1
|
Gomari MM, Ghantabpour T, Pourgholam N, Rostami N, Hatfield SM, Namazifar F, Abkhiz S, Eslami SS, Ramezanpour M, Darestanifarahani M, Astsaturov I, Bencherif SA. Breaking barriers: Smart vaccine platforms for cancer immunomodulation. Cancer Commun (Lond) 2025; 45:529-571. [PMID: 39901621 PMCID: PMC12067400 DOI: 10.1002/cac2.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
Despite significant advancements in cancer treatment, current therapies often fail to completely eradicate malignant cells. This shortfall underscores the urgent need to explore alternative approaches such as cancer vaccines. Leveraging the immune system's natural ability to target and kill cancer cells holds great therapeutic potential. However, the development of cancer vaccines is hindered by several challenges, including low stability, inadequate immune response activation, and the immunosuppressive tumor microenvironment, which limit their efficacy. Recent progress in various fields, such as click chemistry, nanotechnology, exosome engineering, and neoantigen design, offer innovative solutions to these challenges. These achievements have led to the emergence of smart vaccine platforms (SVPs), which integrate protective carriers for messenger ribonucleic acid (mRNA) with functionalization strategies to optimize targeted delivery. Click chemistry further enhances SVP performance by improving the encapsulation of mRNA antigens and facilitating their precise delivery to target cells. This review highlights the latest developments in SVP technologies for cancer therapy, exploring both their opportunities and challenges in advancing these transformative approaches.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Department of Medical BiotechnologyFaculty of Allied MedicineIran University of Medical SciencesTehranIran
| | - Taha Ghantabpour
- Department of AnatomySchool of MedicineQazvin University of Medical SciencesQazvinIran
| | - Nima Pourgholam
- School of Nursing and MidwiferyIran University of Medical ScienceTehranIran
| | - Neda Rostami
- Department of Chemical EngineeringArak UniversityArakIran
| | - Stephen M. Hatfield
- New England Inflammation and Tissue Protection InstituteDepartment of Pharmaceutical SciencesNortheastern UniversityBostonMassachusettsUSA
- Department of Chemical EngineeringNortheastern UniversityBostonMassachusettsUSA
| | | | - Shadi Abkhiz
- Department of Medical BiotechnologyFaculty of Allied MedicineIran University of Medical SciencesTehranIran
| | - Seyed Sadegh Eslami
- Department of Medical BiotechnologyFaculty of Allied MedicineIran University of Medical SciencesTehranIran
- Molecular Proteomics LaboratoryBaker Heart and Diabetes InstituteMelbourneVictoriaAustralia
| | - Mahsa Ramezanpour
- Department of Medical BiotechnologyFaculty of Allied MedicineIran University of Medical SciencesTehranIran
| | | | - Igor Astsaturov
- Marvin and Concetta Greenberg Pancreatic Cancer InstituteFox Chase Cancer CenterPhiladelphiaPennsylvaniaUSA
| | - Sidi A. Bencherif
- Department of Chemical EngineeringNortheastern UniversityBostonMassachusettsUSA
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Polymers, Biopolymers Surfaces (PBS) LaboratoryNational Center for Scientific Research (CNRS) Mixed Research Unit (UMR) 6270University Rouen NormandieRouenFrance
| |
Collapse
|
2
|
Afrashteh F, Seyedpour S, Rezaei N. The therapeutic effect of mRNA vaccines in glioma: a comprehensive review. Expert Rev Clin Immunol 2025:1-13. [PMID: 40249391 DOI: 10.1080/1744666x.2025.2494656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/18/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
INTRODUCTION Glioma is the most common primary brain tumor, with glioblastoma being the most lethal type due to its heterogeneous and invasive nature of the cancer. Current therapies have low curative success and are limited to surgery, radiotherapy, and chemotherapy. More than 50% of patients become resistant to chemotherapy, and tumor recurrence occurs in most patients following an initial course of therapy. Therefore, developing novel, effective strategies for glioma treatment is essential. Cancer vaccines are novel therapies that demonstrate advantages over conventional methods and, therefore, may be promising options for treating glioma. AREAS COVERED This article provided a critical review of pre-clinical and clinical studies that explored appropriate tumor antigen candidates for developing mRNA vaccines and discussed their clinical application in glioma patients. Medline database, PubMed, and ClinicalTrials.gov were searched for glioma vaccine studies published before 2025 using related keywords. EXPERT OPINION mRNA vaccines are promising strategies for treating glioma because they are efficient, cost-beneficial, and have lower side effects than other types such as peptide or DNA-based vaccines.
Collapse
Affiliation(s)
- Fatemeh Afrashteh
- Student Research Committee, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Simin Seyedpour
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Park CK, Khalil M, Pham NA, Wong S, Ly D, Sacher A, Tsao MS. Humanized Mouse Models for Immuno-Oncology Research: A Review and Implications in Lung Cancer Research. JTO Clin Res Rep 2025; 6:100781. [PMID: 39990135 PMCID: PMC11847118 DOI: 10.1016/j.jtocrr.2024.100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 02/25/2025] Open
Abstract
Cancer immunotherapy has brought significant clinical benefits to patients with cancer, including those with lung cancer. Patient-derived tumor xenograft mouse models have become the preferred animal model for translational cancer research and preclinical studies. Given the unmet need for improved predictive models in immuno-oncology, humanized mouse models which are co-engrafted with both human tumors and immune system components have been used to investigate novel immunotherapeutics. These models have similarly been used to predict immune-related adverse events and to develop predictive biomarkers. This review summarizes key concepts related to humanized mouse models. We highlight the various approaches to generate them, factors that are critical to successfully establishing such models, their respective limitations, and considerations in model selection for preclinical lung cancer immuno-oncology research and therapeutic studies.
Collapse
Affiliation(s)
- Cheol-Kyu Park
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hosptial, Hwasun, Republic of Korea
- Research Institute of Medical Science, Chonnam National University, Gwangju, Republic of Korea
| | - Maryam Khalil
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University Health Network, Toronto, Ontario, Canada
| | - Nhu-An Pham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Stephanie Wong
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Dalam Ly
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Adrian Sacher
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Ahmed T, Alam KT. Biomimetic Nanoparticle Based Targeted mRNA Vaccine Delivery as a Novel Therapy for Glioblastoma Multiforme. AAPS PharmSciTech 2025; 26:68. [PMID: 39984771 DOI: 10.1208/s12249-025-03065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/06/2025] [Indexed: 02/23/2025] Open
Abstract
The prognosis for patients with glioblastoma multiforme (GBM), an aggressive and deadly brain tumor, is poor due to the limited therapeutic options available. Biomimetic nanoparticles have emerged as a promising vehicle for targeted mRNA vaccine delivery, thanks to recent advances in nanotechnology. This presents a novel treatment method for GBM. This review explores the potential of using biomimetic nanoparticles to improve the specificity and effectiveness of mRNA vaccine against GBM. These nanoparticles can evade immune detection, cross the blood-brain barrier, & deliver mRNA directly to glioma cells by mimicking natural biological structures. This allows glioma cells to produce tumor-specific antigens that trigger strong immune responses against the tumor. This review discusses biomimetic nanoparticle design strategies, which are critical for optimizing transport and ensuring targeted action. These tactics include surface functionalization and encapsulation techniques. It also highlights the ongoing preclinical research and clinical trials that demonstrate the therapeutic advantages and challenges of this strategy. Biomimetic nanoparticles for mRNA vaccine delivery represent a new frontier in GBM treatment, which could impact the management of this deadly disease and improve patient outcomes by integrating cutting-edge nanotechnology with immunotherapy.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Plot 15, Block B, Bashundhara R/A, Dhaka, 1229, Bangladesh.
