1
|
Ma J, Liu M, Chen Z, Liu S, Yang H, Duan M. NANOG regulate the JAK/STAT3 pathway to promote trophoblast cell migration and epithelial-mesenchymal transition (EMT) in hypertensive disorders of pregnancy (HDP) through protein interaction with CDK1. Am J Reprod Immunol 2024; 91:e13863. [PMID: 38796740 DOI: 10.1111/aji.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/07/2024] [Accepted: 04/26/2024] [Indexed: 05/28/2024] Open
Abstract
PROBLEM Hypertensive disorders of pregnancy (HDP) are a common pregnancy disease. NANOG and Cyclin-dependent kinase 1 (CDK1) are essential for regulating the function of cell proliferation and apoptosis. However, the mechanism of action in HDP is yet unclear. METHOD The microarray dataset GSE6573 was downloaded from the GEO database. Emt-related gene set was downloaded from Epithelial-Mesenchymal Transition gene database 2.0 were screened differentially expressed genes by bioinformatics analysis. Pathway Commons and Scansite 4.0 databases were used to predict the interaction between proteins. Placental tissue samples were collected from HDP patients and patients with uneventful pregnancies. RT-qPCR, Western blot and immunohistochemistry were used to detect the expression of NANOG, CDK1, MMP-2, MMP-9, EMT markers and the JAK/STAT3 pathway proteins. Transfection NANOG overexpression/knockdown, and CDK1 knockdown into the human chorionic trophoblast cells (HTR-8/Svneo). CCK-8, Transwell and Wound-healing assay were used to evaluate cell proliferation, invasion and migration. CO-IP and GST pull-down assays were used to confirm the protein interaction. RESULTS A total obtained seven EMT-related differentially expressed genes, wherein NANOG, NODAL and LIN28A had protein interaction. In the HDP patients' tissue found that NANOG and CDK1 had lower expression. NANOG overexpression promoted HTR-8/Svneo proliferation, migration and EMT, while NANOG knockdown had the opposite effect. Further a protein interaction between STAT3 and CDK1 with NANOG. NANOG overexpression downregulated the JAK/STAT3 pathway to promote HTR-8/Svneo proliferation, migration and EMT, which was reversed by CDK1 knockdown. CONCLUSIONS NANOG downregulated the JAK/STAT3 pathway to promote trophoblast cell proliferation, migration and EMT through protein interaction with CDK1.
Collapse
Affiliation(s)
- Jing Ma
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Mingchang Liu
- Yunnan Maternal and Child Health Care Hospital, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Zhuo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shiyang Liu
- Kunming Medical University, Kunming, Yunnan, China
| | - Huijuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Mengjia Duan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
2
|
He WP, Yang GP, Yang ZX, Shen HW, You ZS, Yang GF. Maelstrom promotes tumor metastasis through regulation of FGFR4 and epithelial-mesenchymal transition in epithelial ovarian cancer. J Ovarian Res 2022; 15:55. [PMID: 35513870 PMCID: PMC9074322 DOI: 10.1186/s13048-022-00992-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing evidence has indicated that Maelstrom (MAEL) plays an oncogenic role in various human carcinomas. However, the exact function and mechanisms by which MAEL acts in epithelial ovarian cancer (EOC) remain unclear. RESULTS This study demonstrated that MAEL was frequently overexpressed in EOC tissues and cell lines. Overexpression of MAEL was positively correlated with the histological grade of tumors, FIGO stage, and pT/pN/pM status (p < 0.05), and it also acted as an independent predictor of poor patient survival (p < 0.001). Ectopic overexpression of MAEL substantially promoted invasiveness/metastasis and induced epithelial-mesenchymal transition (EMT), whereas silencing MAEL by short hairpin RNA effectively inhibited its oncogenic function and attenuated EMT. Further study demonstrated that fibroblast growth factor receptor 4 (FGFR4) was a critical downstream target of MAEL in EOC, and the expression levels of FGFR4 were significantly associated with MAEL. (P < 0.05). CONCLUSION Our findings suggest that overexpression of MAEL plays a crucial oncogenic role in the development and progression of EOC through the upregulation of FGFR4 and subsequent induction of EMT, and also provide new insights on its potential as a therapeutic target for EOC.
Collapse
Affiliation(s)
- Wei-Peng He
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, China
| | - Gui-Ping Yang
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, China
| | - Zun-Xian Yang
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, China
| | - Hong-Wei Shen
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, China
| | - Ze-Shan You
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, China
| | - Guo-Fen Yang
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Road II, Guangzhou, 510080, China.
| |
Collapse
|
3
|
MiR-200b Suppresses Gastric Cancer Cell Migration and Invasion by Inhibiting NRG1 through ERBB2/ERBB3 Signaling. JOURNAL OF ONCOLOGY 2021; 2021:4470778. [PMID: 34531912 PMCID: PMC8440071 DOI: 10.1155/2021/4470778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/20/2021] [Indexed: 12/09/2022]
Abstract
Purpose Accumulating evidence indicates that miRNAs (miRs) play crucial roles in the modulation of tumors development. However, the accurately mechanisms have not been entirely clarified. In this study, we aimed to explore the role of miR-200b in the development of gastric cancer (GC). Methods Western blot and RT-PCR were applied to detect epithelial-mesenchymal transition (EMT) marker expression and mRNA expression. Transwell assay was used for measuring the metastasis and invasiveness of GC cells. TargetScan system, luciferase reporter assay, and rescue experiments were applied for validating the direct target of miR-200b. Results MiR-200b was prominently decreased in GC tissues and cells, and its downregulation was an indicator of poor prognosis of GC patients. Reexpression of miR-200b suppressed EMT along with GC cell migration and invasion. Neuregulin 1 (NRG1) was validated as the target of miR-200b, and it rescued miR-200b inhibitory effect on GC progression. In GC tissues, the correlation of miR-200b with NRG1 was inverse. Conclusion MiR-200b suppressed EMT-related migration and invasion of GC through the ERBB2/ERBB3 signaling pathway via targeting NRG1.
Collapse
|
4
|
Peng P, Song H, Xie C, Zheng W, Ma H, Xin D, Zhan J, Yuan X, Chen A, Tao J, Qin J. miR-146a-5p-mediated suppression on trophoblast cell progression and epithelial-mesenchymal transition in preeclampsia. Biol Res 2021; 54:30. [PMID: 34517910 PMCID: PMC8438983 DOI: 10.1186/s40659-021-00351-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/24/2021] [Indexed: 12/29/2022] Open
Abstract
Objective This study aims to identify the effect of miR-146a-5p on trophoblast cell invasion as well as the mechanism in preeclampsia (PE). Methods Expression levels of miR-146a-5p and Wnt2 in preeclamptic and normal placentae were quantified. Trophoblast cells (HTR-8) were separately transfected with miR-146a-5p mimic, miR-146a-5p inhibitor, pcDNA3.1-Wnt2 or sh-Wnt2, and then the expression levels of miR-146a-5p, Wnt2, and epithelial-mesenchymal transition (EMT)-related proteins (Vimentin, N-cadherin and E-cadherin) were measured. Moreover, the proliferative, migratory and invasive capacities of trophoblast cells were detected, respectively. Dual luciferase reporter assay determined the binding of miR-146a-5p and Wnt2. Results Compared with normal placental tissues, the placentae from PE patients showed higher miR-146a-5p expression and lower Wnt2 expression. Transfection of miR-146a-5p inhibitor or pcDNA3.1-Wnt2 exerted pro-migratory and pro-invasive effects on HTR-8 cells and encouraged EMT in HTR-8 cells; transfection with miR-146a-5p mimic or sh-Wnt2 weakened the proliferative, migratory and invasive capacities as well as reduced EMT process of HTR-8 cells. Moreover, Wnt2 overexpression could partially counteract the suppressive effects of miR-146a-5p overexpression on the progression and EMT of HTR-8 cells. Conclusion miR-146a-5p mediates trophoblast cell proliferation and invasion through regulating Wnt2 expression.
