1
|
Adesola RO, Bakre AA, Adekanmbi AO, Ogunro BN, Adeolu Ogundijo O, Hamzat A, Hossain D, Aribana MA, Balogun LA. Molecular and Epidemiological Characterization of ESBL-producing Escherichia coli from Captive Wild Birds in Zoological Gardens in Nigeria. ENVIRONMENTAL HEALTH INSIGHTS 2025; 19:11786302251329300. [PMID: 40297654 PMCID: PMC12035045 DOI: 10.1177/11786302251329300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/01/2025] [Indexed: 04/30/2025]
Abstract
Aim This study aimed to characterize ESBL-producing E. coli isolates obtained from apparently healthy captive wild birds from selected zoological gardens in Nigeria. Materials and Methods A total of 121 freshly deposited faecal samples were collected from captive wild birds in seven major zoological gardens and pooled into 50 samples. The samples were screened for the presence of E. coli. The isolates obtained were tested against a panel of antibiotics and screened for ESBL production using the double disc synergy test (DDST). Primer-specific PCR was used to detect the carriage of ESBL genes (bla CTX-M, bla TEM and bla SHV) by the isolates. Results A total of 26 ESBL-producing E. coli isolates (52%, n = 26/50) were obtained from the pooled faecal samples of captive wild birds. The highest resistance rate to antibiotics was observed with amoxicillin-clavulanate (88.5%), while the lowest resistance rate was observed with fosfomycin (3.8%). The isolates had Multiple Antibiotic Resistance Index (MARI) values ranging from 0.1 to 0.8 across the tested antibiotics. Approximately 65.4% of the isolates carried bla CTX-M, while bla TEM and bla SHV were detected in 15.4% and 34.6% of the isolates, respectively. Conclusion This study revealed a significant prevalence of ESBL-producing E. coli in captive wild birds in Nigeria and highlighted the need to institute control measures in zoological gardens to prevent the transmission of antibiotic resistance.
Collapse
Affiliation(s)
| | - Adetolase Azizat Bakre
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Abimbola Olumide Adekanmbi
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Nigeria
- Molecular Biology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Nigeria
| | - Bamidele Nyemike Ogunro
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Oluwaseun Adeolu Ogundijo
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Abdulafees Hamzat
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Delower Hossain
- Department of Medicine and Public Health, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University (SAU), Dhaka, Bangladesh
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Lodi, Italy
| | - Moses Aimanosi Aribana
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Nigeria
- Molecular Biology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Nigeria
| | - Luqman Adeola Balogun
- Department of Statistics, Faculty of Physical Sciences, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
2
|
Silva V, Freitas C, Ribeiro J, Igrejas G, Poeta P. Comparative analysis of antibiotic resistance and biofilm formation in Enterococcus spp. across One Health domains. FEMS MICROBES 2025; 6:xtaf005. [PMID: 40370517 PMCID: PMC12077392 DOI: 10.1093/femsmc/xtaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/11/2025] [Accepted: 04/24/2025] [Indexed: 05/16/2025] Open
Abstract
The rise of antibiotic-resistant bacteria is a critical issue across various ecological interfaces, highlighting the need for a One Health approach. Enterococcus spp., known for their ability to acquire and disseminate resistance, serve as an excellent model due to their presence in diverse hosts and environments. This study investigates antimicrobial resistance, biofilm formation capacity, and the efficacy of antibiotics on biofilm biomass reduction in isolates from multiple sources. A total of 197 Enterococcus isolates were used. Antimicrobial resistance was determined using the Kirby-Bauer disc diffusion method, and minimum inhibitory concentrations were tested against vancomycin, tetracycline, and ampicillin. Biofilm formation capacity was assessed, and 10 biofilm-formers were subjected to minimum biofilm inhibitory concentration (MBIC) tests to evaluate biofilm biomass reduction. The results showed high resistance rates to erythromycin (84.5%), ciprofloxacin (59.4%), and tetracycline (44.4%), with moderate resistance to ampicillin (36.2%), chloramphenicol (28%), and vancomycin (24.7%). Biofilm formation was observed in 65% of the isolates, with Enterococcus hirae producing the most biofilm biomass. Vancomycin and ampicillin were more effective in reducing biofilm biomass than tetracycline. Ampicillin-resistant isolates produced more biofilm, suggesting a link between resistance and biofilm formation. This study highlights the complexity of antibiotic-resistant Enterococcus spp. and their biofilms, emphasizing the need for research on One Health.