| | - Kazi Tasnuva Alam
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Plot 15, Block B, Bashundhara R/A, Dhaka, 1229, Bangladesh
| |
Collapse
|
5
|
Yang L, Li S, Hou C, Wang Z, He W, Zhang W. Recent advances in mRNA-based therapeutics for neurodegenerative diseases and brain tumors. NANOSCALE 2025; 17:3537-3548. [PMID: 39750745 DOI: 10.1039/d4nr04394d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Messenger RNA (mRNA) therapy is an innovative approach that delivers specific protein-coding information. By promoting the ribosomal synthesis of target proteins within cells, it supplements functional or antigenic proteins to treat diseases. Unlike traditional gene therapy, mRNA does not need to enter the cell nucleus, reducing the risks associated with gene integration. Moreover, protein expression levels can be regulated by adjusting the dosage and degradation rates of mRNA. As a new generation gene therapy strategy, mRNA therapy represents the latest advancements and trends in the field. It offers advantages such as precision, safety, and ease of modification. It has been widely used in the prevention of COVID-19. Unlike acute conditions such as cerebral hemorrhage and stroke that often require immediate surgical or interventional treatments, neurodegenerative diseases (NDs) and brain tumors progress relatively slowly and face challenges such as the blood-brain barrier and complex pathogenesis. These characteristics make them particularly suitable for mRNA therapy. With continued research, mRNA-based therapeutics are expected to play a significant role in the prevention and treatment of NDs and brain tumors. This paper reviews the preparation and delivery of mRNA drugs and summarizes the research progress of mRNA gene therapy in treating NDs and brain tumors. It also discusses the current challenges, providing a theoretical basis and reference for future research in this field.
Collapse
Affiliation(s)
- Lizhi Yang
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Shuo Li
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Chao Hou
- Department of Ultrasound, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zihua Wang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Wen He
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Wei Zhang
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Sipos F, Műzes G. Interconnection of CD133 Stem Cell Marker with Autophagy and Apoptosis in Colorectal Cancer. Int J Mol Sci 2024; 25:11201. [PMID: 39456981 PMCID: PMC11508732 DOI: 10.3390/ijms252011201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
CD133 protein expression is observable in differentiated cells, stem cells, and progenitor cells within normal tissues, as well as in tumor tissues, including colorectal cancer cells. The CD133 protein is the predominant cell surface marker utilized to detect cancer cells exhibiting stem cell-like characteristics. CD133 alters common abnormal processes in colorectal cancer, such as the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and Wnt/β-catenin pathways. Autophagy is a cellular self-digestion mechanism that preserves the intracellular milieu and plays a dual regulatory role in cancer. In cancer cells, apoptosis is a critical cell death mechanism that can impede cancer progression. CD133 can modulate autophagy and apoptosis in colorectal cancer cells via several signaling pathways; hence, it is involved in the regulation of these intricate processes. This can be an explanation for why CD133 expression is associated with enhanced cellular self-renewal, migration, invasion, and survival under stress conditions in colorectal cancer. The purpose of this review article is to explain the complex relationship between the CD133 protein, apoptosis, and autophagy. We also want to highlight the possible ways that CD133-mediated autophagy may affect the apoptosis of colorectal cancer cells. Targeting the aforementioned mechanisms may have a significant therapeutic role in eliminating CD133-positive stem cell-phenotype colorectal cancer cells, which can be responsible for tumor recurrence.
Collapse
Affiliation(s)
- Ferenc Sipos
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| | - Györgyi Műzes
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| |
Collapse
|
7
|
Tan Q, Li F, Wang J, Liu Y, Cai Y, Zou Y, Jiang X. Dendritic Cells Loaded With Heat Shock Inactivated Glioma Stem Cells Enhance Antitumor Response of Mouse Glioma When Combining With CD47 Blockade. Clin Med Insights Oncol 2024; 18:11795549241285239. [PMID: 39429684 PMCID: PMC11487516 DOI: 10.1177/11795549241285239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/30/2024] [Indexed: 10/22/2024] Open
Abstract
Background For glioma patients, the long-term advantages of dendritic cells (DCs) immunization remain unknown. It is extremely important to develop new treatment strategies that enhance the immunotherapy effect of DC-based vaccines. DCs exposed to glioma stem cells (GSCs) are considered promising vaccines against glioma. Methods Glioma stem cells were isolated from mouse glioma GL261 cells (GCs). Both were subjected to severe (47°C) and mild (42°C) heat shock to induce immunogenic cell death (ICD). Membrane mobilization of calreticulin (CRT) and release of heat shock proteins (HSPs) were detected by flow cytometry. Dendritic cells were then exposed to heat-inactivated cells and co-culturing of T cells tested for immunotherapeutic efficacy in vitro. In vivo, we investigated the GSC targeting effect of the GSC-DC vaccine combined with CD47 blockade. Results Heat shock induced ICD in GCs and GSCs, as indicated by significant release of calreticulin, HSP70, and HSP90. Heat shock condition ICD lysates induce maturation and activation-associated marker expression on monocyte-derived DCs. Accordingly, DCs pulsed with GCs and GSCs inactivated reduced colony formation, sphere formation, migration, and invasion of glioma and GSCs in vitro. Glioma stem cell-DC vaccine in combination with anti-CD47 antibody significantly enhanced survival in mice with glioma, induced production of interferon (IFN)-γ, and enhanced T-cell expansion in vivo. Of note, DCs pulsed with inactivated GSCs were more effective to control tumor growth than DCs pulsed with inactive GCs. Conclusions Severe heat shock induces ICD in vitro. These data showed that administration of anti-CD47 antibody combined with GSC-DC vaccine may represent an effective immunotherapeutic strategy for cancer patients in clinical.