Collapse
Affiliation(s)
- Pingping Peng
- Department of Gynecology and Obstetrics, the First People's Hospital of Yichang, Yichang, 443000, Hubei, People's Republic of China.,Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Huamei Song
- Department of Gynecology and Obstetrics, the First People's Hospital of Yichang, Yichang, 443000, Hubei, People's Republic of China.,Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Chenghong Xie
- Department of Gynecology and Obstetrics, the First People's Hospital of Yichang, Yichang, 443000, Hubei, People's Republic of China.,Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Wenfei Zheng
- Department of Gynecology and Obstetrics, the First People's Hospital of Yichang, Yichang, 443000, Hubei, People's Republic of China.,Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Huigai Ma
- Department of Gynecology and Obstetrics, the First People's Hospital of Yichang, Yichang, 443000, Hubei, People's Republic of China.,Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Dandan Xin
- Department of Gynecology and Obstetrics, the First People's Hospital of Yichang, Yichang, 443000, Hubei, People's Republic of China.,Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Jingqiong Zhan
- Department of Gynecology and Obstetrics, the First People's Hospital of Yichang, Yichang, 443000, Hubei, People's Republic of China.,Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Xiaoqing Yuan
- Department of Gynecology and Obstetrics, the First People's Hospital of Yichang, Yichang, 443000, Hubei, People's Republic of China.,Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Aihua Chen
- Department of Gynecology and Obstetrics, the First People's Hospital of Yichang, Yichang, 443000, Hubei, People's Republic of China.,Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Jing Tao
- Department of Gynecology and Obstetrics, the First People's Hospital of Yichang, Yichang, 443000, Hubei, People's Republic of China.,Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Jufang Qin
- Department of Gynecology and Obstetrics, the First People's Hospital of Yichang, Yichang, 443000, Hubei, People's Republic of China. .,Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China. .,Department of Gynecology and Obstetrics, the First People's Hospital of Yichang, the People's Hospital of China Three Gorges University, No. 4, Hudi Street, Xiling District, Yichang, 443000, Hubei, People's Republic of China.
| |
Collapse
|
5
|
Wadhwa B, Paddar M, Khan S, Mir S, A Clarke P, Grabowska AM, Vijay DG, Malik F. AKT isoforms have discrete expression in triple negative breast cancers and roles in cisplatin sensitivity. Oncotarget 2020; 11:4178-4194. [PMID: 33227065 PMCID: PMC7665233 DOI: 10.18632/oncotarget.27746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
AKT, a serine threonine kinase, exists in three different isoforms and is known for regulating several biological processes including tumorigenesis. In this study, we investigated the expression and net effect of the individual isoforms in triple negative breast cancers and response to cisplatin treatment using cellular, mice models and clinical samples. Interestingly, analysis of the expressions of AKT isoforms in clinical samples showed relatively higher expression of AKT1 in primary tissues; whereas lung and liver metastatic samples showed elevated expression of AKT2. Similarly, triple-negative breast cancer cell lines, BT-549 and MDA-MB-231, with high proliferative and invasive properties, displayed higher expression levels of AKT1/2. By modulating AKT isoform expression in MCF-10A and BT-549 cell lines, we found that presence of AKT2 was associated with invasiveness, stemness and sensitivity to drug treatment. It was observed that the silencing of AKT2 suppressed the cancer stem cell populations (CD44high CD24low, ALDH1), mammosphere formation, invasive and migratory potential in MCF-10A and BT-549 cells. It was further demonstrated that loss of function of AKT1 isoform is associated with reduced sensitivity towards cisplatin treatment in triple-negative breast cancers cellular and syngeneic mice models. The decrease in cisplatin treatment response in shAKT1 cells was allied with the upregulation in the expression of transporter protein ABCG2, whereas silencing of ABCG2 restored cisplatin sensitivity in these cells through AKT/SNAIL/ABCG2 axis. In conclusion, our study demonstrated the varied expression of AKT isoforms in triple-negative breast cancers and also confirmed differential role of isoforms in stemness, invasiveness and response towards the cisplatin treatment.
Collapse
Affiliation(s)
- Bhumika Wadhwa
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar 190005, India
| | - Masroor Paddar
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar 190005, India
| | - Sameer Khan
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar 190005, India
| | - Sameer Mir
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar 190005, India
| | - Philip A Clarke
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | - Anna M Grabowska
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Fayaz Malik
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar 190005, India
| |
Collapse
|
6
|
Han J, Shen X, Zhang Y, Wang S, Zhou L. Astragaloside IV suppresses transforming growth factor-β1-induced epithelial-mesenchymal transition through inhibition of Wnt/β-catenin pathway in glioma U251 cells. Biosci Biotechnol Biochem 2020; 84:1345-1352. [PMID: 32154763 DOI: 10.1080/09168451.2020.1737502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Astragaloside IV (AS#IV) has previously demonstrated antitumoractivity. We investigated the effect and mechanisms of AS#IV in relation to epithelial-mesenchymal transition (EMT), viainterference with the Wnt/β-catenin signaling pathway in gliomaU251 cells. Induction of glioma U251 cells by transforming growthfactor (TGF)#β1 activated EMT, including switching E#cadherin toN-cadherin and altering the expression of Wnt/β-catenin signalingpathway components such as vimentin, β-catenin, and cyclin-D1.AS-IV inhibited the viability, invasion, and migration of TGF-β1-induced glioma U251 cells. AS-IV also interfered with the TGF#β1-induced Wnt/β-catenin signaling pathway in glioma U251 cells.These findings indicate that AS#IV prohibits TGF#β1-induced EMTby disrupting the Wnt/β-catenin pathway in glioma U251 cells. AS#IV may thus be a potential candidate agent for treating glioma andother central nervous system tumors.
Collapse
Affiliation(s)
- Jinming Han
- Department of Spine Surgery, Ningbo No. 6 Hospital , Ningbo, Zhejiang, China
| | - Xiaohan Shen
- Ningbo Diagnostic Pathology Center, Shanghai Cancer Center Ningbo Pathology Center, Ningbo Medical Center Lihuili Hospital , Ningbo, Zhejiang, China
| | - Yong Zhang
- Department of Orthopedics, Ningbo No. 6 Hospital , Ningbo, Zhejiang, China
| | - Suying Wang
- Ningbo Diagnostic Pathology Center, Shanghai Cancer Center Ningbo Pathology Center, Ningbo, Zhejiang, China
| | - Leijie Zhou
- Department of Spine Surgery, Ningbo No. 6 Hospital , Ningbo, Zhejiang, China
| |
Collapse
|
7
|
Advances in molecular mechanisms of drugs affecting abnormal glycosylation and metastasis of breast cancer. Pharmacol Res 2020; 155:104738. [PMID: 32151681 DOI: 10.1016/j.phrs.2020.104738] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/27/2022]
Abstract
Breast cancer remains the leading cause of cancer-related death among women worldwide, and its incidence is also increasing. High recurrence rate and metastasis rate are the key causes of poor prognosis and death. It is suggested that abnormal glycosylation plays an important role in the growth, invasion, metastasis and resistance to therapy of breast cancer cells. Meanwhile, it can be used as the biomarkers for the early detection and prognosis of breast cancer and the potential attractive targets for drug treatment. However, only a few attentions have been paid to the molecular mechanism of abnormal glycosylation in the epithelial-mesenchymal transition (EMT) of breast cancer cells and the related intervention of drugs. This manuscript thus investigated the relationship between abnormal glycosylation, the EMT, and breast cancer metastasis. Then, the process of abnormal glycosylation, the classification and their molecular regulatory mechanisms of breast cancer were analyzed in detail. Last, potential drugs are introduced in different categories, which are expected to reverse or intervene the abnormal glycosylation of breast cancer. This review is conducive to an in-depth understanding of the metastasis and drug resistance of breast cancer cells, which will provide new ideas for the clinical regulation of glycosylation and related drug treatments in breast cancer.
Collapse
|
8
|
Najafi M, Farhood B, Mortezaee K, Kharazinejad E, Majidpoor J, Ahadi R. Hypoxia in solid tumors: a key promoter of cancer stem cell (CSC) resistance. J Cancer Res Clin Oncol 2020; 146:19-31. [PMID: 31734836 DOI: 10.1007/s00432-019-03080-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Cancer stem cells (CSCs) are highly tumorigenic cell types that reside within specific areas of tumor microenvironment (TME), and are endowed with self-renewal and resistance properties. Here, we aimed to discuss mechanisms involved in hypoxia-derived CSC resistance and targeting for effective cancer therapy. RESULTS Preferential localization within hypoxic niches would help CSCs develop adaptive mechanisms, mediated through the modification of responses to various stressors and, as a result, show a more aggressive behavior. CONCLUSION Hypoxia, in fact, serves as a multi-tasking strategy to nurture CSCs with this adaptive capacity, complexing targeted therapies.