Collapse
Affiliation(s)
- Vanessa Silva
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 1099-085, Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
| | - Catarina Freitas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
| | - Jessica Ribeiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 1099-085, Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
| | - Gilberto Igrejas
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 1099-085, Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
| | - Patricia Poeta
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 1099-085, Caparica, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal
- CECAV – Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801, Vila Real, Portugal
| |
Collapse
|
3
|
Acharya KP, Phuyal S, Adhikari S, Saied AA. AMR and the wildlife sector: an urgent call for intervention. Vet Rec 2025; 196:42. [PMID: 39752042 DOI: 10.1002/vetr.5091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Krishna Prasad Acharya
- Animal Disease Investigation and Control Division, Department of Livestock Services, Hariharbhawan, Lalitpur, Nepal
| | - Sarita Phuyal
- Central Referral Veterinary Hospital, Department of Livestock Services, Tripureshwar, Kathmandu, Nepal
| | - Sonu Adhikari
- Department of Animal Breeding and Biotechnology, Agriculture and Forestry University, Rampur, Chitwan, Nepal
| | | |
Collapse
|
4
|
Miller EA, Amato R, Ponder JB, Bueno I. Survey of antimicrobial and probiotic use practices in wildlife rehabilitation in the United States. PLoS One 2024; 19:e0308261. [PMID: 39088546 PMCID: PMC11293748 DOI: 10.1371/journal.pone.0308261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/19/2024] [Indexed: 08/03/2024] Open
Abstract
Antimicrobial resistance is a global health concern. As such, there have been increased efforts to monitor and standardize antimicrobial prescribing practices in humans and domestic animals. In contrast, there is relatively little known about specific prescribing practices in wild animals despite the wide use of antimicrobials and other microbial interventions, such as probiotics to treat captive wildlife. Therefore, the goal of this study was to examine current antimicrobial and probiotic use from a cross-section of wildlife rehabilitation facilities in the United States. An anonymous electronic survey was sent to 105 United States permitted wildlife facilities to collect information about admissions, current antimicrobial and probiotic use practices, and current staff knowledge and attitudes surrounding antimicrobial resistance and probiotic effectiveness. Respondents from over 50% of facilities participated in the survey (54/105), including 45 facilities that treated birds. All facilities reported using antimicrobials, including some from groups considered critically important for human medicine, for a wide range of medical conditions and prophylaxis. Among antibiotics, enrofloxacin and amoxicillin-clavulanic acid were the most commonly used. Antifungals were not as widespread, but itraconazole was the most commonly used. Over 75% of respondents said that their facilities would benefit from having standardized antimicrobial guidelines in place. Probiotics were also used in more than 50% of facilities, but there was notable disparity in opinions regarding their efficacy. The results of this survey are a first step towards understanding antimicrobial and probiotic use practices in the treatment of captive wildlife and developing an antimicrobial stewardship program for wildlife rehabilitation.
Collapse
Affiliation(s)
- Elizabeth A. Miller
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Rachel Amato
- The Raptor Center, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Julia B. Ponder
- The Raptor Center, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Irene Bueno
- Bristol Veterinary School, University of Bristol, Langford, Bristol, United Kingdom
| |
Collapse
|
5
|
Rhim H, Gahng J, Baek G, Kim M, Han JI. Morbidity of Rescued Wild Birds by Admission Causes in the Republic of Korea. Animals (Basel) 2024; 14:2071. [PMID: 39061533 PMCID: PMC11273627 DOI: 10.3390/ani14142071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Insufficient reports are available on what clinical and pathological conditions are observed in rescued free-living wild birds. This study investigated recent diagnoses of admitted wild birds based on admission causes in a southwestern area of South Korea over the past 2 years. A retrospective study was conducted on 1464 birds rescued from 2019 to February 2021. Overall, 12 admission subcategories were classified, and the diagnoses identified for each cause were analyzed. The three most frequently observed categories, general, integumentary, and musculoskeletal, each accounted for 20% of the total diagnoses. Trauma accounted for 71.4% of all diagnoses, and 81.5% featured inflammatory conditions, primarily due to trauma or infection. The proportion of birds that presented inflammatory conditions was much greater than the proportion of birds that were admitted due to trauma-related causes. This was because inflammatory diseases were identified at a high frequency, even from nontraumatic admission causes, and inflammatory conditions were not easily revealed. Suspecting an inflammatory condition in most rescued birds is advisable.
Collapse
Affiliation(s)
- Haerin Rhim
- Laboratory of Wildlife Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (H.R.); (J.G.); (G.B.)
- Jeonbuk Wildlife Center, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Jooho Gahng
- Laboratory of Wildlife Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (H.R.); (J.G.); (G.B.)
| | - Geonwoo Baek
- Laboratory of Wildlife Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (H.R.); (J.G.); (G.B.)
- Jeonbuk Wildlife Center, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Myeongsu Kim
- Laboratory of Wildlife Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (H.R.); (J.G.); (G.B.)
- Jeonbuk Wildlife Center, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Jae-Ik Han
- Laboratory of Wildlife Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (H.R.); (J.G.); (G.B.)
- Jeonbuk Wildlife Center, Jeonbuk National University, Iksan 54596, Republic of Korea
| |
Collapse
|
6
|
Medina A, Vega Y, Medina J, López RN, Vayas P, Soria J, Velásquez‐Yambay C, Sánchez‐Gavilanes L, Bastidas‐Caldes C, Calero‐Cáceres W. Characterization of antimicrobial resistance profiles in Escherichia coli isolated from captive mammals in Ecuador. Vet Med Sci 2024; 10:e1546. [PMID: 39016692 PMCID: PMC11253296 DOI: 10.1002/vms3.1546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND This study focuses on the AMR profiles in E. coli isolated from captive mammals at EcoZoo San Martín, Baños de Agua Santa, Ecuador, highlighting the role of wildlife as reservoirs of resistant bacteria. AIMS The aim of this research is to investigate the antimicrobial resistance profiles of E. coli strains isolated from various species of captive mammals, emphasizing the potential zoonotic risks and the necessity for integrated AMR management strategies. MATERIALS & METHODS A total of 189 fecal samples were collected from 70 mammals across 27 species. These samples were screened for E. coli, resulting in 90 identified strains. The resistance profiles of these strains to 16 antibiotics, including 10 β-lactams and 6 non-β-lactams, were determined using the disk diffusion method. Additionally, the presence of Extended-Spectrum Beta-Lactamase (ESBL) genes and other resistance genes was analyzed using PCR. RESULTS Significant resistance was observed, with 52.22% of isolates resistant to ampicillin, 42.22% to ceftriaxone and cefuroxime, and 27.78% identified as ESBL-producing E. coli. Multiresistance (resistance to more than three antibiotic groups) was found in 35.56% of isolates. Carnivorous and omnivorous animals, particularly those with prior antibiotic treatments, were more likely to harbor resistant strains. DISCUSSION These findings underscore the role of captive mammals as indicators of environmental AMR. The high prevalence of resistant E. coli in these animals suggests that zoos could be significant reservoirs for the spread of antibiotic-resistant bacteria. The results align with other studies showing that diet and antibiotic treatment history influence resistance profiles. CONCLUSION The study highlights the need for an integrated approach involving veterinary care, habitat management, and public awareness to prevent captive wildlife from becoming reservoirs of antibiotic-resistant bacteria. Improved waste management practices and responsible antibiotic use are crucial to mitigate the risks of AMR in zoo environments and reduce zoonotic threats.