Collapse
Affiliation(s)
- Qijia Tan
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
- Department of Neurosurgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feng Li
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Jun Wang
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yi Liu
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yingqian Cai
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yuxi Zou
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Xiaodan Jiang
- Department of Neurosurgery Center, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| |
Collapse
|
8
|
Mao M, Yang W, Zhang X. Current mRNA-based vaccine strategies for glioma treatment. Crit Rev Oncol Hematol 2024; 202:104459. [PMID: 39097247 DOI: 10.1016/j.critrevonc.2024.104459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024] Open
Abstract
Gliomas are one of the most aggressive types of brain tumors and are associated with high morbidity and mortality rates. Currently, conventional treatments for gliomas such as surgical resection, radiotherapy, and chemotherapy have limited effectiveness, and new approaches are needed to improve patient outcomes. mRNA-based vaccines represent a promising therapeutic strategy for cancer treatment, including gliomas. Recent advances in immunotherapy using mRNA-based dendritic cell vaccines have shown great potential in preclinical and clinical trials. Dendritic cells are professional antigen-presenting cells that play a crucial role in initiating and regulating immune responses. In this review, we summarize the current progress of mRNA-based vaccines for gliomas, with a focus on recent advances in dendritic cell-based mRNA vaccines. We also discuss the feasibility and safety of mRNA-based clinical applications for gliomas.
Collapse
Affiliation(s)
- Mengqian Mao
- Neuroscience & Metabolism Research, Department of Neurosurgery, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Wanchun Yang
- Neuroscience & Metabolism Research, Department of Neurosurgery, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xuefeng Zhang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, China.
| |
Collapse
|
9
|
Wang J, Zhu H, Gan J, Liang G, Li L, Zhao Y. Engineered mRNA Delivery Systems for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308029. [PMID: 37805865 DOI: 10.1002/adma.202308029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Indexed: 10/09/2023]
Abstract
Messenger RNA (mRNA)-based therapeutic strategies have shown remarkable promise in preventing and treating a staggering range of diseases. Optimizing the structure and delivery system of engineered mRNA has greatly improved its stability, immunogenicity, and protein expression levels, which has led to a wider range of uses for mRNA therapeutics. Herein, a thorough analysis of the optimization strategies used in the structure of mRNA is first provided and delivery systems are described in great detail. Furthermore, the latest advancements in biomedical engineering for mRNA technology, including its applications in combatting infectious diseases, treating cancer, providing protein replacement therapy, conducting gene editing, and more, are summarized. Lastly, a perspective on forthcoming challenges and prospects concerning the advancement of mRNA therapeutics is offered. Despite these challenges, mRNA-based therapeutics remain promising, with the potential to revolutionize disease treatment and contribute to significant advancements in the biomedical field.
Collapse
Affiliation(s)
- Ji Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Haofang Zhu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jingjing Gan
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Gaofeng Liang
- Institute of Organoids on Chips Translational Research, Henan Academy of Sciences, Zhengzhou, 450009, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Institute of Organoids on Chips Translational Research, Henan Academy of Sciences, Zhengzhou, 450009, China
| |
Collapse
|
10
|
Goyal F, Chattopadhyay A, Navik U, Jain A, Reddy PH, Bhatti GK, Bhatti JS. Advancing Cancer Immunotherapy: The Potential of mRNA Vaccines As a Promising Therapeutic Approach. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202300255] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Indexed: 01/11/2025]
Abstract
AbstractmRNA vaccines have long been recognized for their ability to induce robust immune responses. The discovery that mRNA vaccines may also contribute to antitumor immunity has made them a promising therapeutic approach against cancer. Recent advances in understanding of immune system are precious in developing therapeutic strategies that target pathways involved in tumor survival and progression, leading to the most reliable therapeutic strategies in cancer treatment history. Among all traditional cancer treatments, cancer immunotherapies are less toxic and more effective, even in advanced or recurrent stages of cancer. Recent advancements in genomics and machine learning algorithms give new insight into vaccine development. mRNA vaccines are designed to interfere with stimulator of interferon genes (STING) and tumor‐infiltrating lymphocytes pathways, activating more CD8+ T‐cells involved in destroying tumor cells and inhibiting tumor growth. A stronger immune response can be achieved by incorporating immunological adjuvants alongside mRNA. Nonformulated or vehicle‐based mRNA vaccines, when combined with adjuvants, efficiently express tumor antigens through antigen‐presenting cells and stimulate both innate and adaptive immune responses. Codelivery with additional immunotherapeutic agents, such as checkpoint inhibitors, further enhances the efficacy of mRNA vaccines. This article focuses on the current clinical approaches and challenges to consider when developing mRNA‐based vaccine technology for cancer treatment.
Collapse
Affiliation(s)
- Falak Goyal
- Laboratory of Translational Medicine and Nanotherapeutics Department of Human Genetics and Molecular Medicine School of Health Sciences Central University of Punjab Bathinda 151401 India
| | - Anandini Chattopadhyay
- Laboratory of Translational Medicine and Nanotherapeutics Department of Human Genetics and Molecular Medicine School of Health Sciences Central University of Punjab Bathinda 151401 India
| | - Umashanker Navik
- Department of Pharmacology School of Health Sciences Central University of Punjab Bathinda 151401 India
| | - Aklank Jain
- Department of Zoology Central University of Punjab Bathinda Punjab 151401 India
| | - P. Hemachandra Reddy
- Department of Internal Medicine Texas Tech University Health Sciences Center Lubbock TX 79430 USA
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging Texas Tech University Health Sciences Center Lubbock TX 79430 USA
- Department of Public Health Graduate School of Biomedical Sciences Texas Tech University Health Sciences Center Lubbock TX 79430 USA
- Department of Neurology Texas Tech University Health Sciences Center Lubbock TX 79430 USA
- Department of Speech Language, and Hearing Sciences Texas Tech University Health Sciences Center Lubbock TX 79430 USA
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology University Institute of Applied Health Sciences Chandigarh University Mohali 140413 India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics Department of Human Genetics and Molecular Medicine School of Health Sciences Central University of Punjab Bathinda 151401 India
| |
Collapse
|
11
|
Xiong Z, Raphael I, Olin M, Okada H, Li X, Kohanbash G. Glioblastoma vaccines: past, present, and opportunities. EBioMedicine 2024; 100:104963. [PMID: 38183840 PMCID: PMC10808938 DOI: 10.1016/j.ebiom.2023.104963] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/08/2024] Open
Abstract
Glioblastoma (GBM) is one of the most lethal central nervous systems (CNS) tumours in adults. As supplements to standard of care (SOC), various immunotherapies improve the therapeutic effect in other cancers. Among them, tumour vaccines can serve as complementary monotherapy or boost the clinical efficacy with other immunotherapies, such as immune checkpoint blockade (ICB) and chimeric antigen receptor T cells (CAR-T) therapy. Previous studies in GBM therapeutic vaccines have suggested that few neoantigens could be targeted in GBM due to low mutation burden, and single-peptide therapeutic vaccination had limited efficacy in tumour control as monotherapy. Combining diverse antigens, including neoantigens, tumour-associated antigens (TAAs), and pathogen-derived antigens, and optimizing vaccine design or vaccination strategy may help with clinical efficacy improvement. In this review, we discussed current GBM therapeutic vaccine platforms, evaluated and potential antigenic targets, current challenges, and perspective opportunities for efficacy improvement.