Collapse
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Keywan Mortezaee
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Ebrahim Kharazinejad
- Department of Anatomy, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Ahadi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Wang H, Li JM, Wei W, Yang R, Chen D, Ma XD, Jiang GM, Wang BL. Regulation of ATP-binding cassette subfamily B member 1 by Snail contributes to chemoresistance in colorectal cancer. Cancer Sci 2019; 111:84-97. [PMID: 31774615 PMCID: PMC6942434 DOI: 10.1111/cas.14253] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/15/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022] Open
Abstract
Although accumulating evidence has indicated the intimate association between epithelial‐mesenchymal transition (EMT) and acquired resistance to chemotherapy for colorectal cancer (CRC), the underlying mechanisms remain elusive. Herein, we reported that Snail, a crucial EMT controller, was upregulated in CRC tissues. Colorectal cancer cells overexpressing Snail were found to be more resistant to 5‐fluorouracil (5‐Fu). Mechanistic studies reveal that Snail could increase the expression of ATP‐binding cassette subfamily B member 1 (ABCB1) rather than the other 23 chemoresistance‐related genes. Additionally, knockdown of ABCB1 significantly attenuated Snail‐induced 5‐Fu resistance in CRC cells. Oxaliplatin increased Snail and ABCB1 expression in CRC cells. Snail and ABCB1 were upregulated in 5‐Fu‐resistant HCT‐8 (HCT‐8/5‐Fu) cells and inhibition of Snail decreased ABCB1 in HCT‐8/5‐Fu cells. These results confirm the vital role played by ABCB1 in Snail‐induced chemoresistance. Further investigation into the relevant molecular mechanism revealed Snail‐mediated ABCB1 upregulation was independent of β‐catenin, STAT3, PXR, CAR and Foxo3a, which are commonly involved in modulating ABCB1 transcription. Instead, Snail upregulated ABCB1 transcription by directly binding to its promoter. Clinical analysis confirms that increased Snail expression correlated significantly with tumor size (P = .018), lymph node metastasis (P = .033), distant metastasis (P = .025), clinical stage grade (P = .024), and poor prognosis (P = .045) of CRC patients. Moreover, coexpression of Snail and ABCB1 was observed in CRC patients. Our study revealed that direct regulation of ABCB1 by Snail was critical for conferring chemoresistance in CRC cells. These findings unraveled the mechanisms underlying the association between EMT and chemoresistance, and provided potential targets for CRC clinical treatment.
Collapse
Affiliation(s)
- Hao Wang
- Division of Life Sciences and Medicine, Department of Clinical Laboratory, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Ji-Min Li
- Division of Life Sciences and Medicine, Department of Clinical Laboratory, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Wei Wei
- Division of Life Sciences and Medicine, Department of Clinical Laboratory, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Rui Yang
- Division of Life Sciences and Medicine, Department of Clinical Laboratory, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Dong Chen
- School of Bengbu Medical College, Bengbu, China
| | - Xiao-Dong Ma
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei, China
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Bao-Long Wang
- Division of Life Sciences and Medicine, Department of Clinical Laboratory, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| |
Collapse
|
10
|
Bhatti MZ, Pan L, Wang T, Shi P, Li L. REGγ potentiates TGF-β/Smad signal dependent epithelial-mesenchymal transition in thyroid cancer cells. Cell Signal 2019; 64:109412. [PMID: 31491459 DOI: 10.1016/j.cellsig.2019.109412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 02/08/2023]
Abstract
Thyroid cancer is the most common endocrine cancer with an increasing incidence and mortality. Epithelial-mesenchymal transition (EMT) is a biological process contributing to tumor progression, metastasis, and the acquisition of chemotherapy resistance. The impact of the REGγ proteasome activator on EMT in human thyroid cancer cells and the molecular mechanism is still unclear. Here, we found silencing REGγ in thyroid cancer cells inhibited cell migration and invasion, with concurrent upregulation of E-cadherin and Smurf2 expression. Mechanistically, REGγ dependent regulation of Smurf2, an E3 ligase for Smad3, contributed to alteration of Zeb1/2, Snail, Slug, and Twist. Consistently, TGF-β mediated suppression of E-cadherin was attenuated in REGγ deficient cells, coupled with changes in cell morphology, migration and invasion. Furthermore, xenograft metastasis mouse model showed a reduced E-cadherin expression at both mRNA and protein levels, and decreased cell migration. Taken together, our findings provided an important evidence for the role of REGγ in tumor suppression, thereby implicating REGγ as a potential anti-cancer strategy in thyroid cancer therapy.
Collapse
Affiliation(s)
- Muhammad Zeeshan Bhatti
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Linian Pan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Tianzhen Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Peilin Shi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 200241 Shanghai, China
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 200241 Shanghai, China.
| |
Collapse
|
11
|
Liang Y, Feng G, Wu L, Zhong S, Gao X, Tong Y, Cui W, Qin Y, Xu W, Xiao X, Zhang Z, Huang G, Zhou X. Caffeic acid phenethyl ester suppressed growth and metastasis of nasopharyngeal carcinoma cells by inactivating the NF-κB pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1335-1345. [PMID: 31118570 PMCID: PMC6499142 DOI: 10.2147/dddt.s199182] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/23/2019] [Indexed: 12/12/2022]
Abstract
Purpose: Caffeic acid phenethyl ester (CAPE) is the main polyphenol extracted from honeybee propolis, which inhibits the growth of several kinds of tumor. This study aimed to assess the inhibitory effect of CAPE in nasopharyngeal carcinoma (NPC), evaluate the synergistic action of CAPE in radiotherapy sensitivity of NPC cell lines and further elucidate the possible molecular mechanism involved. Materials and methods: CCK-8 assay was used to analyze cell proliferation ability. Colony formation assay was used to evaluate the clonogenic ability and radio-sensitiveness of NPC cells by CAPE treatment. Wound-healing and transwell assay were used to assess the motility of cells. The expression of key molecules of the epithelial–mesenchymal transition (EMT) was determined by western blot analysis and changes in radiation sensitivity were measured by colony-formation assay. cDNA microarray analysis was used to determine differentially expressed genes with and without CAPE treatment, with Gene Ontology enrichment of gene function and KEGG pathways determined. Cell cycle and apoptosis were detected by flow cytometry and western blot analysis. Results: CAPE suppressed the viability of NPC cell lines time- and dose-dependently. It induced apoptosis in NPC cells along with decreased expression of Bcl-XL and increased cleavage of PARP and expression of Bax. G1 phase arrest was induced by CAPE with ower expression of CDK4, CDK6, Rb and p-Rb. The migratory and invasive ability of NPC cells was decreased by the EMT pathway. The irradiation sensitivity of NPC cells was enhanced with CAPE treatment. CAPE specifically inhibited nuclear factor κB (NF-κB) signaling pathway by suppressing p65 subunit translocation from cytoplasm to nucleus. CAPE treatment was synergistic with chemotherapy and radiotherapy. Conclusion: CAPE may inhibit the proliferation and metastasis of NPC cells but enhance radiosensitivity in NPC therapy by inhibiting the NF-κB pathway. CAPE could be a potential therapeutic compound for NPC therapy.