Collapse
Affiliation(s)
- Anabell Medina
- UTA RAM One HealthDepartment of Food and Biotechnology Science and EngineeringUniversidad Técnica de AmbatoAmbatoEcuador
| | - Yadira Vega
- Department of Animal WelfareEco Zoológico San MartínBañosEcuador
| | - Jennifer Medina
- UTA RAM One HealthDepartment of Food and Biotechnology Science and EngineeringUniversidad Técnica de AmbatoAmbatoEcuador
| | - Rosa N. López
- UTA RAM One HealthDepartment of Food and Biotechnology Science and EngineeringUniversidad Técnica de AmbatoAmbatoEcuador
| | - Patricio Vayas
- UTA RAM One HealthDepartment of Food and Biotechnology Science and EngineeringUniversidad Técnica de AmbatoAmbatoEcuador
| | - Joyce Soria
- UTA RAM One HealthDepartment of Food and Biotechnology Science and EngineeringUniversidad Técnica de AmbatoAmbatoEcuador
| | - Cristian Velásquez‐Yambay
- UTA RAM One HealthDepartment of Food and Biotechnology Science and EngineeringUniversidad Técnica de AmbatoAmbatoEcuador
| | - Lissette Sánchez‐Gavilanes
- UTA RAM One HealthDepartment of Food and Biotechnology Science and EngineeringUniversidad Técnica de AmbatoAmbatoEcuador
| | - Carlos Bastidas‐Caldes
- One Health Research Group, BiotecnologíaFacultad de Ingeniería y Ciencias Aplicadas (FICA)Universidad de las Américas (UDLA)QuitoEcuador
| | - William Calero‐Cáceres
- UTA RAM One HealthDepartment of Food and Biotechnology Science and EngineeringUniversidad Técnica de AmbatoAmbatoEcuador
| |
Collapse
|
7
|
Di Francesco A, Salvatore D, Ranucci A, Gobbi M, Morandi B. Antimicrobial resistance in wildlife: detection of antimicrobial resistance genes in Apennine wolves (Canis lupus italicus Altobello, 1921) from Central Italy. Vet Res Commun 2024; 48:1941-1947. [PMID: 38499909 PMCID: PMC11147935 DOI: 10.1007/s11259-024-10354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/10/2024] [Indexed: 03/20/2024]
Abstract
The aim of this study was to molecularly investigate the presence of antimicrobial resistance genes (ARGs) in organ samples from 11 Apennine wolves (Canis lupus italicus) collected in Central Italy. Samples from lung, liver, spleen, kidney, tongue and intestine were investigated by PCRs targeting the following genes: tet(A), tet(B), tet(C), tet(D), tet(E), tet(G), tet(K), tet(L), tet(M), tet(O), tetA(P), tet(Q), tet(S), tet(X), sul1, sul2, sul3, blaCTX-M, blaSHV, blaTEM and mcr-1. A PCR positivity was highlighted for 13 out of the 21 tested genes; no positive results were obtained for tet(C), tet(D), tet(E), tet(G), sul3, blaCTX, blaSHV and mcr-1 genes. All 11 animals sampled showed positivity for one or more resistance genes. The results confirm the potential role of the wolf as an indicator and/or vector of antimicrobial-resistant bacteria or ARGs.
Collapse
Affiliation(s)
- A Di Francesco
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Ozzano dell' Emilia (BO), Bologna, Italy.
| | - D Salvatore
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Ozzano dell' Emilia (BO), Bologna, Italy
| | - A Ranucci
- Istituto Zooprofilattico dell'Umbria e delle Marche 'Togo Rosati' Perugia, Perugia, Italy
| | - M Gobbi
- Istituto Zooprofilattico dell'Umbria e delle Marche 'Togo Rosati' Perugia, Perugia, Italy
| | - B Morandi
- Istituto Zooprofilattico dell'Umbria e delle Marche 'Togo Rosati' Perugia, Perugia, Italy
| |
Collapse
|
8
|
Dominguez-Villegas E. Wildlife Pediatrics. Vet Clin North Am Exot Anim Pract 2024; 27:411-430. [PMID: 38040565 DOI: 10.1016/j.cvex.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Injured, sick, and orphaned wildlife neonates arrive by the thousands to wildlife rehabilitation centers, veterinary hospitals, and wildlife hospitals in North America. With the ultimate goal of releasing them back into the wild, veterinarians need to know the ecology, biology, and specific problems encountered by the various species of wildlife.