Collapse
Affiliation(s)
- Zujian Xiong
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA; Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, PR China
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Michael Olin
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China.
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
12
|
Qian D, Liu Y, Zheng J, Cai J. Dendritic cell therapy for neurospoagioma: Immunomodulation mediated by tumor vaccine. Cell Death Discov 2024; 10:11. [PMID: 38184649 PMCID: PMC10771477 DOI: 10.1038/s41420-023-01782-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/08/2024] Open
Abstract
Neurospagioma, arising from different glial cells such as astrocytes, oligodendrocytes, and ependymal cells, stands as the prevalent intracranial tumor within the central nervous system. Among its variants, glioblastoma (GBM) represents the most aggressive form, characterized by a notably high occurrence rate and a discouragingly low survival prognosis. The formidable challenge posed by glioblastoma underscores its critical importance as a life-threatening ailment. Currently, clinical approaches often involve surgical excision along with a combination of radiotherapy and chemotherapy. However, these treatments frequently result in a notable recurrence rate, accompanied by substantial adverse effects that significantly compromise the overall prognosis. Hence, there is a crucial need to investigate novel and dependable treatment strategies. Dendritic cells (DCs), being specialized antigen-presenting cells (APCs), hold a significant position in both innate and adaptive immune responses. Presently, DC vaccines have gained widespread application in the treatment of various tumors, including neurospoagioma. In this review, we summarize the immunomodulatory effects and related mechanisms of DC vaccines in neurospoagioma as well as the progress of clinical trials to propose possible challenges of DC vaccines and new development directions.
Collapse
Affiliation(s)
- Da Qian
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu, 215500, Jiangsu Province, China.
| | - Yuxiang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 150086, Harbin, China
| | - Jie Zheng
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu, 215500, Jiangsu Province, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 150086, Harbin, China.
| |
Collapse
|
13
|
Moreno-Londoño AP, Robles-Flores M. Functional Roles of CD133: More than Stemness Associated Factor Regulated by the Microenvironment. Stem Cell Rev Rep 2024; 20:25-51. [PMID: 37922108 PMCID: PMC10799829 DOI: 10.1007/s12015-023-10647-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/05/2023]
Abstract
CD133 protein has been one of the most used surface markers to select and identify cancer cells with stem-like features. However, its expression is not restricted to tumoral cells; it is also expressed in differentiated cells and stem/progenitor cells in various normal tissues. CD133 participates in several cellular processes, in part orchestrating signal transduction of essential pathways that frequently are dysregulated in cancer, such as PI3K/Akt signaling and the Wnt/β-catenin pathway. CD133 expression correlates with enhanced cell self-renewal, migration, invasion, and survival under stress conditions in cancer. Aside from the intrinsic cell mechanisms that regulate CD133 expression in each cellular type, extrinsic factors from the surrounding niche can also impact CD33 levels. The enhanced CD133 expression in cells can confer adaptive advantages by amplifying the activation of a specific signaling pathway in a context-dependent manner. In this review, we do not only describe the CD133 physiological functions known so far, but importantly, we analyze how the microenvironment changes impact the regulation of CD133 functions emphasizing its value as a marker of cell adaptability beyond a cancer-stem cell marker.
Collapse
Affiliation(s)
- Angela Patricia Moreno-Londoño
- Department of Biochemistry, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico
| | - Martha Robles-Flores
- Department of Biochemistry, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico.
| |
Collapse
|
14
|
Subtirelu RC, Teichner EM, Ashok A, Parikh C, Talasila S, Matache IM, Alnemri AG, Anderson V, Shahid O, Mannam S, Lee A, Werner T, Revheim ME, Alavi A. Advancements in dendritic cell vaccination: enhancing efficacy and optimizing combinatorial strategies for the treatment of glioblastoma. Front Neurol 2023; 14:1271822. [PMID: 38020665 PMCID: PMC10644823 DOI: 10.3389/fneur.2023.1271822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Glioblastomas (GBM) are highly invasive, malignant primary brain tumors. The overall prognosis is poor, and management of GBMs remains a formidable challenge, necessitating novel therapeutic strategies such as dendritic cell vaccinations (DCVs). While many early clinical trials demonstrate an induction of an antitumoral immune response, outcomes are mixed and dependent on numerous factors that vary between trials. Optimization of DCVs is essential; the selection of GBM-specific antigens and the utilization of 18F-fludeoxyglucose Positron Emission Tomography (FDG-PET) may add significant value and ultimately improve outcomes for patients undergoing treatment for glioblastoma. This review provides an overview of the mechanism of DCV, assesses previous clinical trials, and discusses future strategies for the integration of DCV into glioblastoma treatment protocols. To conclude, the review discusses challenges associated with the use of DCVs and highlights the potential of integrating DCV with standard therapies.
Collapse
Affiliation(s)
- Robert C. Subtirelu
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Eric M. Teichner
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Arjun Ashok
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chitra Parikh
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sahithi Talasila
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Irina-Mihaela Matache
- Department of Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ahab G. Alnemri
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Victoria Anderson
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Osmaan Shahid
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Sricharvi Mannam
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Andrew Lee
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Thomas Werner
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Mona-Elisabeth Revheim
- Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
15
|
Hu X, Jiang C, Gao Y, Xue X. Human dendritic cell subsets in the glioblastoma-associated microenvironment. J Neuroimmunol 2023; 383:578147. [PMID: 37643497 DOI: 10.1016/j.jneuroim.2023.578147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/24/2023] [Accepted: 07/05/2023] [Indexed: 08/31/2023]
Abstract
Glioblastoma (GBM) is the most aggressive type of glioma (Grade IV). The presence of cytotoxic T lymphocyte (CTLs) has been associated with improved outcomes in patients with GBM, and it is believed that the activation of CTLs by dendritic cells may play a critical role in controlling the growth of GBM. DCs are professional antigen-presenting cells (APC) that orchestrate innate and adaptive anti-GBM immunity. DCs can subsequently differentiate into plasmacytoid DCs (pDC), conventional DC1 (cDC1), conventional (cDC2), and monocyte-derived DCs (moDC) depending on environmental exposure. The different subsets of DCs exhibit varying functional capabilities in antigen presentation and T cell activation in producing an antitumor response. In this review, we focus on recent studies describing the phenotypic and functional characteristics of DC subsets in humans and their respective antitumor immunity and immunotolerance roles in the GBM-associated microenvironment. The critical components of crosstalk between DC subsets that contribute significantly to GBM-specific immune responses are also highlighted in this review with reference to the latest literature. Since DCs could be prime targets for therapeutic intervention, it is worth summarizing the relevance of DC subsets with respect to GBM-associated immunologic tolerance and their therapeutic potential.