Collapse
Affiliation(s)
- Yushan Liang
- Key laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Guofei Feng
- Key laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Liang Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Suhua Zhong
- Key laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Xiaoyu Gao
- Key laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yan Tong
- Key laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Wanmeng Cui
- Key laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China
| | - Yongying Qin
- Key laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China
| | - WenQing Xu
- Key laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China
| | - Xue Xiao
- Key laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Zhe Zhang
- Key laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Guangwu Huang
- Key laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Xiaoying Zhou
- Key laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China.,Life Science Institute, Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
12
|
Guo Z, Lou Y, Kong M, Luo Q, Liu Z, Wu J. A Systematic Review of Phytochemistry, Pharmacology and Pharmacokinetics on Astragali Radix: Implications for Astragali Radix as a Personalized Medicine. Int J Mol Sci 2019; 20:E1463. [PMID: 30909474 PMCID: PMC6470777 DOI: 10.3390/ijms20061463] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/20/2019] [Indexed: 12/17/2022] Open
Abstract
Astragali radix (AR) is one of the most widely used traditional Chinese herbal medicines. Modern pharmacological studies and clinical practices indicate that AR possesses various biological functions, including potent immunomodulation, antioxidant, anti-inflammation and antitumor activities. To date, more than 200 chemical constituents have been isolated and identified from AR. Among them, isoflavonoids, saponins and polysaccharides are the three main types of beneficial compounds responsible for its pharmacological activities and therapeutic efficacy. After ingestion of AR, the metabolism and biotransformation of the bioactive compounds were extensive in vivo. The isoflavonoids and saponins and their metabolites are the major type of constituents absorbed in plasma. The bioavailability barrier (BB), which is mainly composed of efflux transporters and conjugating enzymes, is expected to have a significant impact on the bioavailability of AR. This review summarizes studies on the phytochemistry, pharmacology and pharmacokinetics on AR. Additionally, the use of AR as a personalized medicine based on the BB is also discussed, which may provide beneficial information to achieve a better and more accurate therapeutic response of AR in clinical practice.
Collapse
Affiliation(s)
- Zhenzhen Guo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Yanmei Lou
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Muyan Kong
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Qing Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 999078, China.
| | - Jinjun Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
13
|
Pavón MA, Arroyo-Solera I, León X, Téllez-Gabriel M, Virós D, Gallardo A, Céspedes MV, Casanova I, Lopez-Pousa A, Barnadas A, Quer M, Mangues R. The combined use of EFS, GPX2, and SPRR1A expression could distinguish favorable from poor clinical outcome among epithelial-like head and neck carcinoma subtypes. Head Neck 2019; 41:1830-1845. [PMID: 30652380 DOI: 10.1002/hed.25623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 11/28/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We aimed at identifying molecular markers predictive of clinical outcome in patients with head and neck cancer based on the expression profile of cells showing epithelial-like (EL) or mesenchymal-like (ML) phenotypes. MATERIALS AND METHODS We analyzed the association between EL and ML cells and migration, drug resistance, or tumor growth. The differential gene expression profile between cell types was used to build a model to stratify patients according to survival. RESULTS EL cells were sensitive to cisplatin and cetuximab, showed low migration, and generated squamous differentiated tumors in mouse. A differential 93-gene expression signature between ML and EL cells was used to build a three-gene (EFS, GPX2, and SPRR1A) survival model by analyzing the RNA-seq data of the TCGA-HNSC project. Its prognostic value was confirmed in two independent cohorts. CONCLUSION EFS, GPX2, and SPRR1A are prognostic markers able to distinguish clinical outcome among subtypes sharing an EL phenotype.
Collapse
Affiliation(s)
- Miguel Angel Pavón
- Infections and Cancer Laboratory/Cancer Epidemiology Research Program. Catalan Institute of Oncology (ICO) and Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Cáncer (CIBER-ONC), Madrid, Spain
| | - Irene Arroyo-Solera
- Oncogenesis and Antitumor Drug Group, lnstitut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomecidicina (CIBER-BBN), Madrid, Spain
| | - Xavier León
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomecidicina (CIBER-BBN), Madrid, Spain.,Department of Otorrinolaryngology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Marta Téllez-Gabriel
- Laboratorio Hematología Oncológica y de Transplantes, Institut Investigacions Biomèdiques (IBB) Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - David Virós
- Department of Otorrinolaryngology, Hospital Germans Tries y Pujol (Can Ruti), Barcelona, Spain
| | - Alberto Gallardo
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Maria Virtudes Céspedes
- Oncogenesis and Antitumor Drug Group, lnstitut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomecidicina (CIBER-BBN), Madrid, Spain
| | - Isolda Casanova
- Oncogenesis and Antitumor Drug Group, lnstitut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomecidicina (CIBER-BBN), Madrid, Spain
| | - Antonio Lopez-Pousa
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomecidicina (CIBER-BBN), Madrid, Spain.,Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Agustí Barnadas
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Miquel Quer
- Department of Otorrinolaryngology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ramón Mangues
- Oncogenesis and Antitumor Drug Group, lnstitut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomecidicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
14
|
Histone deacetylase inhibitor SAHA-induced epithelial-mesenchymal transition by upregulating Slug in lung cancer cells. Anticancer Drugs 2018; 29:80-88. [PMID: 29176396 DOI: 10.1097/cad.0000000000000573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
SAHA, a member of histone deacetylase inhibitors (HDACIs), which emerged as a class of novel antitumor drug, has been used in clinical treatment of cancers. However, clinical experience of SAHA in solid tumors has been disappointing. Nevertheless, the underlying mechanism of this deficiency is not clearly understood. In the present study, we found that SAHA could induce epithelial-mesenchymal transitions (EMT) in lung cancer A549 cells, which was associated with increased migration capability and cellular morphology changes. We showed that SAHA decreased epithelial marker E-cadherin's expression and increased the expression of mesenchymal marker vimentin. SAHA upregulated the protein and mRNA expression of transcription factor Slug in a time-dependent manner and promoted its nuclear translocation. We further demonstrated that SAHA upregulated Slug expression by promoting Slug acetylation but not influencing the phosphorylation of GSK-3β, a main kinase-controlled Slug expression. Finally, silencing of Slug by siRNA reversed EMT marker expressions and cellular morphology change induced by SAHA, suggesting that Slug plays a crucial role in SAHA-mediated EMT in A549 cells. Our research study provided a better understanding of treatment failure of SAHA in patients with solid tumors. Therefore, more attention should be paid to cancer treatment using SAHA and strategies for reversing EMT before using SAHA would be better if the value of SAHA in the treatment of solid tumors, especially lung cancer, is realized.
Collapse
|
15
|
Zhu J, Wen K. Astragaloside IV inhibits TGF-β1-induced epithelial-mesenchymal transition through inhibition of the PI3K/Akt/NF-κB pathway in gastric cancer cells. Phytother Res 2018; 32:1289-1296. [PMID: 29480652 DOI: 10.1002/ptr.6057] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Jihong Zhu
- Department of Ultrasound; Huaihe Hospital of Henan University; Kaifeng 475000 Henan China
| | - Ke Wen
- Department of Ultrasound; Huaihe Hospital of Henan University; Kaifeng 475000 Henan China
| |
Collapse
|
16
|
Li X, Zhao Z, Zhang X, Yang S, Lin X, Yang X, Lin X, Shi J, Wang S, Zhao W, Li J, Gao F, Liu M, Ma N, Luo W, Yao K, Sun Y, Xiao S, Xiao D, Jia J. Klf4 reduces stemness phenotype, triggers mesenchymal-epithelial transition (MET)-like molecular changes, and prevents tumor progression in nasopharygeal carcinoma. Oncotarget 2017; 8:93924-93941. [PMID: 29212199 PMCID: PMC5706845 DOI: 10.18632/oncotarget.21370] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/29/2017] [Indexed: 12/22/2022] Open
Abstract
The reprogramming factor Krüppel-like factor 4 (Klf4), one of the Yamanaka's reprogramming factors, plays an essential role in reprogramming somatic cells into induced pluripotent stem cells (iPSCs). Klf4 is dysregulated and displays divergent functions in multiple malignancies, but the biological roles of Klf4 in nasopharyngeal carcinoma (NPC) remain unknown. The present study revealed that Klf4 downregulation in a cohort of human NPC biopsies is significantly associated with invasive and metastatic phenotypes of NPC. Our results showed exogenous expression of Klf4 significantly inhibited cell proliferation, decreased stemness, triggered mesenchymal-epithelial transition (MET)-like molecular changes, and suppressed migration and invasion of NPC cells, whereas depletion of endogeneous Klf4 by RNAi reversed the aforementioned biological behaviors and characheristics. Klf4 silencing significantly enhanced the metastatic ability of NPC cells in vivo. In addition, CHIP assay confirmed that E-cadherin is a transcriptional target of Klf4 in NPC cells. Additional studies demonstrated that Klf4-induced MET-like cellular marker alterations, and reduced motility and invasion of NPC cells were mediated by E-cadherin. This study revealed the clinical correlation between Klf4 expression and epithelial-mesenchymal transition (EMT) biomarkers (including its target gene E-cadherin) in a cohort of NPC biopsies. Taken together, our findings suggest, for what we believe is the first time, that Klf4 functions as a tumor suppressor in NPC to decrease stemness phenotype, inhibit EMT and prevent tumor progression, suggesting that restoring Klf4 function may provide therapeutic benefits in NPC.