Collapse
|
9
|
Furlan JPR, Ramos MS, Sellera FP, Gonzalez IHL, Ramos PL, Stehling EG. Gram-negative bacterial diversity and evidence of international clones of multidrug-resistant strains in zoo animals. Integr Zool 2024; 19:417-423. [PMID: 37984552 DOI: 10.1111/1749-4877.12790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Enterobacterales and Pseudomonas aeruginosa have been colonizing or infecting wild hosts and antimicrobial-resistant strains are present in mammals and birds. Furthermore, international high-risk clones of multidrug-resistant Escherichia coli are identified and the implications of multidrug-resistant Gram-negative bacteria in zoo animals are discussed.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Micaela Santana Ramos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Fábio Parra Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - Irys Hany Lima Gonzalez
- Coordination of Wild Fauna, Secretary of Environment, Infrastructure and Logistics, São Paulo, Brazil
| | - Patrícia Locosque Ramos
- Coordination of Wild Fauna, Secretary of Environment, Infrastructure and Logistics, São Paulo, Brazil
| | - Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
10
|
Fernandes R, Abreu R, Serrano I, Such R, Garcia-Vila E, Quirós S, Cunha E, Tavares L, Oliveira M. Resistant Escherichia coli isolated from wild mammals from two rescue and rehabilitation centers in Costa Rica: characterization and public health relevance. Sci Rep 2024; 14:8039. [PMID: 38580725 PMCID: PMC10997758 DOI: 10.1038/s41598-024-57812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024] Open
Abstract
This study aimed to characterize the antimicrobial resistance (AMR) and virulence profiles of 67 Escherichia coli isolates obtained from faecal samples of 77 wild mammals from 19 different species, admitted in two rescue and rehabilitation centers in Costa Rica. It was possible to classify 48% (n = 32) of the isolates as multidrug-resistant, and while the highest resistance levels were found towards commonly prescribed antimicrobials, resistance to fluoroquinolones and third generation cephalosporins were also observed. Isolates obtained from samples of rehabilitated animals or animals treated with antibiotics were found to have significantly higher AMR levels, with the former also having a significant association with a multidrug-resistance profile. Additionally, the isolates displayed the capacity to produce α-haemolysins (n = 64, 96%), biofilms (n = 51, 76%) and protease (n = 21, 31%). Our results showed that AMR might be a widespread phenomenon within Costa Rican wildlife and that both free-ranging and rehabilitated wild mammals are potential carriers of bacteria with important resistance and virulence profiles. These results highlight the need to study potential sources of resistance determinants to wildlife, and to determine if wild animals can disseminate resistant bacteria in the environment, potentially posing a significant threat to public health and hindering the implementation of a "One Health" approach.
Collapse
Affiliation(s)
- Rita Fernandes
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Raquel Abreu
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Isa Serrano
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | | | | | - Sandy Quirós
- Alturas Wildlife Sanctuary, Puntarenas, Costa Rica
| | - Eva Cunha
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Luís Tavares
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Manuela Oliveira
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal.
- AL4AnimalS - Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal.
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
11
|
Dunbar A, Drigo B, Djordjevic SP, Donner E, Hoye BJ. Impacts of coprophagic foraging behaviour on the avian gut microbiome. Biol Rev Camb Philos Soc 2024; 99:582-597. [PMID: 38062990 DOI: 10.1111/brv.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 03/06/2024]
Abstract
Avian gut microbial communities are complex and play a fundamental role in regulating biological functions within an individual. Although it is well established that diet can influence the structure and composition of the gut microbiota, foraging behaviour may also play a critical, yet unexplored role in shaping the composition, dynamics, and adaptive potential of avian gut microbiota. In this review, we examine the potential influence of coprophagic foraging behaviour on the establishment and adaptability of wild avian gut microbiomes. Coprophagy involves the ingestion of faeces, sourced from either self (autocoprophagy), conspecific animals (allocoprophagy), or heterospecific animals. Much like faecal transplant therapy, coprophagy may (i) support the establishment of the gut microbiota of young precocial species, (ii) directly and indirectly provide nutritional and energetic requirements, and (iii) represent a mechanism by which birds can rapidly adapt the microbiota to changing environments and diets. However, in certain contexts, coprophagy may also pose risks to wild birds, and their microbiomes, through increased exposure to chemical pollutants, pathogenic microbes, and antibiotic-resistant microbes, with deleterious effects on host health and performance. Given the potentially far-reaching consequences of coprophagy for avian microbiomes, and the dearth of literature directly investigating these links, we have developed a predictive framework for directing future research to understand better when and why wild birds engage in distinct types of coprophagy, and the consequences of this foraging behaviour. There is a need for comprehensive investigation into the influence of coprophagy on avian gut microbiotas and its effects on host health and performance throughout ontogeny and across a range of environmental perturbations. Future behavioural studies combined with metagenomic approaches are needed to provide insights into the function of this poorly understood behaviour.
Collapse
Affiliation(s)
- Alice Dunbar
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
| | - Barbara Drigo
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
- UniSA STEM, University of South Australia, GPO Box 2471, Adelaide, South Australia, 5001, Australia
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, PO Box 123, Ultimo, New South Wales, 2007, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Ultimo, New South Wales, 2007, Australia
| | - Erica Donner
- Future Industries Institute (FII), University of South Australia, Mawson Lakes Campus, GPO Box 2471 5095, Adelaide, South Australia, Australia
- Cooperative Research Centre for Solving Antimicrobial Resistance in Agribusiness, Food, and Environments (CRC SAAFE), University of South Australia, GPO Box 2471 5095, Adelaide, South Australia, Australia
| | - Bethany J Hoye
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
12
|
Rampacci E, Diaferia M, Lucentini L, Brustenga L, Capasso M, Girardi S, Gizzi I, Primavilla S, Veronesi F, Passamonti F. Detection of zoonotic enteropathogens in captive large felids in Italy. Zoonoses Public Health 2024; 71:200-209. [PMID: 38017609 DOI: 10.1111/zph.13099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 06/07/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
AIMS Within the One Health paradigm, infectious disease surveillance have been developed for domestic and wild animals, leaving the role of captive non-domestic populations, especially felids in zoos and circuses, less explored. This study addresses the proximity of these captive animals to urban areas, necessitating focused monitoring for potential zoonotic enteropathogens. The present work aimed to investigate the presence of such zoonotic enteropathogens in faecal samples from captive large felid populations. METHODS AND RESULTS A total of 108 faecal samples were collected in three circuses, five zoos and one rescue centre across Italy. Salmonella spp. isolation, serotyping and antimicrobial susceptibility testing were conducted on all samples. Additionally, 60 samples were also examined for gastrointestinal parasites using standard coprological techniques. Giardia spp. detection employed direct immunofluorescent staining and specific PCR, while Toxoplasma gondii was detected using PCR targeting B1 gene. A total of 51 Salmonella enterica subsp. enterica were isolated, with predominant serovariants including Infantis (43.1%), Coeln (11.8%) and Newport (11.8%). The captive felids likely act as asymptomatic carriers of foodborne Salmonella, with notable resistance ampicillin and trimethoprim-sulfamethoxazole, no resistance to enrofloxacin was noted. Microscopic analysis revealed Toxascaris leonina eggs in 11 faecal samples (18.3%) and Giardia duodenalis cysts in one animal (1.7%). CONCLUSIONS Captive animals in public settings may act as sources of Salmonella infection and enteroparasitosis for both occupational and general exposure. The study emphasizes the role of captive animals in antimicrobial resistance dynamics, highlighting the need for routine pathogen screening in the management practices of zoological structures.