Collapse
Affiliation(s)
- Xiaopeng Hu
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China; Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China
| | - Chunmei Jiang
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China
| | - Yang Gao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China.
| | - Xingkui Xue
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China.
| |
Collapse
|
16
|
Hotchkiss KM, Batich KA, Mohan A, Rahman R, Piantadosi S, Khasraw M. Dendritic cell vaccine trials in gliomas: Untangling the lines. Neuro Oncol 2023; 25:1752-1762. [PMID: 37289203 PMCID: PMC10547519 DOI: 10.1093/neuonc/noad088] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Glioblastoma is a deadly brain tumor without any significantly successful treatments to date. Tumor antigen-targeted immunotherapy platforms including peptide and dendritic cell (DC) vaccines, have extended survival in hematologic malignancies. The relatively "cold" tumor immune microenvironment and heterogenous nature of glioblastoma have proven to be major limitations to translational application and efficacy of DC vaccines. Furthermore, many DC vaccine trials in glioblastoma are difficult to interpret due to a lack of contemporaneous controls, absence of any control comparison, or inconsistent patient populations. Here we review glioblastoma immunobiology aspects that are relevant to DC vaccines, review the clinical experience with DC vaccines targeting glioblastoma, discuss challenges in clinical trial design, and summarize conclusions and directions for future research for the development of effective DC vaccines for patients.
Collapse
Affiliation(s)
- Kelly M Hotchkiss
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| | - Kristen A Batich
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| | - Aditya Mohan
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| | - Rifaquat Rahman
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven Piantadosi
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA(S.P.)
| | - Mustafa Khasraw
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
17
|
Lin S, Li K, Qi L. Cancer stem cells in brain tumors: From origin to clinical implications. MedComm (Beijing) 2023; 4:e341. [PMID: 37576862 PMCID: PMC10412776 DOI: 10.1002/mco2.341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Malignant brain tumors are highly heterogeneous tumors with a poor prognosis and a high morbidity and mortality rate in both children and adults. The cancer stem cell (CSC, also named tumor-initiating cell) model states that tumor growth is driven by a subset of CSCs. This model explains some of the clinical observations of brain tumors, including the almost unavoidable tumor recurrence after initial successful chemotherapy and/or radiotherapy and treatment resistance. Over the past two decades, strategies for the identification and characterization of brain CSCs have improved significantly, supporting the design of new diagnostic and therapeutic strategies for brain tumors. Relevant studies have unveiled novel characteristics of CSCs in the brain, including their heterogeneity and distinctive immunobiology, which have provided opportunities for new research directions and potential therapeutic approaches. In this review, we summarize the current knowledge of CSCs markers and stemness regulators in brain tumors. We also comprehensively describe the influence of the CSCs niche and tumor microenvironment on brain tumor stemness, including interactions between CSCs and the immune system, and discuss the potential application of CSCs in brain-based therapies for the treatment of brain tumors.
Collapse
Affiliation(s)
- Shuyun Lin
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Kaishu Li
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Ling Qi
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| |
Collapse
|
18
|
Dain L, Zhu G. Nucleic acid immunotherapeutics and vaccines: A promising approach to glioblastoma multiforme treatment. Int J Pharm 2023; 638:122924. [PMID: 37037396 PMCID: PMC10194422 DOI: 10.1016/j.ijpharm.2023.122924] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023]
Abstract
Glioblastoma multiforme (GBM) is a deadly and difficult to treat primary brain tumor for which satisfactory therapeutics have yet to be discovered. While cancer immunotherapeutics, such as immune checkpoint inhibitors, have successfully improved the treatment of some other types of cancer, the poorly immunogenic GBM tumor cells and the immunosuppressive GBM tumor microenvironment have made it difficult to develop GBM immunotherapeutics. Nucleic acids therapeutics and vaccines, particularly those of mRNA, have become a popular field of research in recent years. This review presents the progress of nucleic acid therapeutics and vaccines for GBM and briefly covers some representative delivery methods of nucleic acids to the central nervous system (CNS) for GBM therapy.
Collapse
Affiliation(s)
- Lauren Dain
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology and Drug Discovery, School of Pharmacy; The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Guizhi Zhu
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology and Drug Discovery, School of Pharmacy; The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
19
|
Sun H, Zhang Y, Wang G, Yang W, Xu Y. mRNA-Based Therapeutics in Cancer Treatment. Pharmaceutics 2023; 15:pharmaceutics15020622. [PMID: 36839944 PMCID: PMC9964383 DOI: 10.3390/pharmaceutics15020622] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/15/2023] Open
Abstract
Over the past two decades, significant technological innovations have led to messenger RNA (mRNA) becoming a promising option for developing prophylactic and therapeutic vaccines, protein replacement therapies, and genome engineering. The success of the two COVID-19 mRNA vaccines has sparked new enthusiasm for other medical applications, particularly in cancer treatment. In vitro-transcribed (IVT) mRNAs are structurally designed to resemble naturally occurring mature mRNA. Delivery of IVT mRNA via delivery platforms such as lipid nanoparticles allows host cells to produce many copies of encoded proteins, which can serve as antigens to stimulate immune responses or as additional beneficial proteins for supplements. mRNA-based cancer therapeutics include mRNA cancer vaccines, mRNA encoding cytokines, chimeric antigen receptors, tumor suppressors, and other combination therapies. To better understand the current development and research status of mRNA therapies for cancer treatment, this review focused on the molecular design, delivery systems, and clinical indications of mRNA therapies in cancer.
Collapse
Affiliation(s)
- Han Sun
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ge Wang
- Department of Oral Maxillofacial & Head and Neck Oncology, National Center of Stomatology, National Clinical Research Center for Oral Disease, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wen Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence:
| |
Collapse
|
20
|
Guo W, Qiao T, Li T. The role of stem cells in small-cell lung cancer: evidence from chemoresistance to immunotherapy. Semin Cancer Biol 2022; 87:160-169. [PMID: 36371027 DOI: 10.1016/j.semcancer.2022.11.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Small cell lung cancer (SCLC) is the most aggressive subtype of lung cancer, accounting for approximately 15% among all lung cancers. Despite the ability of chemotherapy, the first-line treatment for SCLC, to rapidly shrink tumors, nearly all patients experience recurrence and metastasis within a few months. Cancer stem cells (CSCs) are a small population of tumor cells responsible for tumorigenesis, metastasis, and recurrence after treatment, which play a crucial role in chemoresistance by promoting DNA repair and expression of drug resistance-associated proteins. Thus, targeting CSCs has been successful in certain malignancies. Tumor therapy has entered the era of immunotherapy and numerous preclinical trials have demonstrated the effectiveness of immunotherapeutic approaches targeting CSCs, such as tumor vaccines and chimeric antigen receptor (CAR) T cell, and the feasibility of combining them with chemotherapy. Therefore, a deeper understanding of the interaction between CSCs and immune system is essential to facilitate the advances of new immunotherapies approaches targeting CSCs as well as combination with standard drugs such as chemotherapy. This narrative review summarizes the mechanisms of chemoresistance of CSCs in SCLC and the latest advances in targeted therapies. Thereafter, we discuss the effects of CSCs on tumor immune microenvironment in SCLC and corresponding immunotherapeutic approaches. Eventually, we propose that the combination of immunotherapy targeting CSCs with standard drugs is a promising direction for SCLC therapies.
