyeonggi-do, 14056, South Korea
| | - Hye Yeon Hwang
- R&D Center, YidoBio, Inc., 123 Beolmal-ro, Anyang-si, Gyeonggi-do, 14056, South Korea
| | - Alex Inkeun Leesong
- R&D Center, YidoBio, Inc., 123 Beolmal-ro, Anyang-si, Gyeonggi-do, 14056, South Korea
| | | | - Jae-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.
| | - Jun-Seop Shin
- R&D Center, YidoBio, Inc., 123 Beolmal-ro, Anyang-si, Gyeonggi-do, 14056, South Korea.
| |
Collapse
|
18
|
A new horizon for the old antibacterial drug clofoctol. Drug Discov Today 2021; 26:1302-1310. [PMID: 33581321 DOI: 10.1016/j.drudis.2021.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/16/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
The synthetic antibacterial drug clofoctol (CFT) has long been used to treat respiratory tract infections in Europe. In recent years, the drug was found to target two biologically important proteins, the Cdc7/Dbf4 protein kinase complex and the mRNA-binding protein cold shock domain containing E1 (CSDE1), also known as upstream-of-N-Ras protein (UNR). These interactions are at the origin of the antitumor activity of CFT, recently evidenced in prostate cancer and neuroglioma. Drug-protein binding models provide a structural basis to guide the design of more potent anticancer compounds. A renewed interest in CFT can be anticipated for the treatment of cancers, and possibly Coronavirus 2019 (COVID-19).
Collapse
|
19
|
Jin KT, Du WL, Liu YY, Lan HR, Si JX, Mou XZ. Oncolytic Virotherapy in Solid Tumors: The Challenges and Achievements. Cancers (Basel) 2021; 13:cancers13040588. [PMID: 33546172 PMCID: PMC7913179 DOI: 10.3390/cancers13040588] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022] Open
Abstract
Oncolytic virotherapy (OVT) is a promising approach in cancer immunotherapy. Oncolytic viruses (OVs) could be applied in cancer immunotherapy without in-depth knowledge of tumor antigens. The capability of genetic modification makes OVs exciting therapeutic tools with a high potential for manipulation. Improving efficacy, employing immunostimulatory elements, changing the immunosuppressive tumor microenvironment (TME) to inflammatory TME, optimizing their delivery system, and increasing the safety are the main areas of OVs manipulations. Recently, the reciprocal interaction of OVs and TME has become a hot topic for investigators to enhance the efficacy of OVT with less off-target adverse events. Current investigations suggest that the main application of OVT is to provoke the antitumor immune response in the TME, which synergize the effects of other immunotherapies such as immune-checkpoint blockers and adoptive cell therapy. In this review, we focused on the effects of OVs on the TME and antitumor immune responses. Furthermore, OVT challenges, including its moderate efficiency, safety concerns, and delivery strategies, along with recent achievements to overcome challenges, are thoroughly discussed.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China; (K.-T.J.); (Y.-Y.L.)
| | - Wen-Lin Du
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China;
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yu-Yao Liu
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China; (K.-T.J.); (Y.-Y.L.)
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China;
| | - Jing-Xing Si
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Correspondence: (J.-X.S.); (X.-Z.M.); Tel./Fax: +86-571-85893781 (J.-X.S.); +86-571-85893985 (X.-Z.M.)
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
- Correspondence: (J.-X.S.); (X.-Z.M.); Tel./Fax: +86-571-85893781 (J.-X.S.); +86-571-85893985 (X.-Z.M.)
| |
Collapse
|
20
|
Reovirus and the Host Integrated Stress Response: On the Frontlines of the Battle to Survive. Viruses 2021; 13:v13020200. [PMID: 33525628 PMCID: PMC7910986 DOI: 10.3390/v13020200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
Cells are continually exposed to stressful events, which are overcome by the activation of a number of genetic pathways. The integrated stress response (ISR) is a large component of the overall cellular response to stress, which ultimately functions through the phosphorylation of the alpha subunit of eukaryotic initiation factor-2 (eIF2α) to inhibit the energy-taxing process of translation. This response is instrumental in the inhibition of viral infection and contributes to evolution in viruses. Mammalian orthoreovirus (MRV), an oncolytic virus that has shown promise in over 30 phase I–III clinical trials, has been shown to induce multiple arms within the ISR pathway, but it successfully evades, modulates, or subverts each cellular attempt to inhibit viral translation. MRV has not yet received Food and Drug Administration (FDA) approval for general use in the clinic; therefore, researchers continue to study virus interactions with host cells to identify circumstances where MRV effectiveness in tumor killing can be improved. In this review, we will discuss the ISR, MRV modulation of the ISR, and discuss ways in which MRV interaction with the ISR may increase the effectiveness of cancer therapeutics whose modes of action are altered by the ISR.
Collapse
|
21
|
Gilchrist VH, Jémus-Gonzalez E, Said A, Alain T. Kinase inhibitors with viral oncolysis: Unmasking pharmacoviral approaches for cancer therapy. Cytokine Growth Factor Rev 2020; 56:83-93. [PMID: 32690442 DOI: 10.1016/j.cytogfr.2020.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/28/2022]
Abstract
There are more than 500 kinases in the human genome, many of which are oncogenic once constitutively activated. Fortunately, numerous hyperactive kinases are druggable, and several targeted small molecule kinase inhibitors have demonstrated impressive clinical benefits in cancer treatment. However, their often cytostatic rather than cytotoxic effect on cancer cells, and the development of resistance mechanisms, remain significant limitations to these targeted therapies. Oncolytic viruses are an emerging class of immunotherapeutic agents with a specific oncotropic nature and excellent safety profile, highlighting them as a promising alternative to conventional therapeutic modalities. Nonetheless, the clinical efficacy of oncolytic virotherapy is challenged by immunological and physical barriers that limit viral delivery, replication, and spread within tumours. Several of these barriers are often associated with oncogenic kinase activity and, in some cases, worsened by the action of oncolytic viruses on kinase signaling during infection. What if inhibiting these kinases could potentiate the cancer-lytic and anti-tumour immune stimulating properties of oncolytic virotherapies? This could represent a paradigm shift in the use of specific kinase inhibitors in the clinic and provide a novel therapeutic approach to the treatment of cancers. A phase III clinical trial combining the oncolytic Vaccinia virus Pexa-Vec with the kinase inhibitor Sorafenib was initiated. While this trial failed to show any benefits over Sorafenib monotherapy in patients with advanced liver cancer, several pre-clinical studies demonstrate that targeting kinases combined with oncolytic viruses have synergistic effects highlighting this strategy as a unique avenue to cancer therapy. Herein, we review the combinations of oncolytic viruses with kinase inhibitors reported in the literature and discuss the clinical opportunities that represent these pharmacoviral approaches.
Collapse
Affiliation(s)
- Victoria Heather Gilchrist
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| | - Estephanie Jémus-Gonzalez
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada
| | - Aida Said
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|