Collapse
Affiliation(s)
- Elisa Rampacci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Manuela Diaferia
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Livia Lucentini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Leonardo Brustenga
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Michele Capasso
- Department of Veterinary Medicine & Animal Production, University of Naples 'Federico II', Naples, Italy
| | - Stefano Girardi
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Ilaria Gizzi
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Sara Primavilla
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Fabrizia Veronesi
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | | |
Collapse
|
13
|
Mullineaux E, Pawson C. Trends in Admissions and Outcomes at a British Wildlife Rehabilitation Centre over a Ten-Year Period (2012-2022). Animals (Basel) 2023; 14:86. [PMID: 38200817 PMCID: PMC10778305 DOI: 10.3390/ani14010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Millions of animals pass through wildlife rehabilitation centres (WRCs) globally each year, some dying in captivity, others euthanised, and some released into the wild. Those caring for these animals are generally well-intentioned, but skills, knowledge, and resources may be limited, potentially compromising animal welfare. WRC databases provide an opportunity to provide an evidence base for treatment and conservation efforts. 42,841 records of animals admitted over a 10-year period to a British WRC were analysed. More birds (69.16%) were admitted than mammals (30.48%) and reptiles and amphibians (0.36%). Most admissions were in the summer (48.8%) and spring (26.0%) months. A total of 9 of the 196 species seen made up 57% of admissions, and hedgehogs were the most common species admitted (14% of all admissions and 20% of mammals). Juvenile animals (35.5%) were admitted more frequently than 'orphans' (26.0%) or adults (26.4%). 'Orphaned' was also the predominant reason for admission (28.3%), followed by 'injured' (25.5%). 42.6% of animals were eventually released back to the wild, 19.2% died in captivity, and 37.2% were euthanised; 1% of outcomes were unknown. The prognosis was better for orphaned animals than for those admitted because of injury. Unexpected natural deaths in captivity were found to decline over the period of study, consistent with improved early triage. These findings can be used to focus veterinary and WRC training and seasonal resources on the species and case types most likely to be successfully rehabilitated and released. The findings also have the potential to contribute to our understanding of anthropogenic impacts, historical and regional variations in ecosystem health, and resultant implications for animal welfare.
Collapse
Affiliation(s)
- Elizabeth Mullineaux
- Capital Veterinary Services Ltd., Haddington, East Lothian EH41 4JN, UK
- Secret World Wildlife Rescue, Highbridge, Somerset TA9 3PZ, UK
| | - Chris Pawson
- Department of Animal and Agriculture, Hartpury University, Hartpury, Gloucestershire GL19 3BE, UK;
- College of Health, Science and Society, University of the West of England, Bristol BS16 1QY, UK
| |
Collapse
|
14
|
Garcês A, Pires I. European Wild Carnivores and Antibiotic Resistant Bacteria: A Review. Antibiotics (Basel) 2023; 12:1725. [PMID: 38136759 PMCID: PMC10740848 DOI: 10.3390/antibiotics12121725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Antibiotic resistance is a global concern that affects not only human health but also the health of wildlife and the environment. Wildlife can serve as reservoirs for antibiotic-resistant bacteria, and antibiotics in veterinary medicine and agriculture can contribute to the development of resistance in these populations. Several European carnivore species, such as wolves, foxes, otters, and bears, can be exposed to antibiotics by consuming contaminated food, water, or other resources in their habitats. These animals can also be indirectly exposed to antibiotics through interactions with domestic animals and human activities in their environment. Antibiotic resistance in wildlife can harm ecosystem health and also impact human health indirectly through various pathways, including zoonotic disease transmission. Moreover, the spread of resistant bacteria in wildlife can complicate conservation efforts, as it can threaten already endangered species. This review aims to describe the presence of antibiotic-resistant bacteria in wild carnivores in Europe.