Collapse
Affiliation(s)
- Wenwen Guo
- Department of Pathology, Xianyang Central Hospital, Xianyang 712000, China
| | - Tianyun Qiao
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
21
|
Li L, Zhou J, Dong X, Liao Q, Zhou D, Zhou Y. Dendritic cell vaccines for glioblastoma fail to complete clinical translation: Bottlenecks and potential countermeasures. Int Immunopharmacol 2022; 109:108929. [PMID: 35700581 DOI: 10.1016/j.intimp.2022.108929] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/20/2022] [Accepted: 06/05/2022] [Indexed: 11/29/2022]
Abstract
Glioblastoma (GBM) is a heterogeneous and invasive WHO grade IV brain tumor. Patients with GBM have a median overall survival (OS) of only 14 to 17 months when treated with surgical resection and chemoradiation. As one of the most promising anti-tumor immunotherapies, dendritic cell (DC) vaccines have demonstrated good efficacy, safety, and tolerability in many clinical trials. However, to date, no Phase III clinical trial has achieved positive endpoints and truly implement clinical development and transformation. Moreover, the survival benefits of DC vaccines for patients with GBM seem to have a delayed effect; therefore, we urgently require strategies to optimize DC vaccines to advance the time point of its survival benefits. Here, we discuss the latest clinical trial progress of DC vaccines in GBM and summarize the benefits and drawbacks of various vaccine design options, as well as the challenges faced in clinical translation. Moreover, we target future combination therapy strategies for DC vaccines in GBM, which provides a new perspective for comprehensively understanding the effectiveness, limitations, and new directions of the development of DC vaccines.
Collapse
Affiliation(s)
- Luohong Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China; Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Jing Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China; Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Xueting Dong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China; Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Dongbo Zhou
- Department of Geriatric, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China, Hunan 410008, China.
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China; Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
22
|
He Q, Gao H, Tan D, Zhang H, Wang JZ. mRNA cancer vaccines: Advances, trends and challenges. Acta Pharm Sin B 2022; 12:2969-2989. [PMID: 35345451 PMCID: PMC8942458 DOI: 10.1016/j.apsb.2022.03.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Patients exhibit good tolerance to messenger ribonucleic acid (mRNA) vaccines, and the choice of encoded molecules is flexible and diverse. These vaccines can be engineered to express full-length antigens containing multiple epitopes without major histocompatibility complex (MHC) restriction, are relatively easy to control and can be rapidly mass produced. In 2021, the U.S. Food and Drug Administration (FDA) approved the first mRNA-based coronavirus disease 2019 (COVID-19) vaccine produced by Pfizer and BioNTech, which has generated enthusiasm for mRNA vaccine research and development. Based on the above characteristics and the development of mRNA vaccines, mRNA cancer vaccines have become a research hotspot and have undergone rapid development, especially in the last five years. This review analyzes the advances in mRNA cancer vaccines from various perspectives, including the selection and expression of antigens/targets, the application of vectors and adjuvants, different administration routes, and preclinical evaluation, to reflect the trends and challenges associated with these vaccines.
Collapse
|
23
|
Esemen Y, Awan M, Parwez R, Baig A, Rahman S, Masala I, Franchini S, Giakoumettis D. Molecular Pathogenesis of Glioblastoma in Adults and Future Perspectives: A Systematic Review. Int J Mol Sci 2022; 23:2607. [PMID: 35269752 PMCID: PMC8910150 DOI: 10.3390/ijms23052607] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM) is the most common and malignant tumour of the central nervous system. Recent appreciation of the heterogeneity amongst these tumours not only changed the WHO classification approach, but also created the need for developing novel and personalised therapies. This systematic review aims to highlight recent advancements in understanding the molecular pathogenesis of the GBM and discuss related novel treatment targets. A systematic search of the literature in the PubMed library was performed following the PRISMA guidelines for molecular pathogenesis and therapeutic advances. Original and meta-analyses studies from the last ten years were reviewed using pre-determined search terms. The results included articles relevant to GBM development focusing on the aberrancy in cell signaling pathways and intracellular events. Theragnostic targets and vaccination to treat GBM were also explored. The molecular pathophysiology of GBM is complex. Our systematic review suggests targeting therapy at the stemness, p53 mediated pathways and immune modulation. Exciting novel immune therapy involving dendritic cell vaccines, B-cell vaccines and viral vectors may be the future of treating GBM.
Collapse
Affiliation(s)
- Yagmur Esemen
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| | - Mariam Awan
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| | - Rabeeia Parwez
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| | - Arsalan Baig
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| | - Shahinur Rahman
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| | - Ilaria Masala
- Department of Trauma and Orthopedics, The James Cook University Hospital, Middlesbrough TS4 3BW, UK;
| | - Sonia Franchini
- General Surgery Department, Queen’s Hospital, Romford, London RM7 0AG, UK;
| | - Dimitrios Giakoumettis
- Neurosurgical Department, Queen’s Hospital, Romford, London RM7 0AG, UK; (Y.E.); (M.A.); (R.P.); (A.B.); (S.R.)
| |
Collapse
|
24
|
Lin H, Wang K, Xiong Y, Zhou L, Yang Y, Chen S, Xu P, Zhou Y, Mao R, Lv G, Wang P, Zhou D. Identification of Tumor Antigens and Immune Subtypes of Glioblastoma for mRNA Vaccine Development. Front Immunol 2022; 13:773264. [PMID: 35185876 PMCID: PMC8847306 DOI: 10.3389/fimmu.2022.773264] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/14/2022] [Indexed: 02/05/2023] Open
Abstract
The use of vaccines for cancer therapy is a promising immunotherapeutic strategy that has been shown to be effective against various cancers. Vaccines directly target tumors but their efficacy against glioblastoma multiforme (GBM) remains unclear. Immunotyping that classifies tumor samples is considered to be a biomarker for immunotherapy. This study aimed to identify potential GBM antigens suitable for vaccine development and develop a tool to predict the response of GBM patients to vaccination based on the immunotype. Gene Expression Profiling Interactive Analysis (GEPIA) was applied to evaluate the expression profile of GBM antigens and their influence on clinical prognosis, while the cBioPortal program was utilized to integrate and analyze genetic alterations. The correlation between antigens and antigen processing cells was assessed using TIMER. RNA-seq data of GBM samples and their corresponding clinical data were downloaded from the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) for further clustering analysis. Six overexpressed and mutated tumor antigens (ARHGAP9, ARHGAP30, CLEC7A, MAN2B1, ARPC1B and PLB1) were highly correlated with the survival rate of GBM patients and the infiltration of antigen presenting cells in GBMs. With distinct cellular and molecular characteristics, three immune subtypes (IS1-IS3) of GBMs were identified and GBMs from IS3 subtype were more likely to benefit from vaccination. Through graph learning-based dimensional reduction, immune landscape was depicted and revealed the existence of heterogeneity among individual GBM patients. Finally, WGCNA can identify potential vaccination biomarkers by clustering immune related genes. In summary, the six tumor antigens are potential targets for developing anti-GBMs mRNA vaccine, and the immunotypes can be used for evaluating vaccination response.