Collapse
Affiliation(s)
- Xiqing Li
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Department of Oncology, The People’s Hosptial of Zhengzhou University, Zhengzhou 450003, China
| | - Zhunlan Zhao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- Department of Oncology, The People’s Hosptial of Zhengzhou University, Zhengzhou 450003, China
| | - Xiaoling Zhang
- Department of Physiology, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China
| | - Sheng Yang
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Xia Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Xinglong Yang
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Xiaolin Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Junwen Shi
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Shengchun Wang
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wentao Zhao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Fei Gao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Mingyue Liu
- Department of Oncology, The People’s Hosptial of Zhengzhou University, Zhengzhou 450003, China
| | - Ning Ma
- Department of Oncology, The People’s Hosptial of Zhengzhou University, Zhengzhou 450003, China
| | - Weiren Luo
- The Third People's Hospital of Shenzhen, Guangdong Medical University, Shenzhen 518112, China
| | - Kaitai Yao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yan Sun
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Shengjun Xiao
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin 541199, China
| | - Dong Xiao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Junshuang Jia
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
17
|
Xu QS, Wang C, Li B, Li JZ, Mao MH, Qin LZ, Li H, Huang X, Han Z, Feng Z. Prognostic value of pathologic grade for patients with oral squamous cell carcinoma. Oral Dis 2017; 24:335-346. [PMID: 28787551 DOI: 10.1111/odi.12727] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 01/20/2023]
Abstract
OBJECTIVE The purposes of this study were to explore both the prognostic value of pathologic grade and the relationships between differentiation and clinicopathological characteristics in oral squamous cell carcinoma. METHODS This retrospective cohort study included the records of 2036 patients with oral squamous cell carcinoma who were surgically treated from June 1999 to December 2011. Chi-square test, Kaplan-Meier analysis, and Cox proportional hazards regression model were performed for statistical analysis. RESULTS Many clinicopathological characteristics were associated with pathologic grade. Kaplan-Meier analysis showed that well-differentiated tumors had a better prognosis than the other two grades. Cox regression model showed that differentiation was an independent risk factor for prognosis in patients with early stage, but not with advanced stage. The predictive abilities of pathologic grade, T stage, N status, and lymph node ratio were similar, but the presence of extracapsular spread and perineural invasion were stronger prognostic factors than pathologic differentiation. CONCLUSIONS Pathologic grade was found to be an independent risk factor for early-stage oral squamous cell carcinoma, but not for advanced stage. Many important clinicopathological characteristics were associated with histological classification; however, its prognostic value was limited.
Collapse
Affiliation(s)
- Q S Xu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - C Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - B Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - J Z Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - M H Mao
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - L Z Qin
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - H Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - X Huang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Z Han
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Z Feng
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Amawi H, Ashby CR, Samuel T, Peraman R, Tiwari AK. Polyphenolic Nutrients in Cancer Chemoprevention and Metastasis: Role of the Epithelial-to-Mesenchymal (EMT) Pathway. Nutrients 2017; 9:nu9080911. [PMID: 28825675 PMCID: PMC5579704 DOI: 10.3390/nu9080911] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) has received significant interest as a novel target in cancer prevention, metastasis, and resistance. The conversion of cells from an epithelial, adhesive state to a mesenchymal, motile state is one of the key events in the development of cancer metastasis. Polyphenols have been reported to be efficacious in the prevention of cancer and reversing cancer progression. Recently, the antimetastatic efficacy of polyphenols has been reported, thereby expanding the potential use of these compounds beyond chemoprevention. Polyphenols may affect EMT pathways, which are involved in cancer metastasis; for example, polyphenols increase the levels of epithelial markers, but downregulate the mesenchymal markers. Polyphenols also alter the level of expression and functionality of important proteins in other signaling pathways that control cellular mesenchymal characteristics. However, the specific proteins that are directly affected by polyphenols in these signaling pathways remain to be elucidated. The aim of this review is to analyze current evidence regarding the role of polyphenols in attenuating EMT-mediated cancer progression and metastasis. We also discuss the role of the most important polyphenol subclasses and members of the polyphenols in reversing metastasis and targeting EMT. Finally, limitations and future directions to improve our understanding in this field are discussed.
Collapse
Affiliation(s)
- Haneen Amawi
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA.
| | - Charles R Ashby
- Pharmaceutical Sciences, College of Pharmacy, St. John's University Queens, New York, NY 11432, USA.
| | - Temesgen Samuel
- Department of Pathology, School of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA.
| | - Ramalingam Peraman
- Medicinal chemistry Division, Raghavendra Institute of Pharmaceutical education and Research (RIPER)-Autonomous, Anantapur 515721, India.
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
19
|
Gao T, Wang M, Xu L, Wen T, Liu J, An G. DCLK1 is up-regulated and associated with metastasis and prognosis in colorectal cancer. J Cancer Res Clin Oncol 2016; 142:2131-40. [PMID: 27520310 DOI: 10.1007/s00432-016-2218-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE Metastasis is a primary cause of colorectal cancer (CRC)-related death, and cancer stem cells (CSCs) are thought to be majorly responsible for initiating metastatic behaviors. Doublecortin-like kinase 1 (DCLK1) was recently discovered to be a marker for gastrointestinal CSCs. Here, we aimed to explore whether DCLK1 is associated with CRC metastasis through clinical and in vitro investigations. METHODS The expression levels of DCLK1 mRNA and protein in human CRC tissues were analyzed through quantitative RT-PCR and immunohistochemistry staining, respectively. Human CRC cell line SW480 was selected to explore the effect of DCLK1 overexpression on cell migration and invasion. Besides, the associations between DCLK1 and epithelial-mesenchymal transition (EMT) were determined. RESULTS Compared to normal colorectal tissues, DCLK1 expression was significantly up-regulated in human CRC tissues and correlated well with high lymphatic metastasis and poor prognosis in patients. DCLK1 expression was inversely associated with overall survival in CRC patients. Overexpression of DCLK1 in SW480 cells markedly promoted cell migration and invasion. Furthermore, we validated that DCLK1 could facilitate EMT in cancer cells by up-regulation of the mesenchymal markers Vimentin and ZEB1 and down-regulation of the epithelial marker E-cadherin in SW480 cells. CONCLUSIONS DCLK1 up-regulation may play a contributory role in CRC metastasis and poor prognosis via activation of EMT. DCLK1 may serve as an independent predictor for CRC prognosis.
Collapse
Affiliation(s)
- Tianbo Gao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gong Ti Nan Lu, Beijing, 100020, China
| | - Min Wang
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gong Ti Nan Lu, Beijing, 100020, China
| | - Lingling Xu
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gong Ti Nan Lu, Beijing, 100020, China
| | - Tao Wen
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gong Ti Nan Lu, Beijing, 100020, China
| | - Jian Liu
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gong Ti Nan Lu, Beijing, 100020, China.
| | - Guangyu An
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gong Ti Nan Lu, Beijing, 100020, China.
| |
Collapse
|
20
|
Chen X, Bode AM, Dong Z, Cao Y. The epithelial-mesenchymal transition (EMT) is regulated by oncoviruses in cancer. FASEB J 2016; 30:3001-3010. [PMID: 27279361 DOI: 10.1096/fj.201600388r] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/31/2016] [Indexed: 01/03/2025]
Abstract
The epithelial-mesenchymal transition (EMT), defined as transdifferentiation of epithelial cells into mesenchymal cells, is critical for embryonic development, wound healing, tissue regeneration, organ fibrosis, and cancer progression. Recently, the role of EMT in carcinogenesis has attracted much attention. Oncoviruses, including human papillomaviruses (HPVs), Epstein-Barr virus (EBV), and hepatitis B and C viruses (HBVs, HCVs), are known to be involved in the etiology of cancer and have been found to play important roles in cancer metastasis, especially in the EMT process. The HPV encoded oncoproteins E6 and E7 (E6/E7), EBV latent membrane protein-1 and -2A, EBV nuclear antigen, HBV-encoded X antigen, and nonstructural HCV protein 5A are all involved in the regulation of EMT. This review primarily focuses on the role of oncoviruses and their encoded proteins or signaling pathways in the EMT process. Understanding their roles will help us in the development of effective strategies for prevention and treatment of virus-related cancers.-Chen, X., Bode, A. M., Dong, Z., Cao, Y. The epithelial-mesenchymal transition (EMT) is regulated by oncoviruses in cancer.