Collapse
Affiliation(s)
- Andreia Garcês
- Exotic and Wildlife Service from the Veterinary Hospital University of Trás-os-Montes and Alto Douro, Quinta dos Prados, 4500-801 Vila Real, Portugal
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Isabel Pires
- Center of Animal and Veterinary Science CECAV University of Trás-os-Montes and Alto Douro, Quinta dos Prados, 4500-801 Vila Real, Portugal;
| |
Collapse
|
15
|
Sealey JE, Saunders R, Horspool T, Barrows MG, Avison MB. Molecular ecology of highest priority critically important antibiotic resistant Escherichia coli from mammals housed at an urban zoo. J Antimicrob Chemother 2023; 78:1667-1671. [PMID: 37248666 PMCID: PMC10320166 DOI: 10.1093/jac/dkad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/14/2023] [Indexed: 05/31/2023] Open
Abstract
OBJECTIVES Zoos are environments where species of highly valued animals are kept largely separated from others and the wider world. We report the molecular ecology of critically important antibiotic resistant (ABR) Escherichia coli carried by 28 mammalian species housed in a zoo located in an urban residential district. METHODS Over 3 months we collected 167 faecal samples from captive mammals and processed for E. coli resistant to third-generation cephalosporins (3GC-R) and fluoroquinolones (FQ-R). Isolates were sequenced using Illumina. RESULTS We identified high rates of faecal sample-level positivity, with 50%, 57% and 36% of mammalian species excreting 3GC-R, FQ-R or dual 3GC-R/FQ-R E. coli, respectively. Isolates represented multiple ST and ABR mechanisms; CTX-M-15 and CMY-2 dominated for 3GC-R, and target-site mutation caused 75% of FQ-R. We identified multiple examples of ABR E. coli transmission between mammalian species in separate enclosures, and a variant of the epidemic plasmid pCT within the zoo. There was no evidence for ABR E. coli leaving the zoo, based on comparative analysis with E. coli from humans, cattle and dogs isolated from the 50 × 50 km region in which the zoo is located. Amoxicillin/clavulanate was the most widely used antibiotic in the zoo, and we identified four widely disseminated amoxicillin/clavulanate resistance mechanisms, including a previously unreported inhibitor-resistant TEM, and the carbapenemase OXA-181. CONCLUSIONS We conclude that the zoo studied here is a 'melting pot' for the selection and circulation of 3GC-R and FQ-R E. coli, but these circulating E. coli appear captive within the zoo.
Collapse
Affiliation(s)
- Jordan E Sealey
- University of Bristol School of Cellular and Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Richard Saunders
- Bristol Zoological Society, Bristol Zoo Gardens, Clifton, Bristol, BS8 3HA, UK
| | - Teresa Horspool
- Bristol Zoological Society, Bristol Zoo Gardens, Clifton, Bristol, BS8 3HA, UK
| | - Michelle G Barrows
- Bristol Zoological Society, Bristol Zoo Gardens, Clifton, Bristol, BS8 3HA, UK
| | - Matthew B Avison
- University of Bristol School of Cellular and Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
16
|
Smoglica C, Angelucci S, Di Tana F, Antonucci A, Marsilio F, Di Francesco CE. Antibiotic Resistance in the Apennine Wolf ( Canis lupus italicus): Implications for Wildlife and Human Health. Antibiotics (Basel) 2023; 12:950. [PMID: 37370269 DOI: 10.3390/antibiotics12060950] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The Apennine wolf (Canis lupus italicus) is a subspecies of gray wolf that is widespread throughout Italy. Due to hunting and habitat loss, their population declined dramatically in the late 19th and early 20th centuries, but conservation efforts improved to restore the species to an estimated population of 3300 individuals. The presence of antibiotic-resistant bacteria in Apennine Wolf may pose a risk to its health and survival, as well as the health of other animals in its environment. In this study, we investigated the antibiotic resistance profiles of bacteria collected from Apennine wolves admitted to the Wildlife Research Center of Maiella National Park (Italy) in 2022. A total of 12 bacteria collected from four wolves were isolated and tested for susceptibility to antibiotics used in veterinary medicine and to critically important antibiotics for human health by means of the Vitek 2 system. All isolates were resistant to at least one antibiotic, and six bacteria were multidrug resistant to critically important antibiotics (third-generation cephalosporins, carbapenems and fluoroquinolones). The results of this pilot study have allowed for the characterization of resistant profiles in Escherichia coli, Enterococcus faecalis and other bacterial species not previously reported in Apennine wolves. Our findings provide important insights into antibiotic resistance in wildlife and its potential implications for the conservation of biodiversity and public health.
Collapse
Affiliation(s)
- Camilla Smoglica
- Post-Graduation School of Animal Health, Breeding and Zootechnical Productions, Department of Veterinary Medicine, University of Teramo, Loc. Piano D'Accio, 64100 Teramo, Italy
| | - Simone Angelucci
- Post-Graduation School of Animal Health, Breeding and Zootechnical Productions, Department of Veterinary Medicine, University of Teramo, Loc. Piano D'Accio, 64100 Teramo, Italy
- Wildlife Research Center, Maiella National Park, Viale del Vivaio, 65023 Caramanico Terme, Italy
| | - Fabrizia Di Tana
- Wildlife Research Center, Maiella National Park, Viale del Vivaio, 65023 Caramanico Terme, Italy
| | - Antonio Antonucci
- Wildlife Research Center, Maiella National Park, Viale del Vivaio, 65023 Caramanico Terme, Italy
| | - Fulvio Marsilio
- Post-Graduation School of Animal Health, Breeding and Zootechnical Productions, Department of Veterinary Medicine, University of Teramo, Loc. Piano D'Accio, 64100 Teramo, Italy
| | - Cristina Esmeralda Di Francesco
- Post-Graduation School of Animal Health, Breeding and Zootechnical Productions, Department of Veterinary Medicine, University of Teramo, Loc. Piano D'Accio, 64100 Teramo, Italy
| |
Collapse
|
17
|
Ren H, Lu Z, Sun R, Wang X, Zhong J, Su T, He Q, Liao X, Liu Y, Lian X, Sun J. Functional metagenomics reveals wildlife as natural reservoirs of novel β-lactamases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161505. [PMID: 36626997 DOI: 10.1016/j.scitotenv.2023.161505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The antibiotic resistances in bacteria are believed to rapidly evolve over time in the anthropogenic environments which enriched with selection pressures. However, the knowledge regarding the development of antibiotic resistance in wildlife and their habitats is scarce. It is, therefore, of great interest and significance to unveil the yet-unknown antibiotic resistances in wildlife in accordance with One Health concept. To this end, we analyzed the samples taken from wildlife and surrounding environments using a functional metagenomics approach. By functional screening in combination with Illumina sequencing, a total of 32 candidate genes which encoding putative novel β-lactamase were identified. These putative β-lactamase were taxonomically assigned into bacteria of 23 genera from 7 phyla, where Proteobacteria, Actinobacteria and Firmicutes were dominant. The following functional assessment demonstrated that 4 novel β-lactamases, namely blaSSA, blaSSB1, blaSSB2 and blaSSD, were functionally active to confer the phenotypical resistance to bacteria by increasing MICs up to 128-fold. Further analysis indicated that the novel β-lactamases identified in the current study were able to hydrolyze a broad spectrum of β-lactams including cephalosporins, and they were genetically unique comparing with known β-lactamases. The plausible transmission of some novel β-lactamase genes was supported by our results as the same gene was detected in different samples from different sites. This study shed the light on the active role of wildlife and associated environments as natural reservoirs of novel β-lactamases, implying that the antibiotic resistances might evolve in absence of selection pressure and threaten public health once spread into clinically important pathogens.