Collapse
Affiliation(s)
- Han Lin
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Kun Wang
- Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yuxin Xiong
- Division of Vascular Intervention Radiology, The Third Affiliated Hospital of Sun Yet-Sen University, Guangzhou, China
| | - Liting Zhou
- International Department, Affiliated High School of South China Normal University, Guangzhou, China
| | - Yong Yang
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shanwei Chen
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Peihong Xu
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yujun Zhou
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Southern Medical University, Guangzhou, China
| | - Rui Mao
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Guangzhao Lv
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Peng Wang
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dong Zhou
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
25
|
Attia N, Mashal M, Pemminati S, Omole A, Edmondson C, Jones W, Priyadarshini P, Mughal T, Aziz P, Zenick B, Perez A, Lacken M. Cell-Based Therapy for the Treatment of Glioblastoma: An Update from Preclinical to Clinical Studies. Cells 2021; 11:116. [PMID: 35011678 PMCID: PMC8750228 DOI: 10.3390/cells11010116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 01/12/2023] Open
Abstract
Glioblastoma (GB), an aggressive primary tumor of the central nervous system, represents about 60% of all adult primary brain tumors. It is notorious for its extremely low (~5%) 5-year survival rate which signals the unsatisfactory results of the standard protocol for GB therapy. This issue has become, over time, the impetus for the discipline of bringing novel therapeutics to the surface and challenging them so they can be improved. The cell-based approach in treating GB found its way to clinical trials thanks to a marvelous number of preclinical studies that probed various types of cells aiming to combat GB and increase the survival rate. In this review, we aimed to summarize and discuss the up-to-date preclinical studies that utilized stem cells or immune cells to treat GB. Likewise, we tried to summarize the most recent clinical trials using both cell categories to treat or prevent recurrence of GB in patients. As with any other therapeutics, cell-based therapy in GB is still hampered by many drawbacks. Therefore, we highlighted several novel techniques, such as the use of biomaterials, scaffolds, nanoparticles, or cells in the 3D context that may depict a promising future when combined with the cell-based approach.
Collapse
Affiliation(s)
- Noha Attia
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
- Laboratory of Pharmaceutics, NanoBioCel Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria 21561, Egypt
| | - Mohamed Mashal
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
- Laboratory of Pharmaceutics, NanoBioCel Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Sudhakar Pemminati
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Adekunle Omole
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Carolyn Edmondson
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Will Jones
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Priyanka Priyadarshini
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Temoria Mughal
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Pauline Aziz
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Blesing Zenick
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Ambar Perez
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| | - Morgan Lacken
- The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda; (S.P.); (A.O.); (C.E.); (W.J.); (P.P.); (T.M.); (P.A.); (B.Z.); (A.P.); (M.L.)
| |
Collapse
|
26
|
Karlsson J, Luly KM, Tzeng SY, Green JJ. Nanoparticle designs for delivery of nucleic acid therapeutics as brain cancer therapies. Adv Drug Deliv Rev 2021; 179:113999. [PMID: 34715258 PMCID: PMC8720292 DOI: 10.1016/j.addr.2021.113999] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/06/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022]
Abstract
Glioblastoma (GBM) is an aggressive central nervous system cancer with a dismal prognosis. The standard of care involves surgical resection followed by radiotherapy and chemotherapy, but five-year survival is only 5.6% despite these measures. Novel therapeutic approaches, such as immunotherapies, targeted therapies, and gene therapies, have been explored to attempt to extend survival for patients. Nanoparticles have been receiving increasing attention as promising vehicles for non-viral nucleic acid delivery in the context of GBM, though delivery is often limited by low blood-brain barrier permeability, particle instability, and low trafficking to target brain structures and cells. In this review, nanoparticle design considerations and new advances to overcome nucleic acid delivery challenges to treat brain cancer are summarized and discussed.
Collapse
Affiliation(s)
- Johan Karlsson
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kathryn M. Luly
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J. Green
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Departments of Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, and the Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
27
|
Tay ASMS, Amano T, Edwards LA, Yu JS. CD133 mRNA-transfected dendritic cells induce coordinated cytotoxic and helper T cell responses against breast cancer stem cells. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:64-71. [PMID: 34485687 PMCID: PMC8403713 DOI: 10.1016/j.omto.2021.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/12/2021] [Indexed: 01/16/2023]
Abstract
Breast cancer, a leading cause of death yearly, has been shown to be initiated and propagated by cancer stem cells. CD133, a cell surface antigen, has been shown to be present on cancer stem cells of many solid tumors, including breast cancer. A limitation to targeting CD133 is major histocompatibility complex (MHC)-restricted presentation of epitopes, leading to activation of only one arm of the immune system: either CD4+ helper T cells or CD8+ cytotoxic T cells. Thus, we hypothesized that by creating an MHC-independent vaccination, we would give rise to a sustained immune response against CD133 in triple-negative breast cancer (TNBCs). We transfected CD133 mRNA into dendritic cells and then tested this in animal models of TNBC. We showed in these models the activation of both CD8+ cytotoxic T cells and CD4+ helper T cells by dendritic cell vaccination with modified CD133 mRNA, with subsequent decrease in tumor growth. This study for the first time demonstrates in a syngeneic mouse model of TNBC that targeting CD133, in an MHC-independent manner, is an effective strategy against the cancer stem cell population, leading to tumor abrogation.
Collapse
Affiliation(s)
| | - Takayuki Amano
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lincoln A Edwards
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John S Yu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
28
|
Wagner PM, Prucca CG, Caputto BL, Guido ME. Adjusting the Molecular Clock: The Importance of Circadian Rhythms in the Development of Glioblastomas and Its Intervention as a Therapeutic Strategy. Int J Mol Sci 2021; 22:8289. [PMID: 34361055 PMCID: PMC8348990 DOI: 10.3390/ijms22158289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Gliomas are solid tumors of the central nervous system (CNS) that originated from different glial cells. The World Health Organization (WHO) classifies these tumors into four groups (I-IV) with increasing malignancy. Glioblastoma (GBM) is the most common and aggressive type of brain tumor classified as grade IV. GBMs are resistant to conventional therapies with poor prognosis after diagnosis even when the Stupp protocol that combines surgery and radiochemotherapy is applied. Nowadays, few novel therapeutic strategies have been used to improve GBM treatment, looking for higher efficiency and lower side effects, but with relatively modest results. The circadian timing system temporally organizes the physiology and behavior of most organisms and daily regulates several cellular processes in organs, tissues, and even in individual cells, including tumor cells. The potentiality of the function of the circadian clock on cancer cells modulation as a new target for novel treatments with a chronobiological basis offers a different challenge that needs to be considered in further detail. The present review will discuss state of the art regarding GBM biology, the role of the circadian clock in tumor progression, and new chrono-chemotherapeutic strategies applied for GBM treatment.