Collapse
Affiliation(s)
- Xue Chen
- Molecular Imaging Center, Xiangya Hospital, Central South University, Hunan, China; Cancer Research Institute, Central South University, Hunan, China; Key Laboratory, Chinese Ministry of Education, Central South University, Hunan, China; State Key Laboratory of Carcinogenesis, Chinese Ministry of Public Health, Central South University, Hunan, China; and
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Ya Cao
- Molecular Imaging Center, Xiangya Hospital, Central South University, Hunan, China; Cancer Research Institute, Central South University, Hunan, China; Key Laboratory, Chinese Ministry of Education, Central South University, Hunan, China; State Key Laboratory of Carcinogenesis, Chinese Ministry of Public Health, Central South University, Hunan, China; and
| |
Collapse
|
21
|
Zou M, Duan Y, Wang P, Gao R, Chen X, Ou Y, Liang M, Wang Z, Yuan Y, Wang L, Zhu H. DYT-40, a novel synthetic 2-styryl-5-nitroimidazole derivative, blocks malignant glioblastoma growth and invasion by inhibiting AEG-1 and NF-κB signaling pathways. Sci Rep 2016; 6:27331. [PMID: 27251589 PMCID: PMC4890319 DOI: 10.1038/srep27331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/16/2016] [Indexed: 12/13/2022] Open
Abstract
Astrocyte elevated gene-1 (AEG-1) has been explored as a novel target for human glioma therapy, thus reflecting its potential contribution to gliomagenesis. In the present study, we investigated the effect of DYT-40, a novel synthetic 2-styryl-5-nitroimidazole derivative, on cell growth and invasion in glioblastoma (GBM) and uncovered the underlying mechanisms of this molecule. DYT-40 induces the intrinsic mitochondrial pathway of apoptosis and inhibits the epithelial-mesenchymal transition (EMT) and invasion of GBM cell lines. Furthermore, DYT-40 deactivates PI3K/Akt and MAPK pathways, suppresses AEG-1 expression, and inhibits NF-κB nuclear translocation. DYT-40 reduced the tumor volumes in a rat C6 glioma model by apoptotic induction. Moreover, HE staining demonstrated that the glioma rat model treated with DYT-40 exhibited better defined tumor margins and fewer invasive cells to the contralateral striatum compared with the vehicle control and temozolomide-treated rats. Microscopic examination showed a decrease in AEG-1-positive cells in DYT-40-treated rats compared with the untreated controls. DYT-40-treatment increases the in vivo apoptotic response of glioma cells to DYT-40 treatment by TUNEL staining. In conclusion, the inhibitory effects of DYT-40 on growth and invasion in GBM suggest that DYT-40 might be a potential AEG-1 inhibitor to prevent the growth and motility of malignant glioma.
Collapse
Affiliation(s)
- Meijuan Zou
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | - Yongtao Duan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | - Pengfei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | - Rui Gao
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China
| | - Xuguan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China
| | - Yingwei Ou
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China
| | - Mingxing Liang
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China
| | - Zhongchang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | - Yi Yuan
- Jiangsu Key Laboratory of Oral Diseases; Department of oral and maxillofacial surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Li Wang
- Department of Breast Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hailiang Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| |
Collapse
|
22
|
Ko YS, Lee WS, Panchanathan R, Joo YN, Choi YH, Kim GS, Jung JM, Ryu CH, Shin SC, Kim HJ. Polyphenols fromArtemisia annuaL Inhibit Adhesion and EMT of Highly Metastatic Breast Cancer Cells MDA-MB-231. Phytother Res 2016; 30:1180-8. [DOI: 10.1002/ptr.5626] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/24/2016] [Accepted: 03/24/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Young Shin Ko
- Department of Pharmacology, Institute of Health Sciences, School of Medicine; Gyeongsang National University; Jinju 660-702 South Korea
| | - Won Sup Lee
- Internal Medicine, Institute of Health Sciences, School of Medicine; Gyeongsang National University; Jinju 660-702 South Korea
| | - Radha Panchanathan
- Internal Medicine, Institute of Health Sciences, School of Medicine; Gyeongsang National University; Jinju 660-702 South Korea
| | - Young Nak Joo
- Department of Pharmacology, Institute of Health Sciences, School of Medicine; Gyeongsang National University; Jinju 660-702 South Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Department of Biomaterial Control (BK21 program), Graduate School; Dong-eui University; Busan 614-052 South Korea
| | - Gon Sup Kim
- School of Veterinary Medicine; Gyeongsang National University; Jinju 660-701 South Korea
| | - Jin-Myung Jung
- Neurosurgery, Institute of Health Sciences, School of Medicine; Gyeongsang National University; Jinju 660-702 South Korea
| | - Chung Ho Ryu
- Division of Applied Life Science (BK 21 Program), Institute of Agriculture and Life Science; Gyeongsang National University; Jinju 660-701 South Korea
| | - Sung Chul Shin
- Department of Chemistry, Research Institute of Life Science; Gyeongsang National University; Jinju 660-701 South Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, School of Medicine; Gyeongsang National University; Jinju 660-702 South Korea
| |
Collapse
|
23
|
Yu C, Tang W, Wang Y, Shen Q, Wang B, Cai C, Meng X, Zou F. Downregulation of ACE2/Ang-(1-7)/Mas axis promotes breast cancer metastasis by enhancing store-operated calcium entry. Cancer Lett 2016; 376:268-77. [PMID: 27063099 DOI: 10.1016/j.canlet.2016.04.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/30/2016] [Accepted: 04/03/2016] [Indexed: 12/22/2022]
Abstract
The renin-angiotensin system (RAS) is an important component of the tumor microenvironment and plays a key role in promoting cancer cell proliferation, angiogenesis, metabolism, migration and invasion. Meanwhile, the arm of angiotensin-converting enzyme (ACE)2/angiotensin-(1-7) [Ang-(1-7)]/Mas axis in connection with RAS is associated with anti-proliferative, vasodilatory and anti-metastatic properties. Previous studies have shown that Ang-(1-7) reduces the proliferation of orthotopic human breast tumor growth by inhibiting cancer-associated fibroblasts. However, the role of ACE/Ang-(1-7)/Mas axis in the metastasis of breast cancer cells is still unknown. In the present study, we found that ACE2 protein level is negatively correlated with the metastatic ability of breast cancer cells and breast tumor grade. Upregulation of ACE2/Ang-(1-7)/Mas axis inhibits breast cancer cell migration and invasion in vivo and in vitro. Mechanistically, ACE2/Ang-(1-7)/Mas axis activation inhibits store-operated calcium entry (SOCE) and PAK1/NF-κB/Snail1 pathways, and induces E-cadherin expression. In summary, our results demonstrate that downregulation of ACE2/Ang-(1-7)/Mas axis stimulates breast cancer metastasis through the activation of SOCE and PAK1/NF-κB/Snail1 pathways. These results provide new mechanisms by which breast cancer develop metastasis and shed light on developing novel anti-metastasis therapeutics for metastatic breast cancer by modulating ACE2/Ang-(1-7)/Mas axis.
Collapse
Affiliation(s)
- Changhui Yu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Tang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuhao Wang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiang Shen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Wang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chunqing Cai
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
24
|
Yang GY, Guo S, Dong CY, Wang XQ, Hu BY, Liu YF, Chen YW, Niu J, Dong JH. Integrin αvβ6 sustains and promotes tumor invasive growth in colon cancer progression. World J Gastroenterol 2015; 21:7457-7467. [PMID: 26139991 PMCID: PMC4481440 DOI: 10.3748/wjg.v21.i24.7457] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/27/2014] [Accepted: 01/21/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the mechanism by which colon tumor escapes the growth constraints imposed on normal cells by cell crowding and dense pericellular matrices.