Collapse
Affiliation(s)
- Hao Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxiang Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ruanyang Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiran Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jiahao Zhong
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Tiantian Su
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Qian He
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yahong Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xinlei Lian
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
18
|
Lan LY, Hong QX, Gao SM, Li Q, You YY, Chen W, Fan PF. Gut microbiota of skywalker hoolock gibbons (Hoolock tianxing) from different habitats and in captivity: Implications for gibbon health. Am J Primatol 2023; 85:e23468. [PMID: 36691713 DOI: 10.1002/ajp.23468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
The gut microbiota plays an integral role in the metabolism and immunity of animal hosts, and provides insights into the health and habitat assessment of threatened animals. The skywalker hoolock gibbon (Hoolock tianxing) is a newly described gibbon species, and is considered an endangered species. Here, we used 16S rRNA amplicon sequencing to describe the fecal bacterial community of skywalker hoolock gibbons from different habitats and in captivity. Fecal samples (n = 5) from two captive gibbons were compared with wild populations (N = 6 gibbons, n = 33 samples). At the phylum level, Spirochetes, Proteobacteria, Firmicutes, Bacteroidetes dominated in captive gibbons, while Firmicutes, Bacteroidetes, and Tenericutes dominated in wild gibbons. At the genus level, captive gibbons were dominated by Treponema-2, followed by Succinivibrio and Cerasicoccus, while wild gibbons were dominated by Anaeroplasma, Prevotellaceae UCG-001, and Erysipelotrichaceae UCG-004. Captive rearing was significantly associated with lower taxonomic alpha-diversity, and different relative abundance of some dominant bacteria compared to wild gibbons. Predicted Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that captive gibbons have significantly lower total pathway diversity and higher relative abundance of bacterial functions involved in "drug resistance: antimicrobial" and "carbohydrate metabolism" than wild gibbons. This study reveals the potential influence of captivity and habitat on the gut bacterial community of gibbons and provides a basis for guiding the conservation management of captive populations.
Collapse
Affiliation(s)
- Li-Ying Lan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi-Xuan Hong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu-Yan You
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Wu Chen
- Guangzhou Zoo, Guangzhou, China
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Albini E, Coccitto SN, Cinthi M, Giovanetti E, Gobbi M, Massacci FR, Pavone S, Magistrali CF, Brenciani A. optrA-mediated linezolid resistance in an Enterococcus faecalis isolate recovered from a wild raptor (Falco peregrinus peregrinus), central Italy. J Glob Antimicrob Resist 2023; 32:48-49. [PMID: 36587793 DOI: 10.1016/j.jgar.2022.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022] Open
Affiliation(s)
- Elisa Albini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Sonia N Coccitto
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Torrette di Ancona, Italy
| | - Marzia Cinthi
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Eleonora Giovanetti
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Marco Gobbi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Francesca R Massacci
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Silvia Pavone
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Chiara F Magistrali
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy.
| | - Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Torrette di Ancona, Italy
| |
Collapse
|
20
|
Di Francesco A, Salvatore D, Bertelloni F, Ebani VV. Tetracycline Resistance Genes in Wild Birds from a Wildlife Recovery Centre in Central Italy. Animals (Basel) 2022; 13:ani13010076. [PMID: 36611686 PMCID: PMC9817859 DOI: 10.3390/ani13010076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/03/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Wild animals are less likely to be exposed directly to clinical antimicrobial agents than domestic animals or humans, but they can acquire antimicrobial-resistant bacteria through contact with humans, animals, and the environment. In the present study, 254 dead free-living birds belonging to 23 bird species were examined by PCR for the presence of tetracycline resistance (tet) genes. A fragment of the spleen was collected from each bird carcass. A portion of the intestine was also taken from 73 of the 254 carcasses. Extracted DNA was subjected to PCR amplification targeting the tet(L), tet(M), and tet(X) genes. In total, 114 (45%) of the 254 birds sampled belonging to 17 (74%) of the 23 bird species tested were positive for one or more tet genes. The tet(M) gene showed a higher frequency than the other tested genes, both in the spleen and in the intestine samples. These results confirm the potential role of wild birds as reservoirs, dispersers, or bioindicators of antimicrobial resistance in the environment.