Collapse
Affiliation(s)
- Paula M. Wagner
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - César G. Prucca
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Beatriz L. Caputto
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Mario E. Guido
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| |
Collapse
|
29
|
Adjusting the Molecular Clock: The Importance of Circadian Rhythms in the Development of Glioblastomas and Its Intervention as a Therapeutic Strategy. Int J Mol Sci 2021; 22:8289. [PMID: 34361055 PMCID: PMC8348990 DOI: 10.3390/ijms22158289;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Gliomas are solid tumors of the central nervous system (CNS) that originated from different glial cells. The World Health Organization (WHO) classifies these tumors into four groups (I-IV) with increasing malignancy. Glioblastoma (GBM) is the most common and aggressive type of brain tumor classified as grade IV. GBMs are resistant to conventional therapies with poor prognosis after diagnosis even when the Stupp protocol that combines surgery and radiochemotherapy is applied. Nowadays, few novel therapeutic strategies have been used to improve GBM treatment, looking for higher efficiency and lower side effects, but with relatively modest results. The circadian timing system temporally organizes the physiology and behavior of most organisms and daily regulates several cellular processes in organs, tissues, and even in individual cells, including tumor cells. The potentiality of the function of the circadian clock on cancer cells modulation as a new target for novel treatments with a chronobiological basis offers a different challenge that needs to be considered in further detail. The present review will discuss state of the art regarding GBM biology, the role of the circadian clock in tumor progression, and new chrono-chemotherapeutic strategies applied for GBM treatment.
Collapse
|
30
|
Wang Y, Zhang Z, Luo J, Han X, Wei Y, Wei X. mRNA vaccine: a potential therapeutic strategy. Mol Cancer 2021; 20:33. [PMID: 33593376 PMCID: PMC7884263 DOI: 10.1186/s12943-021-01311-z] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
mRNA vaccines have tremendous potential to fight against cancer and viral diseases due to superiorities in safety, efficacy and industrial production. In recent decades, we have witnessed the development of different kinds of mRNAs by sequence optimization to overcome the disadvantage of excessive mRNA immunogenicity, instability and inefficiency. Based on the immunological study, mRNA vaccines are coupled with immunologic adjuvant and various delivery strategies. Except for sequence optimization, the assistance of mRNA-delivering strategies is another method to stabilize mRNAs and improve their efficacy. The understanding of increasing the antigen reactiveness gains insight into mRNA-induced innate immunity and adaptive immunity without antibody-dependent enhancement activity. Therefore, to address the problem, scientists further exploited carrier-based mRNA vaccines (lipid-based delivery, polymer-based delivery, peptide-based delivery, virus-like replicon particle and cationic nanoemulsion), naked mRNA vaccines and dendritic cells-based mRNA vaccines. The article will discuss the molecular biology of mRNA vaccines and underlying anti-virus and anti-tumor mechanisms, with an introduction of their immunological phenomena, delivery strategies, their importance on Corona Virus Disease 2019 (COVID-19) and related clinical trials against cancer and viral diseases. Finally, we will discuss the challenge of mRNA vaccines against bacterial and parasitic diseases.
Collapse
Affiliation(s)
- Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Jingwen Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Xuejiao Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| |
Collapse
|
31
|
Majc B, Novak M, Kopitar-Jerala N, Jewett A, Breznik B. Immunotherapy of Glioblastoma: Current Strategies and Challenges in Tumor Model Development. Cells 2021; 10:265. [PMID: 33572835 PMCID: PMC7912469 DOI: 10.3390/cells10020265] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most common brain malignant tumor in the adult population, and immunotherapy is playing an increasingly central role in the treatment of many cancers. Nevertheless, the search for effective immunotherapeutic approaches for glioblastoma patients continues. The goal of immunotherapy is to promote tumor eradication, boost the patient's innate and adaptive immune responses, and overcome tumor immune resistance. A range of new, promising immunotherapeutic strategies has been applied for glioblastoma, including vaccines, oncolytic viruses, immune checkpoint inhibitors, and adoptive cell transfer. However, the main challenges of immunotherapy for glioblastoma are the intracranial location and heterogeneity of the tumor as well as the unique, immunosuppressive tumor microenvironment. Owing to the lack of appropriate tumor models, there are discrepancies in the efficiency of various immunotherapeutic strategies between preclinical studies (with in vitro and animal models) on the one hand and clinical studies (on humans) on the other hand. In this review, we summarize the glioblastoma characteristics that drive tolerance to immunotherapy, the currently used immunotherapeutic approaches against glioblastoma, and the most suitable tumor models to mimic conditions in glioblastoma patients. These models are improving and can more precisely predict patients' responses to immunotherapeutic treatments, either alone or in combination with standard treatment.
Collapse
Affiliation(s)
- Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 111 Večna pot, SI-1000 Ljubljana, Slovenia; (B.M.); (M.N.)
- International Postgraduate School Jozef Stefan, 39 Jamova ulica, SI-1000 Ljubljana, Slovenia
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 111 Večna pot, SI-1000 Ljubljana, Slovenia; (B.M.); (M.N.)
| | - Nataša Kopitar-Jerala
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, 39 Jamova ulica, SI-1000 Ljubljana, Slovenia;
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, Los Angeles, CA 90095, USA;
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 111 Večna pot, SI-1000 Ljubljana, Slovenia; (B.M.); (M.N.)
| |
Collapse
|
32
|
Cancer Stem Cells-Key Players in Tumor Relapse. Cancers (Basel) 2021; 13:cancers13030376. [PMID: 33498502 PMCID: PMC7864187 DOI: 10.3390/cancers13030376] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor relapse and treatment failure are unfortunately common events for cancer patients, thus often rendering cancer an uncurable disease. Cancer stem cells (CSCs) are a subset of cancer cells endowed with tumor-initiating and self-renewal capacity, as well as with high adaptive abilities. Altogether, these features contribute to CSC survival after one or multiple therapeutic approaches, thus leading to treatment failure and tumor progression/relapse. Thus, elucidating the molecular mechanisms associated with stemness-driven resistance is crucial for the development of more effective drugs and durable responses. This review will highlight the mechanisms exploited by CSCs to overcome different therapeutic strategies, from chemo- and radiotherapies to targeted therapies and immunotherapies, shedding light on their plasticity as an insidious trait responsible for their adaptation/escape. Finally, novel CSC-specific approaches will be described, providing evidence of their preclinical and clinical applications.
Collapse
|