METHODS: An immunohistochemical study of integrin αvβ6 and matrix metalloproteinase-9 (MMP-9) was performed on tissue microarrays of 200 spots, including 100 cases of colon tumors.
RESULTS: High immunoreactivity for αvβ6 (73.7%; 28/38) and MMP-9 (76.5%; 52/68) was observed in invasive tumor portions. Furthermore, the effects of integrin αvβ6 on tumor invasive growth in nude mice were detected. Tumor invasive growth and high expression of both αvβ6 and MMP-9 were only seen in tumors resulting from WiDr cells expressing αvβ6 in the tumorigenicity assay. Flow cytometry was applied to analyze αvβ6 expression in colon cancer WiDr and SW480 cells. The effects of cell density on αvβ6 expression and MMP-9 secretion were also detected by Biotrak MMP-9 activity assay and gelatin zymography assay. High cell density evidently enhanced αvβ6 expression and promoted MMP-9 secretion compared with low density.
CONCLUSION: Integrin αvβ6 sustains and promotes tumor invasive growth in tumor progression via a self-perpetuating mechanism. Integrin ανβ6-mediated MMP-9 secretion facilitates pericellular matrix degradation at high cell density, which provides the basis of invasive growth.
Collapse
|
25
|
TIAN QUAN, XUE YAN, ZHENG WEI, SUN RONG, JI WEI, WANG XINYANG, AN RUIFANG. Overexpression of hypoxia-inducible factor 1α induces migration and invasion through Notch signaling. Int J Oncol 2015; 47:728-38. [DOI: 10.3892/ijo.2015.3056] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/29/2015] [Indexed: 11/05/2022] Open
|
26
|
Translationally controlled tumor protein induces epithelial to mesenchymal transition and promotes cell migration, invasion and metastasis. Sci Rep 2015; 5:8061. [PMID: 25622969 PMCID: PMC4306963 DOI: 10.1038/srep08061] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/29/2014] [Indexed: 12/21/2022] Open
Abstract
Translationally controlled tumor protein (TCTP), is a highly conserved protein involved in fundamental processes, such as cell proliferation and growth, tumorigenesis, apoptosis, pluripotency, and cell cycle regulation. TCTP also inhibits Na,K-ATPase whose subunits have been suggested as a marker of epithelial-to-mesenchymal transition (EMT), a crucial step during tumor invasiveness, metastasis and fibrosis. We hypothesized that, TCTP might also serve as an EMT inducer. This study attempts to verify this hypothesis. We found that overexpression of TCTP in a porcine renal proximal tubule cell line, LLC-PK1, induced EMT-like phenotypes with the expected morphological changes and appearance of EMT related markers. Conversely, depletion of TCTP reversed the induction of these EMT phenotypes. TCTP overexpression also enhanced cell migration via activation of mTORC2/Akt/GSK3β/β-catenin, and invasiveness by activating MMP-9. Moreover, TCTP depletion in melanoma cells significantly reduced pulmonary metastasis by inhibiting the development of mesenchymal-like phenotypes. Overall, these findings support our hypothesis that TCTP is a positive regulator of EMT and suggest that modulation of TCTP expression is a potential approach to inhibit the invasiveness and migration of cancer cells and the attendant pathologic processes including metastasis.
Collapse
|
27
|
Kim RK, Suh Y, Yoo KC, Cui YH, Hwang E, Kim HJ, Kang JS, Kim MJ, Lee YY, Lee SJ. Phloroglucinol suppresses metastatic ability of breast cancer cells by inhibition of epithelial-mesenchymal cell transition. Cancer Sci 2014; 106:94-101. [PMID: 25456733 PMCID: PMC4317783 DOI: 10.1111/cas.12562] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 10/09/2014] [Accepted: 10/20/2014] [Indexed: 01/21/2023] Open
Abstract
Metastasis is a challenging clinical problem and the primary cause of death in breast cancer patients. However, there is no therapeutic agent against metastasis of breast cancer cells. Here we report that phloroglucinol, a natural phlorotannin component of brown algae suppresses metastatic ability of breast cancer cells. Treatment with phloroglucinol effectively inhibited mesenchymal phenotypes of basal type breast cancer cells through downregulation of SLUG without causing a cytotoxic effect. Importantly, phloroglucinol decreased SLUG through inhibition of PI3K/AKT and RAS/RAF-1/ERK signaling. In agreement with in vitro data, phloroglucinol was also effective against in vivo metastasis of breast cancer cells, drastically suppressing their metastatic ability to lungs, and extending the survival time of mice. Collectively, our findings demonstrate a novel anticancer activity of phloroglucinol against metastasis of breast cancer cells, implicating its clinical relevance.
Collapse
Affiliation(s)
- Rae-Kwon Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
A simple novel prognostic model for early stage oral tongue cancer. Int J Oral Maxillofac Surg 2014; 44:143-50. [PMID: 25457829 DOI: 10.1016/j.ijom.2014.10.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/18/2014] [Accepted: 10/06/2014] [Indexed: 01/03/2023]
Abstract
The prognostication of patient outcome is one of the greatest challenges in the management of early stage oral tongue squamous cell carcinoma (OTSCC). This study introduces a simple histopathological model for the prognostication of survival in patients with early OTSCC. A total of 311 cases (from Finland and Brazil) with clinically evaluated early stage OTSCC (cT1-T2cN0cM0) were included in this multicentre retrospective study. Tumour budding (B) and depth of invasion (D) were scored on haematoxylin-eosin-stained cancer slides. The cut-off point for tumour budding was set at 5 buds (low <5; high ≥5) and for depth of invasion at 4mm (low <4mm; high ≥4mm). The scores of B and D were combined into one model: the BD predictive model. On multivariate analysis, a high risk score (BD score 2) correlated significantly with loco-regional recurrence (P=0.033) and death due to OTSCC (P<0.001) in early stage OTSCC. The new BD model is a promising prognostic tool to identify those patients with aggressive cases of early stage OTSCC who might benefit from multimodality treatment.
Collapse
|
29
|
Li H, Zhang B, Liu Y, Yin C. EBP50 inhibits the migration and invasion of human breast cancer cells via LIMK/cofilin and the PI3K/Akt/mTOR/MMP signaling pathway. Med Oncol 2014; 31:162. [PMID: 25119502 DOI: 10.1007/s12032-014-0162-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/04/2014] [Indexed: 12/21/2022]
Abstract
The scaffold protein ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50, also known as NHERF1 or NHERF) inhibits epidermal growth factor (EGF)-induced breast cancer cell proliferation after 3 days by blocking EGF receptor (EGFR) phosphorylation. The loss of EBP50 stimulates EGFR activity and induces the appearance of epithelial-to-mesenchymal transition phenotypic features in biliary cancer cells. However, the involvement of EBP50 in breast cancer migration and invasion remains unknown. We report that EBP50 inhibits the migration and invasion of breast cancer cells by inhibiting the phosphorylation of LIN-11, Isl1, and MEC-3 protein domain kinase, as well as cofilin. This phosphorylation is a critical step in cofilin recycling and actin polymerization mediating cytoskeletal rearrangement. Additionally, EGF-induced phosphorylation of Akt and mTOR was suppressed by upregulation of EBP50. Our results indicate that EBP50 is significantly involved in breast cancer invasion/metastasis via LIMK/cofilin and the PI3K/Akt/mTOR/MMP signaling pathway.