Collapse
Affiliation(s)
- Antonietta Di Francesco
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
- Correspondence:
| | - Daniela Salvatore
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Fabrizio Bertelloni
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | | |
Collapse
|
21
|
Fernandes M, Nóbrega Carneiro C, Villada Rosales AM, Grilo M, Ramiro Y, Cunha E, Nunes T, Tavares L, Sandi J, Oliveira M. Antimicrobial resistance and virulence profiles of Enterobacterales isolated from two-finger and three-finger sloths ( Choloepus hoffmanni and Bradypus variegatus) of Costa Rica. PeerJ 2022; 10:e12911. [PMID: 35295556 PMCID: PMC8919844 DOI: 10.7717/peerj.12911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/19/2022] [Indexed: 01/11/2023] Open
Abstract
Background Wildlife has been recently recognized as an environmental reservoir for antimicrobial resistance (AMR). However, less information on this topic is available in animals released back into the wild after rehabilitation in wildlife facilities, compared with studies performed exclusively in captive or free-ranging wildlife. This study aimed to evaluate the potential influence of captivity and/or treatment while in captivity of wild sloths on the AMR and virulence profiles of sloths' Enterobacterales. Methods Oral and rectal swab samples were collected from 39 two-finger (Choloepus hoffmanni) and three-finger sloths (Bradypus variegatus) of Costa Rica (n = 78) and analyzed using conventional bacteriological techniques. A generalized linear mixed model was applied to estimate the isolates' multiple antimicrobial resistance and virulence indices as a function of animal status. Results A considerable level of resistance was detected, especially for Citrobacter youngae and Escherichia coli, with 17.5% of isolates classified as multidrug-resistant. Virulence indices of isolates from rehabilitated sloths were significantly higher than the ones from sloths being hand-reared for shorter periods. Conclusions To our knowledge, this is the first description of sloths' antimicrobial resistant Enterobacterales, suggesting that sloths' rehabilitation and consequent exposure to humans, may promote the selection of bacteria with higher virulence. Ultimately, these bacteria may represent a threat to human and animal health due to their zoonotic potential and AMR and virulence profiles.
Collapse
Affiliation(s)
- Matilde Fernandes
- CIISA–Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Lisboa, Portugal
| | - Carla Nóbrega Carneiro
- CIISA–Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Lisboa, Portugal
| | | | - Miguel Grilo
- CIISA–Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Lisboa, Portugal
| | - Yolanda Ramiro
- Toucan Rescue Ranch (TRR), Heredia, San Josecito, Costa Rica
| | - Eva Cunha
- CIISA–Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Lisboa, Portugal
| | - Telmo Nunes
- CIISA–Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Lisboa, Portugal
| | - Luís Tavares
- CIISA–Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Lisboa, Portugal
| | - Janet Sandi
- Toucan Rescue Ranch (TRR), Heredia, San Josecito, Costa Rica
| | - Manuela Oliveira
- CIISA–Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Lisboa, Portugal
| |
Collapse
|
22
|
Adebowale O, Makanjuola M, Bankole N, Olasoju M, Alamu A, Kperegbeyi E, Oladejo O, Fasanmi O, Adeyemo O, Fasina FO. Multi-Drug Resistant Escherichia coli, Biosecurity and Anti-Microbial Use in Live Bird Markets, Abeokuta, Nigeria. Antibiotics (Basel) 2022; 11:253. [PMID: 35203856 PMCID: PMC8868421 DOI: 10.3390/antibiotics11020253] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Live bird markets (LBM) remain a critical link from farm to fork in the poultry value chain, which oftentimes promotes indiscriminate antimicrobial use (AMU) and resistance (AMR). In this study, we assessed biosecurity practices, AMU, and associated these with multidrug resistant (MDR) E. coli in LBMs in Abeokuta, Ogun State. A cross-sectional survey among live bird sellers (LBS) in eight LBMs was conducted using a semi-structured questionnaire. Also, cloacal samples (n = 200) were randomly collected and pooled for bacteriological detection of MDR E. coli in live chickens of consenting LBS. Susceptibility to 14 antimicrobials belonging to 6 different classes was determined using the disk diffusion method. Biosecurity level and AMU were generally low. LBS less than 46 years were 6.8- fold more likely to fall within the poor biosecurity level (Crudes odds ratio = 6.8; 95% CI; 1.20-38.56; p = 0.03) than others. An informal or primary school education increased the odds of having a poor practice of AMU by 15.1 folds (Crudes odds ratio = 15.1; 95% CI; 2.73-84.18; p = 0.002) than those with secondary or tertiary. The prevalence of E. coli and MDR E. coli at the LBM level were 80% and 56.3%, respectively. Extremely high resistance rates were observed for ceftazidime (96.9%) and imipenem (90.6%). The odds of MDR E. coli increased eight-fold in poultry kept by LBS who use AMs as prophylaxis. This current data could be useful for the development of targeted behavioral risk communication and mitigation strategies for AMR to impede the potential horizontal transfer of AMR genes to humans through animal-sourced food.
Collapse
Affiliation(s)
- Oluwawemimo Adebowale
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta 110124, Nigeria; (M.M.); (M.O.); (E.K.); (O.O.)
| | - Motunrayo Makanjuola
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta 110124, Nigeria; (M.M.); (M.O.); (E.K.); (O.O.)
| | - Noah Bankole
- Department of Veterinary Microbiology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta 110124, Nigeria;
| | - Mary Olasoju
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta 110124, Nigeria; (M.M.); (M.O.); (E.K.); (O.O.)
| | - Aderonke Alamu
- Department of Veterinary Medicine, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta 110124, Nigeria;
| | - Eniola Kperegbeyi
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta 110124, Nigeria; (M.M.); (M.O.); (E.K.); (O.O.)
| | - Oladotun Oladejo
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta 110124, Nigeria; (M.M.); (M.O.); (E.K.); (O.O.)
| | - Olubunmi Fasanmi
- Department of Veterinary Laboratory Technology, Federal College of Animal Health and Production Technology, Ibadan 200262, Nigeria;
| | - Olanike Adeyemo
- Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan 200284, Nigeria;
| | - Folorunso O. Fasina
- ECTAD, Food and Agriculture Organization of the United Nations (FAO), Dar es Salaam 14111, Tanzania;
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria 0110, South Africa
| |
Collapse
|