Collapse
Affiliation(s)
- Hongli Li
- Medicine Research Center, Weifang Medical University, Weifang, 261053, People's Republic of China
| | | | | | | |
Collapse
|
30
|
Zhang B, Yin C, Li H, Shi L, Liu N, Sun Y, Lu S, Liu Y, Sun L, Li X, Chen W, Qi Y. Nir1 promotes invasion of breast cancer cells by binding to chemokine (C-C motif) ligand 18 through the PI3K/Akt/GSK3β/Snail signalling pathway. Eur J Cancer 2013; 49:3900-3913. [PMID: 24001613 DOI: 10.1016/j.ejca.2013.07.146] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 06/30/2013] [Accepted: 07/29/2013] [Indexed: 12/22/2022]
Abstract
Chemokine (C-C motif) ligand 18 (CCL18), which is derived from tumour-associated macrophages (TAMs), plays a critical role in promoting breast cancer metastasis via its receptor, PYK2 N-terminal domain interacting receptor 1 (Nir1). However, the molecular mechanism by which Nir1 promotes breast cancer metastasis by binding to CCL18 remains elusive. In this study, Nir1 expression was associated with lymph node and distant metastasis in patients with invasive ductal carcinoma. For the first time, we report that Nir1 binding to CCL18 promotes the phosphorylation of Akt, LIN-11, Isl1 and MEC-3 protein domain kinase (LIMK), and cofilin, which is a critical step in cofilin recycling and actin polymerisation. Interestingly, Nir1 binding to CCL18 can enhance cell mesenchymal properties and induce epithelial-mesenchymal transition (EMT). Mechanistically, Nir1 binding to CCL18 stabilises Snail via the Akt/GSK3β signalling pathway. In support of these observations, Nir1 binding to CCL18 promoted lung metastasis and LY294002 could inhibit it in vivo. In summary, our in vitro and in vivo results indicate that Nir1 binding to CCL18 plays an important role in breast cancer invasion/metastasis. This study identified both Nir1 and CCL18 as potential anti-invasion targets for therapeutic intervention in breast cancer.
Collapse
Affiliation(s)
- Baogang Zhang
- Department of Pathology, Key Clinical Specialty for Pathology of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang 261053, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Luo WR, Gao F, Li SY, Yao KT. Tumour budding and the expression of cancer stem cell marker aldehyde dehydrogenase 1 in nasopharyngeal carcinoma. Histopathology 2012; 61:1072-1081. [PMID: 23020521 DOI: 10.1111/j.1365-2559.2012.04350.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIMS To detect the prognostic significance of tumour budding and its expression of aldehyde dehydrogenase 1 (ALDH1) in nasopharyngeal carcinoma (NPC). METHODS AND RESULTS Tumour budding was investigated in 105 patients with NPC by immunohistochemistry for pan-cytokeratin (AE1/AE3). The intensity of budding correlated strongly with T classification (P=0.008), lymphatic invasion (P<0.001), vascular invasion (P=0.029), lymph node metastasis (P < 0.001), and clinical stage (P=0.010). Univariate analysis revealed that patients with high budding grade had poorer survival than those with low grade (P=0.002). Multivariate analysis showed that tumour budding was an independent predictor of survival (P=0.001). Furthermore, budding cells showed high-level expression of the cancer stem cell (CSC) marker ALDH1. Budding cells with high-level ALDH1 expression contributed to several aggressive behaviours and poor survival (P=0.000). CONCLUSIONS We describe, for the first time, the presence of tumour budding and its correlation with aggressive tumour behaviour and poor patient survival in NPC. The degree of tumour budding could be a valuable predictive factor in NPC. In addition, we show, also for the first time, that budding cells in NPC might possess the invasive and metastatic properties of CSCs.
Collapse
Affiliation(s)
- Wei-Ren Luo
- Cancer Research Institute, Southern Medical University, Guangzhou, PR China.
| | | | | | | |
Collapse
|
32
|
Xiao W, Zhou S, Xu H, Li H, He G, Liu Y, Qi Y. Nogo-B promotes the epithelial-mesenchymal transition in HeLa cervical cancer cells via Fibulin-5. Oncol Rep 2012; 29:109-16. [PMID: 23042479 DOI: 10.3892/or.2012.2069] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 08/30/2012] [Indexed: 11/06/2022] Open
Abstract
Cervical cancer is a common malignancy in women worldwide, and the occurrence of invasion and metastasis is the major cause for most cancer-related deaths. Epithelial-mesenchymal transition (EMT) has been implicated in the metastasis of primary tumors and provides molecular mechanisms for cervical cancer metastasis. We previously reported that Nogo-B mediates cell motility by binding Fibulin-5. Herein, we show that the increased expression of Nogo-B is correlated with the degree of cervical cancer metastasis. In HeLa cervical cancer cells, overexpression of Nogo-B induces the EMT and promotes cell migration and invasion, while inhibiting cell adhesion. Furthermore, we found that Nogo-B accumulates and co-localizes with Fibulin-5 in pseudopods, and the downstream effects of overexpression of Nogo-B on cell motility could be partially abolished by RNA interference against Fibulin-5. These results suggest that Nogo-B functions as an inducer of cervical cancer metastasis and that this effect is mediated, at least in part, through Fibulin-5.
Collapse
Affiliation(s)
- Wei Xiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, and Department of Urology, Tongji Hospital, Hubei, Wuhan, PR China
| | | | | | | | | | | | | |
Collapse
|
33
|
Yoon CH, Kim MJ, Lee H, Kim RK, Lim EJ, Yoo KC, Lee GH, Cui YH, Oh YS, Gye MC, Lee YY, Park IC, An S, Hwang SG, Park MJ, Suh Y, Lee SJ. PTTG1 oncogene promotes tumor malignancy via epithelial to mesenchymal transition and expansion of cancer stem cell population. J Biol Chem 2012; 287:19516-27. [PMID: 22511756 DOI: 10.1074/jbc.m111.337428] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The prognosis of breast cancer patients is related to the degree of metastasis. However, the mechanisms by which epithelial tumor cells escape from the primary tumor and colonize at a distant site are not entirely understood. Here, we analyzed expression levels of pituitary tumor-transforming gene-1 (PTTG1), a relatively uncharacterized oncoprotein, in patient-derived breast cancer tissues with corresponding normal breast tissues. We found that PTTG1 is highly expressed in breast cancer patients, compared with normal tissues. Also, PTTG1 expression levels were correlated with the degree of malignancy in breast cancer cell lines; the more migratory and invasive cancer cell lines MDA-MB-231 and BT549 displayed the higher expression levels of PTTG1 than the less migratory and invasive MCF7 and SK-BR3 and normal MCF10A cell lines. By modulating PTTG1 expression levels, we found that PTTG1 enhances the migratory and invasive properties of breast cancer cells by inducing epithelial to mesenchymal transition, as evidenced by altered morphology and epithelial/mesenchymal cell marker expression patterns and up-regulation of the transcription factor Snail. Notably, down-regulation of PTTG1 also suppressed cancer stem cell population in BT549 cells by decreasing self-renewing ability and tumorigenic capacity, accompanying decreasing CD44(high) CD24(low) cells and Sox2 expression. Up-regulation of PTTG1 had the opposite effects, increasing sphere-forming ability and Sox2 expression. Importantly, PTTG1-mediated malignant tumor properties were due, at least in part, to activation of AKT, known to be a key regulator of both EMT and stemness in cancer cells. Collectively, these results suggest that PTTG1 may represent a new therapeutic target for malignant breast cancer.
Collapse
Affiliation(s)
- Chang-Hwan Yoon
- Department of Chemistry, Research Institute for Natural Sciences, Hanyang University College of Medicine, Hanyang University, Seoul 133-791, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Banerjee SK, Banerjee S. CCN5/WISP-2: A micromanager of breast cancer progression. J Cell Commun Signal 2012; 6:63-71. [PMID: 22487979 DOI: 10.1007/s12079-012-0158-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 01/09/2012] [Indexed: 12/19/2022] Open
Abstract
The gain of plasticity by a subset of cancer cells is a unique but common sequence of cancer progression from epithelial phenotype to mesenchymal phenotype (EMT) that is followed by migration, invasion and metastasis to a distant organ, and drug resistance. Despite multiple studies, it is still unclear how cancer cells regulate plasticity. Recent studies from our laboratory and others' proposed that CCN5/WISP-2, which is found intracellularly (in the nucleus and cytoplasm) and extracellularly, plays a negative regulator of plasticity. It prevents the EMT process in breast cancer cells as well as pancreatic cancer cells. Multiple genetic insults, including the gain of p53 mutations that accumulate over the time, may perturb CCN5 expression in non-invasive breast cancer cells, which ultimately helps cells to gain invasive phenotypes. Moreover, emerging evidence indicates that several oncogenic lesions such as miR-10b upregulation and activation of TGF-β-signaling can accumulate during CCN5 crisis in breast cancer cells. Collectively, these studies indicate that loss of CCN5 activity may promote breast cancer progression; application of CCN5 protein may represent a novel therapeutic intervention in breast cancer and possibly pancreatic cancer.
Collapse
Affiliation(s)
- Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, 4801 Linwood Blvd, Kansas City, MO, 64128, USA,
| | | |
Collapse
|